TOPICS IN TOPOLOGY (“TOPOLOGIE IIT’), SOMMERSEMESTER 2024, HU
BERLIN

CHRIS WENDL

This is not a set of lecture notes, but merely a brief summary of the contents of each lecture,
with reading suggestions and a compendium of exercises. The suggested reading will usually not
correspond precisely to what was covered in the lectures, but there will often be a heavy overlap.

PROLOGUE: NOTATION

Before getting into the content of the course, here is a glossary of important notation that is
used in the lectures, including some comparison with other sources such as [tD08, DK01, Wen23]
where different notation is sometimes used. This glossary will be updated during the semester as
needed, and it is not in alphabetical order, but there is some kind of ordering principle. .. maybe
you can figure out what it is.

Categories.

e General shorthand: For any category %, I often abuse notation by writing X € € to mean
“X is an object in ¥”; many other authors denote this by “X € Ob(%)” or something
similar. For two objects X,Y € €, I write

Homg (X,Y) or sometimes just Hom(X,Y)

for the set of morphisms X — Y. The notation Mor(X,Y) is also frequently used in
many sources, and would make more sense linguistically, but it seems to be less popular.
Given two functors F,G : & — %, the notation

T:F—¢g

means that T is a natural transformation from F to G.

e Top: the category of topological spaces and continuous maps

e Top,: the category of pointed spaces and pointed maps, i.e. an object (X,x) is a
topological space X equipped with a base point « € X, and morphisms f : (X,z) — (Y,y)
are continuous maps X — Y that send = to y. This notation is common but not universal,
e.g. [tD08] uses a superscript 0 to indicate base points, so Top, is called TOPY.

e Set: the category of sets and maps (with no continuity requirement,)

o Set,: the category of pointed sets and (not necessarily continuous) pointed maps,
i.e. an object (X, z) is a set X with a base point x € X, and morphisms f : (X, z) — (Y,y)
are arbitrary maps X — Y that send z to y.

e Top™!: the category of pairs of spaces (X, A) and maps of pairs, i.e. an object (X, A) is
a topological space X equipped with a subset A c X, and morphisms f : (X, A) — (Y, B)
are continuous maps X — Y that send A into B. Despite the uniquity of this category,
there doesn’t seem to be any common standard notation for it; [tD08] calls it TOP(2), and
similarly writes TOP(3) for the category of triples (X, A, B) with B ¢ A ¢ X, and so
forth. In [Wen23] I used a subscript instead of a superscript, but I'm changing it so that I
can also define the next item on this list.
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Top'®!: the category of pointed pairs of spaces, i.e. an object (X, A, z) is a topological
space X equipped with a subset A < X and a base point x € A, and morphisms [ :
(X,A,z) - (Y,B,y) are maps of pairs (X, A) — (Y, B) that also send = to y. I have
no idea what anyone else calls this, but it’s a subcategory of what [tD08] calls TOP(3),
and is in any case clearly important since e.g. it is the domain of the relative homotopy
functors m,,.
hTop, hTop,, hTop™, hTop': the homotopy categories associated to Top, Top,, Top™
and Top]fkel respectively, meaning we define categories with the same objects, but instead
of taking morphisms to be actual maps, we define them to be homotopy classes of maps
(respecting subsets and/or base points where appropriate, so e.g. pointed homotopy
for hTop,, and homotopy of maps of pairs for hToprel). This notation (or similar) for
homotopy categories is very common, but different from my Topology I-II notes [Wen23],
which wrote e.g. Topf,f instead of hTop,,.
Diff: the category of smooth finite-dimensional manifolds without boundary, and smooth
maps
Grp: the category of groups and group homomorphisms
Ab: the category of abelian groups and homomorphisms, which is a subcategory of Grp
Ring © CRing D Fld: the category of rings with unit and its subcategories of commu-
tative rings and fields respectively, with ring homomorphisms (preserving the unit)
R-Mod: the category of modules over a given commutative ring R and R-module ho-
momorphisms. Tn [Wen23] T called this Mod”, and other variations such as Mod-R are
also common.
K-Vect: the category of vector spaces over a given field K and K-linear maps, i.e. this
is R-Mod in the special case where R is a field K. In [Wen23] I called this Veck.
Categories of (co-)chain complexes: given any additive category &/ such as Ab or R-Mod,

Ch(«) or sometimes simply Ch

denotes the category of chain complexes ... —» A, ;1 —> A, > A,,_1 — ... formed out of
objects and morphisms in &7, with the morphisms of Ch(«) defined to be chain maps.
There is a similar category CoCh(«?) of cochain complexes ... > A,—1 — A, —> A,y1 —
..., though I am not really happy with this notation and I doubt that anyone else is
either. In [Wen23] I denoted Ch(Ab), CoCh(Ab), Ch(R-Mod) and CoCh(R-Mod) by Chain,
Cochain, Chain® and Cochain® respectively. One sometimes sees a meaningless subscript
such as Ch,(«/) added, but there are also meaningful subscripts that define important
subcategories such as e.g. Ch>o(<7), the chain complexes that are trivial in all negative
degrees.

Homotopy categories of chain complexes: analogously to the homotopy categories
of spaces, one can take the objects in Ch(%) and define morphisms to be chain homotopy
classes of chain maps instead of actual chain maps. The internet seems quite insistent that
I should call the resulting category

K(&) := the (naive) homotopy category associated to Ch(«?),

even though I’d rather call it hCh(.27), and in [Wen23] T wrote e.g. Chain” instead of K(Ab);
on occasion I have even seen Ho(%7) in place of K(<). I have no idea what notation to
use for the homotopy category of cochain complexes. People who like derived categories
will tell you that there are other things more deserving of the name “homotopy category
of chain complexes,” and I added the word “naive” above in order to avoid getting into
conversations about it with those people, which would be completely unnecessary for the
purposes of the present course.
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Topological constructions.

e X 11Y: This is how I write the disjoint union of two topological spaces (and similarly
for pairs of spaces), and most sensible people use either this notation or X u 'Y, but
[tDO08] instead writes X + Y and calls it the topological sum of X and Y, presumably
because—like the direct sum of abelian groups and many other constructions that use the
word “sum”—it is a coproduct. The book by tom Tieck becomes significantly easier to read
once you realize this.

e X[]Y: the coproduct of X and Y, whatever that means in whichever category X and
Y happen to live in, so e.g. in Top, it means the same thing as X 1Y, though in Top,, it
means X v Y.

e [X,Y]: If X and Y are just topological spaces (i.e. objects in Top), then this denotes the
set of homotopy classes of maps X — Y, i.e.

[X, Y] = I‘IOIIlhTop()(7 Y)

If X and Y are equipped with additional data (which may be suppressed in the notation)
and are thus objects in Top,,, Top™ or Top’, then I use the same notation [X, Y] to mean
the corresponding notion of homotopy classes in each category, so e.g. in the context of

pointed spaces, I would write
[X, Y] = HOIIlhTop* (X, Y),

and similarly for (pointed or unpointed) pairs of spaces. This convention is popular but
not universal, e.g. [tD08] writes [X,Y]° for the set of pointed homotopy classes and uses
[X, Y] only to mean unpointed homotopy classes; [DK01] does the same but writes [X, Y]
instead of [X,Y]°.

¢ X vY and X AY: these are the wedge sum and smash product respectively of pointed
spaces, and mercifully, everyone seems to agree on what they mean and how to write them.

e Implied base points: for a pair of spaces (X, A), the quotient space X /A is often
interpreted as a pointed space, with the collapsed subset A as base point. Similarly, for
two pointed spaces X,Y, the set of pointed homotopy classes [X,Y] is viewed as a
pointed set (i.e. an object in Set,) whose base point is the homotopy class of the constant
map to the base point of Y.

¢ One-point spaces: the symbol * is often used to mean either a one-point space, the
unique point in that space, or sometimes a previously unnamed base point of a given
pointed space. It should usually be clear from context which is meant.

e [: this usually denotes the unit interval

I:=10,1],

as appears in domains of paths, homotopies etc.
¢ Homotopy relations: Given maps f,g: X — Y, I write

fyg
to means that f and g are homotopic ([tD08] writes “f ~ ¢”), and
H
[~y
to mean that H is a homotopy from f to g, thought of as a path in the space of maps,

hence H : I x X —» Y with H(0,-) = f and H(1,-) = ¢g. This can also mean e.g. pointed
homotopy or homotopy of maps of pairs if working in Top, or Topml respectively. Where

I write f 4 g, [tD08] writes H : f ~ g.
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e Homotopy commutative diagrams: I use a diagram of the form

z -1, x

[~ ]

y 5 Q
to mean that po f and 1 o g need not be identical but are homotopic, whatever that means
in whichever category the objects of the diagram live in, e.g. if they are pointed spaces it
means pointed homotopic, for spaces without base points it just means homotopic—it may
also mean chain homotopic if the objects are chain complexes. If I write the variant

z 1. x
ly o l@ )
Yy -5 Q
then it means that « is a homotopy (or chain homotopy as the case may be) from po f to
1 og. It wasn’t easy to figure out how to render this in LaTeX, so maybe that’s why most
textbooks don’t do it.
o Z(f), Z(f,g), cone(f): mapping cylinders, double mapping cylinders and mapping
cones (see Week 2, Lecture 3)
e C'X, SX: the cone and suspension respectively of a space X. In the context of pointed
spaces the same notation may instead mean the reduced cone/suspension.

1. WEEK 1

Lecture 1 (15.04.2024): Motivation and colimits.

e Motivational theorem on exotic spheres (Milnor 1956): There exists a smooth manifold Y
that is homeomorphic but not diffeomorphic to S7. (In fact, Kervaire and Milnor proved
shortly afterwards that there are exactly 28 such manifolds up to diffeomorphism.)

e Outline of a proof (slightly ahistorical), with notions that will be major topics in this course
written in red:

(1) Pontryagin classes: Associate topological invariants py(E) € H**(X;Z) for each k € N
to every isomorphism class of vector bundles E over a given space X. Since every
smooth manifold M has a tangent bundle TM, we can define pi(M) := pp(TM) €
H*:(M;Z) as an invariant of smooth (but not topological) manifolds.

(2) Intersection form and signature: For a compact oriented 4k-manifold M (possibly
with boundary), the intersection form is the quadratic form Qn; on H2?*(M,0M;Z)
defined by

Qu(a) :={ava,[M]yeZ,
and it’s called the “intersection form” because it can be interpreted as a signed count of
intersections between two generic closed oriented submanifolds representing the class
in Hop(M;Z) Poincaré dual to . The signature o(M) € Z is essentially the number
of positive eigenvalues minus the number of negative eigenvalues' of this quadratic
form.

"What I really mean is: first rewrite Qp; as a quadratic form on H2*(M, dM; Q) or H2*(M,#M;R), which is a
vector space, so that by standard linear algebra, you can present it in terms of a symmetric linear transformation
and look at the eigenvalues of that transformation. One can define this in a more obviously invariant way by talking
about maximal subspaces on which Qs is positive/negative definite.
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(3) Hirzebruch signature theorem (8-dimensional case): For M a closed oriented 8-manifold,

o(M) = - (pa(M) = pa(M) 0 pa (M), [M]).

(4) (the clever bit) Construct a compact oriented smooth 8-manifold X with simply con-
nected boundary Y := 0X such that o(X) = 8, Hy(Y) and H3(Y) both vanish, and
the tangent bundle T'X is stably trivial, which implies its Pontryagin classes van-
ish. The construction can be described (key words: “plumbing of spheres”), and the
computations carried out, using only methods from Topology 2.

(5) Deduce via Poincaré duality, the Hurewicz theorem and Whitehead’s theorem? that Y’
is homotopy equivalent to S”. By Smale’s solution to the higher-dimensional Poincaré
conjecture,’ it follows that Y is homeomorphic to S”.

(6) Argue by contradiction: If Y is diffeomorphic to S7, then one can construct a closed
smooth 8-manifold M by gluing X to an 8-disk along a diffeomorphism 0X =Y =
S7 = oD’

M =X ugr D8,

Methods from Topology 2 (e.g. Mayer-Vietoris) now imply p; (M) = 0 and ¢(M) = 8,
so Hirzebruch says

450 (M) = 45 - 8 = Tpo(M), [M])-

But the right hand side of this relation is a multiple of 7, and the left hand side is
not.
e Interpretation of a functor 7 : ¢ — ¥ as a diagram in ¢ over ¢, constant functors
X : _# — € as targets, the universal property and definition of the colimit colim(F)
¢ Interpreting direct systems as diagrams and direct limits as colimits
e Defining the quotient space X /A as colimit of the diagram

A — %

l

X

understood as a functor # — Top, where ¢ is a category with three objects and only
two nontrivial morphisms.

Lecture 2 (18.04.2024): From coproducts to pullbacks and pushouts.

e The limit lim(F) of a diagram F: ¢ — €
e Inverse limits as limits of diagrams
e Important special cases of limits and colimits:
— Coproducts [ [, and examples in the categories Top (disjoint union), Top, (wedge
sum), Ab (direct sum) and Grp (free product)
— Products x (or []), and examples in Top
— Equalizers and co-equalizers, realization in Top as subspaces or quotient spaces
respectively

2A 3-dimensional version of this same argument is described in [Wen23, Lecture 57], using the theorems of
Hurewicz and Whitehead as black boxes.

3This is the one major black box in this proof that I do not intend to fill in, because that would be a whole
course in itself.
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e Word of caution: limits and colimits are not guaranteed to exist, e.g. in the category Diff
of smooth finite-dimensional manifolds without boundary, finite or countable coproducts
exist (and are the same thing as in Top), but uncountable disjoint unions are not second
countable and are thus not objects in Diff. Similarly, finite products exist in Diff but
infinite products typically do not.

e Theorem: In any category ¥, all (co-)limits can be presented in terms of (co-)products
and (co-)equalizers, if they exist.

o Proof sketch (co-limit case): Given F : ¢ — € : a — X,, construct colim(F) as the
equalizer of two morphisms Y’ 19, 7 defined as follows. Write the set of all morphisms in
Z as Hom(_#, 7 ); we then take Y to be the coproduct

Y := H Xy, where for ¢ € Hom(a, B), X4 := X,,
¢eHom( 7, 7)
while Z is the slightly simpler coproduct

Z:= 1] Xs.
Be
For each o,8 € # and ¢ € Hom(a, ), let f4 : Xy — Z denote the composition of the
morphism ¢, : Xy = X, — Xg with the canonical morphism Xg — ]_[,YE/ X, of the
coproduct; the universal property of the coproduct then dictates that the collection of
morphisms fy : X4 — Z determines a morphism f : Y — Z. Similarly, g : ¥ — Z is
determined by the collection of morphisms g4 : X4 — Z defined for each ¢ € Hom(a, 3) as
the compositions of Idx, : Xy = Xo — X, with the canonical morphism X, — ]_[WG)Z X5
Now check that the universal property is satisfied (exercise).
e Upshot: In Top, colimits are quotients of disjoint unions, limits are subspaces of products.
e Fiber products: presenting the fiber product of two maps f: X - Zand g:Y — Z in
Top as the “intersection locus”

X %, Y i={(z,y) e X xY | f(z) = g()}

with the obvious projections to X and Y.

e Interpreting fiber products as pullbacks

¢ Pushouts: presenting the pushout of two maps f: Z —- X and g : Z — Y in Top as
“gluing spaces together” along a map:

X ju, Y = (X1Y) /f(z) ~g(z) for all z€ Z.

e Question for thought: How many of these constructions of limits or colimits work in the
homotopy categories hTop or hTop,? (Hint: Do not try too hard to make sense of equalizers
and co-equalizers.)

Suggested reading. The main definitions involving direct systems and direct limits can all be
found in [Wen23, Lecture 39], with the generalization to colimits explained in Exercise 39.24. If
you’re really serious about this stuff, you can also try reading [Mac71].

If you want to read more about exotic spheres, there’s a nice collection of relevant literature
assembled at https://www.maths.ed.ac.uk/"viranick/exotic.htm.

Exercises (for the Ubung on 25.04.2024). Since the Ubung on 25.04 was cancelled due to
illness, most of the exercises for Week 1 have now been supplemented with written answers and/or
some discussion.


https://www.maths.ed.ac.uk/~v1ranick/exotic.htm
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Exercise 1.1. In what sense precisely are the limit and colimit of a diagram F : _# — %€ unique,
if they exist?

Answer: If the limit or colimit exists (of which there is no guarantee, cf. Exercise 1.7), then
it is unique up to canonical isomorphisms. Precisely: Suppose X,Y € ¥ are two objects, together

with collections of morphisms F(a) 2% X and F(«) Yo Y for all o€ ¥, such that both satisfy
the universal property for colim(F). Then there is a uniquely determined isomorphism

f:X>Y such that Yo =fop, forallae 7.

The existence and uniqueness of a morphism f satisfying this condition follows from the universal
property of X, and the fact that it is an isomorphism follows by reversing the roles of X and Y,
since Y also satisfies the universal property. For lim(F) there is a similar uniqueness statement,
proved in a similar way.

Note that in most categories, uniqueness “up to canonical isomorphisms” is the best that one
could hope to get from universal properties, as one will always have the freedom to replace a
given object playing the role of colim(F) or lim(F) with a different object that is isomorphic to
it. In practice, our favorite categories often come with canonical constructions that lead to specific
objects, e.g. the disjoint union (also known as the coproduct) of a given collection of topological
spaces is a specific space, not just an equivalence class of spaces up to homeomorphism. But
in various situations, limits or colimits can also arise from something other than the canonical
construction, and finding an isomorphism with that canonical construction may be harder than
explicitly verifying the universal property.

Exercise 1.2 (morphisms between (co-)products). Assume J is a set, and {X,}aes and {Y,}aes
are collections of objects in some category ¢ such that the products

7!'X 7I'Y
{HXa_ﬁ)XB} ; {HYa—ﬁﬁ%} ;
BedJ BedJ

acJ aed
and coproducts
i i
X5 [ [ Xa , Vs ][ Va
acJ BeJ acJ BeJ

exist. In what sense does an arbitrary collection of morphisms {f, : X4 — Yu,}aes uniquely
determine morphisms

[Tre:[[Xa=]]Yer and  J]fa:[[Xa—]]Ya?
acJ acJ acJ acJ acJ acJ

Argue in terms of universal properties, without using your knowledge of how to represent products
and coproducts in any specific categories.

Answer: The morphisms [ [, fo and [[, fo are uniquely determined by the condition that the
diagrams

XﬁLYB HQXQMHQYQ
[
HQXQMUQYQ Xﬂ%ﬁg

commute for every 5 € J. One gets the existence and uniqueness of [ [ fo from the universal
property of the coproduct [ [, X, because the morphisms z}; ofg:Xg—]][,Ye make [[ Y, a
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target of the diagram whose colimit is [ [, Xo. Similarly, the existence and uniqueness of [ [, fa
follows from the universal property of the product [ [, Y4, using the collection morphisms fg owé{ :
[, Xa — Ys.

Exercise 1.3 (finite limits and colimits). Show that in any category %, finite colimits always exist
if and only if all pushouts exist and % has an initial object (see Exercise 1.5). Dually, finite limits
always exist if and only if all pullbacks (also known as fiber products) exist and % has a terminal
object.

Hint: By a theorem stated in the lecture, it suffices if you can express arbitrary (co-)equalizers
and finite (co-)products in terms of pushouts or pullbacks.

Solution: Note that the statement of this exercise has been revised; the original version had
two errors, one being its failure to mention initial and terminal objects, and the other an oversim-
plification of what it means for a limit or colimit to be finite—we need the category _¢# underlying
the diagram to have finitely-many morphisms, not just finitely-many objects.

With that understood, let’s assume all pushouts exist and that ¢ also has an initial object
0 € €. If we can show that all finite coproducts and all coqualizers exist, then the theorem from
lecture uses these to construct a colimit for any diagram F : ¢ — % such that _¢ has only finitely
many objects and morphisms. (Regarding the errors in the original version: note that if # has
finitely-many objects but infinitely-many morphisms, then one of the coproducts needed for the
theorem from lecture is not finite.)

You should be able to convince yourself via an inductive argument that if the coproduct of two
objects X,Y € € always exists, then all finite coproducts exist. So let’s show first that X [[Y
exists for arbitrary X,Y € €. At this point I find it helpful to think about how coproducts and
pushouts are constructed concretely in the example € = Top: the coproduct of X and Y is their
disjoint union, and the pushout of a pair of maps f : 7 - X and g : Z — Y is a quotient of
that disjoint union by the equivalence relation such that f(z) ~ g(z) for all z € Z. If we want to
make that equivalence relation trivial so that the pushout turns out to be the same thing as the
coproduct, the solution is to choose the empty set for Z; the maps f, g are uniquely determined
by this choice, because the empty set is an initial object in Top (see Exercise 1.5). This suggests
that in our given category ¥ with initial object 0 € €, the pushout of the diagram

00— X

|

Y

should be the coproduct of X and Y; note that only one diagram of this form is possible since
0 being initial means that the morphisms 0 — X and 0 — Y are unique. Now suppose P is the
pushout of this diagram, equipped with morphisms ¢ : X — P and ¥ : Y — P, and suppose we
are given another object Z with morphisms f: X — Z and ¢g: Y — Z. The diagram

0 —— X
|l
y 4 7
then trivially commutes, since there is only one morphism 0 — Z, and the universal property of

the pushout gives rise to a unique morphism u : P — Z such that f = uo ¢ and g = w o %, which

4The word “finite” in this context refers to limits or colimits of diagrams F : # — ¢ such that ¢ has only
finitely many objects and morphisms.
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amounts to the statement that P with its morphisms ¢ and ¢ also satisfies the universal property
of the coproduct X [[Y.
We show next that the coequalizer of an arbitrary pair of morphisms

;
x Ty
~Z

in € can also be constructed as a pushout. Think again about how it works in the case ¥ = Top:
the coequalizer here is the quotient of Y by the equivalence relation such that f(z) ~ g(z) for all
x € X. If we instead take the pushout of f and g, the resulting space is too large: it is a quotient
of Y 1Y instead of Y, meaning that we glue together two copies of Y by identifying f(z) in one
copy with g(z) in the other copy for each x € X. But the correct space can be obtained from this
by making the equivalence relation larger, so that for every y € Y, y in the first copy gets identified
with y in the second copy. The way to realize this is by enlarging the domain of the pair of maps
used in defining the pushout: instead of the two maps f,g : X — Y, we consider the pushout of
the two maps f1ild,giild: X11Y —» Y.

Let’s say that again without assuming ¢ = Top. We’ve already shown that the coproduct X [[Y
of two objects in € can be constructed, and if we write ix : X - X [[Y andiy : Y - X[]Y for
the canonical morphisms that coproducts come equipped with, then by the universal property of
the coproduct, every morphism ¢ : X — Y determines a unique morphism ¢ [[Id: X [[Y - YV

for which the diagram

X]_[Y ey
Y

commutes. Claim: Given two morhisms f,¢g: X — Y, a diagram of the form

X[y o4

Y
J{qHId J{
Z

y —Y

commutes if and only if ¢ = and po f = ¢ o g. To see this, we can enhance the diagram in two
ways using the universal property of the coproduct: first,

Y
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shows that if the given diagram commutes, then ¢ = p oId = 1 o Id = . Assuming this, the
second enhanced diagram

X f

K
Xy 2y

s |

y —Y 7z

g

then proves po f = 1 og = pog. Conversely, if one assumes ¢ = 1 and po f = p o g, then
wo(f]I1Id) and ¥ o (¢g]]Id) are two morphisms X [[Y — Z whose compositions with ix and iy
are identical, so the uniqueness in the universal property of the coproduct requires them to be the
same.

The result of the claim is that pushout diagrams for the two morphisms f[[Id: X[][Y - Y
and g[JId : X[[Y — Y are equivalent to coequalizer diagrams for f,g: X — Y. It is a short
step from there to the conclusion that an object Z with morphism Y — Z satisfies the universal
property of the coequalizer if and only if Z with two copies of that same morphism Y — Z satisfies
the universal property of the pushout.

For the dual case of this whole story, I will just say this: if 1 € % is a terminal object, then the
uniqueness of morphisms to 1 implies that the pullback of the diagram

X

|

Yy —— 1

satisfies the universal property of the product X x Y. Having shown that finite products exist, one
then obtains the equalizer of any pair of morphisms f,g: X — Y as the pullback of the diagram

X

Idxf -

x 14 v vy

If finite products and equalizers always exist, then all finite limits can be constructed out of them.

Exercise 1.4. Let’s talk about some coproducts and products in algebraic settings.
(a) What is a coproduct of two objects in the category Ring of rings with unit? Try to describe
it explicitly.
(b) Same question about products in Ring. (This one is perhaps easier.)
(c¢) Show that two fields of different characteristic can have neither a product nor a coproduct
in the category FId of fields.
Answers: The coproduct of two rings A, B is their tensor product A ® B, equipped with the ring
homomorphisms
A&A(@B:ar—»a(@l, B A®B:b—1®b0.

As a set, A® B is the same thing as the tensor product of A and B as abelian groups; one then
gives it a ring structure by defining

(a®b)(a' V) := (ad") ® (bV').

It is easy to check that the required universal property is satisfied. Perhaps more interesting is to
observe that in the more familiar categories Ab and R-Mod in which we are used to talking about
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tensor products, they do not arise as colimits, and there is an obvious reason why they shouldn’t:
the only obviously canonical homomorphisms I can think of from a pair of abelian groups A and
B to their tensor product A ® B are the trivial ones. The big difference in Ring as that rings
have multiplicative units, and these give rise to canonical nontrivial morphisms from A and B
to A® B as described above. (For similar reasons, you also should not try to think of tensor
products as categorical products—for a more useful categorical perspective on tensor products, see
Exercise 1.9.)

The product in Ring is exactly what you’d expect: the product of rings.

For fields, the problem is that there are in fact no field homomorphisms at all between a pair
of fields with different characteristics. So for any fields A and B, the need to have morphisms
A,B — A]]B and A x B —» A, B means that neither the coproduct nor the product can exist
unless A and B have the same characteristic (which their product and coproduct must then also
have). For example, Zs and Q have no coproduct in Fld, though they do have a coproduct in Ring,
namely Zs ® Q, which is an extremely indirect way of writing the trivial ring. (Amusing exercise:
show that 1 = 0 in Zy ® Q. The elements 1 and 0 are never equal in a field.)

Exercise 1.5 (initial and terminal objects). In defining limits and colimits of diagrams F : # —
%, the set of objects in ¢ is not required to be nonempty. When it is empty, we can think of
colim(F) is a coproduct of an empty collection of objects in ¥, and colim(F) is then called an
initial object in ¥. Similarly, the product lim(F) of an empty collection of objects is called a
terminal (or final) object in @.

(a) Reformulate the definitions given above for the terms “initial object” and “terminal object”
in a way that makes no reference to limits or colimits, and using this reformulation, give a
short proof that both are unique up to canonical isomorphisms, if they exist.

(b) Show that for any initial object 0 € ¥, the coproducts 0] [ X and X []0 exist and the
canonical morphisms of X to each are isomorphisms. Similarly, for any terminal object
1 € €, the products 1 x X and X x 1 exist and their canonical morphisms to X are
isomorphisms.

(c) Describe what initial and terminal objects are in each of the following categories, if they
exist: Top, Top,, Ab, Ring, and Fld.

Hint: You might guess the last two from Exercise 1.4.

Answers: If # is the empty category, then there is a unique diagram F : ¢ — %, but it
carries no information. If we want to define a colimit of this diagram, then any object X € ¥
can be considered a target; there is no need to specify any morphisms since _# has no objects.
The condition of X being a universal target is, however, nontrivial: it means that for any other
target Y, there is a unique morphism u : X — Y such that. .. well, at this point we would normally
say that certain morphisms admit factorizations through the morphism wu, but since ¢ has no
objects, there are no morphisms to be factored and thus no further conditions to impose. We are
left only with this: X € ¥ is an initial object if and only if for every object Y € €, there is a
unique morphism X — Y. That’s the usual definition—we stated it in a much more roundabout
way by talking about coproducts over the empty category.

Here’s the dual version: X € € is a terminal object if and only if for every object Y € €, there
is a unique morphism Y — X.

With these definitions understood: if 0,0’ € € are two initial objects, then there is a unique
morphism 0 — 0/, and there is also a unique morphism 0’ — 0. Moreover, there are unique
morphisms 0 — 0 and 0’ — 0, and both of those have to be identity morphisms, since identity
morphisms must always exist. It follows that the unique morphisms 0 — 0’ and 0’ — 0 are
inverse to each other, and are thus isomorphisms. The uniqueness of terminal objects up to unique
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isomorphisms is proved similarly; there is only a slightly different reason for the uniqueness of the
morphisms 1 — 1’ and so forth.

Let’s consider the coproduct of an initial object 0 € ¥ with an arbitrary X € ¥". We claim that
X itself plays the role of the coproduct, together with the two morphisms

0

X >
d

AN
v

X

the first of which is determined by the condition that 0 is an initial object. Indeed, suppose Y is
given, along with a morphism f: X — Y and the unique morphism 0 — Y (for which there is no
freedom of choice). The dashed arrow in the following diagram is then uniquely determined,

and this establishes the universal property of the coproduct. In this way of representing 0] [ X, the
canonical morphism X — 0] [ X is imply the identity morphism X — X, and thus an isomorphism.
Similar arguments prove the analogous statements about X [J0, 1 x X and X x 1.

Here is an inventory of initial and terminal objects in specific categories:

Top: the empty set ¢ is initial, and every one-point space # is terminal. Note that the
initial object in this case is not just unique up to isomorphism, but is actually unique,
i.e. there really is only one object in Top called ¢§. By contrast, the unique point in a one-
point space can be anything, and the collection of all possible one-point spaces is therefore
too large to qualify as a set; it is a proper class. Nonetheless, there is indeed a unique
homeomorphism between any two of them.

Top,: every one-point space is both an initial and a terminal object.

Ab: every trivial group is both initial and terminal. The answer in R-Mod is the same, in
case you’d wondered.

Ring: this one’s more interesting. According to Exercise 1.4, tensor products are coproducts
in Ring, so an initial object R € Ring should be a ring with the property that R® A =~ A =
A ® R for all rings A € Ring; plugging in A := Z as a special case, one deduces R = Z.
And indeed, for any other ring B, a ring homomorphism 7Z — B is uniquely determined
by the condition that it preserve the 0 and 1 elements. Terminal objects are trivial rings,
i.e. those in which 1 = 0.

Fld: there are no initial or terminal objects in Fld, because as discussed in the answer to
Exercise 1.4(c), there do not exist any fields that admit homomorphisms either to or from
every other field (of arbitrary characteristic).

Exercise 1.6 (biproducts). Assume & is a category in which the sets Hom(A, B) of morphisms
A — B for each A, B € o are equipped with the structure of abelian groups such that composition
Hom(A, B) x Hom(B,C) : (f,g) — go f is always a bilinear map. (Popular examples are the
categories Ab of abelian groups and R-Mod of modules over a commutative ring R.) A biproduct
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of two objects A, B € & is an object C € & equipped with four morphisms
A A
XA/‘ V
C
2N
B B

(1.1)

that satisfy the five relations
(1.2) mata =14, 7wpip=1p, 7waip=0, 7pta=0, iamsa+ipng=1c.

In the categories Ab or R-Mod, an example of a biproduct of A and B is the direct sum A @ B
with its canonical inclusion and projection maps. The category <7 is called additive if every pair
of objects has a biproduct.

(a) Show that for any biproduct as in the diagram (1.1), C' with the morphisms i4,ip is a
coproduct of A and B, and with the morphisms 74, 7p it is also a product of A and B.

(b) Show that in the categories Ab and R-Mod, every biproduct of two objects A, B admits
an isomorphism to A@® B that identifies the four maps in (1.1) with the obvious inclusions
and projections.

(c¢) A (covariant or contravariant) functor F : &/ — % between two additive categories is called
an additive functor if the map defined by F from Hom(A, B) to Hom(F(A), F(B)) or
(in the contravariant case) Hom(F(B), F(A)) is a group homomorphism for all A, B € .
Show that additive functors send all biproducts in <7 to biproducts in Z.

Remark: Popular examples of additive functors Ab — Ab or R-Mod — R-Mod are ®G, G®,
Hom(-, G) and Hom(G, -) for any fixed module G, as these arise in the universal coefficient theorems
for homology and cohomology.

Answers: Let’s show first that (1.1) and (1.2) make C' with the morphisms i4 : A — C and
ip : A — B into a coproduct of A and B. We need to show that the dashed morphism w in the
diagram

exists and is unique for any given object X € & with morphisms f4, fp from A and B respectively.
Start with uniqueness: if u is a morphism for which this diagram commutes, then using (1.2) and
the assumption that composition is bilinear, we have

u=u(iama +ipmp) = (wia)ma + (vip)mp = fama + fB7B.
For existence, we then just need to define u by this formula and show that it satisfies ui4 = f4 and
uip = fp, which also follows easily from the relations (1.2). The proof that C with the morphisms
w4, g is a product of A and B is similar.

For part (b), we already know that A @ B defines a biproduct of R-modules A and B, so what
we really need is a general result about uniqueness of biproducts up to isomorphism. We already
have such results for products and coproducts separately, but we cannot directly apply them
here, even though we know that biproducts are both; the trouble is that doing so will produce two
isomorphisms between any two biproducts of A and B, one that arises by viewing them as products,
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and another by viewing them as coproducts. We want to see that those two isomorphisms are the
same one.

Concretely, let’s suppose that (1.1) and (1.2) are given, and that we also have a second object C”
and set of morphisms ¢4, i'5, 7'y, 75 satisfying the same set of relations. We do not need to assume
o/ is Ab or R-Mod for this discussion, as it will make sense in any category for which biproducts
can be defined, but some intuition about direct sums may nonetheless be helpful for writing down
suitable morphisms between C and C’. Explicitly, define

fi=iyma+igmp:C -, and g :=iamy +ipry:C' - C.
Using (1.2), we then have
gf = (iam'y +ipmh)(i'yma +igmR) = ia(whi's)ma +ia(nwhis)mE +ip(ngi's)ma +ip(nzig)TH

=1iama +ipmp = 1c,
and by a similar calculation, fg = 1¢, so f is an isomorphism with g = f~!. Using f to identify
C with C’ now transforms the morphism i, : A — C into

fia = (yma +igmp)ia = i's(main) +ig(npia) =14 : A— C',
and it transforms the morphism 74 : C' — A into
maf ™t = malian)y +ipmp) = (maia)my + (maip)np =7 : C' — A,
and by similar calculations,
fip =i, mpf~! =7

One can now appeal to abstract principles (i.e. the universal properties of products and coproducts)
to deduce that f is indeed the only isomorphism C' — C’ that relates the morphisms i 4,4, and so
forth in this way.

For a covariant additive functor F : &/ — A, it is easy to check that F sends the four morphisms
of (1.1) to morphisms

F(4) F(4)

F(ia) F(ma)
\f(c) /
F(is) F(rp)
F(B) / \f (B)

in 8 that satisfy the five relations (1.2), making F(C) a biproduct of F(A) and F(B). The amusing
detail is what happens if F is contravariant: it still works, but the reversal of arrows means that
some roles need to be switched, e.g. the diagram in % arising from (1.1) must be written as

F(4) F(4)

F(ma) Flia)
\f(c)/ |
F(rB) F(ip)
]:(B)/ \f(B)

With F(74), F(rp) now playing the roles formerly played by i4,ip and F(ia), F(ig) playing the
roles of ma,7p, one easily checks that the five relations (1.2) are satisfied, so F(C) is again a
biproduct of F(A) and F(B), with contravariance having transformed inclusions into projections
and vice versa.
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Exercise 1.7 (fiber products in Diff). As mentioned in lecture, the category Diff of smooth
manifolds is one in which many limits and colimits do not exist. An important example is the fiber
product of two smooth maps f : M — @ and g : N — @, which matches the usual topological
fiber product

M ;x,N:={(z,y)e M x N | f(2) =g(y)} c M x N

if the maps f and ¢ are transverse to each other (written frhg), because the implicit function
theorem then gives M ;x N anatural smooth manifold structure for which the obvious projections
to M and N are smooth.® If, on the other hand, f and g are not transverse, then the examples
below show that all bets are off.

(a) Suppose F': P — M and G : F — N are smooth maps that define a target in Diff for the
fiber product diagram defined by f and g¢; in other words, the diagram

J I V/{

o s

N —“250Q

commutes and consists entirely of smooth manifolds and smooth maps. Interpret this
diagram as defining a smooth map

u:P—->MxN

whose image lies in the topological fiber product M x N < M x N, and show that if
F and G satisfy the universal property for a fiber product in Diff, then u is a continuous
bijection of P onto M ,x N < M x N.

(b) Deduce that if M ;x, N c M x N is a smooth submanifold of M x N, then M ;x N
with its projection maps to M and N does in fact define a fiber product in Diff. (Note
that this may sometimes hold even if f and g are not transverse.)

(c) Consider the example M = N = @Q := R with f(z) := 22 and g(y) := y?, thus

fogNz{(x,y)eR2 | 2* =y}

You will easily convince yourself that this topological fiber product is not a manifold. Show
that the pair of maps f,g does not admit any fiber product in Diff. Note that this is a
stronger statement than just the observation that {z? = y?} < R? is not an object of Diff.
Hint: You can use parts (a) and (b) to show that if P is a smooth fiber product, then it
contains a special point p € P such that P\{p} is diffeomorphic to {z? = y*}\{(0,0)}.

(d) Here’s a weirder example: Let M = @ := R, define N := « as a manifold of one point with
g: N — @ = R mapping to 0, and choose f: M =R — R = @ to be any smooth function
with

7H0) = {=1,-1/2,-1/3,.. .} u {0}y u {...,1/3,1/2,1}.
(If you have doubts about the existence of such a function, try making minor modifications
to the function e~/ ””2, or something similar.) Show that in this case, a fiber product in
Diff does exist, but is not homeomorphic to the topological fiber product.

5Transversality is a condition on the derivatives of f and g at all points € M and y € N such that flz) =gly) =:
p; writing the derivatives at these points as linear maps df (z) : To M — T,Q and dg(y) : Ty M — T,Q between the
appropriate tangent spaces, it means that the subspaces im df (z) and imdg(y) span all of T,Q. Choosing suitable
local coordinates near each point (x,y) € M Xy N, one can identify M Xy N locally with the zero-set of a smooth
map whose derivative at (z,y) is surjective if and only if the transversality condition holds, so that the implicit
function theorem makes M X N a smooth submanifold of M x N.
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Hint: What can you say about continuous maps from locally path-connected spaces to
710) cRr?

Answers: For part (a), note first that a fiber product diagram in Diff can always also be interpreted
as a fiber product diagram in Top, so applying the universal property of the topological fiber product
M X N immediately gives us a unique continuous map u: P — M Xy N such that the diagram

F/>M
U
P*>Mf><g

Ne

commutes, where the vertical arrows are the obvious projections. This diagram also gives us an
explicit formula for w: its composition with the inclusion M Xg N —> M x N is just

N

(F,G): P> M x N,

which is a smooth map since F' and G are smooth, though we cannot sensibly call it a smooth map
to M ;x, N unless the latter is known to be a smooth submanifold of M x N.

We want to show that if P with the maps F' and G satisfies the universal property for a fiber
product in Diff, then the map u: P » M X N described above is a bijection. Indeed, pick any
point (z,y) € M 7%, N and consider the pullback diagram

« —2 5 M

bl

NLQ

where the labels “z” and “y” on arrows are used to indicate the images of maps from a one-point
space labelled #. The latter is (trivially) a smooth O-manifold, and the maps defined on it are
(trivially) smooth, so this diagram lives in Diff, and the universal property of the fiber product P
therefore produces a unique map u : + — P for which the diagram

. M
=
¥ —2 3 P
k} le
N
commutes. The image of u : * — P is thus the unique point p € P satisfying u(p) = (F(p), G(p)) =
(@,y).

Part (b) follows almost immediately from what was said above: if M ;x N is a smooth subman-
ifold of M x N, then the map u: P — M ;x N obtained from any smooth fiber product diagram
by applying the universal property in Top is automatically also smooth, with the consequence that
M yx, N also satisfies the universal property in Diff.

For the example in part (c), M ;x, N c R xR = R? is the union of the two lines {y = z}

and {y = —x}, so it is not globally a manifold, though it becomes a smooth 1-manifold if one
deletes the singular point (0,0). Suppose there exists a smooth manifold P and smooth functions
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F,G : P — R such that the diagram

JRE AN )

le )

R 2> R
defines a fiber product in Diff. By part (a), the smooth map (F,G) : P — R? is then a bijection
onto the set {y = tx}, so that there is a unique point p € P with F(p) = G(p) = 0. The manifold
P must be path-connected, because any point in {y = tz} can be joined to (0,0) by a smooth
path lying in one of the smooth submanifolds {y = z} or {y = —=z}, and the universal property
will then produce a smooth map from this submanifold to P, whose image thus contains a path
from any given point to p. Now let ¥ := {y = +2}\{(0,0)} < R?, defining a smooth 1-dimensional
submanifold of R?, and observe that the restrictions to ¥ of the two projections R? — R define
a smooth fiber product diagram, and thus (since P satisfies the universal property) give rise to
a smooth map u : ¥ — P, which is inverse to the bijection P\{p} — ¥ defined by (F,G). This
shows that P\{p} and ¥ are diffeomorphic, thus P is a connected smooth manifold that can be
turned into a 1-manifold with four connected components by deleting one point. There is no such
manifold, so this is a contradiction.

For the example in part (d), we can identify M x N = R x * with R and thus identify the

topological fiber product with the set

M ¢x, N =f""0)cR,

carrying the subspace topology it inherits as a subset of R. It is not a manifold, because the
point 0 € f~1(0) does not have any connected neighborhood. However, for any given smooth fiber
product diagram

J AN}

b

* —— R

P is a smooth manifold with a smooth function F': P — R whose image is contained in f~!(0),
and there is very little freedom in finding functions F' with this property: since P is locally path-
connected, F' must be locally constant. It follows that F' does factor through a smooth manifold
with an obvious smooth bijection onto f~1(0): the manifold in question is f~1(0) itself, but with
the discrete topology instead of the subspace topology. Conclusion: the fiber product in Diff for
our given pair of maps is given by

f7H0) — R

| |
+ —2 5 R
where f71(0) in the corner is understood to carry the discrete topology and is thus a smooth 0-

manifold. Its obvious bijection to the topological fiber product (f~1(0) with the subspace topology)
is continuous, but not a homeomorphism.

Exercise 1.8. The following bit of abstract nonsense provides a useful tool for proving that
objects are isomorphic in various categories, e.g. one can apply it in hTop to establish homotopy
equivalences, or (as in Exercise 1.9 below) to deduce properties of tensor products from a universal
property.

In any category ¢, each object X € ¥ determines a covariant functor

Hom(X, ) : € — Set,



18 CHRIS WENDL

which associates to each object Y € € the set Hom(X,Y") of morphisms and to each morphism
f:Y > Zin € the map

Hom(X,Y) ELN Hom(X,Z): g+~ fog.

There is similarly a contravariant functor Hom(:, X) : € — Set for which morphisms f:Y — Z
induce maps
Hom(Z, X) Ea Hom(Y, X):g— go f.

(a) Show that for any two objects X,Y € &, each morphism f: X — Y determines a natural
transformation Ty : Hom(Y,-) — Hom(X,-) associating to each object Z € & the set
map f* : Hom(Y,Z) — Hom(X, Z), and that if f is an isomorphism, then the map f* is
bijective for every Z € €, i.e. Tt is then a natural isomorphism.’

(b) Show conversely that every natural transformation T": Hom(Y,-) — Hom(X, ) is T} for a
unique morphism f : X — Y, which is an isomorphism of ¢ if and only if 7 is a natural
isomorphism. It follows that X and Y are isomorphic whenever the sets of morphisms
Hom(X, Z) and Hom(Y, Z) are in bijective correspondence for every third object Z, in a
way that is natural with respect to Z.

(c) Prove contravariant analogues of parts (a) and (b) involving the functors Hom(-, X) and
Hom(-,Y).

Solution: The interesting step is part (b), so let’s just talk about that. (One could give a quick
answer to part (a) more or less by mumbling the word “functor”.) Suppose a natural transformation
T : Hom(Y,-) - Hom(X, ) is given, so for every object Z € €, T defines a set map

Tz : Hom(Y, Z) - Hom(X, Z)

which is required to fit into certain commutative diagrams as dictated by the word “natural”. In
particular, choosing Z := Y, we observe that 7" determines a distinguished morphism f: X — Y
by

f = Ty(Idy) € HOHI(X, Y)
We claim now that, in fact, T = Ty. Indeed, given any Z € ¥ and g € Hom(Y, Z), naturality
implies that the diagram

Hom(Y,Y) —*~ Hom(X,Y)

J{g* lg*
Hom(Y, Z) —2 Hom(X, Z)

commutes, hence

Tz(9) = Tz(goldy) = (Tz 0 g+)(Idy) = (g« o Ty)(Idy) = g f = go f = [*g =Ty (g).
Now that we know all natural transformations arise in this way, and after verifying the formula
Tiog = Ty o Ty, it follows easily that the morphism f : X — Y has an inverse if and only if the
corresponding natural transformation 7'y has an inverse.
One way to apply this result in homotopy theory is as follows. Suppose we are given a map
f: X — Y for which we can verify that for all spaces Z, the induced maps

Y 2l - [X Z]:g > go f
are bijective. This means that the natural transformation on Hom-functors corresponding to f is a
natural isomorphism, therefore implying that f itself is an isomorphism, i.e. the conclusion in this

6A natural isomorphism T : F — G between two functors F,G : &/ — £ is a natural transformation such
that the morphism T'(a) : F(a) — G(a) in £ associated to each object o € &7 is an isomorphism. It follows that T'
has an inverse, which is also a natural transformation T-1.6 > F.
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setting is that f is a homotopy equivalence. The variant in part (c¢) would imply similarly that if
the maps

fe 2, X] > [2,Y]: g fog
are known to be bijective for all spaces Z, then f is a homotopy equivalence.

Exercise 1.9 (tensor products). On the category R-Mod of modules over a commutative ring R,
the tensor product satisfies the following universal property: for any three R-modules A, B, C, the
natural map

Hom(A ® B, C) - Hom(A, Hom(B, C)), a(®)(a)(d) := P(a®D)

is a bijection. Indeed,
Homgy (A, B; C) := Hom(A, Hom(B, C))

can be interpreted as the set of R-bilinear maps A x B — C, so the fact that « is bijective means
that every such bilinear map factors through the canonical R-bilinear map A x B - A® B and a
uniquely determined R-module homomorphism A ® B — C. In fact, « is not just a bijection; it
is also an R-module isomorphism, though we will not make use of this fact in the following. The
important observation for now is that « defines a natural isomorphism between the two functors
Hom(-®-,-) and Homy from R-Mod x R-Mod x R-Mod to Set, which are contravariant in the first
two variables and covariant in the third.

More generally, suppose % is any category for which the sets Hom(X,Y') can be regarded as
objects in % for every X,Y € ¥, and suppose ® : ¥ x ¥ — % is a functor such that the functors
€ x € x € — Set defined by Hom(-®-, -) and Homs := Hom(-, Hom(-, -)) are naturally isomorphic,
so in particular, for every triple of objects X, Y, Z € €, there is a bijection of sets

Hom(X ®Y, Z) =~ Hom(X, Hom(Y, Z))

that is natural with respect to all three.

(a) Prove that there is a natural isomorphism relating any two functors ®,® : € x € — €
that satisfy the condition described above. In other words: tensor products are uniquely
determined (up to natural isomorphism) by the universal property.

(b) Prove that ® is associative in the sense that the functors € x € x ¥ — € defined by
(XY, Z2) » X®(Y ®Z) and (X,Y,Z) —» (X ®Y) ® Z are naturally isomorphic. Prove
it using only the universal property, i.e. do not use any knowledge of how ® is actually
defined in any specific categories.

Solutions: Both parts are applications of Exercise 1.8, which is the right tool for the job because
the universal property of ® does not tell us what X ® Y is, but instead tells us what other functor
Hom(X ®Y,-) is naturally isomorphic to, namely Homs(X,Y’; ) := Hom(X, Hom(Y}-)). If we are
given two versions ® and ® that both satisfy the universal property, we obtain from this a natural
isomorphism
Hom(X ®Y,-) ~ Hom(X ®' Y, ")

for every pair of objects X, Y € ¢, and therefore (via Exercise 1.8) an isomorphism X®Y =~ X®'Y.

Associativity follows similarly because one can follow two chains of natural bijections that both
end at the same destination: for any spaces X,Y, Z,V we have:

Hom(X ® (Y ® Z),V) = Hom(X, Hom(Y ® Z,V)) =~ Hom(X, Hom(Y, Hom(Z, V))),
and also

Hom((X ®Y)® Z,V) ~ Hom(X ® Y,Hom(Z,V)) = Hom(X, Hom(Y, Hom(Z, V))).
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Exercise 1.10 (tensor products of pairs). Let Top™ denote the category of pairs of spaces and
maps of pairs. When defining the cross and cup products on relative homology and cohomology,
one often sees the product of two pairs defined as

(X, A)x (V,B)=(XxY,AxY uX x B).

(a) Why is this definition of x not actually a product (in the sense of category theory) on the
category Top™? What do categorical products in Top™ actually look like?

(b) In the spirit of Exercise 1.9, I would like to argue that x as defined above should be
interpreted as a tensor product on Top“ﬂ. Due to some subtle point-set topological issues
that I’d rather not get into until next week, it’s best for now to dispense with topologies and
work instead in the category Set™, whose objects are pairs (X, A) of sets with A c X, and
whose morphisms (X, A) — (Y, B) are arbitrary (not necessarily continuous) maps X — Y
that send A into B. In this setting, how can you regard each of the sets Hom((X, A), (Y, B))
as an object of Set™ such that there are natural bijections

Hom((X, 4) x (Y, B), (Z,C)) = Hom ((X, 4), Hom((Y, B), (Z, C))
for all choices of pairs?
Answers: Categorical products require projection morphisms, but e.g. the projection map X xY —
X does not generally send A x Y U X x B into A, and thus does not define a map of pairs
(X,A) x (Y,B) - (X,Y). For a categorical product on Top™, the correct definition would be the
obvious one,
(X,A) x (Y,B):=(X xY,A x B).

If (X, A) and (Y, B) are objects in Set™, then Hom((X, A), (Y, B)) also becomes an object in

Set™ after singling out the subset
{6 € Hom((X, A), (¥, B)) | $(X) € B} < Hom((X, ), (Y, B)).

It is then straightforward to check that set maps of pairs from (X, A) to Hom((Y, B), (Z,C)) are
in natural bijective correspondence with set maps of pairs from (X, A) x (Y, B) to (Z,C).

The case of this with A = B = C = J is often written in a more appealing way by using the
notation

XY := Hom(Y, X) in Set,
so that Hom(X x Y, Z) = Hom(X, Hom(Y, Z)) becomes the so-called exponential law
ZX XY ~ (ZY)X.

Note that this is one of the few situations in which the categorical product can also sensibly be
called a tensor product; they are not the same thing in Set™!, but in Set they are.

The reason we removed topologies from the picture before starting this discussion was that one

needs to be very careful about defining the right topology on the set C'(X,Y") of continuous maps
X — Y between two spaces if one wants to have a natural bijection

C(XxY,Z)=C(X,C(Y, Z)).
In fact, there is no right way to define the topology on C'(X,Y") so that this works for all spaces; one
must first restrict the category of spaces under consideration, and then make slight modifications
to the definitions of both C(X,Y) and X x Y as topological spaces. We will go into a little bit of

detail about this when it becomes necessary, as without it, one would miss out on some very clever
tools coming from stable homotopy theory.

2. WEEK 2

The lecture on 22.04.2024 was cancelled due to illness, so this week contains only one lecture.
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Lecture 3 (25.04.2024): The homotopy category and mapping cylinders.

e The homotopy categories hTop (without base points) and hTop, (with base points)
e Notation for diagrams that commute up to homotopy (see the notational glossary above)
e The double mapping cylinder of twomaps f: Z - X andg: Z - Y,

Z(f,9) = (Xu( x Z)HY)/~, where (0, z) ~ f(z) and (1, z) ~ g(z) for all z € Z.

e Role of Z(f,g) as a weak form of pushout in hTop (it is called a homotopy pushout):
the diagram

z 1 ,x

o~ [

Y —— Z(f,9)

commutes up to an obvious homotopy, though not on the nose (the obvious inclusions ix
and iy have disjoint images). Diagrams

7z 4. x
gl " l@o
Y=«

determine maps Z(f, g) — @, constructed in an obvious way out of ¢, ¥» and the homotopy
pof EN 1 o g, so that the diagram

commutes (on the nose, i.e. not just up to homotopy).
e Special cases:
(1) Mapping cylinder of f: X - Y:

Z(f) = 2(Wx, f) = (I x Z) Uz Y,

where the gluing occurs along {1} x Z. Convenient feature: Z(f) deformation retracts
to Y, soiy : Y — Z(f) is a homotopy equivalence. We can therefore view every map
X — Y “up to homotopy equivalence” as inclusion of a subspace, namely ix : X —
Z(f). (This trick was used once at the end of Topologie II, cf. the last two pages of
[Wen23].)

(2) Mapping cone of f: X — Y: using the unique map € : X — =, we define

cone(f):=2Z(e, f) =CX vy,

where CX := (I x X)/({0} x X) is the usual cone of X.
(3) Suspension (unreduced): Not the most direct way to define it, but the familiar
suspension SX of a space X is also the double mapping cylinder of a pair of maps
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from X to one-point spaces:

X — =

|~

x# — SX

Here the two maps from # to SX have images at the opposite poles, which are points
obtained by collapsing I x X at {0} x X and {1} x X separately.
e Variant for hTop,: If X, Y, Z are pointed spaces and f, g are pointed maps, defining a base
point on Z(f, g) requires modifying its definition by

I x =

Z(f,g9) = <X v Ix2 v Y) /~, where (0,2) ~ f(z) and (1,2) ~ g(z) for all z € Z.

Note: Quotienting I x Z is necessary because I x Z on its own has no natural base point,
but whenever Z, Z’ are two pointed spaces,

!

I xZ
pointed homotopies I x Z — Z' < pointed maps T
&

Everything discussed above has analogues in which all maps are base-point preserving.
The pointed version is sometimes called the reduced double mapping cylinder, and one
can also derive from it special cases such as the reduced mapping cone and reduced
suspension, which we’ll have much more to say about later.

e Why is Z(f,g) not really a pushout in hTop?

(1) Our construction of the map u : Z(f,g) — @ uses more information than a diagram
in hTop: it uses the actual maps in the diagram (not just their homotopy classes),
plus a choice of homotopy. This doesn’t mean it cannot work, but is a hint that we
may be cheating.

(2) (The real reason): The diagram

U{ \
Z(f.g
'LY]\ /\
does not always uniquely determine [u] € [Z(f, g), Q] Example: The mapping cone
cone(a) of a degree 2 map « : S' — S, say a(e?) := €%? if we think of S' as the

unit circle in C. Now cone(a) = RP? and the natural inclusion S' < cone(a) defines
the nontrivial element of 71 (RP?) = Z;. A homotopy pushout diagram

St ——

1]
SlTQ

now means a choice of space @ and homotopy class 3 € [S!, Q] such that - is
homotopic to a constant loop. The latter always holds if @ is simply connected, so
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take @ := S2, and then observe that the diagram

1\

cone(a) —— 52

I

always commutes up to homotopy, since [S!, S?] = # =~ [+, S?]. But [RP?,5?] has
more than one element, because there exist maps RP? — §2 having either possible
value of the mod-2 mapping degree (cf. Exercise 2.1).

e Theorem: There exists a category & whose objects are pushout diagrams (in Top)

z -1, x

f

such that
(1) Changing the maps f and g by homotopies produces isomorphic objects of &;
(2) There is a functor & — hTop sending each pushout diagram to its mapping cylinder

Z(f,9)-

e Proof sketch: Morphisms in & are diagrams

z— 4 x

v ~ a
NNy
o Tz x

»¢ ’

x
Y/
including choices of homotopies ¢ and 1 as part of the data. The notion of composition

of such morphisms arises naturally by composing maps and concatenating homotopies.”
Such a morphism determines a homotopy pushout diagram

z—1 x

lg " lixloa
Y g 2(f.9)

and therefore also an induced map Z(f,g) — Z(f',¢'). It is a bit tedious but straight-
forward to check:

"It seems likely that I'm oversimplifying this and ought to talk about “homotopy classes of homotopies” if I
really want the composition in & to be associative, but [ do not want to give these details more attention than they
deserve. I am attempting to present a slightly more highbrow perspective on a sequence of lemmas in [tD08, §4.1-4.2]
that seem rather technical and tedious.
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(1) The map induced by a composition of two morphisms in & is homotopic to the
composition of the two induced maps.

(2) If the maps «,3,v all have homotopy inverses, one can use them to construct an
inverse morphism in Z.

Both only require the same ideas that are needed for proving e.g. that multiplication in the

fundamental group is associative. The second point implies, in particular, that the map

Z(f,9) — Z(f',¢') is a homotopy equivalence whenever «, 3, are.

Corollary: If f >~ f'and g > g', then Z(f,g) and Z(f',¢’) are homotopy equivalent.

Theorem: Pushouts in hTop and hTop,, do not always exist.®
Proof sketch in hTop,,: Fix the obvious base point in S? so that our previous degree 2 map
a: S — S preserves base points. A pushout diagram in hTop, of the form

St —— «

o~ ]
SITP

then means a pointed space P together with an element in the 2-torsion subgroup of its
fundamental group

B e 7r1(P)(2) = {’y € m(P) | 2 = O}.
Then P and f satisfy the universal property for a pushout in hTop,, if and only if for every
space @ and v € 71 (Q)(2), the map
[P, Q] = m(Q)2) : u — uxf
is a bijection. Assume this is true, and then consider the surjective map
SO(3) 2 8% : A — Aey,
where S? is the unit sphere in R? and e, ez, e3 € R? denotes the standard basis. Taking
e; as a base point in S2, we have
p l(e1) = SO(2) = ST,

giving rise to an exact sequence of pointed spaces

St <5 80(3) B S2.
We will see next week that the map p : SO(3) — S? has a special property: it is a fibration,
with the consequence that for every space P, the induced sequence of pointed sets

[P, 5] % [P,SO(3)] % [P, 57
is also exact, meaning the preimage of the base point under p, matches the image of i,.
(Here [ X, Y] means the set of homotopy classes of pointed maps X — Y, so it is a set with

an obvious base point.) Combining this with the bijection that we deduced above from the
universal property of the pushout, we obtain an exact sequence

T1(5")(2) = T1(SO(3))(2) = m1(57)(2).

in which the first and last terms both vanish. But SO(3) = RP?® and thus 71 (SO(3)) = Z,,
so the middle term does not vanish, and this is a contradiction.

To do next week: Define what a fibration is and explain why the sequence of sets of
homotopy classes in that proof was exact.

... which is why we need to use homotopy pushouts instead.
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Suggested reading. A more comprehensive treatment of mapping cylinders (including details
that I left out of the proof of the theorem about the functor &2 — hTop) can be found in [tD08, §4.1-
4.2]. This does not include the proof that pushouts in hTop, don’t exist; I found that in the
materials for a course on homotopy theory by Tyrone Cutler, available at https://www.math.
uni-bielefeld.de/ tcutler/ (see the first set of exercises on homotopy pushouts).

Exercises (for the Ubung on 2.05.2024).

Exercise 2.1. Review the notions of the Zs-valued and Z-valued mapping degrees for maps
between closed and connected topological manifolds of the same dimension, as covered e.g. in
[Wen23, Lecture 35]. Then:

(a) Show that for every closed and connected topological manifold M of dimension n € N, the
set [M, S™] contains at least two elements, and infinitely many if M is orientable.
(b) Does the set [S™, M] also always have more than one element?

Exercise 2.2. Deduce from the properties of double mapping cylinders the standard fact that
there is a functor S : Top — Top assigning to every space X € Top its (unreduced) suspension SX.
Note: This is just intended as a sanity check. There is nothing especially nontrivial to be done
here, and there are also more direct ways to show that suspensions define a functor.

Exercise 2.3. Show that the mapping cone cone(f) of any homotopy equivalence f : X —» Y is a
contractible space.
Hint: Find a useful morphism in the category & of pushout diagrams.

Exercise 2.4. Show that for any two maps f: Z — X and ¢ : Z — Y, the singular homologies
(with arbitrary coefficients) of the spaces X,Y, Z and Z(f, g) are related by a long exact sequence
of the form

= Hn1(Z(1,9)) = Hn(2) = Hn(X) @ Ho(Y) = Ho(Z(f,9)) = Hna(2) = -,

and describe explicitly what the two homomorphisms in the middle of this sequence look like.
Show that it also works with all homology groups replaced by their reduced counterparts, then
write down the special case of a mapping cone and check that what you have is consistent with
Exercise 2.3.

Hint: There is a relatively straightforward way to apply the Mayer-Vietoris sequence here, but you
could also deduce this as a special case of the exact sequence of the generalized mapping torus
derived in [Wen23, Lecture 34].

Exercise 2.5. Prove that pushouts in hTop do not always exist.

Hint: The proof carried out in lecture for hTop,, requires only minor modifications. Note that even
if X and Y are spaces without base points, the set of homotopy classes [X,Y] still has a natural
base point whenever Y is path-connected. (Why?)

Exercise 2.6. Give explicit examples of homotopic maps
f}~f’:Z—>X and g;g':Z—»Y
13

such that the mapping cylinders Z(f,g) and Z(f',¢') are not homeomorphic. (They will of course
be homotopy equivalent!)

Exercise 2.7. The join X =Y of two spaces X and Y is the double mapping cylinder Z(wx, my)
defined via the projection maps 7x : X xY — X and 7y : X xY — Y. Prove that the join of
two spheres is always homeomorphic to a sphere: concretely, for every m,n e N,

QM oy S ~ Sm+n+1.
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Hint: Split the double mapping cylinder in half so that you see S™ % S™ as the union of two pieces
glued along boundaries that both look like S™ x S™. Can you think of two compact manifolds that
both have S™ x S™ as boundary? Stare closely at the two pieces, you might recognize them! Now
glue them together and ask: what is S™ = S™ the boundary of?

Exercise 2.8. Many constructions in homotopy theory have analogues in homological algebra,
and one of these is the mapping cone. For two chain complexes (Ax, 04) and (By, 0p) with a chain
map f: Ay — By, the mapping cone of f is the chain complex (cone(f).,d) with

cone(f), := Ap_1 ® B, and 5= (—_(9}4 a(;) ’

The analogy to the mapping cone in Top goes through cellular homology: if X,Y are two CW-
complexes and f : X — Y is a cellular map, then the cone of f inherits a natural cell decom-
position whose augmented cellular chain complex CSW (cone(f)) is the cone of the chain map
fu: CEW(X) — CEV(Y).?

Show that the mapping cone cone(f)s of a chain map f : A, — B, similarly plays the role
of a homotopy pushout in the category Ch of chain complexes and chain maps, with the role of a
one-point space played by the trivial chain complex 0, € Ch. Specifically:

(a) There is a natural chain map ip : By — cone(f), such that the diagram

Ay — 04

o~
B*Tcone(f)*

commutes up to chain homotopy.
(b) Any homotopy-commutative diagram in Ch of the form

Ay — 0y

oa ]
B*TD*

naturally determines a chain map w : cone(f)s — Dy such that u o ip is chain homotopic
to .

(c) If we were being strict about the analogy via cellular homology, then the trivial complex
0, in the diagrams above ought to be replaced by CN’,EW(*), the augmented cellular chain
complex of a one-point space, which is not trivial: it has nontrivial entries in degrees 0
and —1, with the boundary operator giving an isomorphism between them. Explain why
this discrepancy does not matter, and nothing in the discussion above would change if we
used CN',EW(*) in place of 0.

Hint: None of this is hard. .. the quickest approach may be by guessing.
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