CONTACT 3-MANIFOLDS, HOLOMORPHIC CURVES AND INTERSECTION THEORY

EXERCISE SHEET 1

August 27, 2013

PART 1: LEFSCHETZ FIBRATIONS

(1) Assume $\pi : M \to \Sigma$ is a 4-dimensional Lefschetz fibration over a surface Σ and $\pi^{-1}(z)$ is a singular fibre consisting of two closed embedded surfaces S_1 and S_2 with a single intersection. Show that their homological intersection numbers then satisfy

$$[S_1] \cdot [S_1] = [S_2] \cdot [S_2] = -1.$$

(2) Show that if $\pi : M \to \Sigma$ is a 4-dimensional Lefschetz fibration and $p \in M$ is a regular point, then the blowup \widehat{M} of M at p naturally inherits a Lefschetz fibration that has one more critical point than π , such that the resulting exceptional sphere is contained in a singular fibre.

PART 2: HOLOMORPHIC CURVES

- (3) (a) Show that for a generic compatible almost complex structure J on a closed symplectic 4-manifold (M, ω) , if $A \in H_2(M)$ satisfies $c_1(A) = 1$, then the moduli space $\mathcal{M}_0^A(M, J)$ of (equivalence classes up to parametrization of) J-holomorphic spheres homologous to A is *finite*.
 - (b) If you enjoyed part (a), now prove that if $c_1(A) = 2$ in the above setting, then every nodal curve in $\overline{\mathcal{M}}_0^A(M, J)$ consists of two simple *J*-holomorphic spheres v_+ and $v_$ with $c_1([v_{\pm}]) = 1$.
- (4) (a) Consider the intersecting holomorphic maps $u, v : \mathbb{C} \to \mathbb{C}^2$ defined by

$$u(z) = (z^3, z^5), \quad v(z) = (z^4, z^6).$$

Show that u admits a C^{∞} -small perturbation to a holomorphic function u_{ϵ} such that u_{ϵ} and v have exactly 18 intersections in a neighbourhood of the origin, all transverse.

- (b) Try to convince yourself that the above count of 18 intersections holds after any generic C^{∞} -small perturbation of u and/or v.
- (c) Show that for any neighbourhood $\mathcal{U} \subset \mathbb{C}$ of 0, the map u admits a C^{∞} -small perturbation to a holomorphic *immersion* u_{ϵ} such that

$$\frac{1}{2}\#\{(z,\zeta)\in\mathcal{U}\times\mathcal{U}\mid u_{\epsilon}(z)=u_{\epsilon}(\zeta),\ z\neq\zeta\}=10.$$

- (d) If you're especially ambitious, now try to convince yourself that for any perturbation as in part (c) making all double points of u_{ϵ} transverse, the count of double points is the same.
- (5) Suppose $L \to \Sigma$ is a complex line bundle over a closed Riemann surface (Σ, j) , and $V \subset \Gamma(L)$ is a vector space of sections that satisfy a real-linear Cauchy-Riemann type equation, so in particular the similarity principle holds for sections $\eta \in V$. Prove dim_{\mathbb{R}} $V \leq 2 + 2c_1(L)$.