CONTACT 3-MANIFOLDS, HOLOMORPHIC CURVES AND INTERSECTION THEORY

EXERCISE SHEET 3

August 29, 2013

(1) In Lecture 3, we saw the theorem of Hofer-Wysocki-Zehnder that for any Reeb orbit $\gamma: S^1 \to M$ in a contact 3-manifold $(M, \xi = \ker \alpha)$, with asymptotic operator \mathbf{A}_{γ} and trivialisation τ of $\gamma^* \xi \to S^1$, the function

 $\sigma(\mathbf{A}_{\gamma}) \to \mathbb{Z} : \lambda \mapsto \operatorname{wind}^{\tau}(\lambda) := \operatorname{wind}^{\tau}(f) \text{ for any nontrivial } f \in \operatorname{ker}(\mathbf{A}_{\gamma} - \lambda)$

is well defined, monotone increasing, and attains every value in \mathbb{Z} exactly twice (counting multiplicity of eigenvalues).

(a) Verify that the above theorem holds for the L^2 -symmetric operator

$$\mathbf{A} := -J_0 \frac{d}{dt} - c : C^{\infty}(S^1, \mathbb{R}^2) \to C^{\infty}(S^1, \mathbb{R}^2),$$

where J_0 denotes the standard complex structure on $\mathbb{R}^2 = \mathbb{C}$ and $c \in \mathbb{R}$ is any constant. (The general case can be derived from this using a deformation argument.)

- (b) If $\gamma(t) = \gamma_0(kt)$ for another Reeb orbit $\gamma_0 : S^1 \to M$, then the k-fold cover of each eigenfunction of \mathbf{A}_{γ_0} is an eigenfunction of \mathbf{A}_{γ} . Assuming τ is the pullback under $S^1 \to S^1 : t \mapsto kt$ of a trivialisation of $\gamma_0^* \xi \to S^1$, show that a nontrivial eigenfunction f of \mathbf{A}_{γ} is a k-fold cover if and only if wind^{τ}(f) is divisible by k.
- (c) Assume γ_0 is an embedded orbit that is k-fold covered by γ , and τ is defined by pulling back a trivialisation of $\gamma_0^* \xi \to S^1$. Show that for any nontrivial eigenfunction f of \mathbf{A}_{γ} ,

 $\operatorname{cov}(f) := \max\{k \in \mathbb{N} \mid f \text{ is a } k \text{-fold cover}\} = \operatorname{gcd}(k, \operatorname{wind}^{\tau}(f)).$

- (d) Show that if γ is a Reeb orbit that has even Conley-Zehnder index, then so does every multiple cover γ^k of γ .
- (2) Assume $\gamma: S^1 \to M$ is a nondegenerate Reeb orbit in a contact 3-manifold $(M, \xi = \ker \alpha)$, with covering multiplicity

 $\operatorname{cov}(\gamma) = \max \left\{ k \in \mathbb{N} \mid \gamma(t+1/k) = \gamma(t) \text{ for all } t \in S^1 \right\}.$

Given $J \in \mathcal{J}(\alpha)$, let $u_{\gamma} : \mathbb{R} \times S^1 \to \mathbb{R} \times M$ denote the associated *J*-holomorphic orbit cylinder.

- (a) Show that $c_N(u_{\gamma}) = -p(\gamma)$, where $p(\gamma) \in \{0, 1\}$ is the parity of the Conley-Zehnder index of γ .
- (b) Show that $u_{\gamma} * u_{\gamma} = -\operatorname{cov}(\gamma) \cdot p(\gamma)$.
- (c) Deduce from part (b) that if u^k denotes a k-fold cover of a given asymptotically cylindrical J-holomorphic curve u, it is not generally true that $u^k * v^\ell = k\ell(u * v)$. Remark: One can show however that in general,

$$u^k * v^\ell \ge k\ell(u * v).$$

(d) (*)Use the adjunction formula to show the following: if γ is a multiple cover of a Reeb orbit with even Conley-Zehnder index, and J' is an arbitrary almost complex structure on $\mathbb{R} \times M$ that is compatible with $d(e^s \alpha)$ and belongs to $\mathcal{J}(\alpha)$ outside a compact subset, then there is no simple J'-holomorphic curve homotopic to u_{γ} through asymptotically cylindrical maps.