
Topology II Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2017–18

PROBLEM SET 11

To be discussed: 7.02.2018

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. We will discuss the solutions in the Übung beforehand.

Prologue: If you have not yet become comfortable with the method of acyclic models, this sheet will either
help or will drive you crazy.

1. The goal of this problem is to understand the role played by 0-chains and 0-cochains in the cross and cup
product. Let tptu denote the 1-point space and, for a path-connected space X , let rpts P H0pXq “ Z

denote the canonical generator, i.e. the homology class represented by xxy P C0pXq for any point
x P X (regarded as a singular 0-simplex). Recall moreover that any coefficient group G has a canonical
inclusion G ãÑ H0pX ;Gq.

(a) Show that if Y is path-connected, the cross product of any A P HnpXq with rpts P H0pY q is
A ˆ rpts “ i˚A for any inclusion map of the form i : X ãÑ X ˆ Y : x ÞÑ px, constq. A similar
formula holds for cross products with rpts P H0pXq if X is path-connected.
Hint: Remember that ˆ is induced by a natural chain map Φ : C˚pXq b C˚pY q Ñ C˚pX ˆ Y q,
so if you have the right formula for Φ : CnpXq b C0pY q Ñ CnpX ˆ Y q, the relation will become
obvious. In general, one can make many choices in defining Φ, but there is an obvious choice that
one “should” make when one of the chains is 0-dimensional. Review the construction of Φ via
acyclic models to show that this choice is always possible.

(b) Suppose Ψ associates to every space X a chain map Ψ : C˚pXq Ñ C˚pXq. We will say that Ψ is
a natural chain map C˚pXq Ñ C˚pXq if it acts as the identity map on 0-chains and for every
continuous map f : X Ñ Y , Ψ ˝ f˚ “ f˚ ˝ Ψ. Use the method of acyclic models to show that any
two choices of natural chain maps in this sense are chain homotopic for all X .

(c) Identify the chain complex C˚pX ˆ tptuq with C˚pXq via the obvious canonical isomorphism
between them, and consider the following two maps:

C˚pX ˆ tptuq
θ

ÝÑ C˚pXq b C˚ptptuq
1bǫ
ÝÑ C˚pXq b Z “ C˚pXq,

C˚pX ˆ tptuq
pπXq˚

ÝÑ C˚pXq,

where πX : X ˆ tptu Ñ X is the canonical projection, θ is any natural chain homotopy inverse
for the natural chain map Φ : C˚pXq b C˚ptptuq Ñ C˚pX ˆ tptuq as used in the construction of
the cross product, and ǫ : C˚ptptuq Ñ Z is the augmentation map, which vanishes on Cnptptuq
for n ‰ 0 and sends the generator xσy P C0ptptuq to 1. Verify that both of these define natural
chain maps, hence by part (b), they are chain homotopic.

(d) Fix a commutative ring R with unit (denoted by 1 P R), and deduce from part (c) that for any
space X , the cross product of α P H˚pX ;Rq with 1 P R Ă H0ptptu;Rq satisfies α ˆ 1 “ π˚

Xα.

(e) Prove the naturality formula pfˆgq˚pαˆβq “ f˚αˆg˚β for any continuous maps f : X Ñ X 1 and
g : Y Ñ Y 1 with α P H˚pX 1;Rq and β P H˚pY 1;Rq. (This is an easy consequence of the definition
of the cohomology cross product.) Now use it to deduce from part (d) that the cross product of
any α P H˚pX ;Rq with 1 P R Ă H0pY ;Rq satisfies α ˆ 1 “ π˚

Xα, where πX : X ˆ Y Ñ X is the
projection. (Similarly, 1 ˆ β “ π˚

Y β for 1 P R Ă H0pX ;Rq and β P H˚pY ;Rq.)

(f) Deduce from the above that for any space X , 1 P R Ă H0pX ;Rq acts as the unit with respect to
the cup product: α Y 1 “ α “ 1 Y α.
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2. Let’s prove that the cross product and cup products are associative.

(a) Show that for triples of spaces X,Y, Z, all natural chain maps Φ : C˚pXq b C˚pY q b C˚pZq Ñ
C˚pX ˆY ˆZq that act on 0-chains by Φpxxy b xyy b xzyq “ xpx, y, zqy are chain homotopic. Here,
“natural” means that for any triple of continuous maps f : X Ñ X 1, g : Y Ñ Y 1 and h : Z Ñ Z 1,
Φ ˝ pf˚ b g˚ b h˚q “ pf ˆ g ˆ hq˚ ˝ Φ.
Remark: The statement implicitly assumes that there is a well-defined notion of the tensor product
of three chain complexes, which of course is true since there is a canonical chain isomorphism
between pC˚pXq b C˚pY qq b C˚pZq and C˚pXq b pC˚pY q b C˚pZqq. Right?

(b) Given A P H˚pXq, B P H˚pY q and C P H˚pZq, show that the products pA ˆ Bq ˆ C and
A ˆ pB ˆ Cq P H˚pX ˆ Y ˆ Zq can each be expressed via natural chain maps as in part (a), and
conclude that they are identical.

(c) Convince yourself that the natural chain maps in part (a) also have natural chain homotopy
inverses. (You probably won’t want to work through the proof in full detail, but once you’ve
started it, it should not be hard to see how the rest goes.)

(d) Prove that pα ˆ βq ˆ γ “ α ˆ pβ ˆ γq P H˚pX ˆ Y ˆ Z;Rq for any α P H˚pX ;Rq, β P H˚pY ;Rq
and γ P H˚pZ;Rq.
Hint: Try to express each as the composition of α b β b γ with some natural chain map.

(e) Prove that for α, β, γ P H˚pX ;Rq, pα Y βq Y γ “ α Y pβ Y γq.

3. We now have enough information to compute the cup product on T
n “ R

n{Zn for any (commutative
and unital) coefficient ring R. Our main tools for this purpose will be the Künneth formula, the
universal coefficient theorem, and the following two relations:

xα ˆ β,A ˆ By “ p´1qkℓxα,Ayxβ,By for α P HkpX ;Rq, A P HkpXq, β P HℓpY ;Rq, B P HℓpY q,

and
π˚
Xα Y π˚

Y β “ α ˆ β for α P H˚pX ;Rq, β P H˚pY ;Rq,

where πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y are the canonical projections.

Let us identify S1 with R{Z so that we can write T
n “ S1 ˆ . . . ˆ S1. All the homology groups that

appear below will turn out to be free, hence the Ext terms in the universal coefficient theorem vanish
and we will always have canonical isomorphisms HkpX ;Rq Ñ HompHkpXq, Rq. With this in mind, fix
a generator rS1s P H1pS1q and let λ P H1pS1;Rq denote the unique element such that xλ, rS1sy “ 1.

Now for each j “ 1, . . . , n, the projection πj : T
n Ñ S1 : px1, . . . , xnq ÞÑ xj defines a cohomology class

λj :“ π˚
j λ P H1pTn;Rq for j “ 1, . . . , n.

(a) Use the Künneth formula to show that for each k “ 1, . . . , n, HkpTnq is a free abelian group
of rank

`
n
k

˘
with a basis consisting of products A1 ˆ . . . ˆ An where exactly k of the Aj are

rS1s P H1pS1q and the rest are rpts P H0pS1q.
Hint: I suggest induction on n.

(b) Deduce from part (a) that HkpTn;Rq is similarly a free R-module with a basis consisting of the`
n
k

˘
elements

λj1,...,jk :“ α1 ˆ . . . ˆ αn P HkpTn;Rq

for 1 ď j1 ă j2 ă . . . ă jk ď n, where αji “ λ P H1pS1;Rq for each i “ 1, . . . , k and the rest of
the αj are all 1 P H0pS1;Rq.

(c) Prove that for all k-tuples of integers 1 ď j1 ă j2 ă . . . ă jk ď n,

λj1 Y . . . Y λjk “ ˘λj1,...,jk .

Hint: The statement is trivial for n “ 1, so try induction on n. It might make your life easier to
assume jk “ n; this is just a matter of bookkeeping, and if you’re not too worried about signs, it
is not a loss of generality.
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Comment: In light of the relation λiYλj “ ´λj Yλi, what we’ve proven here is that the ringH˚pTn;Rq
is isomorphic to the exterior algebra ΛRrλ1, . . . , λns on n generators of degree 1.

4. The smash product X ^ Y of two spaces is defined by choosing base points x0 P X and y0 P Y , and
then writing the quotient

X ^ Y :“ pX ˆ Y q
L

pptx0u ˆ Y q Y pX ˆ ty0uqq .

Let’s not worry about the extent to which this depends on the choice of base points, as we are only
going to consider examples in which it clearly does not depend. Notice that the subset being quotiented
out is homeomorphic to the wedge sum X _ Y , so it is sensible to write X ^ Y “ X ˆ Y

L
X _ Y . It

is straightforward to check that for any base-point preserving continuous maps f : pX, x0q Ñ pX 1, x1
0q

and g : pY, y0q Ñ pY 1, y1
0q, the product map f ˆ g : X ˆ Y Ñ X 1 ˆ Y 1 descends to the quotient as a

continuous map
f ^ g : X ^ Y Ñ X 1 ^ Y 1.

Here is the most important example:

(a) Show that Sk ^ Sℓ is homeomorphic to Sk`ℓ.
Hint: Think of Sk as Dk{BDk with the boundary as the base point.

Now assume X and Y are both CW-complexes, with base points chosen to be 0-cells in their cell
decompositions, so the cross product and the Künneth formula are valid for the pairs pX, tx0uq and
pY, ty0uq. Since pX, tx0uq ˆ pY, ty0uq “ pX ˆ Y,X _ Y q, the Künneth formula now takes the form

0 Ñ
à

k`ℓ“n

HkpX, tx0uqbHℓpY, ty0uq
ˆ

ÝÑ HnpXˆY,X_Y q ÝÑ
à

k`ℓ“n´1

TorpHkpX, tx0uq, HℓpY, ty0uqq Ñ 0,

or under the natural isomorphisms H˚pX,Aq “ rH˚pX{Aq for good pairs,

0 Ñ
à

k`ℓ“n

rHkpXq b rHℓpY q
ˆ

ÝÑ rHnpX ^ Y q ÝÑ
à

k`ℓ“n´1

Torp rHkpXq, rHℓpY qq Ñ 0.

(b) Show that for the cross product on reduced homology as described above and the identification

of Sk ^ Sℓ with Sk`ℓ as indicated in part (a), if rSks P rHkpSkq and rSℓs P rHℓpS
ℓq are generators,

then rSks ˆ rSℓs P rHk`ℓpS
k`ℓq is also a generator.

(c) Prove that for any two base-point preserving maps f : Sk Ñ Sk and g : Sℓ Ñ Sℓ, degpf ^ gq “
degpfq ¨ degpgq.
Hint: You need the naturality of the Künneth formula for this.

(d) Find an alternative proof of the formula in part (c) using the following fact from differential
topology: any continuous map f : Sk Ñ Sk admits a small perturbation to a smooth map such
that for almost every point x P Sk, f´1pxq is a finite set of points at which the local degree of f
is ˘1. (The latter is an immediate consequence of Sard’s theorem.)

(e) Using the definition of cellular chain maps and the cellular cross product, you are now in a position
to justify a claim that was stated but not proved in lecture: if f : X Ñ X 1 and g : Y Ñ Y 1 are
cellular maps, then the diagram

CCW
˚ pXq b CCW

˚ pY q CCW
˚ pX ˆ Y q

CCW
˚ pX 1q b CCW

˚ pY 1q CCW
˚ pX 1 ˆ Y 1q

f˚bg˚

ˆ

pfˆgq˚

ˆ

commutes.
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5. One can write down convenient chain-level formulas for the cup product using the notion of a diagonal

approximation. The latter means an assignment to every space X of a chain map Ψ : C˚pXq Ñ
C˚pXq b C˚pXq that satisfies Ψxxy “ xpx, xqy for all xxy P C0pXq and is natural in the sense that for
every continuous map f : X Ñ Y , Ψ ˝ f˚ “ pf˚ b f˚q ˝ Ψ. An example appears in the definition of the
cup product: if α P CkpX ;Rq and β P CℓpX ;Rq are cocycles and d : X Ñ X ˆX denotes the diagonal
map, then rαs Y rβs P Hk`ℓpX ;Rq is represented by the cocycle

α Y β :“ d˚pα ˆ βq “ pα ˆ βq ˝ d˚ “ pα b βq ˝ pθ ˝ d˚q,

where d˚ : C˚pXq Ñ C˚pX ˆ Xq and θ : C˚pX ˆ Xq Ñ C˚pXq b C˚pXq are each natural chain maps,
hence θ ˝ d˚ is a diagonal approximation.

(a) Show via an acyclic models argument that all diagonal approximations are chain homotopic.
Deduce from this that rαs Y rβs can also be represented by a cocycle of the form α Y β :“
pα b βq ˝ Ψ P Ck`ℓpX ;Rq where Ψ is any choice of diagonal approximation, and that for any
α P CkpX ;Rq and β P CℓpX ;Rq, α Y β then satisfies

δpα Y βq “ δα Y β ` p´1qkα Y δβ.

The most popular choice of Ψ in the literature is known as the Alexander-Whitney diagonal ap-
proximation, and is defined as follows. Number the vertices of the standard n-simplex ∆n Ă R

n`1 as
0, . . . , n, and given any integers 0 ď j0 ă j1 ă . . . ă jk ď n, let

rj0, . . . , jks Ă ∆n

denote the k-simplex spanned by the vertices j0, . . . , jk, which is identified naturally with the standard
k-simplex. For instance, in this notation, the jth boundary face of ∆n is Bpjq∆

n “ r0, . . . , j ´ 1, j `
1, . . . , ns for each j “ 0, . . . , n. Now define Ψ : C˚pXq Ñ C˚pXq b C˚pXq on each singular n-simplex
σ : ∆n Ñ X by

Ψxσy :“
ÿ

k`ℓ“n

xσ|r0,...,ksy b xσ|rk,...,nsy

(b) Verify that Ψ as defined above is a diagonal approximation.

Plugging the Alexander-Whitney approximation into α Y β “ pα b βq ˝ Ψ gives the following formula
for the cup product of cochains: for any singular n-simplex σ : ∆n Ñ X with n “ k ` ℓ,1

pα Y βqxσy “ p´1qkℓαpxσ|r0,...,ksyqβpxσ|rk,...,nsyq.

On its own, this formula is seldom very useful since explicit computations with singular cochains are
almost never practical. What is slightly more reasonable, however, is to use the same formula for
computing the cup product in the simplicial cohomology of a simplicial complex, which of course is a
special case of cellular cohomology and is therefore isomorphic to its singular cohomology. This trick is
sometimes used for explicit computations of singular cohomology rings; see for instance Examples 3.7
and 3.8 in Hatcher, or Example 4.6 in Chapter VI of Bredon).

1The formula we have derived here for the cochain α Y β matches a formula in Bredon, but differs from Hatcher by a sign if

k and ℓ are both odd. I’m sorry, I don’t know why.

4


