Problem Set 6

1. $f: I \longrightarrow V$ is a function.
(a) f is Lipschitz-continuow $\Delta \Rightarrow \exists a \in I$ and $v_{0} \in V$ and $g \in L^{\infty}(I)$ w/ $\|g\|_{L^{\circ}} \leqslant C$ sit

$$
\begin{aligned}
f(x)=v_{0}+\int_{a}^{x} g(t) d t \quad & F x \in \mathbb{I} . \\
|f(x)-f(y)|=\left|\int_{y}^{x} g(t) d t\right| & \leq \int_{y}^{x}|g(t)| d t \\
& \leqslant C|x-y|
\end{aligned}
$$

$\Rightarrow f$ is Lipschitz.
\Rightarrow It's enough to prove that f is absolutely continuous.

$$
\begin{aligned}
& \forall \in>0 \quad \exists \delta>0 \text { sot. } \quad\left[a_{i}, b_{i}\right], \quad a_{1} \leqslant b_{1} \leq a_{2} \leq \ldots \\
& \leqslant a_{N} \leqslant b_{n} \\
& \sum_{j=1}^{n}\left|b_{j}-a_{j}\right|<\delta \Longrightarrow \sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\epsilon .
\end{aligned}
$$

$\because f$ is Lipschitz $\Rightarrow \exists C>0$ st. $|f(x)-f(y)| \leq C|x-y|$
Given $\epsilon>0$, choose $\delta=\frac{\epsilon}{C}$.

If $\sum\left|b_{j}-a_{j}\right|<8$ then

$$
\sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(b_{j}\right)\right| \leq \sum_{j=1}^{n} c\left|b_{j}-a_{j}\right| \leq \epsilon
$$

$\Rightarrow \quad f$ is absolutely continuous.
b) $f:[0,1] \longrightarrow \mathbb{R}$ st. f is absolutely cont but not tipschitz.

$$
\begin{aligned}
f(x) & =\sqrt{x} \text { on }[0,1] \\
& =\int \frac{1}{2 \sqrt{x}} d x
\end{aligned}
$$

\rightarrow absolutely continuous.
f is not Lipschitz, $x \neq 0$

$$
\frac{f(x)-f(0)}{x-0}=\frac{\sqrt{x}-0}{x-0}=\frac{1}{\sqrt{x}} \rightarrow \infty \text { at } x \rightarrow 0
$$

$[0,1]$
四
c) $f \in L_{10 c}^{2}(I) \quad f(x)=\int_{a}^{x} f(t) d t \quad a \in I$. f has jump oliscontinuity at $x_{0} \in I$.

Want:- F^{F} is Not differentiable.
We have $[a, b] \neq x_{0} \Rightarrow f \in L^{\prime}([a, b])$.
suppose $f(x) \rightarrow L$ as $x \rightarrow x_{0}^{+}$
$\epsilon>0$
$|f(t)-L|<\epsilon$ whenever $0<t-x_{0}<8$
\Rightarrow for $0<t-x_{0}<\delta$

$$
L-\epsilon<f(t)<L+\epsilon
$$

Integrating the above from x_{0} to $x_{0}+h$ where $0<h<8$, we get

$$
\begin{aligned}
& h(L-\epsilon)
\end{aligned}<\int_{x_{0}}^{x_{0}+h} f(t) d t<h(L+\epsilon)
$$

\Rightarrow as $h \rightarrow 0$ we get
RHD of $F=L=$ RHL of $f(x)$
Doing the some thing LHL
LHD of $F=L^{\prime}=$ LHL of $f(x)$
$\therefore L \neq L^{\prime} \quad=\quad$ RHD of $F \neq L H D$ of F
$=F$ is not differentiable at x_{0}.
(d)

$$
\begin{aligned}
\varphi=X_{[0, \infty)}: \mathbb{R} \rightarrow \mathbb{R}=0 \quad \varphi(x) & =1 & & \text { if } x \in[0, \infty] \\
& =0 & & \text { otherwise }
\end{aligned}
$$

$\left\{q_{i}\left\{\begin{array}{c}\infty \\ i=1\end{array}\right.\right.$ is an enumeration of \mathbb{Q}

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \varphi\left(x-q_{n}\right)
$$

Want $f \in L^{P}(\mathbb{R})$ sit. $\lim _{x \rightarrow q_{n}^{+}} f(x)=f\left(q_{n}\right)$

$$
\lim _{x \rightarrow q_{n}^{-}} f(x)=f\left(q_{n}\right)-\frac{1}{2^{n}}
$$

$\because \sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is a geometric series $=0$ converges
and $f \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}} \Rightarrow f \in L^{\infty}$.
note

$$
\begin{aligned}
\varphi(h) & =1 \quad \text { for } \quad h \geqslant 0 \\
\varphi(-h) & =0 \quad, \quad h>0 \\
f\left(q_{n}\right) & =\sum_{m=1}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}-q_{m}\right) . \\
& =\sum_{\substack{m=1 \\
m \neq n}}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}-q_{m}\right)+\frac{1}{2^{n}}
\end{aligned}
$$

now

$$
\begin{aligned}
\underset{x \rightarrow q_{n}^{+}}{f(x)}= & \lim _{h \rightarrow 0} \sum_{m=1}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}+h-q_{m}\right) \\
= & \sum_{m=1}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}-q_{m}\right) \\
& +\frac{1}{2^{n}} \varphi(h) \\
= & \sum_{\substack{m=1 \\
m \neq n}}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}-q_{m}\right)+\frac{1}{2^{n}} \\
& =f\left(q_{n}\right)
\end{aligned}
$$

$$
f(x)=\lim _{x \rightarrow 0} \sum_{m=1}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}-h-q_{m}\right)
$$

$$
\begin{equation*}
=\sum_{\substack{m=1 \\ m \neq n}}^{\infty} \frac{1}{2^{m}} \varphi\left(q_{n}-q_{m}\right)+\underbrace{\frac{1}{2^{n}} \varphi(-n)}_{0} \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
=f\left(q_{n}\right)-\frac{1}{2^{n}} \tag{电}
\end{equation*}
$$

e) which is hipschitz sot. F is not differentiable on a dense subset of \mathbb{R}.
from d), choose $F=\int f(x) d x$ where $f(x)$ is the function ie part d)
$\because \quad f \in L^{\infty} \Rightarrow$ by part a) F is Lejpschitz.
by pout c) $\because f$ has a jump discontinuity at $q_{n} \in Q \Rightarrow F=\int f(x) d x$ is NOT differentiable at any rational number \Rightarrow on a dense subset of R.

0
2) a) $X_{\theta}{ }^{n}$
b) $\chi_{\mathbb{R}^{n} \backslash \mathbb{Q}^{n}}$

$$
\begin{aligned}
& m([0,1])=m\left(\begin{array}{l}
([0,1] \\
\mathbb{Q}^{n}
\end{array}, I I\right)
\end{aligned}
$$

if $x \in X$ is a Lebesgue point

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{1}{m\left(B_{r}(x)\right)} \int_{B_{r}(x)} f(y) d y=f(x) \tag{1}
\end{equation*}
$$

a) if $x \in \mathbb{Q}^{n}$

$$
\int_{A} 1 d m=m(A)
$$

RHS of (i) $=1$, HS $=0$
$\Rightarrow \quad x \in \mathbb{1}^{n}$ comnot be a Lebesgue point.
$x \in \mathbb{R}^{n} \backslash\left(D^{n}\right.$ is a Lebesgue point.
$=\mathbb{R}^{n} \backslash \mathbb{Q}^{n}$ is the set of Lebesgue points of $X \in \mathbb{Q}^{n}$.
b) $X_{\mathbb{R}^{n} \backslash} 0^{n}$.
if $x \in(\mathbb{1})^{n}$, it is NOT a Lebesgere point. $x \in \mathbb{R}^{n} \backslash \theta^{n}$ is a Lebesgue point. $\mathbb{R}^{n} \mid \cup^{n}$ is the set of Lebesgue points.

B
3) $D^{n} \subset \mathbb{R}^{n}$ denote the unit ball

$$
f(x)=\frac{1}{|x|^{\alpha}}, \mathbb{R}^{n} \backslash \xi 0 \xi \quad \alpha>0 .
$$

$$
\begin{aligned}
& \text { a) } f \in L_{\text {weak }}^{L}\left(\mathbb{D}^{n}\right), f \in L^{\perp}\left(\mathbb{D}^{n}\right) . \\
& \mu\left\{x \in \mathbb{D}^{n}| | f(x) \left\lvert\,>t\left\{\leq \frac{G}{t} \quad \in \in>0 .\right.\right.\right.
\end{aligned}
$$

use polar coordinates on \mathbb{D}^{n}

$$
\begin{gathered}
f(x)=\frac{1}{r^{\alpha}}, r=|x| \\
m\left(x \in \mathbb{D}^{n} \left\lvert\, \frac{1}{r^{\alpha}}>t\right.\right) \leq \frac{c}{t} \quad \forall t>0 \\
=m\left(0<r<1 \left\lvert\, \frac{1}{r^{\alpha}}>t\right.\right) \leq \frac{c}{t} \quad \forall t>0
\end{gathered}
$$

$$
\begin{array}{rlrl}
\frac{1}{\pi^{\alpha}}>t & \Rightarrow & r^{\alpha}<\frac{1}{t} \\
& \Rightarrow & & r<\frac{1}{t^{1 / \alpha}}
\end{array}
$$

if $\quad 0<t<1 \Rightarrow \quad \gamma<\frac{1}{t^{n \alpha}}: \quad$ i $\alpha>0$
because $r \in[0,1)$

$$
e \cdot \frac{1}{t^{n \alpha}}>1
$$

In the care $0<t<1$, any $\alpha>0$ is possible
care:- $\quad t \geqslant 1$

$$
m\left(x \in D^{n} \left\lvert\, \frac{1}{r^{a}}>t\right.\right) \leq \frac{C}{t}
$$

want $\frac{k}{t^{n / \alpha}} \leq \frac{C}{t}$ where k comes from the volume of s^{n}
will happen only when $\frac{n}{\alpha} \geq 1$

$$
\Rightarrow \quad n \geq \alpha \quad \Rightarrow \quad \alpha \in(0, n]
$$

$\therefore \alpha \in(0, n]$ for $f \in L_{\text {weak }}^{2}\left(\mathbb{D}^{n}\right)$.

$$
f=\frac{1}{\gamma^{\alpha}}
$$

Want. $f \in L^{1}\left(\mathbb{D}^{n}\right)$. integrating ie polar coordinates

$$
\begin{aligned}
\int_{0}^{1} \int_{s^{n-1}} & \frac{1}{r^{\alpha}} r^{n-1} d \theta^{n-1} d r \\
& =(k \pi)^{n-1} \int_{0}^{1} r^{n-1-\alpha} d \gamma \\
& =(k \pi)^{n-1}\left[\frac{r^{n-\alpha}}{n-\alpha}\right]_{0}^{2}
\end{aligned}
$$

will be finite if $n-\alpha>0$

$$
\Rightarrow \quad n>\alpha \Rightarrow \alpha \in(0, n) \text {. }
$$

(b) $\alpha \in[n, \infty)$ for $L_{\text {weak }}^{2}\left(\mathbb{R}^{n} \backslash D^{n}\right)$

$$
\alpha \in(n, \infty) \text { for } L^{1}\left(\mathbb{R}^{n} \backslash \mathbb{D}^{n}\right)
$$

4) $\lambda \ll \mu$

We prove by contracliction.
Suppose $\exists \in>0$ st $f n=1,2,3, \ldots$
$\exists E_{n} \subset X$ st. $\mu\left(E_{n}\right)<\frac{1}{2^{n}}$ but $\lambda\left(E_{n}\right)>\epsilon$.
Let $F_{k}=\bigcup_{n=k}^{\infty} E_{n}$ and $F=\bigcap_{k=1}^{\infty} F_{k}$

$$
\mu\left(F_{k}\right) \leqslant \sum_{n=k}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{k-1}}
$$

$\Rightarrow \mu(F)=0$ but $\lambda\left(F_{K}\right)>\epsilon \forall K$
$\because \lambda$ is finite $\Rightarrow \lambda(F)>\epsilon$.
$=0 \quad \mu(F)=0$ But $\lambda(F)>\epsilon$
contradictic $\quad \lambda \ll \mu$.
(5) $\int_{x} g d \lambda=\int_{x} h g d \lambda+\int_{x} h g d \mu$
$h: X \rightarrow \mathbb{R}, \quad 0 \leq h<1$ on $X \backslash E, \mu(E)=0$

$$
\begin{aligned}
& f=\frac{h}{1-h}: X \backslash E \rightarrow[0, \infty) \\
& \int_{A} f d \mu \leq \lambda(A)
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } X=\mathbb{R}^{n}, \mu=m, \lambda=8 \\
& \int_{\mathbb{R}^{n}} g d \delta=\int_{\mathbb{R}^{n}} h g d \delta+\int_{\mathbb{R}^{n}} h g d m \\
& g(0)=h(0) g(0)+\int_{\mathbb{R}^{n}} h g d m
\end{aligned}
$$

if $h(0)=1$ and $h \equiv 0$ a.e. on \mathbb{R}^{n}

$$
\begin{aligned}
& \therefore \quad f=\frac{h}{1-h} \Rightarrow \quad \begin{array}{l}
f=0 \text { on } \mathbb{R}^{n} \backslash\{0\} \\
f=0 \text { on } 0
\end{array} \\
& \int_{A} f d m=\delta(A) \quad \text { (want) } \\
& =0 \quad 0=\delta(A) \Rightarrow A \ngtr 0 \\
& \text { If } \quad \begin{array}{l}
\mu(B)=0 \Rightarrow \lambda(B)=0 \\
m(B)=0 \Rightarrow \delta(B)=0
\end{array}
\end{aligned}
$$

Fabe as if $B=\{0\} \Rightarrow m(B)=0$ but

$$
\delta(B)=1 .
$$

$\lambda \ll \mu 。$
(b) $\mu=8, \lambda=m$
$\delta g d m=\delta h g a m+\delta h g a l \delta$
$\Rightarrow \int g d m=\int h g d m+h(0) g(0)$

$$
\begin{aligned}
h=1 \text { a.e. } \Rightarrow f & =\frac{h}{1-h} \\
h(\theta)=0 \quad & =0 \text { at } 0 \\
& =\infty \text { a.e. }
\end{aligned}
$$

$$
\begin{aligned}
\int_{A} f d \delta=m(A) & \Rightarrow f(0)=m(A) \\
& \Rightarrow 0=m(A)
\end{aligned}
$$

$=$ all sets A w/ $m(A)=0$.

$$
\lambda \ll \mu \quad b \notin c \quad \mu((0,1))=0
$$

But $m(C, 1))=1$

$$
\begin{aligned}
& \text { c) } X=\mathbb{Z}^{n}, \mu=\nu, \lambda=\delta \\
& \int g d \delta=\delta h g d \delta+\int h g d \nu \\
& \Rightarrow g(0)=h(0) g(0)+\sum_{x \in \mathbb{Z}^{n}} h(x) g(x) \\
& \Rightarrow g(0)=h(0) g(0)+h(0) g(0)+\sum_{x \in \mathbb{Z}^{n}} h(x) g(x) \\
& x \neq \text { \{o\} } \\
& =0 \quad g(0)=2 h(0) g(0)+\sum_{x \neq\{0\}} h(x) g(x) \\
& h=0 \quad \forall \times \notin 0 \Rightarrow f=\frac{h}{1-h} \\
& h(0)=\frac{1}{2} \\
& =0 \quad \forall x \in \mathbb{Z}^{n} \mid \text { ios } \\
& =1 \text { on } x=0
\end{aligned}
$$

$$
\begin{aligned}
& f=X_{\{0\{ } \\
& \begin{aligned}
& \int_{A} f d v=\delta(A) \Rightarrow \sum_{a \in A} f(a)=\delta(A) \\
& \Rightarrow f(0)+0=\delta(A) \\
& \Rightarrow \quad 1=\delta(A) \\
& \therefore \quad \int_{A} f d \nu=\delta(A) \quad \text { for all } A \subset \mathbb{Z}^{n} \\
& \lambda \ll \mu \quad \text { if } \quad v(B)=0 \Rightarrow B=\varnothing \\
& \Rightarrow \quad \delta(B)=0
\end{aligned}
\end{aligned}
$$

ब)

$$
\begin{aligned}
& \int g d \nu=\int h g d \nu+\int h g d \delta \\
& =0 \sum_{x \in Z^{n}} g(x)=\sum h(x) g(x)+h(0) g(v) \\
& f(0)=1
\end{aligned}
$$

$f=\infty$ everywhere else.
equality holds ie $\int f d \delta=\nu(A)$

$$
\begin{aligned}
& \Rightarrow \quad f(0)=\nu(A) \\
& \Rightarrow \quad 1=\nu(A)
\end{aligned}
$$

$$
\begin{aligned}
& \quad 0 \quad A \subset\{0\} . \\
& \lambda \ll M .
\end{aligned}
$$

e) $\lambda=m, \quad \mu=2$

$$
\begin{aligned}
\lambda \ll \mu \quad \mu(A)=0 & \Rightarrow \quad A=\phi \\
& \Rightarrow m(A)=0 .
\end{aligned}
$$

$\mu=\nu$ is not σ-finite.
That is why anomaly is happening.

