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Problem Set 1

Due: Thursday, 12.11.2020 (19pts total)

Problems marked with p˚q will be graded. Solutions may be written up in German or

English and should be submitted electronically via the moodle before the Übung on the

due date. For problems without p˚q, you do not need to write up your solutions, but it is

highly recommended that you think through them before the next Tuesday lecture. You

may also use the results of those problems in your written solutions to the graded problems.

Problem 1
A Banach algebra is a Banach space X that is equipped with the additional structure of

a product X ˆ X Ñ X : px, yq fiÑ xy satisfying }xy} § }x} ¨ }y} for all x, y P X.

(a) Suppose X is a Banach space and L pXq denotes the Banach space of continuous

linear operators X Ñ X, endowed with the operator norm. Show that L pXq with

a product structure defined by composition AB :“ A ˝ B is a Banach algebra.

(b) p˚q Assume X is a Banach algebra containing an element 1 P X that satisfies 1x “
x1 “ x for all x P X. Show that for any x P X with }x} † 1, the series

∞8
n“0p´1qnxn

converges absolutely to an element y P X satisfying yp1` xq “ p1` xqy “ 1. [3pts]

(c) Assume X and Y are Banach spaces and A0 P L pX,Y q is a continuous linear map

that admits a continuous inverse A´1
0 P L pY,Xq. Find a constant c ° 0 such that

for every A P L pX,Y q with }A ´ A0} † c, A also has an inverse A´1 P L pY,Xq.
Problem 2
For any integer m • 0, let Cmpr0, 1sq denote the Banach space of m times continuously

di↵erentiable functions x : r0, 1s Ñ R, with the Cm
-norm }x}Cm :“ ∞m

k“0 suptPr0,1s |xpkqptq|.
For the subset X :“

 
x P C2pr0, 1sq

ˇ̌
xp0q “ xp1q “ 0

(
, prove:

(a) X is a vector space, and endowing it with the C2
-norm makes it a Banach space.

Hint: Closed linear subspaces of Banach spaces are also Banach spaces. (Why?)

(b) For any function P P C0pr0, 1sq, the transformation x fiÑ :x`Px defines a continuous

linear operator AP : X Ñ C0pr0, 1sq, which satisfies }AP ´ A0} § }P }C0 .
1

(c) p˚q The operator A0 P L pX,C0pr0, 1sqq in part (b) has a continuous inverse A´1
0 P

L pC0pr0, 1sq, Xq. [4pts]
Hint: Every x P X must have 9xpt0q “ 0 for some t0 P p0, 1q. (Why?)

Comment: Problems 1 and 2 together prove the statement from lecture that for all

functions P, f P C0pr0, 1sq with }P }C0 su�ciently small, there is a unique C2
-function

x : r0, 1s Ñ R solving the boundary value problem :x ` Px “ f with xp0q “ xp1q “ 0.

Problem 3
Determine which (if any) of the following are closed linear subspaces of the Banach space

of bounded continuous functions f : p0, 1q Ñ R with the C0
-norm:

(a) The bounded continuously di↵erentiable functions on p0, 1q
1
Here 9x and :x denote the first and second derivatives of x respectively.

1



Problem Set 1

(b) p˚q The uniformly continuous functions on p0, 1q [3pts]

Problem 4
For an arbitrary topological vector space X and a seminorm } ¨ } on X, consider the

following conditions:

(i) } ¨ } : X Ñ r0,8q is a continuous function;

(ii) The set B1p0q :“
 
x P X

ˇ̌
}x} † 1

(
Ä X is open;

(iii) For every x0 P X and ✏ ° 0, the set B✏px0q :“
 
x P X

ˇ̌
}x ´ x0} † ✏

(
Ä X is open.

(a) Prove that conditions (i), (ii) and (iii) are all equivalent.

Hint: Topological vector spaces have the feature that the a�ne map x fiÑ x0 ` ✏x
defines a homeomorphism X Ñ X for any x0 P X and ✏ ° 0 (why?). In particular,

it maps open sets to open sets.

(b) If additionally X is a locally convex space whose topology is determined by the

family of seminorms t} ¨ }↵u↵PI , prove that conditions (i)–(iii) are equivalent to the

following: (iv) There exists a nonempty finite subset I0 Ä I and a constant C ° 0

such that }x} § C
∞

↵PI0 }x}↵ for all x P X.

(c) Prove that two norms } ¨ }0 and } ¨ }1 on a vector space V are equivalent if and only

if they define the same topology.

Problem 5
Assume X is a locally convex space. Prove:

(a) A set U Ä X is open if and only if for every x0 P U , there exists a continuous semi-

norm } ¨ } : X Ñ r0,8q such that B1px0q :“ tx P X | }x ´ x0} † 1u Ä U .
Hint: Every finite positive linear combination of continuous seminorms is a conti-

nuous seminorm.

(b) X is also a topological vector space.

Problem 6 p˚q
Prove: For two locally convex spaces X and Y , a linear map A : X Ñ Y is continuous if

and only if for every continuous seminorm } ¨ }Y on Y , there exists a continuous seminorm

} ¨ }X on X such that }Ax}Y § }x}X holds for all x P X. [5pts]

Problem 7
Here is an example of a topological vector space whose topology cannot be defined via

a metric. Let C0
c pRnq denote the space of continuous functions f : Rn Ñ R that vanish

outside of compact subsets.
2
We endow C0

c pRnq with a locally convex topology defined

via the family of seminorms t}f}'u'PI where I denotes the set of all continuous functions

' : Rn Ñ r0,8q and }f}' :“ }'f}C0 .

(a) p˚q Show that a sequence fj converges to f8 in C0
c pRnq if and only if there exists

a compact set K Ä Rn
such that fj |RnzK ” 0 for every j P N Y t8u and fj Ñ f

uniformly on K. [4pts]

(b) To show that C0
c pRnq is not metrizable, one can argue by contradiction and suppose

there exists a metric d such that every neighborhood U Ä C0
c pRnq of 0 contains an

open set of the form Bn :“ tf P C0
c pRnq | dp0, fq † 1{nu for n P N su�ciently

large. Show that in this situation, there must exist functions 'n P I such that

An :“ tf P C0
c pRnq | }f}'n † 1u Ä Bn for every n, then derive a contradiction by

constructing a neighborhood U of 0 that does not contain An for any n P N.
2
We say in this case that the functions f P C0

c pRnq have compact support in Rn
.
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