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Problems marked with p˚q will be graded. Solutions may be written up in German or

English and should be submitted electronically via the moodle before the Übung on the

due date. For problems without p˚q, you do not need to write up your solutions, but it is

highly recommended that you think through them before the next Tuesday lecture. You

may also use the results of those problems in your written solutions to the graded problems.

Note: Several results relevant to this problem set were stated but not proved (at least

not with all details) in lecture, and you may feel free to use them in your solutions unless

otherwise indicated. These include:

• For any distribution ⇤ and test function ', ' ˚ ⇤ is a smooth function satisfying

B↵p'˚⇤q “ pB↵'q˚⇤ “ '˚B↵
⇤ for all multi-indices ↵. (Theorem 10.27 in the notes)

• If ⇤ P D 1p⌦q has first derivatives B1⇤, . . . , Bn⇤ P D 1p⌦q that are all representable

by continuous functions on ⌦ Ä Rn
, then ⇤ is representable by a C1

-function on ⌦.

(Theorem 10.33 in the notes)

Problem 1 p˚q
Consider the locally integrable real-valued function fpxq :“ |x| on R.

(a) Prove that f has weak derivative f 1pxq “
#
1 if x ° 0,

´1 if x † 0
. [3pts]

1

(b) Prove that f 1
is not weakly di↵erentiable, but its derivative in the sense of distribu-

tions is 2� P D 1pRq. [3pts]

Problem 2
Consider the real-valued function fpxq :“ ln |x| on R.

(a) p˚q Show that f is in L1
locpRq and its distributional derivative ⇤

1
f P D 1pRq is

2

⇤
1
f p'q “ p. v.

ª

R

'pxq
x

dx :“ lim
✏Ñ0`

ª

|x|•✏

'pxq
x

dx for ' P DpRq. [6pts]

(b) Show that for any smooth compactly supported function  : R Ñ R, the smooth

function  ˚ f : R Ñ R satisfies

p ˚ fq1pxq “
ª 8

´8
 1px ´ yq ln |y| dy “ lim

✏Ñ0`

ª

|y´x|•✏

 pyq
x ´ y

dy

for all x P R.

1Note that there is no need to define f 1p0q in Problem 1(a) since t0u Ä R is a set of measure zero.
2The notation p. v. in Problem 2 stands for “Cauchy principal value” and is defined as the limit on the

right hand side. The limit is necessary since 1{x is not a locally integrable function and thus x fiÑ 'pxq{x
is not always in L1pRq for ' P DpRq.
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Problem 3
Let Wm,p

loc p⌦q denote the space of functions on ⌦ Ä Rn
whose restrictions to every open

subset U Ä ⌦ with compact closure are in Wm,ppUq. Prove:
(a) p˚q If f is an absolutely continuous function on an interval ra, bs, then its classical

derivative f 1
(defined almost everywhere) is also its weak derivative on the domain

pa, bq, hence f P W 1,1ppa, bqq. [3pts]
Hint: For any ' P Dppa, bqq, 'f defines an absolutely continuous function on ra, bs
that vanishes at the end points.

(b) If f P W 1,1
loc p⌦q for an open subset ⌦ Ä R, then on every compact subinterval ra, bs Ä

⌦, f is equal almost everywhere to an absolutely continuous function.

Hint: Compare the weak derivatives of f and the function gpxq :“ ≥x
a f

1ptq dt on ra, bs.
(c) p˚q Part (b) implies that every f P W 1,1p⌦q on an open interval ⌦ Ä R can be

assumed continuous after changing its values on a set of measure zero. Assuming this

modification has been made, prove that there exists a constant c ° 0 independent

of f such that

}f}C0 § c}f}W 1,1 for all f P W 1,1p⌦q.
In other words, there is a continuous inclusion W 1,1p⌦q ãÑ C0

b p⌦q.
Hint: Prove that |fpxq ´ fpyq| § }f 1}L1 for all x, y P ⌦, and deduce from this that

|fpxq| • }f}C0 ´ }f 1}L1 for all x P ⌦. [5pts]

(d) Show that for ⌦ “ p´1, 1q, the continuous inclusion W 1,1p⌦q ãÑ C0p⌦q in part (c)

is not compact.

Hint: Describe (by drawing a picture) an L1
-convergent sequence of smooth functions

fj : p´1, 1q Ñ R such that }f 1
j}L1 is bounded but the L1

-limit is discontinuous.

Comment: The Sobolev embedding theorem gives continuous inclusions W k,p ãÑ C0
when

kp ° n with domains ⌦ Ä Rn
, but no such inclusion exists in general for the so-called

“Sobolev borderline cases” where kp “ n, of which W 1,1
on ⌦ Ä R is an example. For this

reason, the result of part (c) is slightly surprising, though part (d) implies that there is

no improved inclusion W 1,1 ãÑ C0,↵
for any ↵ ° 0. If there were, then W 1,1 ãÑ C0

would

be compact on bounded intervals ⌦ Ä R due to the compactness of C0,↵ ãÑ C0
, which

follows from Arzelà-Ascoli.

Problem 4
When ⌦ is a nonempty bounded interval pa, bq Ä R, the Sobolev embedding theorem gives

continuous inclusions

W 1,pp⌦q ãÑ C0,↵p⌦q if 0 † ↵ † 1, 1 † p § 8 and ↵ § 1 ´ 1

p

W 2,1p⌦q ãÑ C0,↵p⌦q if 0 † ↵ † 1.

Without citing the theorem, prove this as follows:

(a) Deduce the inclusionsW 2,1 ãÑ C0,↵
for ↵ P p0, 1s from a continuous inclusionW 2,1 ãÑ

C1
using Problem 3.

(b) Deduce the inclusion W 1,p ãÑ C0
for every p • 1 from Problem 3.

(c) p˚q For a § x † y § b, the fundamental theorem of calculus implies |fpxq ´ fpyq| §
}f 1}L1prx,ysq for f P W 1,pp⌦q since (by Problem 3) f can be assumed absolutely

continuous. Use Hölder’s inequality to deduce a Hölder-type estimate |fpxq´fpyq| §
c}f 1}Lp ¨ |x ´ y|↵ for 0 † ↵ § 1 ´ 1{p whenever p ° 1. [3pts]
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