Humboldt-Universität zu Berlin Institut für Mathematik Advanced Topics in Optimization Mathematical Image Processing Summer semester 2018/19

Exercise Sheet 3

- 1) Let X be a Banach space. We define $\Gamma(X)$ to be the set of all functions $F: X \to \overline{\mathbb{R}}$ which are pointwise supremum of a family of continuous affine functions. Show that the following are equivalent:
 - (i) $F \in \Gamma(X)$ and proper.
 - (ii) F is proper, convex and lower semicontinuous.
- 2) Let $F, G: X \to \overline{\mathbb{R}}$. Then show that the following are equivalent:
 - (i) G is the pointwise supremum of the continuous affine functions which are everywhere less than F.
 - (ii) G is the largest function in $\Gamma(X)$ which is everywhere less than F.
 - If the above holds then we say that F is the Γ -regularization of F.
- **3)** Let $F: X \to \mathbb{R}$. Show that the convex bi-conjugate F^{**} of F is equal to its Γ -regularization.
- 4) Let $F: X \to \overline{\mathbb{R}}$ and G its Γ -regularization. Show that

$$\operatorname{epi} G = \overline{\operatorname{co}(\operatorname{epi} F)}$$

where "co" denotes the convex hull. Conclude that if $A \subset X$, then

$$\mathcal{I}_A^{**} = \mathcal{I}_{\overline{\operatorname{co}(A)}}$$

(5) Let $T: L^2(\Omega) \to L^2(\Omega)$ be a bounded linear operator, with the property that $B := T^*T$ is invertible $(T^*$ denotes here the adjoint operator). Let $f \in L^2(\Omega)$ and define the functional $F: L^2(\Omega) \to \mathbb{R}, F(u) = \frac{1}{2} ||Tu - f||^2_{L^2(\Omega)}$. Show that the convex conjugate of F is

$$F^*(u^*) = \frac{1}{2} \|u^* + T^*f\|_B^2 - \frac{1}{2} \|f\|_{L^2(\Omega)}^2$$

where

$$\|v\|_B^2 := \int_\Omega v B^{-1} v \, dx$$

(6) Let $F: X \to \overline{\mathbb{R}}$. Show that

(i)
$$x^* \in \partial F(x)$$
 if and only if

$$F(x) + F^*(x^*) = \langle x^*, x \rangle_{X^*, X}$$

- (ii) $x^* \in \partial F(x) \Rightarrow x \in \partial F^*(x^*)$. Show that if $F \in \Gamma(X)$ then " \Leftarrow " holds as well.
- (7) Let X, Y Banach spaces, $F \in \Gamma(Y)$ and let $\Lambda : X \to Y$ be linear and continuous. Assume that there exists a point Λx_0 where F is continuous and finite. Then for all points $x \in X$, it holds

$$\partial (F \circ \Lambda)(x) = \Lambda^* \partial F(\Lambda x)$$