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Problem Set 11

Due: Thursday, 18.02.2021 (24pts total)

Problems marked with p˚q will be graded. Solutions may be written up in German or
English and should be submitted electronically via the moodle before the Übung on the
due date. For problems without p˚q, you do not need to write up your solutions, but it is
highly recommended that you think through them before the next Tuesday lecture. You
may also use the results of those problems in your written solutions to the graded problems.

Convention: Unless stated otherwise, H is a complex Hilbert space, and functions on

domains in Rn
or Tn

take values in a fixed finite-dimensional complex inner product space

pV, x , yq.

Problem 1
An operator T P L pHq is called normal if it commutes with its adjoint T ˚. Prove:

(a) The following conditions on T P L pHq are equivalent:

(i) T is normal;

(ii) T “ A ` iB for two self-adjoint operators A,B P L pHq that commute with
each other;

(iii) }Tx} “ }T ˚
x} for every x P H.

Hint: Consider }T px ` yq}2 and }T px ` iyq}2 for arbitrary x, y P H.

(b) p˚q If T is normal, then:

(i) }T 2} “ }T ˚
T } “ }T }2 [2pts]

(ii) The spectral radius of T is }T }. [4pts]
(iii) Every eigenvector of T with eigenvalue � P C is also an eigenvector of T ˚ with

eigenvalue �̄. Hint: Consider }p� ´ T qv}2. [2pts]
(iv) If v, w P H are eigenvectors of T with distinct eigenvalues, then xv, wy “ 0.

[2pts]

(v) If T is also compact, then H admits an orthonormal basis consisting of eigen-
vectors of T . [4pts]

(c) If T is unitary (meaning T
˚
T “ TT

˚ “ 1), then its spectrum is contained in the
unit circle t|�| “ 1u Ä C.
Hint: Show }T } “ }T´1} “ 1, and use the fact that operators with distance less than

1 from the identity map are invertible.

Problem 2
Assume pX,µq is a �-finite measure space, F : X Ñ C is a bounded measurable function,
and T : L2pXq Ñ L

2pXq is the multiplication operator u fiÑ Fu.

(a) Show that � P C belongs to the spectrum �pT q if and only if1

µ
`
F

´1pB✏p�qq
˘

° 0 for all ✏ ° 0, (1)

1The set of numbers � P C satisfying the condition in (1) for a given function F : X Ñ C is called the
essential range of F .
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where B✏p�q Ä C denotes the open disk of radius ✏ about �.

(b) Under what condition on F is � P �pT q an eigenvalue of T? When does it have finite
multiplicity?

Problem 3
For a Lebesgue-integrable function F : Tn Ñ C, define the operator

T : L2pTnq Ñ L
2pTnq : u fiÑ F ˚ u, where pF ˚ uqpxq “

ª

Tn
F px ´ yqupyq dy.

Young’s inequality (or more accurately its analogue for periodic functions) implies that T
is bounded, with }T } § }F }L1 .

(a) p˚q Prove that if the Fourier coe�cients t pFkukPZn of F satisfy lim|k|Ñ8 | pFk| “ 0, then
T is compact. Show that this holds in particular if F P L

2pTnq. [5pts]
Hint: For inspiration, look again at the proof that the inclusions H

spTnq ãÑ H
tpTnq

for s ° t are compact.

(b) Under what assumptions on F is T a self-adjoint operator?

(c) Under what assumptions on F is T a normal operator?

(d) Describe the spectrum �pT q, and find an explicit collection of eigenvectors of T that
form an orthonormal basis of L2pTnq. Assuming the condition in part (a), is every
element of �pT q necessarily an eigenvalue?

Problem 4
For a fixed constant x0 P Tn, let T : L2pTnq Ñ L

2pTnq denote the translation operator

pTfqpxq :“ fpx ` x0q.

This operator is unitary, and therefore cannot be compact.2

(a) Find an explicit spectral representation for T , i.e. a �-finite measure space pX,µq,
unitary isomorphism U : L2pTnq Ñ L

2pXq and bounded measurable function F :
X Ñ C such that UTU

´1 is the multiplication operator u fiÑ Fu.
Hint: Use Fourier series.

(b) p˚q Show that depending on the value of x0 P Tn, one of the following must happen:
(i) �pT q is a finite set consisting of eigenvalues that each have infinite multiplicity;
(ii) �pT q is the entire unit circle in C and consists of a countably infinite set of
eigenvalues, plus an uncountable set of points that are not eigenvalues. [5pts]
Advice: Use the result of Problem 2(a) to identify the spectrum.

(c) Carry out the analogues of parts (a) and (b) for a similar translation operator on
L
2pRnq, and show that if the shift x0 P Rn is nonzero, then the spectrum in this case

is always the entire unit circle in C but contains no eigenvalues.

2A Banach space isomorphism is never compact unless the space is finite dimensional. (Why not?)
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