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Instructions

Problems marked with () will be graded. Solutions may be written up in German or English and should be
handed in before the Ubung on the due date. For problems without (), you do not need to write up your
solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

Problems

1. Suppose (X,dx) is a metric space and ~ is an equivalence relation on X, with the resulting set of
equivalence classes denoted by X/ ~. For equivalence classes [z], [y] € X/ ~, define

d([z], [y]) := inf {dx (z,y) | z € [2], y € [y]} . (1)

(a) () Show that d is a metric on X/ ~ if the following assumption is added: for every triple
[x], [y], [2] € X/ ~, there exist representatives x € [z], y € [y] and z € [z] such that

dx(z,y) = d([«], [y]) and dx(y,z) = d([y], [2]).

Comment: The hard part is proving the triangle inequality.
(b) Cousider the real projective plane
RP? := 5%/ ~,
where S2 := {x € R3 | |x| = 1} and the equivalence relation identifies antipodal points, i.e. x ~
—x. If dy is the metric on S? induced by the standard Euclidean metric on R?, show that the
extra assumption in part (a) is satisfied, so that (1) defines a metric on RP2.

(c) For the metric defined on RP? in part (b), show that the natural quotient projection 7 : $? — RP?
sending each x € S? to its equivalence class [x] € RP? is continuous, and a subset U C RP? is
open if and only if 7=1(U) C S? is open (with respect to the metric dx).

(d) (%) Here is a very different example of a quotient space. Define
X =(-1,1)\{(0,0)} c R?

with the metric dx induced by the Euclidean metric on R2. Now fix the function f: X =>R:
(x,y) — xy and define the relation pg ~ p; for pg,p1 € X to mean that there exists a continuous
curve v : [0,1] = X with v(0) = pg and (1) = p; such that f o+ is constant. Show that for this
equivalence relation, the extra assumption of part (a) is not satisfied, and the distance function
defined in () does not satisfy the triangle inequality.

(e) (%) Despite our failure to define X/ ~ as a metric space in part (d), it is natural to consider the
following notion: define a subset U C X/ ~ to be open if and only if 7=1() is an open subset
of (X,dx), where m : X — X/ ~ denotes the natural quotient projection. We can then define
a sequence [z,] € X/ ~ to be convergent to an element [z] € X/ ~ if for every open subset
U C X/ ~ containing [z], [z,] € U for all n sufficiently large. Find a sequence [z,] € X/ ~ and
two elements [z], [y] € X/ ~ such that

[zn] = 2] and  [zn] = [y, but [a] #[y].
This could not happen if we’d defined convergence on X/ ~ in terms of a metric. (Why not?)

2. Suppose d; and ds are two metrics on the same set X. Show that the identity map defines a home-
omorphism (X,d;) — (X,dz) if and only if the following condition is satisfied: for every sequence
r, € X and x € X,

= zin (X,d1) <= 1z, = xin (X, ds).

One says in this case that the metrics dy and do are equivalent.



3. (a) Show that for any metric space (X, d),

d'(z,y) »= min{1, d(z,y)}
defines another metric on X which is equivalent to d (see Problem 2). In particular, this means
that every metric is equivalent to one that is bounded.

(b) Suppose (X,dx) and (Y, dy) are metric spaces satisfying
dx(z,2') <1 forall z,2" € X, dy(y,y') <1forally,y/ €Y.
Now let Z =X UY, and for z,z’ € Z define

dx(z,2") ifz2 € X,
dz(z,72') = dy(z,2') ifz, 2 €Y,
2 if (2,2/)isin X xY or Y x X.

Show that dz is a metric on Z with the following property: a subset & C Z is open in (Z,dyz)
if and only if it is the union of two (possibly empty) open subsets of (X,dx) and (Y,dy). In
particular, X and Y are each both open and closed subsets of Z. (Recall that subsets of metric
spaces are closed if and only if their complements are open.)

(¢) (%) Suppose (Z,d) is a metric space containing two disjoint subsets X, Y C Z that are each both
open and closed. Show that there exists no continuous map « : [0,1] — Z with v(0) € X and
~v(1) eY.

(d) Suppose X is any set with the so-called discrete metric, defined by

d(z,y) = 0 ifz=y,
W= 1 ifx#y.

Show that for every point 2 € X, the subset {x} C X is both open and closed, and moreover,
every continuous map 7 : [0, 1] — X is constant.

4. (%) Assume (X,dx) and (Y, dy) are metric spaces with A C X a compact subset and f: A - Y a

continuous map. Define the set
Z:=XUpY :=(XUY)/~,

where the equivalence relation is defined by a ~ f(a) for each a € A. Assume additionally that f is an
isometry onto its image, meaning it satisfies

dx(a,b) =dy(f(a), f(b)) forall a,be A;

notice that f must then be injective, so we can regard both X and Y naturally as subsets of Z which
intersect along A. We can then define a metric dz on Z such that dz(z,y) = dx(z,y) for z,y € X,
dz(x,y) = dy(z,y) for z,y € Y, and for (z,y) € X x Y,

dz(z,y) := min {dx (z,a) + dy (f(a),y) | a € A}.
Verify the following case of the triangle inequality for dz:
dz(z,2) <dgz(z,y) +dz(y,z) whenever z€ X, y€Y and z € X.

Hint: Notice that in the definition of dz, it says “min” instead of “inf”. The minimum always exists
because A is compact!

5. In the first lecture, we discussed the fact that RPP? is homeomorphic to an object constructed by gluing
a disk D? = {x € R? | |x| < 1} to a M&bius strip M = {(6, ¢ cos(rf), tsin(7f)) € St x R? | § € S*, t €
[~1,1]}, where S! := R/Z. One can now make this precise using metrics of the types defined in
Problems 1(b) and 4 respectively on RP? and the glued object D?U #M (for a suitable homeomorphism
f between the boundaries of D? and M). Work out the details until you get bored.



