Problem Session 3

Plan (1) Differential under the integral sign
(2) Problem set 2 .
(1) Differential under the integral sign

Recall the Dominated Convergence Theorem (X, μ) measuna space $\omega /$
$f_{n}: X \longrightarrow \mathbb{R}$ measurable $\forall n \in \mathbb{N}$

$$
f: x \longrightarrow \mathbb{R} \text { with } f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)
$$

for are. x.
Suppose $\left|f_{n}(x)\right| \leqslant g(x)$ for same $g \in \mathcal{L}^{1}(\mu)$
$\forall n$. Then $f_{n} \in \mathcal{L}^{1}(\mu), f \in \mathcal{L}^{\prime}(\mu)$ and

$$
\lim _{n \rightarrow \infty} \int_{x} f_{n} d \mu=\int_{x} f d u
$$

Differential under the integral sign
ohm Suppose (Y, M) is a uneasure space, \mathcal{H} is a metric space and $\varphi: M X Y \longrightarrow \mathbb{R}$ is a functions st.

1) $\forall x \in M, \quad \varphi(x, \cdot): Y \rightarrow \mathbb{R}$ is uneasurable and satisfies $|\varphi(x, \cdot)| \leqslant \psi$ for some $\psi \in \mathcal{L}^{1}(x, y)$ independent of x.
2) $\forall y \in J, \varphi(\cdot, y): M \rightarrow \mathbb{R}$ is continuous.

Then $F: M \rightarrow \mathbb{R}$ givers by

$$
F(x)=\int \varphi(x, \cdot) d \mu \text { is continuous. }
$$

If $M \subset \mathbb{R}_{\text {open }}^{n} w /$ coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ and $\frac{\partial \varphi}{\partial x_{j}}: M \times y \rightarrow \mathbb{R}$ exist for all $j=1, \ldots, n$ and abo satisfy the conditions above, the F_{5} is continuous differentiable and

$$
\partial_{j} F(x)=\int_{y} \frac{\partial \varphi}{\partial x_{j}}(x, \cdot) d u
$$

Sketch of proof cf. Th 0.4 ie lec. notes.
F is continuous
We'll prone $x_{n} \longrightarrow x \Longrightarrow F\left(x_{n}\right) \longrightarrow F(x)$

$$
F\left(x_{n}\right)=\int \varphi\left(x_{n}, \cdot\right) d \mu \quad F(x)=\int \varphi(x, \cdot) d \mu
$$

Want $\int \varphi\left(x_{n}, \cdot\right) d \mu \xrightarrow{n \rightarrow \infty} \delta \varphi(x, \cdot) d \mu$
$\varphi(\cdot, y)$ is a continues function
$\Rightarrow \quad \varphi\left(x_{n}, \cdot\right) \longrightarrow \varphi(x,$.$) pointwise.$

$$
\left|\varphi\left(x_{n}, \cdot\right)\right| \leq \Psi \in \mathcal{L}^{\perp}(\mu)(\text { hypothesis })
$$

$D\left(T, \quad \int \varphi\left(x_{n}\right) \cdot\right) d \mu \rightarrow \int \varphi(x, \cdot) d \mu$
$\Rightarrow \quad F$ is continuous.
Hypothesis
$\begin{aligned} \frac{\partial \varphi}{\partial x_{j}}(x, y) \text { exists, } \frac{\partial \varphi}{\partial x_{j}}(\cdot, y) & \text { is continuous } \\ : M & \rightarrow \mathbb{R}\end{aligned}$ $\frac{\partial \varphi}{\partial x_{j}}(x, \cdot)$ is measurable

$$
\begin{aligned}
& \begin{array}{l}
\left|\frac{\partial \varphi}{\partial x_{j}}-(x, \cdot)\right| \leqslant \Psi \in \mathcal{L}^{2} \text { independent of } x .
\end{array} \\
& \begin{array}{c}
\frac{\partial \varphi}{\partial x_{j}}(x, y) \text { is } \quad \begin{array}{c}
\left\{e_{1}, e_{2}, \ldots, e_{n} \xi\right. \text { is a basis } \\
\text { of } \mathbb{R}^{n} .
\end{array} \\
\lim _{h \rightarrow 0} D_{j}^{h} \varphi(x, y)=\lim _{h \rightarrow 0} \frac{\varphi\left(x+h e_{j}, y\right)-\varphi(x, y)}{h} \\
\forall x \in M, D_{j}^{h} \varphi(x, \cdot): y \rightarrow \mathbb{R} \text { is defined } \\
\forall h \in \mathbb{R} \backslash\{0\{. \\
\forall h_{n} \longrightarrow 0, h_{n} \in \mathbb{R} \backslash\{0 \xi, \text { then } \\
D_{j}^{h n} \varphi(x, \cdot) \longrightarrow \frac{\partial \varphi}{\partial x_{j}}(x, \cdot)
\end{array}
\end{aligned}
$$

write a formula for using the FTC.

$$
\begin{gathered}
D_{j}^{h} \varphi(x, y)=\int_{0}^{1} \frac{\partial \varphi}{\partial x_{j}}\left(x+t h e_{j}, y\right) d t \\
\left|D_{j}^{h} \varphi(x, y)\right| \leq \Psi \Rightarrow D C T \\
\frac{e x}{} \cdot \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi} \\
\int_{0}^{\infty} e^{-\frac{x^{2}}{2}} d x
\end{gathered}
$$

Well show $\int_{0}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{\frac{\pi}{2}}$
For $t \in \mathbb{R}$

$$
\begin{aligned}
& \text { For } t \in \mathbb{R} \\
& \begin{aligned}
& F(t)=\int_{0}^{\infty} \frac{e^{-\frac{t^{2}\left(x^{2}+1\right)}{2}}}{1+x^{2}} d x \\
& \begin{aligned}
& F(0)=\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\left[\tan ^{-1} x\right]_{0}^{\infty}=\frac{\pi}{2} \\
& \begin{aligned}
F(\infty) & =0 \\
F^{\prime}(t) & =\int_{0}^{\infty} \frac{1}{1+x^{2}} \frac{t^{2}\left(x^{2}+1\right)}{2}\left(-\frac{\left.2 t x^{2}+1\right)}{2}\right) \\
& =\int-t e^{-\frac{t^{2}\left(x^{2}+1\right)}{2}} d x \\
& =-t e^{-\frac{t^{2}}{2} \int e^{-\frac{(t x)^{2}}{2}} d x}
\end{aligned}
\end{aligned} .
\end{aligned}>.
\end{aligned}
$$

put $t x=y$

$$
F^{\prime}(t)=-I e^{-t^{2} / 2} \quad \Rightarrow t d x=d y
$$

for any $b>0$

$$
\begin{aligned}
& \text { For any b>0 } \\
& \int_{0}^{b} F^{\prime}(t) d t=-I \int_{0}^{b} e^{-\frac{t^{2}}{2} d t}
\end{aligned}
$$

$$
\Rightarrow \quad F(b)-F(0)=-I \int_{0}^{b} e^{-\frac{t^{2}}{2}} d t
$$

let $b \rightarrow \infty$

$$
\begin{array}{ll}
\Rightarrow & F(\infty)-F(0)=-I \cdot I=-I^{2} \\
\Rightarrow & -\frac{\pi}{2}=-I^{2}=0 \quad I=\sqrt{\frac{\pi}{2}}
\end{array}
$$

$$
\text { SET } 2
$$

(1) $X, V \subset X$ subspace, $\operatorname{dim}(X / v)=R$
(a) i) \Rightarrow ii) $\operatorname{dim}(x / v)=1$

Want $\quad \forall x \in X, \quad \exists!v \in V, \lambda \in \mathbb{K}$ st. $\exists \omega \in X V$

Let $\{[\omega]\}$ is a basis of X / v.
Let $x \in X$. If $x \in V \Rightarrow x=x \in V$, done.

If $x \in X \backslash V \Rightarrow[x]$ is a nontrivial element in x / v

$$
\begin{aligned}
& \Rightarrow \quad[x]=\lambda[\omega] \quad \text { for some } \lambda \in \mathbb{K} \\
& \Rightarrow \quad x-\lambda \omega \in V \quad x / v=\{[\alpha]+v[[\alpha]=\alpha+V\} \\
& \Rightarrow \quad x-\lambda \omega=v \quad \text { for some } v \in V \quad[0] \text { element } \\
& \Rightarrow \quad \begin{array}{l}
\text { in } x / v=\{0+v\} \\
\Rightarrow v+\lambda \omega
\end{array} \\
& =v
\end{aligned}
$$

Uniqueness Suppose $V^{\prime} \in V, \lambda^{\prime} \in \mathbb{K}$ s.t.

$$
\begin{aligned}
x & =v^{\prime}+\lambda^{\prime} w \\
\Rightarrow \quad v-v^{\prime} & =\left(\lambda-\lambda^{\prime}\right) w
\end{aligned}
$$

can only happen if $\lambda-\lambda^{\prime}=0 \Rightarrow \lambda=\lambda^{\prime}$

$$
V=V^{\prime}
$$

ii) \Rightarrow iii) Want $V=\operatorname{ken} \Lambda, \Lambda: x \rightarrow K$.

Let $x \in X$, then ii) $\Rightarrow x=v+\lambda \omega$ for some $\lambda \subset \mathbb{K}, \quad v \in \mathbb{V}, \omega \in X / V$.

Define

$$
\begin{aligned}
& \Lambda: X \rightarrow \mathbb{K} \text { by } \quad \text { linear } \\
& \Lambda(X)=\lambda
\end{aligned}
$$

$\operatorname{ker}(\Lambda)=V . \quad \Lambda$ is nontrivial.
$\lambda \neq 0$. $w \in X \backslash V$ and $w=0+1 \cdot \omega$

$$
\Lambda(\omega)=1 \quad \neq 0 . \Rightarrow \Lambda \neq 0
$$

$$
\begin{array}{ll}
\text { iii) } \Rightarrow \text { i) } \exists \wedge \neq 0, \text { st. } & V=\operatorname{ker} \Lambda . \\
& \exists x_{0} \in X \text { st. } \Lambda\left(x_{0}\right) \neq 0 . \\
x_{0} \notin V(b / c V=\operatorname{ken} \Lambda \\
\Rightarrow & \Rightarrow \Lambda\left(x_{0}\right)=0 X X
\end{array}
$$

Want:- V is eodim $1 \Leftrightarrow \frac{X}{V}$ is 1 -dimensional.
Claims:- $\left\{\left[x_{0}\right]\{\right.$ is a basis
suppose $[\alpha] \in X / V=\alpha=y+V$ for some $y \in X$.
Then $M\left(y-\frac{\Lambda(y)}{\Lambda\left(x_{0}\right)} x_{0}\right)=0$

$$
\begin{array}{ll}
\Rightarrow \quad y & =\frac{\Lambda(y)}{\Lambda\left(x_{0}\right)} x_{0} \in \operatorname{ken} \Lambda=V \\
\Rightarrow & y=\frac{\Lambda(y)}{\Lambda\left(x_{0}\right)} x_{0}+v \\
\Rightarrow & \alpha=V \\
\Rightarrow & \frac{\Lambda(y)}{\Lambda\left(x_{0}\right)} x_{0}+V
\end{array}
$$

$$
\Rightarrow \quad[\alpha]=c\left[x_{0}\right] \text {, where } c=\frac{\Lambda(y)}{\Lambda\left(x_{0}\right)}
$$

1.c) b) $\Rightarrow c$ c

If V is not dense $\Rightarrow \Lambda: X \rightarrow \mathbb{K}$ is continua.
If $\Lambda: x \rightarrow \mathbb{K}$ is NOT continuous $\Rightarrow V=\operatorname{ken} \Lambda$
is dense in X.
Λ is not bounded
$\Rightarrow \quad \forall n \in \mathbb{N}, \exists x_{n} \in X$ sf. $\Lambda\left(x_{n}\right) \geq n\left\|x_{n}\right\|$
rescale, st. $\left\|x_{n}\right\|=1$

$$
\Rightarrow \quad \Lambda\left(x_{n}\right) \geqslant n
$$

Let $y \in X$ arbitrary.
Then $y_{n}=y-\frac{\Lambda(y)}{\Lambda\left(x_{n}\right)} x_{n} \cdot y_{n}-y$

$$
\Lambda\left(y_{n}\right)=\Lambda(y)-\Lambda(y)=0
$$

$\Rightarrow \quad\left\{y_{n}\right\}$ is a sequence in V.

$$
Y_{n} \longrightarrow y \Rightarrow V \text { is dense in } x \text {. }
$$

2) b) $L^{\infty}, \quad \begin{aligned} & f(x)=x \\ & g(x)=x^{2}\end{aligned} \quad$ not strictly convex

$$
L^{1}, f=1, g(x)=2 x
$$

(4) $L^{P}([0,1])=\{f:[0,1] \rightarrow \mathbb{R}\}$

$$
\begin{aligned}
& \quad 0<p<1 \\
& \left.\left.d(f, g)=\|f-g\|_{L^{p}}^{b}|f(x)|^{b} d x\right)^{1 / p}<\infty\right\}
\end{aligned}
$$

a) for $a, b \geq 0$ and $q \geq 1$

$$
\begin{aligned}
& a^{q}+b^{q} \leq(a+b)^{q} . \\
& \frac{a}{a+b} \leq 1 \Rightarrow\left(\frac{a}{a+b}\right)^{q} \leq \frac{a}{a+b} \\
& \left(\frac{b}{a+b}\right)^{q} \leq \frac{b}{a+b} \\
& =\frac{a^{q}}{(a+b)^{q}}+\frac{b^{q}}{(a+b)^{q}} \leq 1 \\
& \Rightarrow \quad a^{q}+b^{q} \leq(a+b)^{q}
\end{aligned}
$$

b) + continuous
and - continuous

$$
\begin{aligned}
& f_{n} \rightarrow f \\
& g_{n} \rightarrow g
\end{aligned} \rightarrow f_{n}+g_{n} \rightarrow f+g
$$

triangle inequality.
c) $\quad\{|f| \geq M \quad \forall: M \in \mathbb{R}\{$ is of measure

$$
\begin{aligned}
& A_{n}=\left\{x \in[0,1]| | f(x) \mid \leq n\left\{_{n \in \mathbb{N}}\right.\right. \\
& f_{n}=f X_{A_{n}} \\
& d\left(f_{n}, f\right) \rightarrow 0 \quad \int_{0}^{1} \| f_{n}-f n^{p} d \mu \rightarrow 0 \\
& f \in L^{p}([0,1]), \int_{0}^{1}|f(x)|^{p} d u<\infty .
\end{aligned}
$$

d) for $\tau_{1} \tau_{2}, x_{1}, x_{2}$ - convex set.

$$
\begin{aligned}
& \left\{x_{1}, \ldots, x_{n-1}\right\},\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n-1}\right\} \\
& y=\frac{\tau_{1}}{\tau_{1}+\cdots+\tau_{n-1}} x_{1}+\ldots+\frac{\tau_{n-1}}{\tau_{1}+\tau_{2}+\cdots t_{n-1}} x_{n-1} \\
& \left.\pi_{K} \quad \text { (induction } h_{y p 0}\right)
\end{aligned}
$$

$$
>y\left(\tau_{1}+\cdots+\tau_{n-1}\right)+\tau_{n} x_{n} \in K
$$

e) Let $\epsilon>0$ and $N \geq 1$

Choose N disjoint intervals in $[0,1]$ say $I_{1}, I_{2}, \ldots, I_{n}$.

$$
f_{k}=\frac{\left(\frac{\epsilon}{2}\right)^{q}}{\ell\left(I_{k}\right)^{q}} X_{I_{k}} \quad:[0,1] \longrightarrow \mathbb{R}
$$

$$
\begin{align*}
& \text { Then } \begin{aligned}
\int_{0}^{1}\left|f_{k}(x)\right|^{p} d x & =\int_{0}^{1}\left[\frac{\left(\frac{\epsilon}{2}\right)^{1 / p}}{\left(l\left(I_{k}\right)^{1 / p}\right.} x_{I_{k}}\right]^{p} d x \\
& =\frac{\epsilon}{2} \eta \\
\therefore \quad d\left(f_{k}, 0\right) & =\left\|f_{k}\right\|_{L^{p}}^{p}=\frac{\epsilon}{2} \\
\therefore \quad & \quad l\left(f_{k}, 0\right)<\epsilon
\end{aligned}
\end{align*}
$$

$$
\begin{aligned}
& g_{N}=\frac{1}{N} \sum_{k=1}^{N} f_{k} \\
& \begin{aligned}
& \int_{0}^{1}\left|g_{n}(x)\right|^{p} d x=\frac{1}{N^{p}} \sum_{k=1}^{N} \int_{0}^{1}\left|f_{k}(x)\right|^{p} d x \\
&=\frac{N \in}{2 N^{p}}=\frac{N^{(1-p)} \epsilon}{2} \\
& 1-p>0
\end{aligned}
\end{aligned}
$$

choosing N large enough $=0$

$$
\begin{aligned}
& d\left(g_{N}, 0\right)>\epsilon \\
& \therefore g_{n} \notin B_{\epsilon}(0)
\end{aligned}
$$

$=\quad L^{b}([0,1])$ is not locally convex.
f) Suppose not.

Let $\Lambda \in L^{P}[0,1]^{*}$ st. $\Lambda \neq 0$

$$
\Rightarrow \quad \Lambda: L^{P}([0,1]) \rightarrow \mathbb{R}
$$

and $\operatorname{Im}(\Lambda)=\mathbb{R}$.
$\Rightarrow \exists f \in L^{b}([0,1])$ with $|\wedge(f)| \geq 1$.
Want to contradict that Λ is continuous. weill $\left\{\mathrm{hm}_{m}\right\}$ st $h_{n} \rightarrow 0, \Lambda\left(g_{n}\right) \neq 0$.

$$
\begin{aligned}
& {[0,1] \longrightarrow \mathbb{R}_{S} \text { by }} \\
& S \longmapsto \int_{0}^{S}|f(x)|^{p} d x
\end{aligned}
$$

continuous function on $[0,1]=0 \quad \exists s \in(0,1)$

$$
\begin{aligned}
& \int_{0}^{s}|f(x)|^{p} d x=\frac{1}{2} \int_{0}^{1}|f(x)|^{p} d x>0 \\
& (I v T) \\
& g_{1}=f \chi_{[0, s]} \text { and } g_{2}=f \chi_{(s, 1]} \\
& f=g_{1}+g_{2}
\end{aligned}
$$

and $|f|^{p}=\left|g_{1}\right|^{p}+\left|g_{2}\right|^{p}$

$$
\begin{aligned}
& \int_{0}^{1}\left|g_{1}(x)\right|^{p} d x= \\
& \therefore \quad \int_{0}^{1}|f(x)|^{p} d x=\frac{1}{2} \int_{0}^{1}(f(x) d x \\
& \therefore\left|g_{2}(x)\right|^{p} d x=\frac{1}{2} \int_{0}^{1}|f(x)|^{p} d x \\
& \because|\Lambda(f)| \geq 1 \Rightarrow\left|\Lambda\left(g_{1}+g_{2}\right)\right| \geqslant 1 \\
& \Rightarrow \quad\left|\Lambda\left(g_{1}\right)+\Lambda\left(g_{2}\right)\right| \geq 1 \\
&=\left|\Lambda\left(g_{i}\right)\right| \geq \frac{1}{2}
\end{aligned}
$$

Let $h_{1}=2 g_{i} \Rightarrow\left|\Lambda\left(h_{1}\right)\right| \geq 1$ and $\int_{0}^{1}\left|h_{1}(x)\right|^{p} d x=2^{p} \int_{0}^{1}\left|g_{i}(x)\right|^{p} d x$

$$
\begin{aligned}
& =2^{b} \cdot \frac{1}{2} \int_{0}^{1}|f(x)|^{p} d x \\
& =2^{p-1} \int_{0}^{1}|f(x)|^{b} d x \\
& \quad b \in(0,1)
\end{aligned}
$$

Keep iterating to get a sequence $\left\{h_{n}\right\}$.

$$
\left|\Lambda\left(h_{n}\right)\right| \nrightarrow 0 \text { but el }\left(h_{n}, 0\right) \rightarrow 0
$$

contradiction Λ is continuous.

$$
\Lambda \equiv 0
$$

