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Problem Set 12
Due: Thursday, 25.02.2021 (24pts total)

Problems marked with (x) will be graded. Solutions may be written up in German or
English and should be submitted electronically via the moodle before the Ubung on the
due date. For problems without (*), you do not need to write up your solutions, but it is
highly recommended that you think through them before the next Tuesday lecture. You
may also use the results of those problems in your written solutions to the graded problems.

Convention: H is a complex Hilbert space.

Problem 1
Prove:

(a) A self-adjoint operator A € £ (H) is positive (A = 0) if and only if o(A) < [0, ).
(b) If (x, Az) > 0 for all x # 0 € H, it does not follow that 0 ¢ o(A).

Problem 2
The spectral measure p, corresponding to a self-adjoint operator A € Z(H) and x € H is
by definition the unique finite regular measure on the Borel sets in 0(A) < R such that

{x, f(A)x) = J " fdu, for all feC(a(A)).

(a) Describe pu, explicitly in the case where x € H is an eigenvector of A.
(b) Describe p, explicitly in the case where A is compact and = € H is arbitrary.

(c) Show that if A has any eigenvalues of multiplicity greater than 1, then H does not
contain any cyclic vector for A.

Answer:

We say v € H is cyclic for A if the subspace spanned by the set {v, Av, A%v, A3v,...}
H is dense. If A € 0(A) is an eigenvalue and E) < H denotes the corresponding ei-
genspace, then every v € H can be written uniquely as v = vy + vy for vy € E)
and v, € E)% Then E) and Ei are each A-invariant, so A™v = \"vy + A™v,| with
A™y| € Et for every integer n > 0. This set cannot be dense if dim E) > 1 since the
orthogonal projection of A™v to F) always lies in the same 1-dimensional subspace.

(d) (*) Show that in the case H = C", the converse of part (c) also holds: if o(A)
contains n distinct eigenvalues, then a cyclic vector v € H for A exists. Give an
explicit example of v in the case where A : C" — C" is diagonal. [5pts]

Hint: The proof of the spectral theorem will tell you where to look for an example.

Answer:

Motivation: in the proof of the spectral theorem, one constructs a measure space
(X, i) and unitary isomorphism U : H — L?(X, ) as follows whenever H admits a
cyclic vector x for A. Define (X, u) := (0(A), pz), where p, is the spectral measure
for x, and define a linear map

T:C(o(A) >H:f— f(Azx.
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Cyeclicity implies that the image of this map is dense in H, and the properties of the
continuous functional calculus imply |T'f| = | fl|z2 for all f € C(o(A)), so T extends
to a unitary isomorphism L?(X, ;1) — H, whose inverse we define to be U. One can
now check (again using the properties of the continuous functional calculus) that
UAU™! is the multiplication operator Tp : u + Fu for F()\) := A. The main point
for our present purposes is that since f(A) = 1 for the constant function f(\) = 1,
that constant function is the element of L?(X,u) that U identifies with our cyclic
vector z. One can see explicitly that f € L?(X,u) is cyclic for the multiplication
operator T, as the finite linear combinations of elements f,Trf, T% f,... are pre-
cisely the polynomials on R, restricted to o(A). These are dense in C(c(A)) since
o(A) < R is compact, and they are also dense in L?(c(A), ) since C(o(A)) is dense
in L2(o(A), pz)-

If A:C" — C" is diagonal with n distinct eigenvalues, then the reasoning above
leads one to expect that v := (1,...,1) is a cyclic vector for A. To prove it, label
the coordinates by the corresponding eigenvalues in order to identify C™ with the
space of all functions u : 0(A) — C, on which A acts as u — Fu for the function
F(X) = A. That v is cyclic now follows from the fact that every function o(A) — C
can be approximated arbitrarily well by the restriction of a polynomial function
P : R — C to the finite set o(A).

Problem 3
Assume (X, |-|x) and (Y, |- |y) are Banach spaces, D — X is a subspace, and X > D Ly
is a linear operator, possibly unbounded, and not necessarily closed. Prove:

(a) If T is closed, then so is the operator D — Y : z — Tx + Ax for every bounded
operator Ae Z(X,Y).

(b) T is closed if and only if the so-called graph norm |z|r := ||z|x + [|[Tz|y on D is
complete.

Now assume X =Y is a complex Banach space.

(¢) (*) Show that for every A € C such that A — T : D — X is bijective, T is closed if
and only if the resolvent operator Ry(T) : X — X : 2 — (A — T) "2 is bounded.
[4pts]*

Answer:

By part (a), T is closed if and only if A — T is closed. As the inverse of A — 7', the
graph of Ry (T) is the set of all points (x,y) € X x X such that (y, ) is in the graph
of A =T, and either of these is a closed subspace of X x X if and only if the other
one is. This proves that T is closed if and only if the graph of R)(T") is closed, so
the result now follows from the closed graph theorem.

Next, assume additionally that 7" is closed. We call A € C an approximate eigenvalue of T'
if there exists a sequence z,, € D such that |z,|x =1 and (A — Tz, — 0, and X belongs
to the residual spectrum of T' of the image of A — T : D — X is not dense. Prove:

(d) If XA € o(T) is not in the residual spectrum of 7', then it is an approximate eigenvalue.

Answer:
Since A — T is a closed operator by part (a), we can use part (b) to regard A\ — T
as a bounded linear operator from the Banach space (D, | - [[x—7) to (X,]| - |x). If

!This result is the reason why one normally never considers the spectrum of a non-closed operator.
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A is an eigenvalue then it is also an approximate eigenvalue, so assume from now
on that A € o(T) is in neither the residual nor the point spectrum. Then A — T is
injective and not surjective but has dense image, so in particular, its image is not
closed. Problem 4(a) from the take-home midterm then implies that there cannot be
any estimate of the form [(A — T)x|x = ¢|z|x_7, in other words, there is no lower
bound on the ratio

[0 =Tyl _ [~ Tyl "

|z x—r lzx + (A =T)z|x

for z # 0 € D. Choose any sequence z,, € D for which this ratio tends to zero and
normalize it so that |z,[x = 1.

(e) Every approximate eigenvalue of 7' is in o (7).

Answer:
Eigenvalues are obviously in o(7"), so assume A € C is an approximate eigenvalue
but not an eigenvalue. The map A — T : D — X is then injective, and the ratio in
(1) has no lower bound, thus the same application of Problem 4(a) from the take-
home midterm implies that A\ — 71" cannot have closed image; in particular it is not
surjective.

Problem 4
Let AC2%([0,1]) denote the space of absolutely continuous complex-valued functions f(¢) on
[0, 1] whose derivatives (defined almost everywhere) are in L%([0,1]).2 Given the domains

Dy := Acg([ov 1])7
Dy = {f e AC*([0,1])
D, := {f € AC*([0,1])

consider for j = 0,1,2 the unbounded operators L?([0,1]) > D; ikt L?([0,1]) defined by
T; :=i0; = i%. Prove:

(a) (*) All three domains are dense in L?([0, 1]), and all three operators are closed. [6pts]
Answer: All three domains contain CP((0,1)), which is dense in L%([0, 1]).

To see that 77 and T, are closed, suppose f; € D is a sequence with f; R fe
L%([0,1]) and g; := if; N g € L?([0,1]). By the FTC and the assumption f;(0) = 0,
fi(t) = —i Sé gj(s)ds for each j and t € [0,1]. Since [0, 1] has finite measure, the
L?-convergence of g; implies L'-convergence, thus these integrals converge as j — o0
and we conclude that f; converges pointwise to the function ¢ +— —i Sé g(s)ds. Since
the L2-convergence fj — f implies that a subsequence converges to f pointwise
almost everywhere, it follows that f is almost everywhere equal to the function
flt) = —1 Sé g(s) ds, which is manifestly in D; and satisfies 17 f = g, proving that

*You may be interested to know that AC?([0,1]) is equivalent to the Sobolev space W*2((0,1)). This
follows mostly from Problems 3-4 in Problem Set 9: Problem 3 implies that every function in AC?([0,1])
represents an equivalence class in W'?((0, 1)), and that equivalence classes of functions in W*2((0, 1)) have
unique representatives as continuous functions on (0, 1) that are absolutely continuous on compact subsets,
and whose derivatives almost everywhere match their weak derivatives. Problem 4 (the Sobolev embedding
theorem) implies in turn that these continuous functions are also in the Holder space CO’%((O7 1)), thus
they are uniformly continuous on (0,1), and therefore admit continuous extensions over [0, 1]. One can
deduce from the fundamental theorem of calculus that the extensions are also absolutely continuous.
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T is closed. If additionally f; € Do, then f;(1) = —i Sé gj(s)ds = 0 for every j, thus
the L!-convergence implies f(1) = —i S(l) g(s)ds = 0 as well and thus f € Dy, proving
that 15 is closed.

The argument for Ty seems slightly more complicated since the FTC now gives
fit) = f;(0) — zgé gj(s)ds but there is no guarantee that f;(0) converges. One
possible remedy is to prove that a subsequence of f; converges uniformly. I can see
two ways to do this: the quickest is perhaps to invoke the observation in the footnote
that AC?([0,1]) = W'2((0,1)), so that the uniform bounds on ||f;];2 and 1£7] 22
amount to a uniform W12-bound, and the Sobolev embedding theorem thus gives
a uniform C%32-bound. This implies that the sequence f; is uniformly bounded and
equicontinuous, so Arzela-Ascoli does the rest. Alternatively, one can directly prove
uniform boundedness and a Holder bound by using the FTC and Holder’s inequality
as in Problem Set 9 #4(c); either way, f; has a uniformly convergent subsequence,
whose limit is therefore f. From this subsequence and the L'-convergence of g;j we
now obtain f(t) = f(0) — ZSé g(s)ds, thus f € Dy and Tof = g.
(b) Every A € C is an eigenvalue of Ty, thus o(Tp) = C.

(c) Every A € C is in the resolvent set of 71, and (A — T1)~! : L?([0,1]) — D; sends
g € L?([0,1]) to the function f(t) := 1% e~ =) g(s) ds. In particular, o(T}y) = &.3

(d) T is symmetric, but not self-adjoint.

Answer:
In fact, (if,g)r2 = {f,ig')r2 for all f € Dy and g € Dy, thus Ty is symmetric, but
the domain of 75 contains Dy.

(e) Every A € C is in the residual spectrum of 7%, hence o(T3) = C.

Answer:

For any A € C, pick a nontrivial eigenvector gy € Do of Ty. Then for all f € Do,
N=T2)f, 9012 = {fy (A = Tp)gr>rz = 0, implying that g, is orthogonal to the
image of A — T5.

Problem 5 (x)

Fix an L2-function P : [0,1] — R and define D to be the vector space of C'-functions
x : [0,1] — C such that z(0) = z(1) = 0 and the derivative & belongs to the space
AC?([0,1]) from Problem 4, so every x € D has an almost everywhere defined second
derivative # € L2([0,1]).* Setting Tx := & + Px, show that L?([0,1]) o D N L3([0,1])
is an unbounded self-adjoint operator. [5pts]

Hint: Interpret the condition defining the domain of T* in terms of weak derivatives.

Answer:
If z € L%([0,1]) is in the domain of T*, it means there exists a y € L2([0,1]) such that

3The invertibility of A — T} can also be deduced from general principles without writing down an
explicit formula. The essential question is: given g € L?([0,1]) and X € C, how many absolutely continuous
functions f : [0,1] — C satisfy the initial value problem f' = —i(Af — g) with f(0) = 0? Intuitively,
the Picard-Lindel6f theorem suggests that the answer must be exactly one. Strictly speaking, the standard
form of that theorem does not apply here since g cannot be assumed continuous, but if we rewrite the ODE
as f'(t) = H(t, f(t)) for H(t,z) := —i(Ax — g(t)), then the more important detail is that H is Lipschitz
continuous with respect to x; with a little care, the usual proof of Picard-Lindeltf can then be adapted to
prove the existence and uniqueness of a solution, which will be absolutely continuous because it arises as
the solution to an integral equation.

4Similarly to the situation in Problem 4, D in Problem 5 is equivalent to the Sobolev space W?22((0,1)).
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{y,z)r2 = {x,2 + Pz)r2 and thus

<$,2>L2 = <y72>L2 - <w7PZ>L2 = <y - PI,Z>L2,

for all z € D, where in the last expression we have used the fact that P is real-valued
in order to shift it to the other side of the inner product. Restricting to z € C§°((0, 1)),
this implies that  has a weak second derivative & = y — Pz. Since y — Pz € L%([0,1])
L([0,1]), there exists an absolutely continuous function f(t) := Sf) [y(s) — P(s)y(s)]ds on
[0,1] with f = y— P almost everywhere, and by Problem Set 9 #3(a), y — P is then also
a weak derivative of f, implying that £ — f has vanishing weak derivative. By a theorem
proved in lecture, it follows that the first weak derivative = of x is equal to the absolutely
continuous function f almost everywhere, and after adjusting z on a set of measure zero,
we can then assume x is of class C! with classical derivative & = f. Since the latter has
f =1y — Pz e L*(]0,1]), it follows that T*z := y = & + Pz, the same expression as 7.

It remains only to establish x € D by proving z(0) = z(1) = 0. Using integration by parts
(via the FTC for the Lebesgue integral) and the fact that z(0) = z(1) for all z € D, we
find

(T*x,2yp2 = (&, 2)p2 + (Px,z)r2 = —(&, 2yr2 + (Px,2)12
=z, Z)2 — a:z‘(l) +{x,Pz)r2 ={x,Tzyr> — x(1)2(1) + 2(0)£(0).

The relation (T*z, z)r2 = {x,Tz)r2 will thus hold for every z € D if and only if 2(0)Z(0) =
x(1)2(1) for every z € D. Since the values of 2(0) and 2(1) can be arbitrary for z € D, it
follows indeed that x(0) = z(1) = 0.

Problem 6 (x)

A closed (but not necessarily bounded) self-adjoint operator H > D A H s called positive
if (x, Ax) = 0 for all x € D. Prove (without citing the spectral theorem) that under this
assumption, o(A) contains no negative real numbers. [4pts]

Answer:
We need to show that for every A > 0, A+ A : D — H is bijective. For every x € H, we
have

I(A + Nz|? = (Az + Az, Az + \z) = |Az|> + N2||z|* + 2\(z, Az)
> min{1, A} - (JAz|? + [2]?) = min{1, %} - [,

where | - |4 denotes the graph norm on D. This shows that A + A is injective. Moreover,
since A is closed, Problem 3(b) allows us to view A + A as a bounded linear operator from
the Banach space (D, || 4) to H, and Problem 4(a) on the take-home midterm then implies
that it has closed image. To show that the image is also dense, suppose v € (im(A+\))*, so
(Ax + Az,v) = 0 for all z € D, meaning (Az,v) = (—A\z,v) = {x,—Av). This implies that
v is in the domain of A* and A*v = —Av. Since A = A*, this means v is an eigenvector of
A with negative eigenvalue, which was already shown to be impossible.
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Supplement

The following (unstarred) problem servies two purposes: (1) it fills in some gaps in the
lectures’ coverage of the spectral theorem for bounded normal operators, and (2) it pro-
vides a structured review (with mild generalizations) of the proof of the spectral theorem
for bounded self-adjoint operators. From that perspective, working through it informally
should serve as valuable preparation for the final exam.

Problem 7

The spectral theorem for bounded normal operators (proved in lecture) provides for any
normal operator A € Z(H) a o-finite measure space (X, i), unitary isomorphism U :
H — L?*(X, 1) and bounded measurable function F : X — C such that UAU ' = TF :
L*(X,p) — L?(X,u) : u — Fu. One easy corollary is that the Borel functional calculus
extends to normal operators, i.e. there is a natural linear map

B(o(A)) — L(H): f— f(A) = U TyopU,

where % (0 (A)) denotes the algebra of bounded Borel-measurable functions f : 0(A) — C.
Show that this map has the following properties:

(a) (fg)(A) = f(A)g(B), f(A) = A*, f(A) = M for each constant function f(z) = A,
and f(A) = A for the identity function f(z) = z.

Answer:
Follows directly from the definition of f(A) via the spectral representation

(b) For any pointwise convergent sequence f, — f € Z(c(A)) satisfying a uniform
bound sup,c,(4) [fn(2)] < C for all n, f,(A)x — f(A)z for every z € H.

Answer:
Dominated convergence theorem

(c¢) f+— f(A) is the only linear map #(c(A)) — Z(H) satisfying both of the properties
in parts (a) and (b).
Hint: Since 0(A) < C is compact, Weierstrass implies that the polynomial functions
in z and Z are dense in the space of continuous functions C(c(A)) < #(c(A)) with
the sup-norm. Similarly, #(c(A)) is the smallest class of functions that contains
C(0(A)) and is closed under the notion of convergence in part (b).

Answer:

For any polynomial P : C — C : z — 3, a2*z¢, part (a) implies P(A) =
Dkp a;@gAk (A*)¢, a result that is clearly independent of the choice of spectral repre-
sentation. Since any continuous function on o(A) is a pointwise limit of polynomial
functions that are uniformly bounded on the compact set o(A), it follows via part (b)
that f(A) for f € C(0(A)) is independent of the choice of spectral representation.
One can now repeat this type of approximation argument to show that yq(A) is
independent of choices whenever €2 — C is open or closed, as xq is then a pointwise
limit of uniformly bounded continuous functions. By a further repetition, one ob-
tains xqo whenever €2 is an F,, or G, as xq is then a pointwise limit of characteristic
functions of open or closed sets. Continuing in this way, one eventually obtains xq
for every Borel set 2 = C, and linear combinations of these give uniformly bounded
sequences converging pointwise to any f € Z(c(A)).
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(d)

()

(f)

(2)

f(A) is normal for every f € #B(c(A)), and it is self-adjoint whenever f(c(A)) <
R, positive whenever f(o(A)) < [0,00), and unitary whenever f(c(A4)) < St :=
{zeC ! |z] =1}

o(f(A)) is contained in the closure of f(o(A)) < C for all f € Z(c(A)).

Hint: If u ¢ f(o(A)), then g(z) := m belongs to #(o(A)). What is g(A)?

a(f(A)) = f(o(A)) for all fe C(o(A)).
Hint: By part (e), you only need to show f(\) € o(f(A)) for every A € o(A). Compare
the essential ranges of F' and f o F' (cf. Problem Set 11 #2(a)).

Answer:

If suffices to show that given any bounded measurable function F' : X — C and a
continuous function f: o(A) — C, if A € C is in the essential range of F', then f())
is in the essential range of fo F'. Note that after adjusting F’ on a set of measure zero
we can assume F(X) < o(A), so that f o F is defined everywhere. Suppose A € C
and € > 0: then (f o F)"Y(B(f(N)) = {ze X | |f(F(z)) — f(A)| <€} contains
F~1(Bs(\)) for some § > 0 since f is continuous. If A is in the essential range of F,
then F~1(Bgs(\)) has positive measure, implying that (f o F)~1(B.(f(\))) also has
positive measure, thus f(A) is in the essential range of f o F.

IF (A = [fllco for every f e C(a(A)).

Answer:

Since f(A) is normal, Problem Set 11 #1(b) implies that |f(A)| is the spectral
radius of f(A), so by part (f), this is

1 f(A)] = sap A= sup [f(A)]=[f]co.
Aea(f(A)) Aeo(A)

Here are some applications. Prove:

(h)

For A € Z(H) normal and A € C\o(A), the resolvent Ry(A) := (A — A)~! satisfies

TR T Rj( ] = dist(\, o(A)).

Answer:
Use the continuous function f(z) = Aiz on o(A) c C and apply part (g) to compute

[ £ (A

If Ae Z£(H) is normal and f : D — C is holomorphic on some disk D = {|z —
zo] < r} < C containing o(A), with Taylor series f(z) = > jan(z — 20)", then
> g an(A—zo1)"™ converges absolutely to f(A) in Z(H).

Answer:

The sequence of polynomials Pg(z) := Zﬁ:o an(z — z0)"™ converges absolutely and
uniformly to f on compact subsets of D, one of which contains o(A), thus by part (g),
[f(A) — Py(A)|| - 0 as k — oo, where the operators Py(A) are the partial sums of
the series > a,(A—2o1)". To see that the convergence in .Z(H) is also absolute,
we can use part (g) with the continuous function z — z — zg to estimate |A — zo|| =
SUP.eq(4) |2 — 20| < 7, so the result follows from the fact that > pan(z — 20)"
converges absolutely on D.

An operator U € Z(H) is unitary if and only if U = e for some bounded self-
adjoint operator A € Z(H).

Applying part (d) with the function f(z) = €' proves that e’ = f(A) is unitary
whenever A is self-adjoint. Conversely, if U is unitary, then its spectrum is in S* = C
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by Problem Set 11 #1(c), and we can define a self-adjoint operator A := g(U) by
choosing g : S' — [0,27) as the inverse of f |[072,,); note that ¢ is not continuous,
but it is in Z(S') and thus restricts to a function in %(a(U)). Choose a spectral
representation in order to identify U with a multiplication operator Tr : L(X, u) —
L?(X, pt) : w — Fu. This also defines a spectral representation for A, identifying it
with the multiplication operator Ty.r, and it follows that el = f (A) is identified
with Tfogor = Tr, hence et = .

(k) IT,Ae Z(H) commute and A is normal, then T" also commutes with A*.
Hint: Deduce from AT = TA that eMTe 2 = T for all \ € C. Then show that
e M¥ M s unitary and use this to compute a bound on the norm of g()\) :=
e M*TeA* for all X € C, concluding that g : C — Z(H) is a globally bounded
holomorphic function, and thus constant. Finally, compute %e‘m* TetA™ o
Answer:
By part (i), are limits in .Z(H) of sequences of polynomial functions
of A; the latter manifestly all commute with T, thus so do e* and e 4. Since

eMe 2 =1 for all z € C, it follows via part (a) that

and e~ M

e/\A

AMTe M = MM 1T =T (2)

(Note: One could probably also have proved this by writing down the exponentials
as power series, but it would have been more painful.) Next observation: e Merr =

A Az = 2iI9(02) ¢ Gl for all » € C, thus by part (d),

U= e MM
is unitary, and its inverse is
U*l _ U* _ 67;\A€>\A*.
Unitarity implies [UTU | = |T], so it follows in light of (2) that
T = [UTU ] = e M7 eMTe MM = M 1M

for all A € C. Since e~ and e*™ are both globally convergent operator-valued
power series in A, this proves that f(\) := e 2" Te*” is a globally bounded holo-
morphic function C — Z(H), so by a standard application of the Cauchy integral
formula (in the generalized context of £ (H)-valued holomorphic functions), f(X)
is constant, meaning e **Te** = T for all A € C. Finally, we can specialize to

A =t e R and differentiate the convergent power series with respect to ¢, obtaining

d
0= —e tAetA* = —A*T + TA*.
dt =0

(1) In the setting of part (k), T" also commutes with f(A) for every f e B(c(A)).

Answer:

Since T' commutes with both A and (by part (k)) A*, it commutes with f(A) whe-
never f : C — C is a polynomial function of z and z. One then extends this to all
f e B(o(A)) using approximation arguments as in part (c).

Finally, we can now establish some improvements to the spectral theorem:



Problem Set 12

(m) Under what conditions does a normal operator A € .Z(H) admit a spectral repre-
sentation of the form U : H — L%(o(A), p) with UAU! = Tk for F()\) = \, where
p is a finite measure on o(A) < C such that C(c(A)) is dense in L?(a(A), u)?

Answer:

One needs the existence of an element x € H that is cyclic for A and A*, meaning
that the set {A¥(A*)’2 | k.£ > 0 integers} spans a dense subspace of . Indeed, this
holds if and only if the image of the map

T:C((A) > H: f o f(A)z

is dense. Let u, denote the unique regular Borel measure on o(A)  C such that
g = | Fdu,
a(A)

as provided by the Riesz-Markov theorem since f — {(x, f(A)zx) is a positive linear
functional C(0(A)) — C. Note that ug(o(A)) = SU(A) ldp, = {x,z)y < o0, and
C(o(A)) is dense in L?(o(A), uz). The properties of the functional calculus then
imply that T is an isometry with respect to the L?-norm on C(o(A)):

ITf? = {f(A)z, f(A),z) = (z, fF(A)*F(A),z) = (x, | f]*(A)z) = f(A) F1? dpe = | f]172-

It follows via density that 7" extends uniquely to a unitary isomorphism L? (o (A), pz) —
H, and we define U := T~ It is now easy to verify via the properties of the func-
tional calculus that UAU ! = T for F(A\) = \.

Conversely, if a spectral representation U : H — L?(c(A),u) with UAU™! = Tp
for F(A\) = X is given and we assume g to be any finite measure on o(A) for which
C(o(A)) is dense in L2(c(A), 1), then we claim that the vector z := U1f € H
given by the constant function f(A) := 1 is cyclic for A and A*. Indeed, the finite
linear combinations of all elements of the form A¥(A*)‘z € H correspond under the
isomorphism U : H — L%(c(A), ) to the complex-valued functions on o(A4) < C
that are restrictions of polynomials in z and z. These are dense in C(c(A)) with
respect to the sup-norm, and since the latter is dense in L?(c(A), ), they are also
dense in L?(c(A), 1), implying that the space spanned by all A¥(A*)’z is dense in H.

(n) Show that for every normal operator A € Z(H), H splits into a direct sum of
(perhaps infinitely many) mutually orthogonal A-invariant subspaces H, < H on
which Aly, admits a spectral representation as described in part (m).

Answer:

Let’s just consider the case where H is separable, so that Zorn’s lemma is not re-
quired. Choose a dense sequence y1,y2,¥s, ... € H, set x1 := y1, and define H; < H
to be the closure of the set of all finite linear combinations of vectors of the form
AF(A*)tz, for integers k,¢ > 0. This subspace is invariant under both A and A*,
thus so is its orthogonal complement, as v € Hf implies

(x, Av) = (A*z,0) =0 and (z,A*v) = (Az,v) =0

for all x € H;. Define 24 to be the first element in the sequence y; such that x5 ¢ Hj,
and define z9 € Hi such that ¥, = x5 + z for some 2z € H; (this determines x
uniquely). Now define Hs to be the closure of the set of all finite linear combinations
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of vectors of the form A¥(A*)fxy, and observe that since Hi is preserved by A
and A*, Hs is orthogonal to H;. To continue, set x5 to be the first element in the
sequence y; such that zf ¢ H; @ M2, and project it orthogonally to (H1 @ Ha)t to
define 3, then define Hs out of A¥(A*)‘x3 as above. Continuing in this way, it may at
some point happen that the entire sequence y; is contained in H1®. ..®H}, for some
finite k£ € N, in which case the process terminates. If not, then we obtain a countable
sequence of mutually orthogonal closed subspaces H,, = H that each admit a cyclic
vector z,, for A and A*, and since the span of {y1,y2,y3, ...} is dense, H = @, Hn.-
On each subspace H,, individually, A|y, is a bounded normal operator admitting a
cyclic vector for A|y,, and (Aly, )* = A*|y,, thus it admits a spectral representation
as in part (m).

When does a finite collection of normal operators Aj,..., Ay € Z(H) admit a
simultaneous spectral representation?

Answer:

This is true if and only if the Aq,..., Ay all commute with each other. In one

direction this is obvious since different multiplication operators in the same spectral
representation always commute. Conversely, if A; A, = A, A; for all j, k, then part (1)
implies f(A4;)g(Ax) = g(Ar)f(A;) for all f e B(c(A;)) and g € H(o(Ay). This is
true in particular for all characteristic functions. Let R < #(0(A1) x ... x 0(AnN))
denote the subspace consisting of restrictions to o(A;) x ... x o(An) of all finite
linear combinations of characteristic functions of “rectangles” Oy x ... x Qny < CV,
where each (); < C is a set of the form

szz{zeC‘a<§Rz<b,c<%z<d}

for some a,b,c,d € R. Note that the closure of R in the sup-norm over o(A4;) x
...0(AnN) contains the space of continuous functions C(c (A1) x...xo(An)). We can
then define f(A1, ..., Ay) € Z(H) for every f(z1,...,2n) = 2; ¢jXa! (z1) ... XN (zn)
by

f(A1,..  AN) = ;CjXQ; (A1) - xax (AN),
and verify that this definition satisfies the usual *-algebra homomorphism properties.
Using the observation that every f € R can be written as a sum of terms correspon-
ding to disjoint rectangles, one can then show || f(A1, ..., AN)| = [fll 2 (0(a1)x...xo(An)-
Thus the map f — f(A) extends uniquely to an isometry defined on the L*-closure
of R, which includes C(c(A1) x ... x g(An)).

With a functional calculus for continuous functions on o(A;) X ... x o0(Ay) in place,
one can now use the Riesz-Markov theorem to associate to each x € H a spectral
measure i, on o(Ay) x ... x 0(An) such that

o f (A Av)e) = | f die
U'(Al)X..‘XO'(AN)

for every f e C(o(A1) x ... x 0(An)). Call © cyclic for Ay, AY,..., AN, A% if the
linear combinations of all elements of the form A (A%)f .A?\’; (A%) Nz for all
integers ki, ¢1,...,kn,fn = 0 span a dense subspace of H. If x is cyclic in this sense,
then the map

T:C(0(A1) x...x0(AN)) > H: f— f(AL,...,AN)x

10
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can now be shown to extend to a unitary isomorphism from L?(o(A1) x ... x
0(AN), ptz) to H, and it identifies each of the operators A; with the operation of
multiplication of L?-functions by the bounded functions Fi, o AN) = A I
there is no cyclic vector, then one can argue as in part (n) if H is separable (or
using Zorn’s lemma if H is not separable) that H splits into a direct sum of mu-
tually orthogonal closed subspaces H,, < H that are invariant under all the ope-
rators Ai,..., Ay and their adjoints, and on which they admit a common spectral
representation as described above. This therefore identifies H with a direct sum of
spaces L?(a (A1) x ... x 0(AN), itg, ) With various spectral measures for cyclic vectors
zn € M, © H. This direct sum of L%-spaces is naturally isomorphic to the space of L2-
functions on the disjoint union of all the measure spaces (o(A1) x ... x 0(AN), ttz,),
and if H is separable so that there are at most countably many of these, we can
rescale the vectors x, in order to ensure without loss of generality that the total
measure of this disjoint union is finite.
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