Übungsaufgaben zur Vorlesung

Algebra I

Prof. Dr. J. Kramer

Abgabetermin: 15.01.2007 nach der Vorlesung oder bis 11.00 Uhr, Sekretariat Prof. Kramer

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben, und JEDES Blatt mit Namen und Matrikelnummer versehen!

Serie 11 (30+10 Punkte)

Aufgabe 1 (10 Punkte)

Es seien E algebraisch über L und L algebraisch über K. Zeigen Sie, dass die Erweiterung E dann auch über K algebraisch ist.

Aufgabe 2 (10 Punkte)

Es sei $\alpha_n = \sqrt[2^n]{2} \in \mathbb{R}$ (n = 1, 2, 3, ...) und $E = \bigcup_{n=1}^{\infty} \mathbb{Q}(\alpha_n)$. Beweisen Sie, dass E ein Körper ist, der über

Beweisen Sie, dass E ein Körper ist, der über \mathbb{Q} algebraisch ist und $[E:\mathbb{Q}]=\infty$ erfüllt.

Aufgabe 3 (10 Punkte)

Es sei D eine quadratfreie ganze Zahl und $K = \mathbb{Q}(\sqrt{D})$.

Bestimmen Sie alle Körperautomorphismen von K, die $\mathbb Q$ elementweise fest lassen.

Aufgabe 4* (10 Punkte)

Es sei \mathbb{F}_q ein endlicher Körper der Charakteristik p mit q Elementen.

- a) Zeigen Sie, dass $q = p^n$ ist für ein $n \in \mathbb{N}, n \ge 1$.
- b) Beweisen Sie, dass die Abbildung $\operatorname{Frob}_p(x) := x^p \ (x \in \mathbb{F}_q)$ ein Körperautomorphismus ist.
- c) Wir wissen aus Serie 6, Aufgabe 4b), dass die multiplikative Gruppe \mathbb{F}_q^{\times} zyklisch ist. Sei $\zeta \in \mathbb{F}_q$ ein Erzeuger dieser Gruppe. Zeigen Sie, dass $\mathbb{F}_q \cong \mathbb{F}_p(\zeta)$ ist.