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Problems marked with p˚q will be graded. Solutions may be written up in German or

English and should be submitted electronically via the moodle before the Übung on the

due date. For problems without p˚q, you do not need to write up your solutions, but it is

highly recommended that you think through them before the next Tuesday lecture. You

may also use the results of those problems in your written solutions to the graded problems.

Convention: Unless otherwise stated, you can assume in every problem that pX,µq is an

arbitrary measure space and functions in LppXq :“ LppX,µq take values in a fixed finite-

dimensional inner product space pV, x , yq over a field K which is either R or C. Whenever

X is a subset of Rn
, you can also assume by default that µ is the Lebesgue measure m.

Problem 1 p˚q
Assume 1 † p, q † 8 with

1
p ` 1

q “ 1. Prove:

(a) For any closed subspace E Ä LppXq with E ‰ LppXq, there exists a function g P
LqpXqzt0u that satisfies

≥
Xxg, fy dµ “ 0 for every f P E.

Hint: Since LppXq is uniformly convex, there exists a closest point in E to any given

point in LppXqzE. [6pts]

(b) A linear subspace E Ä LppXq is dense if and only if every bounded linear functional

⇤ : LppXq Ñ K that vanishes on E is trivial. [3pts]

Comment: The result of this problem is often used in applications and cited as a con-

sequence of the Hahn-Banach theorem, which implies a similar result for subspaces of

arbitrary Banach spaces. However, the uniform convexity of LppXq for 1 † p † 8 makes

the use of the Hahn-Banach theorem (which relies on the axiom of choice) unnecessary

in this setting. You should not use it in your solution either, since we have not proved it yet.

Problem 2
Show that if f P L8pXq satisfies |f | † }f}L8 almost everywhere, then

ˇ̌
ˇ̌
ª

X
xg, fy dµ

ˇ̌
ˇ̌ † }g}L1 ¨ }f}L8 for every g P L1pXqzt0u,

i.e. there is strict inequality. Give an example f P L8pr0, 1sq satisfying this condition.

Hint: What can you say about
≥
Xpc ´ |f |q|g| dµ if |f | † c almost everywhere?

Comment: The Hahn-Banach theorem implies that for every nontrivial element x in a

Banach space E, there exists a bounded linear functional ⇤ P E˚
with }⇤} “ 1 and

⇤pxq “ }x}. For E “ L8pXq, it follows that this ⇤ P E˚
cannot be represented as

⇤g “ ≥
Xxg, ¨y dµ for any g P L1pXq. This is one way of seeing that the Riesz representation

theorem is false for p “ 8.
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Problem 3

(a) Show that if pM,dq is a metric space containing an uncountable subset S Ä M such

that every pair of distinct points x, y P S satisfies dpx, yq • ✏ for some fixed ✏ ° 0,

then M is not separable.

(b) Suppose pX,µq contains infinitely many disjoint subsets with positive measure. Show

that L8pXq contains an uncountable subset S Ä L8pXq, consisting of functions that

take only the values 0 and 1, such that }f ´ g}L8 “ 1 for any two distinct f, g P S.
Conclude that L8pXq is not separable.

Hint: If you’ve forgotten or never seen the proof via Cantor’s diagonal argument that

R is uncountable, looking it up may help.

(c) Let L pHq denote the Banach space of bounded linear operators H Ñ H on a

separable Hilbert space H over K P tR,Cu. Show that any orthonormal basis tenu8
n“1

of H gives rise to a continuous linear inclusion

 : `8 ãÑ L pHq,

where `8
denotes the Banach space of bounded sequences t�n P Ku8

n“1 with norm

}t�nu}`8 :“ supnPN |�n|, and  pt�nuq P L pHq is uniquely determined by the condi-

tion  pt�nuqej :“ �jej for all j P N.

Comment: It is not hard to show that every subset of a separable metric space is also

separable. Since `8 “ L8pN, ⌫q for the counting measure ⌫, parts (b) and (c) thus imply

that L pHq is not separable.

Problem 4 p˚q
This problem deals with weak convergence xn á x. Assume H is a separable Hilbert

space over K P tR,Cu with orthonormal basis tenu8
n“1, and consider a sequence of the

form xn :“ �nen P H for some �n P K. Prove:

(a) xn á 0 whenever the sequence �n is bounded. [3pts]

(b) If the sequence �n is unbounded, then xn is not weakly convergent. [5pts]

Hint: Show that limnÑ8xej , xny “ 0 for every j P N and conclude that if xn á x
then x “ 0. Then associate to any subsequence with |�nj | • j for j “ 1, 2, 3, . . . an
element of the form v “ ∞8

j“1 ajenj P H such that xv, xnjy Û 0 as j Ñ 8.

Remark: We will later use a general result called the “uniform boundedness principle”

to show that weakly convergent sequences must always have bounded norms. But

you should not use that result here, since we have not proved it.

(c) If |�n| § ?
n for all n P N, then every weakly open neighborhood of 0 P H contains

infinitely many elements of the sequence xn. [5pts]

Comment: If the weak topology on H were metrizable, then one could deduce from part (c)

that a subsequence of
?
nen converges weakly to 0, contradicting part (b). It follows the-

refore that the weak topology on an infinite-dimensional Hilbert space is not metrizable.

Problem 5
Find a sequence fn P LppRq for 1 † p † 8 that converges weakly to 0 but satisfies

}fn}Lp “ 1 for all n, and deduce that fn has no Lp
-convergent subsequence.
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