Humboldt-Universität zu Berlin
Institut für Mathematik
Advanced Topics in Optimization
Mathematical Image Processing
Summer semester 2018/19

Exercise Sheet 4

Recall the general duality theorem:

Let X, Y be Banach spaces, $\Lambda \in \mathcal{L}(X, Y)$, and let $\mathcal{F}: X \rightarrow \overline{\mathbb{R}}, \mathcal{G}: Y \rightarrow \overline{\mathbb{R}}$ be two proper, convex lower semicontinuous functions. Suppose that there exists a $p_{0} \in X$ such that $\mathcal{F}\left(p_{0}\right)<\infty$, $\mathcal{G}\left(\Lambda p_{0}\right)<\infty$ and \mathcal{G} is continuous at Λp_{0}. Then

$$
\underbrace{\inf _{p \in X} \mathcal{F}(p)+\mathcal{G}(\Lambda p)}_{\text {primal problem }}=\underbrace{\sup _{u \in Y^{*}}-\mathcal{F}^{*}\left(\Lambda^{\star} u\right)-\mathcal{G}^{*}(-u)}_{\text {dual problem }}, \quad \text { (zero duality gap) }
$$

and the dual problem above admits a solution. Further \hat{p} and \hat{u} are solutions of the primal and the dual problems respectively if and only if

$$
\begin{align*}
-\hat{u} & \in \partial \mathcal{G}(\Lambda \hat{p}), \tag{1}\\
\Lambda^{*} u & \in \partial \mathcal{F}(\hat{p}) \tag{2}
\end{align*}
$$

Recall also the definition of the spaces $H(\operatorname{div} ; \Omega)$ and $H_{0}(\operatorname{div} ; \Omega)$:

$$
H(\operatorname{div} ; \Omega)=\left\{p \in L^{2}\left(\Omega, \mathbb{R}^{d}\right): \operatorname{div} p \in L^{2}\right\}
$$

where $\operatorname{div} p$ is the weak divergence of p, i.e., it satisfies

$$
\int_{\Omega} \nabla \phi \cdot p d x=-\int_{\Omega} \phi \operatorname{div} p d x, \quad \text { for all } \phi \in C_{c}^{\infty}(\Omega) .
$$

1) Use the density of $C_{c}^{\infty}(\Omega)$ in $L^{2}(\Omega)$ to show that $\operatorname{div} p$ is unique.
2) Show that the space $H(\operatorname{div} ; \Omega)$ is Banach, when equipped with the norm

$$
\|p\|_{H(\operatorname{div} ; \Omega)}^{2}=\|p\|_{L^{2}\left(\Omega, \mathbb{R}^{d}\right)}^{2}+\|\operatorname{div} p\|_{L^{2}(\Omega)}^{2}
$$

3) Define $H_{0}($ div; $\Omega)$ as

$$
H_{0}(\operatorname{div} ; \Omega)={\overline{C_{c}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)}}^{\|\cdot\|_{H(\operatorname{div} ; \Omega)},}
$$

and show that

$$
\int_{\Omega} \nabla \phi \cdot p d x=-\int_{\Omega} \phi \operatorname{div} p d x, \quad \text { for all } p \in H_{0}(\operatorname{div} ; \Omega), \phi \in C^{\infty}(\bar{\Omega}) .
$$

4) Let $f \in L^{2}(\Omega), T: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ bounded, linear, with $T^{\star} T$ being invertible and let $\alpha>0$. Consider the problem
(Primal)

$$
\left\{\begin{array}{l}
\min _{p \in H_{0}(\operatorname{div} ; \Omega)} \frac{1}{2}\left\|\operatorname{div} p+T^{\star} f\right\|_{B}^{2} \\
\text { such that }-\alpha \leq p(x) \leq \alpha \text { for almost every } x \in \Omega
\end{array}\right.
$$

meaning that $-\alpha \leq p_{i}(x) \leq \alpha$ for all $i=1, \ldots, d$ where $p=\left(p_{1}, \ldots, p_{d}\right)$. Show that this problem has a solution. Here $\|\cdot\|_{B}^{2}$ is defined as in the previous exercise sheet.
5) By using the general duality theorem, with appropriately defined $X, Y, \mathcal{F}, \mathcal{G}$ and Λ (Hint: $\Lambda p=-\operatorname{div} p$), show that the dual problem of (Primal) is equivalent (up to a constant $\left.\frac{1}{2}\|f\|_{L^{2}(\Omega)}^{2}\right)$ to
(Dual)

$$
\inf _{u \in L^{2}(\Omega)} \frac{1}{2}\|T u-f\|_{L^{2}(\Omega)}+\alpha \mathrm{TV}(u)
$$

where
$\operatorname{TV}(u):=\sup \left\{\int_{\Omega} u \operatorname{div} p d x: p \in H_{0}(\operatorname{div} ; \Omega),-\alpha \leq p(x) \leq \alpha\right.$ for almost every $\left.x \in \Omega\right\}$.
6) Show that there is zero duality gap for the the problems (Primal) and (Dual) and show that \hat{p} and \hat{u} are solutions of the (Primal) and (Dual) respectively if and only if

$$
\begin{align*}
B \hat{u} & =\operatorname{div} \hat{p}+T^{\star} f \tag{3}\\
\int_{\Omega} \hat{u} \operatorname{div} \hat{p} & =\operatorname{TV}(\hat{u}) \quad \text { and }-\alpha \leq p(x) \leq \alpha \text { for almost every } x \in \Omega . \tag{4}
\end{align*}
$$

