Übungsaufgaben zur Vorlesung

Algebra/Zahlentheorie

Prof. Dr. J. Kramer

Abgabetermin: Mittwoch, 23.05.2007 nach der Vorlesung oder bis 13.00 Uhr im Sekretariat von Prof. Kramer

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben, und JEDES Blatt mit Namen und Matrikelnummer versehen!

Serie 4 (50 Punkte)

Aufgabe 1 (10 Punkte)

Für eine Gruppe (G, \circ) mit neutralem Element e und $n \in \mathbb{N}$ führen wir die folgende Potenzschreibweise für die n-malige Verknüpfung eines Elementes $g \in G$ mit sich selbst ein:

$$g^n := \underbrace{g \circ \dots \circ g}_{n\text{-mal}} ;$$

hierbei ist $g^0 = e$.

Zeigen Sie, dass mit dieser Bezeichnungsweise die folgenden Rechenregeln gelten:

- a) $(g^{-1})^{-1} = g$ für alle $g \in G$.
- b) $(g \circ h)^{-1} = h^{-1} \circ g^{-1}$ für alle $g, h \in G$.
- c) $g^n \circ g^m = g^{n+m}$ für alle $g \in G$ und $n, m \in \mathbb{N}$.
- d) $(g^n)^m = g^{n \cdot m}$ für alle $g \in G$ und $n, m \in \mathbb{N}$.

Aufgabe 2 (10 Punkte)

Es sei n eine von Null verschiedene natürliche Zahl. Wir betrachten die Teilmenge $\mathcal{R}_n := \{0, \ldots, n-1\}$ der ersten n natürlichen Zahlen. Auf der Menge \mathcal{R}_n können wir wie folgt zwei Verknüpfungen einführen; dazu bezeichnen wir den eindeutig bestimmten Rest einer natürlichen Zahl c nach Division durch n mit $R_n(c)$; es gilt $R_n(c) \in \mathcal{R}_n$. Für zwei Zahlen $a, b \in \mathcal{R}_n$ setzen wir jetzt:

- $\oplus : \mathcal{R}_n \times \mathcal{R}_n \longrightarrow \mathcal{R}_n$, gegeben durch $a \oplus b := R_n(a+b)$;
- $\odot: \mathcal{R}_n \times \mathcal{R}_n \longrightarrow \mathcal{R}_n$, gegeben durch $a \odot b := R_n(a \cdot b)$.
- a) Zeigen Sie, dass die Verknüpfungen \oplus und \odot assoziativ sind.
- b) Zeigen Sie, dass (\mathcal{R}_n, \oplus) eine abelsche Gruppe ist.

- c) Zeigen Sie, dass (\mathcal{R}_n, \odot) ein abelsches Monoid ist.
- d) Es sei $n \in \{1, ..., 6\}$. Entscheiden Sie, wann $(\mathcal{R}_n \setminus \{0\}, \odot)$ eine abelsche Gruppe ist.

Aufgabe 3 (10 Punkte) (Symmetrische Gruppe)

Sei $[n] := \{1, 2, ..., n\}$ die Menge der ersten n natürlichen Zahlen. Mit S_n bezeichnen wir die Menge aller bijektiven Abbildungen von [n] nach [n].

- a) Zeigen Sie, dass S_n (mit der Verknüpfung von Abbildungen als Gruppenoperation) eine Gruppe ist (wir bezeichnen sie auch als die *symmetrische Gruppe*).
- b) Wieviele Elemente hat S_n ?
- c) Zeigen Sie: Für $n \geq 3$ ist S_n nicht kommutativ.
- d) Finden Sie alle Untergruppen von S_3 .

Aufgabe 4 (10 Punkte) (Diedergruppe)

- a) Zeigen Sie, dass die Menge D_n aller Kongruenzabbildungen, die ein regelmäßiges n-Eck auf sich selbst abbilden, eine Gruppe ist (n-te Diedergruppe).
- b) Sei $a \in D_n$ eine Spiegelung und $b \in D_n$ eine Drehung um $\frac{2\pi}{n}$. Zeigen Sie:

$$a^2 = e$$
, $b^n = e$, $a \circ b \circ a = b^{-1}$.

- c) Zeigen Sie: Jedes Element aus D_n ist eindeutig als Produkt $a^l \circ b^m$ mit $l \in \{0, 1\}$, $m \in \{0, 1, \dots, n-1\}$ darstellbar.
- d) Bestimmen Sie die Ordnung von D_n .

Aufgabe 5 (10 Punkte)

Geben Sie alle möglichen Gruppentafeln von Gruppen der Ordnung vier an.