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Problems marked with p˚q will be graded. Solutions may be written up in German or
English and should be submitted electronically via the moodle before the Übung on the
due date. For problems without p˚q, you do not need to write up your solutions, but it is
highly recommended that you think through them before the next Tuesday lecture. You
may also use the results of those problems in your written solutions to the graded problems.

Convention: H is a complex Hilbert space.

Problem 1
Prove:

(a) A self-adjoint operator A P L pHq is positive (A • 0) if and only if �pAq Ä r0,8q.

(b) If xx,Axy ° 0 for all x ‰ 0 P H, it does not follow that 0 R �pAq.

Problem 2
The spectral measure µx corresponding to a self-adjoint operator A P L pHq and x P H is
by definition the unique finite regular measure on the Borel sets in �pAq Ä R such that

xx, fpAqxy “

ª

�pAq
f dµx for all f P Cp�pAqq.

(a) Describe µx explicitly in the case where x P H is an eigenvector of A.

(b) Describe µx explicitly in the case where A is compact and x P H is arbitrary.

(c) Show that if A has any eigenvalues of multiplicity greater than 1, then H does not
contain any cyclic vector for A.

Answer:
We say v P H is cyclic forA if the subspace spanned by the set tv,Av,A2v,A3v, . . .u Ä

H is dense. If � P �pAq is an eigenvalue and E� Ä H denotes the corresponding ei-
genspace, then every v P H can be written uniquely as v “ v� ` vK for v� P E�

and vK P EK
� . Then E� and EK

� are each A-invariant, so Anv “ �nv� ` AnvK with
AnvK P EK for every integer n • 0. This set cannot be dense if dimE� ° 1 since the
orthogonal projection of Anv to E� always lies in the same 1-dimensional subspace.

(d) p˚q Show that in the case H “ Cn, the converse of part (c) also holds: if �pAq

contains n distinct eigenvalues, then a cyclic vector v P H for A exists. Give an
explicit example of v in the case where A : Cn

Ñ Cn is diagonal. [5pts]
Hint: The proof of the spectral theorem will tell you where to look for an example.

Answer:
Motivation: in the proof of the spectral theorem, one constructs a measure space
pX,µq and unitary isomorphism U : H Ñ L2

pX,µq as follows whenever H admits a
cyclic vector x for A. Define pX,µq :“ p�pAq, µxq, where µx is the spectral measure
for x, and define a linear map

T : Cp�pAqq Ñ H : f fiÑ fpAqx.
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Cyclicity implies that the image of this map is dense in H, and the properties of the
continuous functional calculus imply }Tf} “ }f}L2 for all f P Cp�pAqq, so T extends
to a unitary isomorphism L2

pX,µq Ñ H, whose inverse we define to be U . One can
now check (again using the properties of the continuous functional calculus) that
UAU´1 is the multiplication operator TF : u fiÑ Fu for F p�q :“ �. The main point
for our present purposes is that since fpAq “ 1 for the constant function fp�q “ 1,
that constant function is the element of L2

pX,µq that U identifies with our cyclic
vector x. One can see explicitly that f P L2

pX,µq is cyclic for the multiplication
operator TF , as the finite linear combinations of elements f, TF f, T 2

F f, . . . are pre-
cisely the polynomials on R, restricted to �pAq. These are dense in Cp�pAqq since
�pAq Ä R is compact, and they are also dense in L2

p�pAq, µxq since Cp�pAqq is dense
in L2

p�pAq, µxq.

If A : Cn
Ñ Cn is diagonal with n distinct eigenvalues, then the reasoning above

leads one to expect that v :“ p1, . . . , 1q is a cyclic vector for A. To prove it, label
the coordinates by the corresponding eigenvalues in order to identify Cn with the
space of all functions u : �pAq Ñ C, on which A acts as u fiÑ Fu for the function
F p�q “ �. That v is cyclic now follows from the fact that every function �pAq Ñ C
can be approximated arbitrarily well by the restriction of a polynomial function
P : R Ñ C to the finite set �pAq.

Problem 3
Assume pX, }¨}Xq and pY, }¨}Y q are Banach spaces, D Ä X is a subspace, and X Å D

T
Ñ Y

is a linear operator, possibly unbounded, and not necessarily closed. Prove:

(a) If T is closed, then so is the operator D Ñ Y : x fiÑ Tx ` Ax for every bounded
operator A P L pX,Y q.

(b) T is closed if and only if the so-called graph norm }x}T :“ }x}X ` }Tx}Y on D is
complete.

Now assume X “ Y is a complex Banach space.

(c) p˚q Show that for every � P C such that � ´ T : D Ñ X is bijective, T is closed if
and only if the resolvent operator R�pT q : X Ñ X : x fiÑ p� ´ T q

´1x is bounded.
[4pts]1

Answer:
By part (a), T is closed if and only if � ´ T is closed. As the inverse of � ´ T , the
graph of R�pT q is the set of all points px, yq P X ˆX such that py, xq is in the graph
of � ´ T , and either of these is a closed subspace of X ˆ X if and only if the other
one is. This proves that T is closed if and only if the graph of R�pT q is closed, so
the result now follows from the closed graph theorem.

Next, assume additionally that T is closed. We call � P C an approximate eigenvalue of T
if there exists a sequence xn P D such that }xn}X “ 1 and p� ´ T qxn Ñ 0, and � belongs
to the residual spectrum of T of the image of � ´ T : D Ñ X is not dense. Prove:

(d) If � P �pT q is not in the residual spectrum of T , then it is an approximate eigenvalue.

Answer:
Since � ´ T is a closed operator by part (a), we can use part (b) to regard � ´ T
as a bounded linear operator from the Banach space pD, } ¨ }�´T q to pX, } ¨ }Xq. If

1This result is the reason why one normally never considers the spectrum of a non-closed operator.
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� is an eigenvalue then it is also an approximate eigenvalue, so assume from now
on that � P �pT q is in neither the residual nor the point spectrum. Then � ´ T is
injective and not surjective but has dense image, so in particular, its image is not
closed. Problem 4(a) from the take-home midterm then implies that there cannot be
any estimate of the form }p� ´ T qx}X • c}x}�´T , in other words, there is no lower
bound on the ratio

}p� ´ T qx}X

}x}�´T
“

}p� ´ T qx}X

}x}X ` }p� ´ T qx}X
(1)

for x ‰ 0 P D. Choose any sequence xn P D for which this ratio tends to zero and
normalize it so that }xn}X “ 1.

(e) Every approximate eigenvalue of T is in �pT q.

Answer:
Eigenvalues are obviously in �pT q, so assume � P C is an approximate eigenvalue
but not an eigenvalue. The map � ´ T : D Ñ X is then injective, and the ratio in
(1) has no lower bound, thus the same application of Problem 4(a) from the take-
home midterm implies that � ´ T cannot have closed image; in particular it is not
surjective.

Problem 4
Let AC2

pr0, 1sq denote the space of absolutely continuous complex-valued functions fptq on
r0, 1s whose derivatives (defined almost everywhere) are in L2

pr0, 1sq.2 Given the domains

D0 :“ AC2
pr0, 1sq,

D1 :“
 
f P AC2

pr0, 1sq

ˇ̌
fp0q “ 0

(
,

D2 :“
 
f P AC2

pr0, 1sq

ˇ̌
fp0q “ fp1q “ 0

(
,

consider for j “ 0, 1, 2 the unbounded operators L2
pr0, 1sq Å Dj

Tj
Ñ L2

pr0, 1sq defined by
Tj :“ iBt “ i d

dt . Prove:

(a) p˚q All three domains are dense in L2
pr0, 1sq, and all three operators are closed. [6pts]

Answer: All three domains contain C8
0 pp0, 1qq, which is dense in L2

pr0, 1sq.

To see that T1 and T2 are closed, suppose fj P D1 is a sequence with fj
L2

Ñ f P

L2
pr0, 1sq and gj :“ if 1

j
L2

Ñ g P L2
pr0, 1sq. By the FTC and the assumption fjp0q “ 0,

fjptq “ ´i
≥t
0 gjpsq ds for each j and t P r0, 1s. Since r0, 1s has finite measure, the

L2-convergence of gj implies L1-convergence, thus these integrals converge as j Ñ 8

and we conclude that fj converges pointwise to the function t fiÑ ´i
≥t
0 gpsq ds. Since

the L2-convergence fj Ñ f implies that a subsequence converges to f pointwise
almost everywhere, it follows that f is almost everywhere equal to the function
fptq “ ´i

≥t
0 gpsq ds, which is manifestly in D1 and satisfies T1f “ g, proving that

2You may be interested to know that AC2pr0, 1sq is equivalent to the Sobolev space W
1,2pp0, 1qq. This

follows mostly from Problems 3–4 in Problem Set 9: Problem 3 implies that every function in AC2pr0, 1sq
represents an equivalence class in W

1,2pp0, 1qq, and that equivalence classes of functions in W
1,2pp0, 1qq have

unique representatives as continuous functions on p0, 1q that are absolutely continuous on compact subsets,
and whose derivatives almost everywhere match their weak derivatives. Problem 4 (the Sobolev embedding

theorem) implies in turn that these continuous functions are also in the Hölder space C
0, 12 pp0, 1qq, thus

they are uniformly continuous on p0, 1q, and therefore admit continuous extensions over r0, 1s. One can
deduce from the fundamental theorem of calculus that the extensions are also absolutely continuous.
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T1 is closed. If additionally fj P D2, then fjp1q “ ´i
≥1
0 gjpsq ds “ 0 for every j, thus

the L1-convergence implies fp1q “ ´i
≥1
0 gpsq ds “ 0 as well and thus f P D2, proving

that T2 is closed.

The argument for T0 seems slightly more complicated since the FTC now gives
fjptq “ fjp0q ´ i

≥t
0 gjpsq ds but there is no guarantee that fjp0q converges. One

possible remedy is to prove that a subsequence of fj converges uniformly. I can see
two ways to do this: the quickest is perhaps to invoke the observation in the footnote
that AC2

pr0, 1sq “ W 1,2
pp0, 1qq, so that the uniform bounds on }fj}L2 and }f 1

j}L2

amount to a uniform W 1,2-bound, and the Sobolev embedding theorem thus gives
a uniform C0, 12 -bound. This implies that the sequence fj is uniformly bounded and
equicontinuous, so Arzelà-Ascoli does the rest. Alternatively, one can directly prove
uniform boundedness and a Hölder bound by using the FTC and Hölder’s inequality
as in Problem Set 9 #4(c); either way, fj has a uniformly convergent subsequence,
whose limit is therefore f . From this subsequence and the L1-convergence of gj we

now obtain fptq “ fp0q ´ i
≥t
0 gpsq ds, thus f P D0 and T0f “ g.

(b) Every � P C is an eigenvalue of T0, thus �pT0q “ C.
(c) Every � P C is in the resolvent set of T1, and p� ´ T1q

´1 : L2
pr0, 1sq Ñ D1 sends

g P L2
pr0, 1sq to the function fptq :“ i

≥t
0 e

´i�pt´sqgpsq ds. In particular, �pT1q “ H.3

(d) T2 is symmetric, but not self-adjoint.

Answer:
In fact, xif 1, gyL2 “ xf, ig1

yL2 for all f P D2 and g P D0, thus T2 is symmetric, but
the domain of T ˚

2 contains D0.

(e) Every � P C is in the residual spectrum of T2, hence �pT2q “ C.
Answer:
For any � P C, pick a nontrivial eigenvector g� P D0 of T0. Then for all f P D2,
xp� ´ T2qf, g�yL2 “ xf, p� ´ T0qg�yL2 “ 0, implying that g� is orthogonal to the
image of � ´ T2.

Problem 5 p˚q

Fix an L2-function P : r0, 1s Ñ R and define D to be the vector space of C1-functions
x : r0, 1s Ñ C such that xp0q “ xp1q “ 0 and the derivative 9x belongs to the space
AC2

pr0, 1sq from Problem 4, so every x P D has an almost everywhere defined second

derivative :x P L2
pr0, 1sq.4 Setting Tx :“ :x ` Px, show that L2

pr0, 1sq Å D
T

›Ñ L2
pr0, 1sq

is an unbounded self-adjoint operator. [5pts]
Hint: Interpret the condition defining the domain of T ˚

in terms of weak derivatives.

Answer:
If x P L2

pr0, 1sq is in the domain of T ˚, it means there exists a y P L2
pr0, 1sq such that

3The invertibility of � ´ T1 can also be deduced from general principles without writing down an
explicit formula. The essential question is: given g P L

2pr0, 1sq and � P C, how many absolutely continuous
functions f : r0, 1s Ñ C satisfy the initial value problem f

1 “ ´ip�f ´ gq with fp0q “ 0? Intuitively,
the Picard-Lindelöf theorem suggests that the answer must be exactly one. Strictly speaking, the standard
form of that theorem does not apply here since g cannot be assumed continuous, but if we rewrite the ODE
as f

1ptq “ Hpt, fptqq for Hpt, xq :“ ´ip�x ´ gptqq, then the more important detail is that H is Lipschitz
continuous with respect to x; with a little care, the usual proof of Picard-Lindelöf can then be adapted to
prove the existence and uniqueness of a solution, which will be absolutely continuous because it arises as
the solution to an integral equation.

4Similarly to the situation in Problem 4, D in Problem 5 is equivalent to the Sobolev space W 2,2pp0, 1qq.
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xy, zyL2 “ xx, :z ` PzyL2 and thus

xx, :zyL2 “ xy, zyL2 ´ xx, PzyL2 “ xy ´ Px, zyL2 ,

for all z P D, where in the last expression we have used the fact that P is real-valued
in order to shift it to the other side of the inner product. Restricting to z P C8

0 pp0, 1qq,
this implies that x has a weak second derivative :x “ y ´ Px. Since y ´ Px P L2

pr0, 1sq Ä

L1
pr0, 1sq, there exists an absolutely continuous function fptq :“

≥t
0rypsq ´P psqypsqs ds on

r0, 1s with 9f “ y´Px almost everywhere, and by Problem Set 9 #3(a), y´Px is then also
a weak derivative of 9f , implying that 9x ´ f has vanishing weak derivative. By a theorem
proved in lecture, it follows that the first weak derivative 9x of x is equal to the absolutely
continuous function f almost everywhere, and after adjusting x on a set of measure zero,
we can then assume x is of class C1 with classical derivative 9x “ f . Since the latter has
9f “ y ´ Px P L2

pr0, 1sq, it follows that T ˚x :“ y “ :x ` Px, the same expression as T .
It remains only to establish x P D by proving xp0q “ xp1q “ 0. Using integration by parts
(via the FTC for the Lebesgue integral) and the fact that zp0q “ zp1q for all z P D, we
find

xT ˚x, zyL2 “ x:x, zyL2 ` xPx, zyL2 “ ´x 9x, 9zyL2 ` xPx, zyL2

“ xx, :zyL2 ´ x 9z
ˇ̌1
0

` xx, PzyL2 “ xx, TzyL2 ´ xp1q 9zp1q ` xp0q 9zp0q.

The relation xT ˚x, zyL2 “ xx, TzyL2 will thus hold for every z P D if and only if xp0q 9zp0q “

xp1q 9zp1q for every z P D. Since the values of 9zp0q and 9zp1q can be arbitrary for z P D, it
follows indeed that xp0q “ xp1q “ 0.

Problem 6 p˚q

A closed (but not necessarily bounded) self-adjoint operator H Å D
A
Ñ H is called positive

if xx,Axy • 0 for all x P D. Prove (without citing the spectral theorem) that under this
assumption, �pAq contains no negative real numbers. [4pts]

Answer:
We need to show that for every � ° 0, A ` � : D Ñ H is bijective. For every x P H, we
have

}pA ` �qx}
2

“ xAx ` �x,Ax ` �xy “ }Ax}
2

` �2
}x}

2
` 2�xx,Axy

• mint1,�2
u ¨

`
}Ax}

2
` }x}

2
˘

“ mint1,�2
u ¨ }x}

2
A,

where } ¨ }A denotes the graph norm on D. This shows that A ` � is injective. Moreover,
since A is closed, Problem 3(b) allows us to view A`� as a bounded linear operator from
the Banach space pD, }¨}Aq toH, and Problem 4(a) on the take-home midterm then implies
that it has closed image. To show that the image is also dense, suppose v P pimpA`�qq

K, so
xAx ` �x, vy “ 0 for all x P D, meaning xAx, vy “ x´�x, vy “ xx,´�vy. This implies that
v is in the domain of A˚ and A˚v “ ´�v. Since A “ A˚, this means v is an eigenvector of
A with negative eigenvalue, which was already shown to be impossible.

5
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Supplement

The following (unstarred) problem servies two purposes: (1) it fills in some gaps in the
lectures’ coverage of the spectral theorem for bounded normal operators, and (2) it pro-
vides a structured review (with mild generalizations) of the proof of the spectral theorem
for bounded self-adjoint operators. From that perspective, working through it informally
should serve as valuable preparation for the final exam.

Problem 7
The spectral theorem for bounded normal operators (proved in lecture) provides for any
normal operator A P L pHq a �-finite measure space pX,µq, unitary isomorphism U :
H Ñ L2

pX,µq and bounded measurable function F : X Ñ C such that UAU´1
“ TF :

L2
pX,µq Ñ L2

pX,µq : u fiÑ Fu. One easy corollary is that the Borel functional calculus
extends to normal operators, i.e. there is a natural linear map

Bp�pAqq Ñ L pHq : f fiÑ fpAq :“ U´1Tf˝FU,

where Bp�pAqq denotes the algebra of bounded Borel-measurable functions f : �pAq Ñ C.
Show that this map has the following properties:

(a) pfgqpAq “ fpAqgpBq, f̄pAq “ A˚, fpAq “ �1 for each constant function fpzq “ �,
and fpAq “ A for the identity function fpzq “ z.

Answer:
Follows directly from the definition of fpAq via the spectral representation

(b) For any pointwise convergent sequence fn Ñ f P Bp�pAqq satisfying a uniform
bound supzP�pAq |fnpzq| § C for all n, fnpAqx Ñ fpAqx for every x P H.

Answer:
Dominated convergence theorem

(c) f fiÑ fpAq is the only linear map Bp�pAqq Ñ L pHq satisfying both of the properties
in parts (a) and (b).
Hint: Since �pAq Ä C is compact, Weierstrass implies that the polynomial functions

in z and z̄ are dense in the space of continuous functions Cp�pAqq Ä Bp�pAqq with

the sup-norm. Similarly, Bp�pAqq is the smallest class of functions that contains

Cp�pAqq and is closed under the notion of convergence in part (b).

Answer:
For any polynomial P : C Ñ C : z fiÑ

∞
k,` ak,`z

kz̄`, part (a) implies P pAq “∞
k,` ak,`A

k
pA˚

q
`, a result that is clearly independent of the choice of spectral repre-

sentation. Since any continuous function on �pAq is a pointwise limit of polynomial
functions that are uniformly bounded on the compact set �pAq, it follows via part (b)
that fpAq for f P Cp�pAqq is independent of the choice of spectral representation.
One can now repeat this type of approximation argument to show that �⌦pAq is
independent of choices whenever ⌦ Ä C is open or closed, as �⌦ is then a pointwise
limit of uniformly bounded continuous functions. By a further repetition, one ob-
tains �⌦ whenever ⌦ is an F� or G�, as �⌦ is then a pointwise limit of characteristic
functions of open or closed sets. Continuing in this way, one eventually obtains �⌦

for every Borel set ⌦ Ä C, and linear combinations of these give uniformly bounded
sequences converging pointwise to any f P Bp�pAqq.

6
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(d) fpAq is normal for every f P Bp�pAqq, and it is self-adjoint whenever fp�pAqq Ä

R, positive whenever fp�pAqq Ä r0,8q, and unitary whenever fp�pAqq Ä S1 :“ 
z P C

ˇ̌
|z| “ 1

(
.

(e) �pfpAqq is contained in the closure of fp�pAqq Ä C for all f P Bp�pAqq.
Hint: If µ R fp�pAqq, then gpzq :“ 1

fpzq´µ belongs to Bp�pAqq. What is gpAq?

(f) �pfpAqq “ fp�pAqq for all f P Cp�pAqq.
Hint: By part (e), you only need to show fp�q P �pfpAqq for every � P �pAq. Compare

the essential ranges of F and f ˝ F (cf. Problem Set 11 #2(a)).

Answer:
If su�ces to show that given any bounded measurable function F : X Ñ C and a
continuous function f : �pAq Ñ C, if � P C is in the essential range of F , then fp�q

is in the essential range of f ˝F . Note that after adjusting F on a set of measure zero
we can assume F pXq Ä �pAq, so that f ˝ F is defined everywhere. Suppose � P C
and ✏ ° 0: then pf ˝ F q

´1
pB✏pfp�qqq “

 
x P X

ˇ̌
|fpF pxqq ´ fp�q| † ✏

(
contains

F´1
pB�p�qq for some � ° 0 since f is continuous. If � is in the essential range of F ,

then F´1
pB�p�qq has positive measure, implying that pf ˝ F q

´1
pB✏pfp�qqq also has

positive measure, thus fp�q is in the essential range of f ˝ F .

(g) }fpAq} “ }f}C0 for every f P Cp�pAqq.

Answer:
Since fpAq is normal, Problem Set 11 #1(b) implies that }fpAq} is the spectral
radius of fpAq, so by part (f), this is

}fpAq} “ sup
�P�pfpAqq

|�| “ sup
�P�pAq

|fp�q| “ }f}C0 .

Here are some applications. Prove:

(h) For A P L pHq normal and � P Cz�pAq, the resolvent R�pAq :“ p� ´ Aq
´1 satisfies

1
}R�pAq} “ distp�,�pAqq.

Answer:
Use the continuous function fpzq “

1
�´z on �pAq Ä C and apply part (g) to compute

}fpAq}.

(i) If A P L pHq is normal and f : D Ñ C is holomorphic on some disk D “ t|z ´

z0| † ru Ä C containing �pAq, with Taylor series fpzq “
∞8

n“0 anpz ´ z0q
n, then∞8

n“0 anpA ´ z01q
n converges absolutely to fpAq in L pHq.

Answer:
The sequence of polynomials Pkpzq :“

∞k
n“0 anpz ´ z0q

n converges absolutely and
uniformly to f on compact subsets of D, one of which contains �pAq, thus by part (g),
}fpAq ´ PkpAq} Ñ 0 as k Ñ 8, where the operators PkpAq are the partial sums of
the series

∞8
n“0 anpA´ z01q

n. To see that the convergence in L pHq is also absolute,
we can use part (g) with the continuous function z fiÑ z ´ z0 to estimate }A ´ z0} “

supzP�pAq |z ´ z0| † r, so the result follows from the fact that
∞8

n“0 anpz ´ z0q
n

converges absolutely on D.

(j) An operator U P L pHq is unitary if and only if U “ eiA for some bounded self-
adjoint operator A P L pHq.

Applying part (d) with the function fpxq “ eix proves that eiA “ fpAq is unitary
whenever A is self-adjoint. Conversely, if U is unitary, then its spectrum is in S1

Ä C

7
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by Problem Set 11 #1(c), and we can define a self-adjoint operator A :“ gpUq by
choosing g : S1

Ñ r0, 2⇡q as the inverse of f |r0,2⇡q; note that g is not continuous,
but it is in BpS1

q and thus restricts to a function in Bp�pUqq. Choose a spectral
representation in order to identify U with a multiplication operator TF : L2

pX,µq Ñ

L2
pX,µq : u fiÑ Fu. This also defines a spectral representation for A, identifying it

with the multiplication operator Tg˝F , and it follows that eiA “ fpAq is identified
with Tf˝g˝F “ TF , hence eiA “ U .

(k) If T,A P L pHq commute and A is normal, then T also commutes with A˚.
Hint: Deduce from AT “ TA that e�̄ATe´�̄A

“ T for all � P C. Then show that

e´�A˚
e�̄A is unitary and use this to compute a bound on the norm of gp�q :“

e´�A˚
Te�A

˚
for all � P C, concluding that g : C Ñ L pHq is a globally bounded

holomorphic function, and thus constant. Finally, compute
d
dte

´tA˚
TetA

˚
ˇ̌
ˇ
t“0

.

Answer:
By part (i), e�̄A and e´�̄A are limits in L pHq of sequences of polynomial functions
of A; the latter manifestly all commute with T , thus so do e�̄A and e´�̄A. Since
e�̄ze´�̄z

“ 1 for all z P C, it follows via part (a) that

e�̄ATe´�̄A
“ e�̄Ae´�̄AT “ 1T “ T. (2)

(Note: One could probably also have proved this by writing down the exponentials
as power series, but it would have been more painful.) Next observation: e´�z̄e�̄z “

e�̄z´�̄z
“ e2i=p�̄zq

P S1 for all z P C, thus by part (d),

U :“ e´�A˚
e�̄A

is unitary, and its inverse is

U´1
“ U˚

“ e´�̄Ae�A
˚
.

Unitarity implies }UTU´1
} “ }T }, so it follows in light of (2) that

}T } “ }UTU´1
} “ }e´�A˚

e�̄ATe´�̄Ae�A
˚

} “ }e´�A˚
Te�A

˚
}

for all � P C. Since e´�A˚
and e�A

˚
are both globally convergent operator-valued

power series in �, this proves that fp�q :“ e´�A˚
Te�A

˚
is a globally bounded holo-

morphic function C Ñ L pHq, so by a standard application of the Cauchy integral
formula (in the generalized context of L pHq-valued holomorphic functions), fp�q

is constant, meaning e´�A˚
Te�A

˚
“ T for all � P C. Finally, we can specialize to

� “ t P R and di↵erentiate the convergent power series with respect to t, obtaining

0 “
d

dt
e´tA˚

TetA
˚

ˇ̌
ˇ̌
t“0

“ ´A˚T ` TA˚.

(l) In the setting of part (k), T also commutes with fpAq for every f P Bp�pAqq.

Answer:
Since T commutes with both A and (by part (k)) A˚, it commutes with fpAq whe-
never f : C Ñ C is a polynomial function of z and z̄. One then extends this to all
f P Bp�pAqq using approximation arguments as in part (c).

Finally, we can now establish some improvements to the spectral theorem:

8



Problem Set 12

(m) Under what conditions does a normal operator A P L pHq admit a spectral repre-
sentation of the form U : H Ñ L2

p�pAq, µq with UAU´1
“ TF for F p�q “ �, where

µ is a finite measure on �pAq Ä C such that Cp�pAqq is dense in L2
p�pAq, µq?

Answer:
One needs the existence of an element x P H that is cyclic for A and A˚, meaning
that the set tAk

pA˚
q
`x | k.` • 0 integersu spans a dense subspace of H. Indeed, this

holds if and only if the image of the map

T : Cp�pAqq Ñ H : f fiÑ fpAqx

is dense. Let µx denote the unique regular Borel measure on �pAq Ä C such that

xx, fpAqxy “

ª

�pAq
f dµx,

as provided by the Riesz-Markov theorem since f fiÑ xx, fpAqxy is a positive linear
functional Cp�pAqq Ñ C. Note that µxp�pAqq “

≥
�pAq 1 dµx “ xx, xy † 8, and

Cp�pAqq is dense in L2
p�pAq, µxq. The properties of the functional calculus then

imply that T is an isometry with respect to the L2-norm on Cp�pAqq:

}Tf}
2

“ xfpAqx, fpAq, xy “ xx, fpAq
˚fpAq, xy “ xx, |f |

2
pAqxy “

ª

�pAq
|f |

2 dµx “ }f}
2
L2 .

It follows via density that T extends uniquely to a unitary isomorphism L2
p�pAq, µxq Ñ

H, and we define U :“ T´1. It is now easy to verify via the properties of the func-
tional calculus that UAU´1

“ TF for F p�q “ �.

Conversely, if a spectral representation U : H Ñ L2
p�pAq, µq with UAU´1

“ TF

for F p�q “ � is given and we assume µ to be any finite measure on �pAq for which
Cp�pAqq is dense in L2

p�pAq, µq, then we claim that the vector x :“ U´1f P H

given by the constant function fp�q :“ 1 is cyclic for A and A˚. Indeed, the finite
linear combinations of all elements of the form Ak

pA˚
q
`x P H correspond under the

isomorphism U : H Ñ L2
p�pAq, µq to the complex-valued functions on �pAq Ä C

that are restrictions of polynomials in z and z̄. These are dense in Cp�pAqq with
respect to the sup-norm, and since the latter is dense in L2

p�pAq, µq, they are also
dense in L2

p�pAq, µq, implying that the space spanned by all Ak
pA˚

q
`x is dense in H.

(n) Show that for every normal operator A P L pHq, H splits into a direct sum of
(perhaps infinitely many) mutually orthogonal A-invariant subspaces Hn Ä H on
which A|Hn admits a spectral representation as described in part (m).

Answer:
Let’s just consider the case where H is separable, so that Zorn’s lemma is not re-
quired. Choose a dense sequence y1, y2, y3, . . . P H, set x1 :“ y1, and define H1 Ä H

to be the closure of the set of all finite linear combinations of vectors of the form
Ak

pA˚
q
`x1 for integers k, ` • 0. This subspace is invariant under both A and A˚,

thus so is its orthogonal complement, as v P H
K
1 implies

xx,Avy “ xA˚x, vy “ 0 and xx,A˚vy “ xAx, vy “ 0

for all x P H1. Define x1
2 to be the first element in the sequence yj such that x1

2 R H1,
and define x2 P H

K
1 such that x1

2 “ x2 ` z for some z P H1 (this determines x2
uniquely). Now define H2 to be the closure of the set of all finite linear combinations

9
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of vectors of the form Ak
pA˚

q
`x2, and observe that since H

K
1 is preserved by A

and A˚, H2 is orthogonal to H1. To continue, set x1
3 to be the first element in the

sequence yj such that x1
3 R H1 ‘ H2, and project it orthogonally to pH1 ‘ H2q

K to
define x3, then defineH3 out of Ak

pA˚
q
`x3 as above. Continuing in this way, it may at

some point happen that the entire sequence yj is contained in H1 ‘ . . .‘Hk for some
finite k P N, in which case the process terminates. If not, then we obtain a countable
sequence of mutually orthogonal closed subspaces Hn Ä H that each admit a cyclic
vector xn for A and A˚, and since the span of ty1, y2, y3, . . .u is dense, H “

À
nPNHn.

On each subspace Hn individually, A|Hn is a bounded normal operator admitting a
cyclic vector for A|Hn and pA|Hnq

˚
“ A˚

|Hn , thus it admits a spectral representation
as in part (m).

(o) When does a finite collection of normal operators A1, . . . , AN P L pHq admit a
simultaneous spectral representation?

Answer:
This is true if and only if the A1, . . . , AN all commute with each other. In one
direction this is obvious since di↵erent multiplication operators in the same spectral
representation always commute. Conversely, if AjAk “ AkAj for all j, k, then part (l)
implies fpAjqgpAkq “ gpAkqfpAjq for all f P Bp�pAjqq and g P Bp�pAkq. This is
true in particular for all characteristic functions. Let R Ä Bp�pA1q ˆ . . . ˆ �pAN qq

denote the subspace consisting of restrictions to �pA1q ˆ . . . ˆ �pAN q of all finite
linear combinations of characteristic functions of “rectangles” ⌦1 ˆ . . . ˆ ⌦N Ä CN ,
where each ⌦j Ä C is a set of the form

⌦j :“
 
z P C

ˇ̌
a § <z † b, c § =z † d

(

for some a, b, c, d P R. Note that the closure of R in the sup-norm over �pA1q ˆ

. . .�pAN q contains the space of continuous functions Cp�pA1qˆ. . .ˆ�pAN qq. We can
then define fpA1, . . . , AN q P L pHq for every fpz1, . . . , zN q “

∞
j cj�⌦1

j
pz1q . . .�⌦N

j
pzN q

by
fpA1, . . . , AN q :“

ÿ

j

cj�⌦1
j
pA1q . . .�⌦N

j
pAN q,

and verify that this definition satisfies the usual ˚-algebra homomorphism properties.
Using the observation that every f P R can be written as a sum of terms correspon-
ding to disjoint rectangles, one can then show }fpA1, . . . , AN q} “ }f}L8p�pA1qˆ...ˆ�pAN q.
Thus the map f fiÑ fpAq extends uniquely to an isometry defined on the L8-closure
of R, which includes Cp�pA1q ˆ . . . ˆ �pAN qq.

With a functional calculus for continuous functions on �pA1q ˆ . . .ˆ�pAN q in place,
one can now use the Riesz-Markov theorem to associate to each x P H a spectral
measure µx on �pA1q ˆ . . . ˆ �pAN q such that

xx, fpA1, . . . , AN qxy “

ª

�pA1qˆ...ˆ�pAN q
f dµx

for every f P Cp�pA1q ˆ . . . ˆ �pAN qq. Call x cyclic for A1, A˚
1 , . . . , AN , A˚

N if the

linear combinations of all elements of the form Ak1
1 pA˚

1q
`1 . . . Akn

N pA˚
N q

`Nx for all
integers k1, `1, . . . , kN , `N • 0 span a dense subspace of H. If x is cyclic in this sense,
then the map

T : Cp�pA1q ˆ . . . ˆ �pAN qq Ñ H : f fiÑ fpA1, . . . , AN qx

10
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can now be shown to extend to a unitary isomorphism from L2
p�pA1q ˆ . . . ˆ

�pAN q, µxq to H, and it identifies each of the operators Aj with the operation of
multiplication of L2-functions by the bounded functions fjp�1, . . . ,�N q :“ �j . If
there is no cyclic vector, then one can argue as in part (n) if H is separable (or
using Zorn’s lemma if H is not separable) that H splits into a direct sum of mu-
tually orthogonal closed subspaces Hn Ä H that are invariant under all the ope-
rators A1, . . . , AN and their adjoints, and on which they admit a common spectral
representation as described above. This therefore identifies H with a direct sum of
spaces L2

p�pA1qˆ . . .ˆ�pAN q, µxnq with various spectral measures for cyclic vectors
xn P Hn Ä H. This direct sum of L2-spaces is naturally isomorphic to the space of L2-
functions on the disjoint union of all the measure spaces p�pA1q ˆ . . .ˆ�pAN q, µxnq,
and if H is separable so that there are at most countably many of these, we can
rescale the vectors xn in order to ensure without loss of generality that the total
measure of this disjoint union is finite.
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