Humboldt-Universität zu Berlin Institut für Mathematik Advanced Topics in Optimization Mathematics Image Processing Summer semester 2018/19

Exercise Sheet 2

1) Let X be a real topological vector space. Recall the definition of the *epigraph* of a function $f: X \to \overline{\mathbb{R}}$:

$$epi(F) = \{ (x, \alpha) \in V \times \mathbb{R} : f(x) \le \alpha \}.$$

Prove the following:

- (i) A function F is convex if and only if its epigraph is convex.
- (ii) A function F is lower semicontinuous if and only if its epigraph is closed.
- (iii) If X is a Banach space and the function $F : X \to \mathbb{R}$ is lower semicontinuous with respect to the norm then it is also lower semicontinuous with respect to the weak topology.
- 2) For a function $F: X \to \overline{\mathbb{R}}$ we define \overline{F} to be the lower semicontinuous envelope of F, that is, the pointwise supremum of all lower semicontinuous functions that are everywhere less than F:

$$\overline{F}(x) = \sup \{G(x) : G \le F \text{ and } G \text{ is } \mathrm{lsc} \}.$$

Prove the following:

- (i) $epi(\overline{F}) = \overline{epi(F)}$, (the closure of epi(F)).
- (1) For every $x \in X$ and $x_n \to x$, $\overline{F}(x) \leq \liminf_{n \to \infty} F(x_n)$.
- **3)** Let X be a real topological vector space. The indicator function \mathcal{I}_A of a set $A \subseteq X$ is defined as

$$\mathcal{I}_X(u) = \begin{cases} 0 & \text{if } x \in A, \\ +\infty & \text{if } x \notin A. \end{cases}$$

Show that:

- (i) \mathcal{I}_A is convex if and only if A is convex.
- (ii) \mathcal{I}_A is lower semicontinuous if and only if A is closed.
- (iii) $\overline{\mathcal{I}_A} = \mathcal{I}_{\overline{A}}$
- 4) Let X be a reflexive Banach space and $F : X \to \overline{\mathbb{R}}$ be a weakly lower semicontinuous function with the property that $F(x) \to \infty$ when $||x|| \to \infty$ (in particular it is coercive). Let $A \subset X$ be a convex set, closed with respect to the norm. Prove that the constrained minimization problem $\inf_{x \in A} F(x)$, has a solution.
- 5) Let X be a Banach space and $F: X \to \overline{\mathbb{R}}$ a convex function. We define $F^*: X^* \to \overline{\mathbb{R}}$ to be the *polar* or *convex conjugate* of F as

$$F^*(x^*) = \sup_{x \in X} \langle x^*, x \rangle_{X^*, X} - F(x).$$

- (i) Calculate the convex conjugate of : $F: L^2(\Omega) \to \mathbb{R}$ with $F(u) = \frac{1}{2} ||u||_{L^2(\Omega)}^2$.
- (ii) Show that $F: L^2(\Omega) \to \mathbb{R}$ with $F(u) = \frac{1}{2} \|\nabla u\|_{L^2(\Omega)}^2$, is lower semicontinuous (where $F(u) := \infty$ if $\nabla u \notin L^2(\Omega, \mathbb{R}^d)$). Revisit problem (6) of Exercise Sheet 1.