
LEBESGUE, FOURIER AND SOBOLEV

(NOTES FOR FUNCTIONAL ANALYSIS)

CHRIS WENDL

Abstract. The goal of these notes is to establish the basic properties of a sufficiently wide
range of function spaces so as to have a wealth of interesting examples on hand for results in
abstract functional analysis. The reader is assumed to be familiar with the essentials of measure
theory (including dominated convergence and Fubini’s theorem, the change of variables formula,
the definition and completeness of the Lp-spaces, the Hölder and Minkowski inequalities), and
some basic facts about Banach and Hilbert spaces and bounded linear operators (e.g. the fact
that dual spaces of Banach spaces are also Banach spaces, but not any of the deeper results
such as the Baire category or open mapping theorem).
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0. Preliminaries

0.1. Integrals of vector-valued functions. In most of the following, we choose a field K to
be either R or C and consider functions with values in a fixed finite-dimensional inner product
space pV, x , yq over K, with norm denoted by

| ¨ | :“ax¨, ¨y.
The discussion of Fourier analysis starting in §7 will require choosing K “ C, but in most
other places, the differences between the real and complex cases will be negligible, e.g. we will
sometimes need to use the relation

xv ` w, v ` wy “ |v|2 ` 2Rexv,wy ` |w|2,
which is true in both cases, the difference being only that in the real case, the symbol “Re”
is redundant. We adopt the convention that a complex inner product is antilinear in its first
argument and linear in its second:

xiv, wy “ ´ixv,wy, xv, iwy “ ixv,wy.
We will sometimes make use of the fact that a complex vector space is also a real vector space
(of twice the dimension).

Convention. By the standard definition, a measure space pX,A, µq consists of three pieces
of data: a set X, a σ-algebra A Ă 2X and a measure µ : AÑ r0,8s. Since we will almost never
have occasion to talk about the σ-algebra itself, we shall typically omit it from the notation
and simply call pX,µq a measure space, referring when necessary to the elements of A as the
measurable (or µ-measurable) sets.

Given a measure space pX,µq, a function f : X Ñ V is considered measurable if it is Borel
measurable, meaning the preimage of every open subset of V is µ-measurable in X. It is easy
to show that if we choose any real basis e1, . . . , en of V and write f “ řn

j“1 fjej for functions
fj : X Ñ R, then f is measurable if and only if all of the fj are measurable. Similarly, if f is
measurable then |f | : X Ñ r0,8q is also measurable, and in this case the component functions
fj are µ-integrable if and only if

ş
X
|f | dµ ă 8. One can then define the vector-valued integral

(0.1)

ż
X

f dµ “
nÿ

j“1

ˆż
X

fj dµ

˙
ej P V.

We will sometimes also write
ş
X
f pxq dµpxq :“ ş

X
f dµ when we want to specify the name of the

variable x P X.

Exercise 0.1. Show that for µ-integrable functions f : X Ñ V , the integral
ş
X
f dµ P V defined

above is independent of the choice of real basis e1, . . . , en P V .

Exercise 0.2. Show that for every µ-integrable function f : X Ñ V ,
ˇ̌ş
X
f dµ

ˇ̌ ď ş
X
|f | dµ.

The simplest example beyond V “ R is V “ C with the standard inner product xv,wy :“ v̄w.
Here we can take e1 :“ 1 and e2 :“ i as a real basis of C, so f : X Ñ C is measurable/integrable
if and only if its real and imaginary parts are both measurable/integrable, and (0.1) becomesż

X

f dµ “
ż
X

pRe f q dµ` i

ż
X

pIm f q dµ P C.

Remark 0.3. The assumption dimV ă 8 is inessential for much of what follows, though ob-
viously the definition of

ş
X
f dµ P V requires some modification if V has no finite basis. A

definition (using approximation by step functions) for the case where V is an arbitrary Banach
space may be found in [Lan93]. Since many details become more complicated in this more gen-
eral setting, we will stick to the case dimV ă 8 but give occasional remarks on what needs to
be modified in order to lift this assumption.
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0.2. Differentiation under the integral sign. The following standard consequence of the
dominated convergence theorem will be an essential tool to have at our disposal.

Theorem 0.4. Suppose pY, νq is a measure space, M is a metric space, and ϕ :M ˆ Y Ñ V is
a function with the following properties:

(1) For every x P M , the function ϕpx, ¨q : Y Ñ V is measurable and satisfies |ϕpx, ¨q| ď ψ

for some fixed ν-integrable function ψ : Y Ñ r0,8s independent of x;
(2) For every y P Y , the function ϕp¨, yq :M Ñ V is continuous.

Then the function F :M Ñ V given by

F pxq :“
ż
Y

ϕpx, ¨q dν
is continuous. If additionally M is an open subset of Rm with coordinates x “ px1, . . . , xmq and
the partial derivatives Bϕ

Bxj
: M ˆ Y Ñ V exist for every j “ 1, . . . ,m and also satisfy the two

conditions above, then F is continuously differentiable and satisfies

BjF pxq “
ż
Y

Bϕ
Bxj px, ¨q dν

for every x PM and j “ 1, . . . ,m.

Proof. To prove F : M Ñ V is continuous at a point x P M , consider a sequence xn P M

with xn Ñ x. Since ϕp¨, yq : M Ñ V is continuous for every y P Y , the sequence of functions
ϕpxn, ¨q : Y Ñ R converges pointwise to ϕpx, ¨q : Y Ñ R, and by assumption it also satisfies

|ϕpxn, ¨q| ď ψ for all n

for a fixed ν-integrable function ψ : Y Ñ r0,8s. The dominated convergence theorem thus
implies F pxnq Ñ F pxq.

Now suppose additionally thatM “ U Ă Rm is open and Bϕ
Bxj
px, yq exists for all px, yq P UˆY

and defines a function that is (for each fixed y P Y ) continuous with respect to x P U and
(for each fixed x P U) measurable with respect to y P Y , additionally satisfying the boundˇ̌̌ Bϕ
Bxj
px, ¨q

ˇ̌̌
ď ψ for all x P U . Let e1, . . . , em denote the standard basis of Rm. The partial

derivative Bϕ
Bxj
px, yq is then the limit as hÑ 0 of the difference quotients

Dh
j ϕpx, yq :“ ϕpx` hej , yq ´ ϕpx, yq

h
P V,

where for each x P U , the function Dh
j ϕpx, ¨q : Y Ñ V is defined for all h P Rzt0u sufficiently

close to 0. For any sequence hn P Rzt0u with hn Ñ 0, we therefore have

(0.2) Dhn

j ϕpx, ¨q Ñ Bϕ
Bxj px, ¨q pointwise on Y .

For every y P Y and h P R sufficiently close to 0, the fact that ϕp¨, yq is continuously differentiable
with respect to xj allows us to derive a formula for Dh

j ϕpx, yq using the fundamental theorem
of calculus: we have

ϕpx` hej , yq “ ϕpx, yq `
ż 1

0

d

dt
ϕpx` thej , yq dt “ ϕpx, yq ` h

ż 1

0

Bϕ
Bxj px` thej , yq dt,

and thus

(0.3) Dh
j ϕpx, yq “

ż 1

0

Bϕ
Bxj px` thej , yq dt,

giving rise to the bound ˇ̌̌
Dh

j ϕpx, yq
ˇ̌̌
ď
ż 1

0

ψpyq dt “ ψpyq.
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Since ψ is integrable, one can again apply the dominated convergence theorem and obtain a
convergence result for the corresponding difference quotients of F : for any sequence hn P Rzt0u
with hn Ñ 0, we have

Dhn

j F pxq :“ F px` hnejq ´ F pxq
hn

“
ż
Y

Dhn

j ϕpx, ¨q dν Ñ
ż
Y

Bϕ
Bxj px, ¨q dν

Since the sequence hn was arbitrary, this proves

BF
Bxj pxq “ lim

hÑ0
Dh

j F pxq “
ż
Y

Bϕ
Bxj px, ¨q dν,

and the continuity of BF
Bxj

now follows from the same argument as the continuity of F . �

Remark 0.5. The hypotheses of Theorem 0.4 can be weakened (at the cost of more cumbersome
notation) in various ways that are sometimes useful. Most importantly, since the continuity and

differentiability of F are purely local conditions, the bounds |ϕpx, ¨q| ď ψ and
ˇ̌̌ Bϕ
Bxj
px, ¨q

ˇ̌̌
ď ψ do

not really need to hold with a single function ψ for every x PM ; it suffices if every x0 PM has
a neighborhood U Ă M and an associated integrable function ψx0

: Y Ñ r0,8s that bounds
these functions for all x P U . One can also insert the words “almost everywhere” in various
places among the hypotheses, so that certain steps in the proof make sense only after deleting
sets of measure zero from Y , which is harmless. For more elaborate versions of the statement,
see e.g. [AE01, Theorems 3.17 and 3.18]) or [Wen19].

0.3. Some standard function spaces. We shall assume basic knowledge of the spaces of Lp-
functions on measure spaces and Cm-functions on domains in Euclidean space. Let us clarify
the essential definitions.

Assume pX,µq is an arbitrary measure space, and pV, x , yq is again a finite-dimensional inner

product space over K P tR,Cu with norm | ¨ | :“ax¨, ¨y. The Lp-norm of a measurable function
f : X Ñ V is defined for each p P r1,8q by

}f}Lp :“ }f}LppXq :“
ˆż

X

|f pxq|p dµpxq
˙1{p

P r0,8s,
and for the case p “ 8,

}f}L8 :“ }f}L8pXq :“ ess supxPX |f pxq| :“ inf
 
c ě 0

ˇ̌ |f | ď c almost everywhere
( P r0,8s.

We assume the reader is familiar with the standard Minkowski and Hölder inequalities, and
the fact that the space LppX,µq of equivalence classes of measurable functions (defined almost
everywhere) with finite Lp-norms is a Banach space. We will typically abbreviate

LppXq :“ LppX,µq
when the measure is clear from context. Here is a precise statement of the completeness theorem:

Theorem 0.6 (see e.g. [Sal16, §4.2]). For 1 ď p ď 8, every Lp-Cauchy sequence fn P LppXq is
Lp-convergent and also has a pointwise almost everywhere convergent subsequence. In the case
p “ 8, the original sequence also converges pointwise almost everywhere. �

The usual Hölder inequality for real-valued functions combines with the Cauchy-Schwarz
inequality on pV, x , yq and Exercise 0.2 to give the relationˇ̌̌̌ż

X

xf pxq, gpxqy dµpxq
ˇ̌̌̌
ď

ż
X

|xf pxq, gpxqy| dµpxq ď }f}Lp ¨ }g}Lq

for f P LppXq and g P LqpXq with 1
p
` 1

q
“ 1.

Exercise 0.7. In case you have only seen LppXq defined for real-valued functions before, con-
vince yourself that the proof of Theorem 0.6 still goes through when the functions in LppXq take
values in an arbitrary (real or complex) finite-dimensional vector space.
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Exercise 0.8. Show that for every measurable function f : X Ñ V , }f}L8 ď lim infpÑ8 }f}Lp,
and if additionally either µpXq ă 8 or f P LrpXq for some r P r1,8q, then }f}L8 “
limpÑ8 }f}Lp.

Hint: For the case with f P LrpXq for some r ă 8, show that }f}Lp ď }f}r{pLr ¨ }f}1´r{p
L8 holds

for every p ą r. (Note that this is not a version of Hölder’s inequality—it is easier.) Use this to
bound lim suppÑ8 }f}Lp.

When X is an open subset of Euclidean space

X :“ Ω Ă Rn with µ :“ m (Lebesgue measure),

it is often useful to consider functions that need not be in LppΩq but restrict to Lp-functions
on all compact subsets. Since compact subsets of Rn are bounded and therefore have finite
measure, this includes for instance the nontrivial constant functions, which are not in LppΩq
unless mpΩq ă 8. We define the vector space

L
p
locpΩq :“

 
f : ΩÑ V

ˇ̌
f |K P LppKq for all K Ă Ω compact

( L „,
where as usual the equivalence relation f „ g means f “ g almost everywhere on Ω. The
functions in L

p
locpΩq are said to be locally of class Lp, and in the case p “ 1, a function

f P L1
locpΩq is called locally integrable on Ω. The space Lp

locpΩq is strictly larger than LppΩq,
and it is not a Banach space since there is no single norm to determine whether or not a given
function is of class Lp

loc. It does however have a natural topology as a locally convex space,
defined via the family of seminorms

(0.4) }f}LppKq “ }f |K}Lp ,

whereK ranges over the set of all compact subsetsK Ă Ω. Note that these are seminorms rather
than norms, because a function f P Lp

locpΩq may be nontrivial but satisfy }f}LppKq “ 0 because

it vanishes almost everywhere on K. Convergence of a sequence fj Ñ f in Lp
locpΩq means that

}f ´ fj}LppKq Ñ 0 is satisfied for all of these seminorms, which is equivalent to saying that the
restrictions of fj to every compact subset K Ă Ω are convergent in LppKq to f |K.

It is possible to derive the topology of Lp
locpΩq from a countable subfamily of the seminorms

in (0.4). Indeed, Ω can always be covered by a nested sequence

Ω1 Ă sΩ1 Ă Ω2 Ă sΩ2 Ă . . . Ă ď
mPN

Ωm “ Ω

of open subsets Ωm Ă Ω with compact closures Km :“ sΩm, so that any compact subset K Ă Ω
is contained in Ωm for m P N sufficiently large. For a concrete construction of Ωm, one can
for instance define Ωm :“  

x P Ω
ˇ̌ |x| ă m and distpx,RnzΩq ą 1{m(

, where for two subsets
A,B Ă Rn, we denote

distpA,Bq :“ inf
 |x´ y| ˇ̌ x P A, y P B( .

A sequence fj P Lp
locpΩq is then Lp

loc-convergent if and only if it converges in each of the semi-
norms } ¨ }LppKmq for m P N, and similarly, every open subset of Lp

locpΩq is a union of sets of

the form
 
f P Lp

locpΩq
ˇ̌ }f ´ f0}LppKmq ă ǫ

(
for f0 P Lp

locpΩq, m P N and ǫ ą 0. It follows (see

e.g. [RS80, Theorem V.5]) that Lp
locpΩq is metrizable, with open subsets defined via the metric

dpf, gq :“
8ÿ

m“1

1

2m
}f ´ g}LppKmq

1` }f ´ g}LppKmq
.

In fact, Lp
locpΩq is a Fréchet space: completeness follows from the completeness of the Banach

space LppKmq for every m, as a sequence fj P Lp
locpΩq is Cauchy if and only if fj|Km is Cauchy

in LppKmq for every m.
Continuing under the assumption that Ω Ă Rn is an open subset, we shall denote

CmpΩq :“ tf : ΩÑ V m times continuously differentiableu
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for integers m ě 0. This is not a Banach space, but it can be made into one by imposing an
extra boundedness condition. To express this properly, recall that a multi-index for functions
on Rn is an n-tuple α “ pα1, . . . , αnq of nonnegative integers, which can be used to define the
differential operator

Bα :“ Bα1

1 . . . Bαn
n , where Bj :“ B

Bxj for j “ 1, . . . , n.

The order of this operator (also called the order or degree of the multi-index) is |α| :“ α1 `
. . .` αn. We now define the Cm-norm by

}f}Cm :“ }f}CmpΩq :“
ÿ

|α|ďm

sup
xPΩ

|Bαf pxq|,

and let
Cm
b pΩq :“

 
f P CmpΩq ˇ̌ }f}Cm ă 8(

.

Convergence of a sequence fj in the Cm-norm means uniform convergence of fj and all its
derivatives up to order m. By standard results of first-year analysis, Cm

b pΩq with this norm is a

Banach space for every integer m ě 0. A useful subspace of Cm
b pΩq can be defined by1

CmpsΩq :“  
f P Cm

b pΩq
ˇ̌ Bαf is uniformly continuous for all multi-indices α with |α| ď m

(
.

The following exercise explains the motivation for this notation.

Exercise 0.9. Let sΩ Ă Rn denote the closure of the open subset Ω Ă Rn.

(a) Show that if f : Ω Ñ R is uniformly continuous, then it admits a (necessarily unique)
continuous extension over sΩ. (Note that the converse is also true if Ω is bounded, since
continuous functions on compact sets are always uniformly continuous.)

(b) Show that CmpsΩq is a closed subspace of Cm
b pΩq, hence it is a Banach space with the

Cm-norm.

In particular, CmpsΩq can be characterized as the space of Cm-functions on Ω whose derivatives
up to orderm all admit bounded continuous extensions to sΩ. (The word “bounded” is redundant
here if Ω itself is bounded, since sΩ is then compact.)2

For smooth (i.e. infinitely differentiable) functions, we define

C8pΩq :“ č
mě0

CmpΩq, C8
b pΩq :“

č
mě0

Cm
b pΩq,

and endow the latter with the locally convex topology defined via the entire sequence of norms
} ¨ }Cm for m ě 0, hence a sequence fj P C8

b pΩq is C8-convergent if and only if its derivatives of
all orders are uniformly convergent. One could similarly define C8psΩq, but this turns out to be
the same space as C8

b pΩq since the boundedness of the derivatives of orderm`1 implies uniform
continuity for derivatives of order m. Since the family of Cm-norms for m ě 0 is countable,
one can define a metric on C8

b pΩq in the same manner that we did so for Lp
locpΩq, and the

completeness of Cm
b pΩq for each m ě 0 implies that C8

b pΩq is a Fréchet space.
The Cm-topologies also have local variants, which are defined on CmpΩq without requiring any

boundedness condition: we say that a sequence fj P CmpΩq is Cm
loc-convergent to f P CmpΩq

if
}f ´ fj}CmpKq :“

ÿ
|α|ďm

max
xPK |Bαf pxq ´ Bαfjpxq| Ñ 0

for every compact subset K Ă Ω. As with Lp
locpΩq, one can use an exhaustion of Ω by a nested

sequence of open subsets with compact closure to characterize this notion of convergence via

1There is potential ambiguity in the notation when Ω “ Rn since Rn is its own closure, but CmpsRnq is
nonetheless a smaller space than CmpRnq.

2If sΩ is compact and has a sufficiently “nice” boundary, meaning for instance that the boundary is a Cm-smooth
submanifold of Rn, then one can show with somewhat more effort that CmpsΩq is the space of Cm-functions on Ω
that admit extensions of class Cm over some open neighborhood of sΩ; for details, see [AF03, §5.19–§5.21].



8 CHRIS WENDL

a countable family of seminorms, making CmpΩq into a Fréchet space with the Cm
loc-topology.

There is similarly a C8
loc-topology on C8pΩq, in which sequences converge if and only if their

derivatives of all orders converge on compact subsets, and this endows C8pΩq with a natural
Fréchet space structure. Note that for each m P NY t0,8u, Cm

loc-convergence is a much weaker
notion than Cm-convergence, i.e. many sequences converge in Cm

loc but not in Cm, and the
behavior of a Cm

loc-convergent sequence “near infinity” can be arbitrarily wild.
The support supppf q Ă Ω of a function f : ΩÑ V is the closure of the set tx P Ω | f pxq ‰ 0u.

We will denote
Cm
0 pΩq :“

 
f P CmpΩq ˇ̌ supppΩq Ă Ω is compact

(
.

This is a subspace of both of the Banach spaces Cm
b pΩq and CmpsΩq, though not a closed subspace

in either case, as a sequence of functions with growing compact supports can easily be Cm-
convergent to one whose support is not compact.



LEBESGUE, FOURIER AND SOBOLEV 9

1. Uniform convexity

1.1. Convexity in Banach spaces. A subset K in a vector space X is called convex if K
contains the line segment joining any two of its points (see Figure 1), i.e.

x, y P K ñ tx` p1´ tqy P K for every t P r0, 1s.
Similarly, a function f : K Ñ R on a convex set K Ă X is called convex if for every pair of
points in its domain, the values of f along the line segment between those points are bounded by
the corresponding “convex combinations” of its values at the end points (Figure 2); concretely,

(1.1) @x, y P K and t P r0, 1s, f ptx` p1´ tqyq ď tf pxq ` p1´ tqf pyq.
It is straightforward to show that if f is convex, then f´1pp´8, aqq and f´1pp´8, asq are convex
subsets for every a P R. We say additionally that f is strictly convex if the inequality in (1.1)
is strict for all t P p0, 1q whenever x ‰ y.

Example 1.1. By a standard exercise in first-year analysis, if U Ă Rn is an open convex set,
then a C2-function f : U Ñ R is convex (or strictly convex) if and only if its Hessian at every
point is positive semidefinite (or positive definite, respectively).

Figure 1. The two sets on the left are convex, while the set on the right is not.
The set in the middle is convex but not strictly convex, i.e. it contains a segment
connecting boundary points that does not stay in the interior. In particular, if
this set occurs as the closed unit ball in some normed vector space, it implies
that that space is not strictly (and therefore not uniformly) convex.

xx yy tx` p1´ tqytx` p1´ tqy

tf pxq ` p1´ tqf pyq
tf pxq ` p1´ tqf pyq

Figure 2. The function f : R Ñ R on the left is convex, and the function on
the right is not.
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Example 1.2. For any normed vector space pX, }¨}q and x0 P X, the triangle inequality implies
that the function X Ñ r0,8q : x ÞÑ }x ´ x0} is convex. As a consequence, (closed or open)
balls about points in a normed vector space are always convex sets. This remains true if the
norm is replaced by a seminorm, and is the reason why a topological vector space with topology
generated by a family of seminorms is called a locally convex space.

Strict and uniform convexity are geometric properties of normed vector spaces that strengthen
the observation in Example 1.2 about balls B Ă X being convex—the idea is to require that the
segment joining any two points in the ball stays in the interior of the ball. This is a nontrivial
condition on the “shape” of the unit ball as determined by the norm, and it is not satisfied by
every norm (see Exercise 1.6 below). In the following, we denote the closed unit ball and unit
sphere in a normed vector space pX, } ¨ }q bysB :“ tx P X | }x} ď 1u , and B sB :“ tx P X | }x} “ 1u
respectively, and denote the distance between two subsets U ,V Ă X by

distpU ,Vq :“ inf t}x´ y} | x P U , x P Vu .
Definition 1.3. A normed vector space pX, } ¨ }q is called strictly convex if

x, y P sB with x ‰ y ñ tx` p1´ tqy P sBzB sB @t P p0, 1q.
The middle picture in Figure 1 gives an example of something one might imagine the unit ball

looking like in a normed vector space that is not strictly convex. The next definition amounts
to a quantitative version of strict convexity, in which the distance of the midpoint between x

and y to the boundary cannot become arbitrarily small unless x and y are close.

Definition 1.4. A normed vector space pX, } ¨ }q is called uniformly convex if for every ǫ ą 0,
there exists δ ą 0 such that

x, y P sB with }x´ y} ě ǫ ñ dist

ˆ
x` y

2
, B sB˙

ě δ.

Observe that every uniformly convex space is clearly also strictly convex.

Remark 1.5. The definition of uniform convexity appears in many references with a weaker
condition on x and y, namely that they lie in B sB instead of sB. The resulting notion is equivalent
to our definition; for a proof of this, see [Tes, Lemma 5.20]. This detail will not concern us since,
for all uniformly convex spaces that we actually encounter, the apparently stronger condition is
not any more difficult to prove than the weaker one. On the other hand, our main application
of uniform convexity, Theorem 1.8 below, only uses the weaker condition.

Exercise 1.6. For vectors x “ px1, . . . , xnq in Rn, consider the norms

|x|p :“
˜

nÿ
j“1

x
p
j

¸1{p
for 1 ď p ă 8, |x|8 :“ maxt|x1|, . . . , |xn|u.

(a) Show (by drawing pictures of the unit ball) that pRn, | ¨ |1q and pRn, | ¨ |8q are not strictly
convex.

(b) Show that the spaces of real-valued functions of class L1 or L8 on any measure space
are not strictly convex. (Note that this implies part (a) if you take the measure space
to be t1, . . . , nu with the counting measure.)

We will see in §2.3 that all Lp-spaces for 1 ă p ă 8 are uniformly convex; this of course
includes the examples pRn, | ¨ |pq defined in Exercise 1.6. Notice that uniform convexity is not a
property of the equivalence class of a norm but rather of the norm itself—indeed, all norms on
Rn are equivalent, but some are uniformly convex and some are not.

Proposition 1.7. Every inner product space pX, x¨, ¨yq is uniformly convex.
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x

kn

km

K

kn`km
2

Figure 3. The geometric setup behind the proof of Theorem 1.8.

Proof. Denoting the norm by } ¨ } :“ ax¨, ¨y, a straightforward computation yields the paral-
lelogram identity,

(1.2) }v ` w}2 ` }v ´ w}2 “ 2}v}2 ` 2}w}2 @v,w P X,
which for }v} ď 1 and }w} ď 1 implies the relation

1

4
}v ´ w}2 ď 1´

››››v `w

2

››››2 .
This gives a concrete upper bound on }v´w} in terms of the distance from v`w

2
to the boundary

of the unit ball. �

The following theorem on uniformly convex Banach spaces is a useful source of existence
results, and will play a key role in characterzing the duals of Hilbert spaces and Lp-spaces.

Theorem 1.8. Assume pX, } ¨ }q is a uniformly convex Banach space, K Ă X is a closed convex
subset and x P XzK. Then the function K Ñ p0,8q : k ÞÑ }k ´ x} attains a unique global
minimum.

If dimX ă 8, then Theorem 1.8 follows easily from the fact that since closed and bounded
subsets of X are compact, K Ñ p0,8q : k ÞÑ }k ´ x} is a proper function: one only has to take
a sequence kn P K with }kn ´ x} Ñ inft}k ´ x} ˇ̌

k P Ku and use compactness to extract a
convergent subsequence, whose limit is the desired minimum. This argument completely falls
apart if dimX “ 8, because closed bounded subsets are no longer compact. One must instead
appeal to the completeness of X, using the idea represented in Figure 3: suppose kn, km P K
both have distances to x that are close to the infimum. After rescaling the whole picture, we can
assume without loss of generality that kn´x and km´x are both in the unit ball, in which case

so is the midpoint pkn´xq`pkm´xq
2

“ kn`km
2

´ x, where kn`km
2

also lies in K since K is convex.

By assumption,
››kn`km

2
´ x

›› cannot be that much smaller than }kn ´ x} and }km ´ x}, since
both of the latter were already close to the infimum, hence kn`km

2
´ x cannot be too far away

from the boundary of the unit ball. But in that case, uniform convexity implies that kn ´ x

and km ´ x must be close, or equivalently, kn and km must be close. We will use a version of
this argument in the following to show that kn is a Cauchy sequence, and thus converges to an
element that attains the minimum.
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Proof of Theorem 1.8. Let I :“ inf
 }k ´ x} ˇ̌ k P K(

, choose a sequence kn P K with In :“
}kn ´ x} Ñ I, and let

zn :“ kn ´ x

In
“ kn ´ x

I
` I ´ In

I
zn,

which defines a sequence in the unit sphere of X. If ǫ ą 0 is given, we can choose N P N such
that In ă I ` ǫ for all n ě N . For any m,n ě N , the fact that K is convex implies km`kn

2
P K,

thus it satisfies ››››pkm ´ xq ` pkn ´ xq
2

›››› “ ››››km ` kn

2
´ x

›››› ě I,

which implies››››zm ` zn

2

›››› “ ››››1I pkm ´ xq ` pkn ´ xq
2

` I ´ Im

2I
zm ` I ´ In

2I
zn

›››› ě 1´ ǫ

I
.

Since the latter can be made arbitrarily close to 1 by choosing ǫ ą 0 small, uniform convexity now
implies that }zm´ zn} can be assumed arbitrarily small for N large, so zn is a Cauchy sequence
and therefore converges to some z8 P X. It follows that kn converges to k8 :“ x ` Iz8, and
since K is a closed set, k8 P K. Clearly }x´ k8} “ I.

The uniqueness of the minimum follows almost immediately since, if k0, k1 P K are two
minimums, then the argument above shows that k0, k1, k0, k1, . . . is a Cauchy sequence, implying
k0 “ k1. �

1.2. Orthogonal complements in Hilbert space. Our first concrete application of uniform
convexity is to prove a fundamental geometric fact about Hilbert spaces. Assume in this section
that pH, x , yq is a Hilbert space over K P tR,Cu, and denote its norm by } ¨ } :“ax¨, ¨y.

Given a linear subspace V Ă H, the orthogonal complement of V is defined as

V K :“  
x P H

ˇ̌ xx, vy “ 0 for all v P V ( .
Theorem 1.9. If V is a closed linear subspace of the Hilbert space H, then every x P H can be
written as v ` w for unique elements v P V and w P V K; symbolically, we write

H “ V ‘ V K.

Theorem 1.9 is a classic example of a result that is very familiar in finite dimensions and
sounds obvious, but is actually quite nontrivial in the general case. In particular, it depends in
essential ways on the completeness of H and the assumption that V Ă H is closed. To see the
latter, recall that while many functions f : Rn Ñ V of class L2 are not continuous, the space of
continuous functions of class L2 is dense in the Hilbert space L2pRnq; we will review this fact
in §5. One can therefore use the Cauchy-Schwarz inequality to argue that if g is any function
L2-orthogonal to every continuous function in L2pRnq, then g is in fact orthogonal to everything
in L2pRnq, implying g “ 0. In other words, C0pRnq X L2pRnq is a proper subspace of L2pRnq
whose orthogonal complement is the trivial subspace, thus not every L2-function can be written
as the sum of one that is continuous plus one that is orthogonal to the continuous functions.
Viewing C0pRnq X L2pRnq itself as an inner product space with the L2-inner product, one can
also find closed proper subspaces of C0pRnqXL2pRnq whose orthogonal complements are trivial,
showing that the completeness of H is also an indispensable assumption.

Proof of Theorem 1.9. The uniqueness of the decomposition x “ v`w with v P V and w P V K is
immediate from the nondegeneracy of the inner product: if it were not unique, then two distinct
decompositions x “ v`w “ v1`w1 would give rise to a nontrivial vector v´v1 “ w1´w P V XV K,
which is impossible since every nonzero y P V satisfies xy, yy ą 0.

For existence, observe that there is nothing to prove if x P V , so assume x P HzV . Since
H is a complete inner product space, Proposition 1.7 implies that it is also a uniformly convex
Banach space; moreover, the subspace V Ă H is a convex set that is closed by assumption.
Theorem 1.8 thus implies the existence of an element v P V that is nearest to x, and we claim
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that w :“ x´ v then lies in V K. Indeed, for any h P V , the fact that }x´ v}2 “ xx´ v, x ´ vy
minimizes the distance from x to V implies

0 “ d

dt
}x´ pv ` thq}2

ˇ̌̌̌
t“0

“ d

dt
xx´ pv ` thq, x´ pv ` thqy

ˇ̌̌̌
t“0

“ d

dt
xw ´ th,w ´ thy

ˇ̌̌̌
t“0

“ d

dt

`}w}2 ´ 2tRexw, hy ` t2}h}2˘ˇ̌̌̌
t“0

“ ´2Rexw, hy,
where the symbol “Re” is redundant in the case K “ R, and the result is then simply xw, hy “ 0.
In the complex case, we can plug in ih P V instead of h, so that the same computation also gives

0 “ ´2Rexw, ihy “ ´2Re pixw, hyq “ 2 Imxw, hy,
and the conclusion is again xw, hy “ 0 for all h P V , as claimed. �

Recall that the dual space H˚ of H is the space of all bounded linear functionals Λ : HÑ K,
endowed with the operator norm

}Λ} :“ sup
vPHzt0u

|Λpvq|
}v} .

The Cauchy-Schwarz inequality |xv,wy| ď }v} ¨ }w} implies that every v P H gives rise to a
bounded linear functional Λv : H Ñ K defined by Λvpxq :“ xv, xy, which satisfies }Λv} “ }v}
since the maximum of Λvpxq

}x} is attained by x :“ v. The following is one of at least three results

that are often called the Riesz representation theorem, all of which give concrete characterizations
of the dual spaces of certain classes of Banach spaces. Its content in the present setting is that
all bounded linear functionals on H are of the type described above.

Theorem 1.10 (Riesz representation theorem for Hilbert spaces). The real-linear3 map H Ñ
H˚ : v ÞÑ Λv :“ xv, ¨y is a bijection.

Proof. The injectivity of the map H Ñ H˚ : v ÞÑ Λv “ xv, y is clear since Λvpvq “ }v}2 ą 0
for all v ‰ 0. The main step is thus to prove surjectivity, i.e. given any Λ P H˚, we need to
find v P H such that xv, y “ Λ. The idea is to look for v in the orthogonal complement of the
subspace

K :“ ker Λ Ă H.

The latter is a closed subspace since, by the continuity of Λ, any convergent sequence xn Ñ x

in H with Λpxnq “ 0 for all n implies Λpxq “ 0. Since the problem is trivial if Λ “ 0, suppose
there exists x P H with Λpxq ‰ 0, and after multiplication with a scalar, assume without loss of
generality Λpxq “ 1. By Theorem 1.9, we can write x “ k ` w for unique elements k P K and
w P KK, which satisfy Λpwq “ Λpkq ` Λpwq “ Λpk ` wq “ Λpxq “ 1. We claim that

v :“ w

}w}2 P H

is the element we are looking for. Indeed, xv, ky “ 0 “ Λpkq “ 0 for all k P K, and xv,wy “ 1 “
Λpwq, so the result now follows from the purely algebraic observation that K is a subspace of
codimension 1 which does not contain w, implying that every x P H can be written uniquely as
cw ` k for some c P K and k P K. �

3Due to the conventions of complex inner product spaces, the map H Ñ H
˚ : v ÞÑ Λv in the case K “ C is not

complex linear, but is instead complex antilinear.
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2. Duality in Lp-spaces

2.1. The pairing of Lp and Lq. For this section, assume pX,µq is an arbitrary measure
space, and pV, x , yq is (as in §0) a finite-dimensional inner product space over K P tR,Cu with

norm | ¨ | :“ ax¨, ¨y. Our aim is to prove a characterization of the space pLppXqq˚ of bounded
linear functionals LppXq Ñ K which, like Theorem 1.10, is also sometimes called the Riesz
representation theorem. To prepare the statement, notice that whenever 1 ď p, q ď 8 with
1
p
` 1

q
“ 1, Hölder’s inequality gives rise to a real-linear map

(2.1) LqpXq Ñ pLppXqq˚ : g ÞÑ Λg :“
ż
X

xg, ¨y dµ

satisfying }Λg}pLpq˚ ď }g}Lq , where } ¨ }pLpq˚ denotes the operator norm on bounded linear
operators LppXq Ñ K.

Lemma 2.1. Assume 1 ď p, q ď 8, 1
p
` 1

q
“ 1 and, additionally, either p ă 8 or X is σ-finite.4

Then for every f P LppXq,
sup

gPLqpXqzt0u

ˇ̌ş
X
xg, fy dµˇ̌
}g}Lq

“ }f}Lp,

and the ratio on the left hand side attains its maximum in the case p ă 8.

Proof. Hölder’s inequality implies that the ratio in question can never be greater than }f}Lp.
There is nothing to prove if f “ 0, so assume f P LppXq is nontrivial. If p ă 8, we define
g : X Ñ V by g :“ |f |p´2f at points where f ‰ 0 and g :“ 0 otherwise. Then g satisfies |g| “ 1

almost everywhere if p “ 1, and in the other cases, |g|q “ |f |qpp´1q “ |f |p, thus g P LqpXq andż
X

xg, fy dµ “
ż
X

|f |p dµ “ }f}pLp “ `}f}pLp

˘ p´1

p ¨ }f}Lp “ `}g}qLq

˘1´ 1

p ¨ }f}Lp “ }g}Lq ¨ }f}Lp ,

so this choice of g P LqpXq maximizes the ratio in question.
In the case p “ 8 and q “ 1, we argue by contradiction and suppose that }f}L8 is strictly

greater than the supremum of
ˇ̌ş
X
xg, fy dµˇ̌ {}g}L1 over all g P L1pXqzt0u. Then there exists a

constant c strictly greater than this supremum such that the set A1 :“  
x P X ˇ̌ |f pxq| ě c

(
has

positive measure. Assuming X is σ-finite, there also exists a subset A Ă A1 with 0 ă µpAq ă 8,
and the function g defined as f{|f | on A and 0 everywhere else is then in L1pXq, with }g}L1 “
µpAq. Since |f | ě c ą ˇ̌ş

X
xg, fy dµˇ̌ {}g}L1 on A, we now find the contradiction,ˇ̌̌̌ż

X

xg, fy dµ
ˇ̌̌̌
“
ż
A

|f | dµ ě µpAq ¨ c “ }g}L1 ¨ c ą
ˇ̌̌̌ż

X

xg, fy dµ
ˇ̌̌̌
.

�

Corollary 2.2. For every 1 ď p, q ď 8 with 1
p
` 1

q
“ 1, if either p ą 1 or X is σ-finite, then the

bounded real-linear map (2.1) is injective and satisfies }Λg}pLpq˚ “ }g}Lq for all g P LqpXq. �

Exercise 2.3. Show that for any f P L8pXq satisfying |f | ă }f}L8 almost everywhere, the
inequality

ˇ̌ş
X
xg, fy dµˇ̌ ď }g}L1 ¨ }f}L8 is strict for every g P L1pXqzt0u.

Here is the hard part:

Theorem 2.4 (Riesz representation theorem for Lp). The map (2.1) is bijective for all 1 ă
p, q ă 8 with 1

p
` 1

q
“ 1, and also for p “ 1 and q “ 8 if X is σ-finite.

4Certain measure-theoretic pathologies can arise in the case p “ 8 that are excluded if we assume X is σ-finite.
This is not the most general assumption possible, but it suffices for all applications we will want to consider. For
more general versions of the results in this section involving duality between L1pXq and L8pXq, see [Sal16, §4.5].
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Remark 2.5. In the case K “ C, the map LqpXq Ñ pLppXqq˚ in (2.1) is complex antilinear and
thus is not, strictly speaking, an isomorphism of complex Banach spaces. However, one can also
define a space pLppXqq1 consisting of all bounded complex-antilinear functionals Λ : LppXq Ñ C

and consider a complex-linear map defined by

(2.2) LqpXq Ñ pLppXqq1 : g ÞÑ Λ1g :“
ż
X

x¨, gy dµ.
It is an easy exercise to check that this map is bijective whenever (2.1) is, so under the same
hypotheses as Theorem 2.4, it is a complex Banach space isomorphism.

The proof of Theorem 2.4 given below follows the same strategy as our proof of the corre-
sponding statement about Hilbert spaces in Theorem 1.10. The crucial idea in the latter was
that given a nontrivial dual vector Λ P H˚ for a Hilbert space H, the right place to search for
elements x with Λ “ xx, ¨y is in the orthogonal complement of the closed hyperplane ker Λ Ă H.
While the notion of orthogonality does not make sense in LppXq for p ‰ 2, Hölder’s inequality
furnishes us with a reasonable substitute in the form of the natural pairing of Lp with Lq for
1
p
` 1

q
“ 1; informally, we can thus regard the orthogonal complement of a subspace in LppXq

as a subspace of LqpXq. With this notion in mind, the main task is then to prove, as we did
for Hilbert spaces in §1.2, that a proper closed subspace K Ă LppXq always has a nontrivial
orthogonal complement. Our proof of this in the Hilbert space setting required two fundamental
ingredients:

(1) The uniform convexity of every Hilbert space H;
(2) The differentiability of the function t ÞÑ }x` tv}2 for any x, v P H.

Both were easy to prove using the characterization of the Hilbert space norm via an inner
product, but since the latter is not available in LppXq for p ‰ 2, we will have to work a bit
harder.

Recall that every Banach space pE, } ¨ }q has a canonical continuous inclusion into the dual of
its dual space, defined by

Φ : E Ñ E˚˚, ΦpvqΛ :“ Λpvq for v P E, Λ P E˚.
The injectivity of this map for general Banach spaces is not so obvious, though for E “ LppXq
with p ă 8, it is an easy consequence of the following corollary of Lemma 2.1. Outside of these
special cases, it follows immediately from the Hahn-Banach theorem (see [RS80, §III.3]), whose
standard proof uses the axiom of choice.

Lemma 2.6. For every normed vector space pE, } ¨ }q and every x P E, there exists a dual vector
Λ P E˚ with }Λ} “ 1 and Λpxq “ }x}.
Proof for E “ LppXq with p ă 8. Given f P LppXq, choose Λ :“ Λg P pLppXqq˚ for g P LqpXq
as in Lemma 2.1, then normalize g. �

Corollary 2.7. For every Banach space pE, }¨}q, the canonical map Φ : E Ñ E˚˚ is an injective
isometry, i.e. it satisfies }Φpxq} “ }x} for every x P E. �

One calls pE, } ¨ }q reflexive if the inclusion Φ : E ãÑ E˚˚ is also surjective. For E “ LppXq
with 1 ă p ă 8 and 1

p
` 1

q
“ 1, Theorem 2.4 identifies E˚ with LqpXq and then identifies

E˚˚ in turn with LppXq, so that under these identifications, Φ : E Ñ E˚˚ becomes a map
LppXq Ñ LppXq uniquely determined by5ż

X

xΦpf q, gy dµ “
ż
X

xf, gy dµ for all g P LqpXq.

5One needs to be a bit careful with this argumentation in the case K “ C, because the bijection E˚ – LqpXq is
then complex antilinear rather than linear, so substituting LqpXq for E˚ identifies E˚˚ with the space pLqpXqq1
of bounded complex-antilinear maps LqpXq Ñ C instead of the actual dual space of LqpXq. As mentioned in
Remark 2.5, however, the Riesz representation identifies the latter complex-linearly with LppXq.
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This implies that
ş
X
xΦpf q ´ f, gy dµ vanishes for all g P LqpXq, proving that the function

Φpf q ´ f P LppXq is identified with the trivial element of pLqpXqq˚, which makes Φ : LppXq Ñ
LppXq the identity map.

Corollary 2.8. For 1 ă p ă 8, LppXq is reflexive. �

Remark 2.9. Reflexivity is in fact a general property of uniformly convex Banach spaces, by the
Milman-Pettis theorem; see e.g. [RS80, Problem V.15].

Theorem 2.4 is false for p “ 8 and q “ 1; the dual of L8pXq is generally a larger space
than can be described via such a pairing. One can see this by comparing Lemma 2.6 with
Exercise 2.3: there exist nontrivial functions f P L8pXq for which an element Λ P pL8pXqq˚
with }Λ}pL8q˚ “ 1 satisfying |Λpf q| “ }f}L8 must exist, but the strictness of the inequality

in Exercise 2.3 implies that Λ cannot be represented by any function in L1pXq.6 For more
counterexamples, see also [Rud87, Chapter 6, Exercise 13] or [Sal16, Example 4.36]. It follows
that L1pXq is not reflexive, and by the next exercise, neither is L8pXq.
Exercise 2.10. For a Banach space E, let ΦE : E ãÑ E˚˚ and ΦE˚ : E˚ ãÑ E˚˚˚ denote the
canonical inclusions, and denote by ΦE̊ : E˚˚˚ Ñ E˚ the transpose of ΦE .

(a) Show that ΦE̊ ˝ ΦE˚ is the identity map on E˚.
(b) Show that the image of ΦE is always a closed subspace of E˚˚.
(c) Deduce that E˚ is reflexive if and only if E is reflexive.

Hint: Another easy consequence of the Hahn-Banach theorem is that if A : X Ñ Y

is a bounded linear operator between Banach spaces such that imA Ă Y is closed and
A˚ : Y ˚ Ñ X˚ is injective, then A is surjective.

2.2. Differentiability of the norm. Let us examine whether the function }f ` tg}pLp can be
differentiated with respect to t P R for f, g P LppXq. Assume in the following

1 ă p ă 8.
For v,w P V and t P R with v ` tw ‰ 0, the differentiability of the function x ÞÑ xp{2 for x ‰ 0
implies

d

dt
|v ` tw|p “ d

dt
xv ` tw, v ` twyp{2

“ p

2
xv ` tw, v ` twy p

2
´1 ¨ d

dt

`|v|2 ` 2tRexv,wy ` t2|w|2˘
“ p|v ` tw|p´2

`
Rexv,wy ` t|w|2˘ “ p|v ` tw|p´2 ¨Rexv ` tw,wy.

(2.3)

Notice that by the Cauchy-Schwarz inequality on pV, x , yq, the right hand side of this expression
satisfies ˇ̌̌

p|v ` tw|p´2 ¨ Rexv ` tw,wy
ˇ̌̌
ď p|v ` tw|p´1 ¨ |w|,

whenever v` tw ‰ 0. Since p ą 1, one can therefore sensibly define the right hand side of (2.3)
to be 0 when v ` tw “ 0, and the relation remains correct since in this case

d

dt
|v ` tw|p “ d

ds
|pv ` twq ` sw|p

ˇ̌̌̌
s“0

“ d

ds
|s|p|w|p

ˇ̌̌̌
s“0

“ |w|p lim
sÑ0

|s|p
s

“ 0.

6Quoting Lemma 2.6 for L8pXq means we are relying on the Hahn-Banach theorem, which is
inherently non-constructive, i.e. it guarantees the existence of an element in pL8pXqq˚zL1pXq as
an artefact of the axioms of set theory, but gives no hint how one could ever write one down.
In fact, all proofs that pL8pXqq˚zL1pXq ‰ H are non-constructive in this sense. Readers who
wish to explore this particular set-theoretic rabbit hole may consult [Sch99, Chapter 14]; see also
https://mathoverflow.net/questions/5351/whats-an-example-of-a-space-that-needs-the-hahn-banach-theorem.

https://mathoverflow.net/questions/5351/whats-an-example-of-a-space-that-needs-the-hahn-banach-theorem
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With this understood, for any given f, g P LppXq, differentiation under the integral sign now
suggests the formula

d

dt
}f ` tg}pLp “ d

dt

ż
X

|f pxq ` tgpxq|p dµpxq “
ż
X

d

dt
|f pxq ` tgpxq|p dµpxq

“
ż
X

p|f pxq ` tgpxq|p´2 ¨Rexf pxq ` tgpxq, gpxqy dµpxq,
(2.4)

where the same application of the Cauchy-Schwarz inequality interprets the integrand on the
right as 0 whenever f pxq ` tgpxq “ 0. Let us use Theorem 0.4 to justify this formula at
t “ 0. Set pY, νq :“ pX,µq and M :“ p´1, 1q Ă R and define ϕ : p´1, 1q ˆ X Ñ V by

ϕpt, xq :“ |f pxq ` tgpxq|p, so Bϕ
Bt pt, xq is given by the integrand on the right hand side of (2.4).

Both ϕ and Bϕ
Bt are then continuous functions of t P p´1, 1q for every fixed x P X. For every

fixed t P p´1, 1q, they also satisfy

(2.5) |ϕpt, xq| ď p|f pxq| ` |gpxq|qp

and

(2.6)

ˇ̌̌̌Bϕ
Bt pt, xq

ˇ̌̌̌
ď p p|f pxq| ` |gpxq|qp´1 ¨ |gpxq|.

By Minkowski’s inequality,ż
X

p|f pxq| ` |gpxq|qp dµpxq “ ››|f | ` |g|››p
Lp ď p}f}Lp ` }g}Lpqp ă 8,

thus the right hand side of (2.5) defines a µ-integrable function on X. It follows in turn that

the function p|f | ` |g|qp´1 is of class Lp{pp´1q on X, and since p´1
p
` 1

p
“ 1, Hölder’s inequality

implies that the right hand side of (2.6) is also µ-integrable. The hypotheses of Theorem 0.4
are thus satisfied, and we conclude:

Lemma 2.11. For any f, g P LppXq with 1 ă p ă 8, the function R Ñ r0,8q : t ÞÑ }f ` tg}pLp

is differentiable and satisfies

d

dt
}f ` tg}pLp

ˇ̌̌̌
t“0

“ p

ż
X

|f |p´2 ¨Rexf, gy dµ.

�

2.3. Uniform convexity of Lp. In order to prove that LppXq is uniformly convex for 1 ă p ă
8, we begin with the observation that the function

V Ñ R : v ÞÑ |v|p

is strictly convex for all p P p1,8q. One can show this by computing that its Hessian is positive
definite everywhere outside of the origin; at the origin it may fail to have second derivatives,
but it is then easy enough to check the convexity condition along segments connecting 0 to any
other point. It follows that the function

(2.7) ψ : V ˆ V Ñ R : pv,wq ÞÑ |v|p ` |w|p
2

´
ˇ̌̌̌
v ` w

2

ˇ̌̌̌p
is nonnegative everywhere, and strictly positive whenever v ‰ w. For any constant ǫ ą 0, its
restriction to the compact subset

K :“  pv,wq P V ˆ V
ˇ̌ |v ´ w|p ě ǫ and |v|p ` |w|p ď 1

(
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therefore satisfies ψ|K ě δ for some constant δ ą 0.7 Now if v,w P V are any elements with

v ‰ w, set τ :“ p|v|p ` |w|pq1{p ą 0, v1 :“ v{τ and w1 :“ w{τ , so |v1|p ` |w1|p “ 1, and the
condition |v1 ´ w1|p ě ǫ is equivalent to |v ´ w|p ě ǫτp. Under this condition, ψpv1, w1q ě δ

becomes ψpv,wq ě δτp, which proves:

Lemma 2.12. Given any p P p1,8q and ǫ ą 0, there exists δ ą 0 such that the function ψ in
(2.7) satisfies

|v ´ w|p ě ǫ p|v|p ` |w|pq ñ ψpv,wq ě δ p|v|p ` |w|pq @v,w P V.
�

Exercise 2.13. Extract from Lemma 2.12 a new proof that pV, x , yq is uniformly convex.

The uniform convexity of LppXq is an easy application of the following estimate.

Theorem 2.14. Given any p P p1,8q and ǫ ą 0, there exists δ ą 0 such that for all f, g P LppXq,
}f}pLp ` }g}pLp

2
´
››››f ` g

2

››››p
Lp

ě δ
“}f ´ g}pLp ´ ǫ

`}f}pLp ` }g}pLp

˘‰
.

Proof. Given f, g P LppXq and ǫ ą 0, decompose X into the subsets

A :“  
x P X ˇ̌ |f pxq ´ gpxq|p ě ǫ p|f pxq|p ` |gpxq|pq( , Ac “ XzA.

For x P A, we have ψpf pxq, gpxqq ě δ0 p|f pxq|p ` |gpxq|pq for some constant δ0 ą 0 provided by
Lemma 2.12. Now using the fact that |f ´ g|p ă ǫ p|f |p ` |g|pq on Ac, while ψpf, gq ě 0 andˇ̌̌
f´g
2

ˇ̌̌p “ ˇ̌̌
f`p´gq

2

ˇ̌̌p ď |f |p`|g|p
2

hold everywhere, we estimate

}f}pLp ` }g}pLp

2
´
››››f ` g

2

››››p
Lp

ě
ż
A

ψpf, gq dµ ě δ0

ż
A

p|f |p ` |g|pq dµ ě δ0

2p´1

ż
A

|f ´ g|p dµ

“ δ0

2p´1

ˆ
}f ´ g}pLp ´

ż
Ac

|f ´ g|p dµ
˙

ě δ0

2p´1

ˆ
}f ´ g}pLp ´ ǫ

ż
Ac

p|f |p ` |g|pq dµ
˙

ě δ0

2p´1

`}f ´ g}pLp ´ ǫ
`}f}pLp ` }g}pLp

˘˘
.

Set δ :“ δ0{2p´1. �

Corollary 2.15. For 1 ă p ă 8, LppXq is uniformly convex. �

Remark 2.16. The notion of uniform convexity and Corollary 2.15 are originally due to Clarkson
[Cla36], and the literature contains many other proofs based on more powerful inequalities than
in Theorem 2.14; see for instance [LL01, §2.5], which uses Hanner’s inequality. Our proof has
been adapted from [Shi18].

7Recall from Remark 0.3 that we are assuming dimV ă 8, and we are using that assumption here in order to
say that K is compact. However, if V is an infinite-dimensional Hilbert space, then one can fix an orthonormal
basis, single out two basis vectors e1, e2 P V and then argue as follows: if pvn, wnq P K is a sequence such that
ψpvn, wnq Ñ 0, then by choosing suitable new orthonormal bases for each n, we can transform each pvn, wnq
by isometries of pV, x , yq (which leave both K and ψ invariant) so that without loss of generality, each vn and
wn lies in the span of e1 and e2. It follows now that the sequence pvn, wnq lives in a compact subset of V , so
a subsequence converges to some pv, wq P K with ψpv, wq “ 0, which cannot exist. The estimate ψ|K ě δ ą 0
therefore also holds in this case.
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2.4. Proof of the representation theorem. As in the Hilbert space case, the idea for finding
a function g P LqpXq to represent any given Λ P pLppXqq˚ is to look for nontrivial functions
whose pairing with LppXq annihilates ker Λ. We do this by finding the closest point in ker Λ to
some h P LppXqz ker Λ.
Proof of Theorem 2.4 for 1 ă p ă 8. Assume p, q P p1,8q with 1

p
` 1

q
“ 1. Given Λ P pLppXqq˚,

we need to find g P LqpXq such that
ş
X
xg, fy dµ “ Λpf q for all f P LppXq. Assume Λ ‰ 0 since

the problem is otherwise trivial, let K :“ ker Λ Ă LppXq and choose h P LppXqzK; after
multiplication by a scalar, we may assume Λphq “ 1. Then K is a closed convex subset, and
since LppXq is uniformly convex, Theorem 1.8 provides an element k0 P K minimizing the
distance to h. For any k P K, Lemma 2.11 then gives

0 “ d

dt
}h´ pk0 ´ tkq}pLp

ˇ̌̌̌
t“0

“ p

ż
X

|h´ k0|p´2 ¨Rexh´ k0, ky dµ,
where the integral on the right hand side is well defined due to Hölder’s inequality. The symbol
“Re” in this formula is redundant in the case K “ R, while if K “ C, replacing k P K with
ik P K in this relation shows that the same thing holds with the imaginary part instead of the
real part, implying that the function g̃ :“ |h´ k0|p´2ph´ k0q satisfiesż

X

xg̃, ky dµ “ 0 for all k P K.
Observe that since h´k0 P LppXq and |g̃| ď |h´k0|p´1, g̃ P LqpXq. Now let g :“ cg̃ P LqpXq for
a constant c ą 0 to be determined momentarily. The relation above implies

ş
X
xg, fy dµ “ Λpf q

holds for all f P K, and moreover,ż
X

xg, h´ k0y dµ “ c

ż
X

|h´ k0|p´2xh´ k0, h´ k0y dµ “ c}h´ k0}pLp ą 0,

so the latter matches Λph ´ k0q “ Λphq “ 1 if we set c :“ 1{}h ´ k0}pLp . Clearly h´ k0 R K, so
LppXq is spanned by K and h ´ k0, thus we have proved that

ş
X
xg, fy dµ “ Λpf q holds for all

f P LppXq. �

The case p “ 1 is easily derived from the case p ą 1 if X has finite measure, and we will then
use σ-finiteness to extend to the case µpXq “ 8. We will need to know that L1-functions can
be approximated by Lp-functions for p ą 1.

Lemma 2.17. For every p P p1,8s, LppXq X L1pXq is dense in L1pXq.
Proof. Given f P L1pXq and n P N, denote

An :“  
x P X ˇ̌ |f pxq| ď n

(
and define fn : X Ñ V as the product of f with the characteristic function of An. Since
f P L1pXq and |f | ą 1 on XzA1, we have µpXzA1q ď ş

XzA1
|f | dµ ď ş

X
|f | dµ ă 8, i.e. XzA1

has finite measure. Clearly |fn| ď n everywhere for each n P N, and since |f |p ď |f | on A1,

}fn}pLp “
ż
XzA1

|fn|p dµ`
ż
A1

|f |p dµ ď npµpXzA1q `
ż
A1

|f | dµ ď npµpXzA1q ` }f}L1 ă 8,

so fn P LppXq for all p. Since the intersection of the sets XzAn for all n P N is empty, we find

}f ´ fn}L1 “
ż
XzAn

|f | dµÑ 0 as nÑ8,

proving fn Ñ f in L1pXq. �

Proof of Theorem 2.4 for p “ 1 and µpXq ă 8. The advantage of having finite measure is that

for every p1 ą p ě 1, Lp1pXq is contained in LppXq, and the inclusion Lp1pXq ãÑ LppXq is a
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continuous linear map. This follows from Hölder’s inequality, which for r ě p with 1
p1 ` 1

r
“ 1

p

gives

}f}Lp ď }1}Lr ¨ }f}Lp1 “ µpXq1{r ¨ }f}Lp1 .

Now if Λ P pL1pXqq˚, then for f P LppXq with 1 ă p ă 8,

(2.8) |Λpf q| ď }Λ}pL1q˚ ¨ }f}L1 ď µpXq1{q ¨ }Λ}pL1q˚ ¨ }f}Lp,

where q P p1,8q is determined by 1
p
` 1

q
“ 1. This means Λ also belongs to pLppXqq˚, so by the

p ą 1 case of Theorem 2.4, there exists a function gp P LqpXq such that Λpf q “ ş
X
xgp, fy dµ for

all f P LppXq. Notice that if p ă p1 ă 8, then gp1 P Lq1pXq with 1
p1 ` 1

q1 “ 1, where q1 ă q, thus

Lp1pXq Ă LppXq and LqpXq Ă Lq1pXq. It follows that gp is also in Lq1pXq and satisfiesż
X

xgp ´ gp1 , fy dµ “ Λpf q ´ Λpf q “ 0 for all f P Lp1pXq,
gp´gp1 P Lq1pXq defines the trivial element of pLp1pXqq˚, implying gp´gp1 “ 0 almost everywhere.
For this reason we will now drop p from the notation and write gp for every p P p1,8q as a single
function g, which belongs to LqpXq for every q P p1,8q. By (2.8) and Corollary 2.2, it satisfies

}g}Lq “ }Λ}pLpq˚ ď µpXq1{q ¨ }Λ}pL1q˚ for every q P p1,8q.
We claim that this implies g P L8pXq with }g}L8 ď }Λ}pL1q˚ . Indeed, for each c ą 0, let

Ac :“  
x P X ˇ̌ |gpxq| ě c

(
; then fixing p, q P p1,8q with 1

p
` 1

q
“ 1, we have

cµpAcq1{q ď }g}Lq ď µpXq1{q ¨ }Λ}pL1q˚ .
Taking the limit q Ñ8 then yields c ď }Λ}pL1q˚ unless µpAcq “ 0, thus proving the claim.

We have now found a function g P L8pXq such that Λpf q “ ş
X
xg, fy dµ holds for all f P LppXq

with 1 ă p ă 8. For an arbitrary f P L1pXq, Lemma 2.17 then provides a sequence fn P LppXq
with fn Ñ f1 in L1, and Hölder’s inequality impliesˇ̌̌̌ż

X

xg, fy dµ´
ż
X

xg, fny dµ
ˇ̌̌̌
ď
ż
X

|xg, f ´ fny| dµ ď }g}L8 ¨ }f ´ fn}L1 Ñ 0,

thus

Λpf q “ lim
nÑ8Λpfnq “ lim

nÑ8

ż
X

xg, fny dµ “
ż
X

xg, fy dµ.
�

Proof of Theorem 2.4 for p “ 1 and µpXq “ 8. We assume X is σ-finite, so X “ Ť
nPNXn for

subsets Xn Ă X with µpXnq ă 8, and without loss of generality

X1 Ă X2 Ă X3 Ă . . . .

Any Λ P pL1pXqq˚ gives rise to functionals Λn P pL1pXnqq˚ for every n P N, defined by

Λnpf q :“ Λpfnq, where fn :“
#
f on Xn,

0 on XzXn,

and they satisfy

}Λn}pL1q˚ “ sup
fPL1pXnqzt0u

|Λpfnq|
}fn}L1

ď sup
fPL1pXqzt0u

|Λpf q|
}f}L1

“ }Λ}pL1q˚ .

Applying the theorem for the case of finite measure, we obtain functions gn P L8pXnq such that
Λpf q “ ş

Xn
xgn, fy dµ for every f P L1pXq that vanishes outside of Xn, with norms satisfying

}gn}L8 ď }Λ}pL1q˚ for all n. Notice that for n ą m ě 1 and a function f P L1pXq that vanishes
outside of Xm, f also vanishes outside of Xn and thus satisfiesż

Xm

xgm, fy dµ “ Λpf q “
ż
Xn

xgn, fy dµ “
ż
Xm

xgn, fy dµ,
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implying
ş
Xm

xgm ´ gn, fy dµ “ 0 for all f P L1pXmq. It follows that gm ´ gn|Xm P L8pXmq
defines the trivial element of pL1pXmqq˚ and therefore vanishes almost everywhere. This shows
that each gn can in fact be regarded as the restriction to Xn of a single function g : X Ñ V , and
since }gn}L8 ď }Λ}pL1q˚ for every n, the set on which |g| ą }Λ}pL1q˚ is the union of countably
many sets of measure zero, implying g P L8pXq with }g}L8 ď }Λ}pL1q˚ .

We claim finally that Λpf q “ ş
X
xg, fy dµ holds for every f P L1pXq. To see this, for each n P N

define hn P L1pXq as the product of f with the characteristic function of Xn, so }f ´ hn}L1 “ş
XzXn

|f | dµÑ 0 as nÑ8. Using the continuity of Λ and Hölder’s inequality, we now conclude

Λpf q “ lim
nÑ8Λphnq “ lim

nÑ8

ż
X

xg, hny dµ “
ż
X

xg, fy dµ.
�
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3. Separability of Lp

Recall that a topological space is called separable if it contains a countable dense subset. The
simplest examples that come to mind are finite-dimensional vector spaces, e.g. Qn is a countable
dense subset of Rn. In this section, we would like to prove that LppXq is also separable when
1 ď p ă 8. This requires some measure-theoretic assumptions on X, so in order to avoid
overcomplicating the problem, we shall restrict ourselves to the case where X is a subset Ω
of Rn. (See [Sal16, §4.3] for a treatment of more general situations.)

Theorem 3.1. For any p P r1,8q and any Lebesgue-measurable set Ω Ă Rn endowed with the
Lebesgue measure m, the space LppΩq is separable.

We shall prove this by constructing an explicit countable set of functions QpRnq Ă LppRnq
that is dense in LppRnq. Given any f P LppΩq for Ω Ă Rn, one can then extend f to a functionpf P LppRnq that vanishes outside of Ω, find a sequence pfk P QpRnq converging to pf in Lp, and

observe that the restrictions fk :“ pfk|Ω therefore converge in Lp to f , proving that the countable
set QpΩq :“  

f |Ω
ˇ̌
f P QpRnq( is dense in LppΩq.

The set QpRnq Ă LppRnq is easy to describe. In the following, we denote the characteristic
function of a subset A Ă Rn by

χA : Rn Ñ R, χApxq “
#
1 if x P A,
0 otherwise.

Let us first fix a countable dense subset V0 in the vector space V where our functions take
their values; this is clearly possible since dimV ă 8. (If we were allowing V to be an infinite-
dimensional Banach space, then we would now add the assumption that V is separable.) We
refer to a set Q Ă Rn as a dyadic cube if Q is of the form

Q “
„
m1

2N
,
m1 ` 1

2N


ˆ . . .ˆ

„
mn

2N
,
mn ` 1

2N


Ă Rn

for some m1, . . . ,mn, N P Z with N ě 0. Observe that the set of all dyadic cubes is countable,
and so therefore is the set of characteristic functions χQ : Rn Ñ R of dyadic cubes. It follows
that for every k P N, the set of k-tuples of dyadic cubes is countable, and thus so is the set of
all finite tuples of dyadic cubes. Finally, for each individual tuple pQ1, . . . , Qkq of dyadic cubes,
there is a countable set of functions f : Rn Ñ V of the form

f “
kÿ

j“1

χQj
vj , v1, . . . , vk P V0.

We define QpRnq to be the set of all functions of this type, i.e. all finite linear combinations
(with coefficients in the countable set V0) of characteristic functions of dyadic cubes. All of these
functions are bounded and have compact support, so they belong to LppRnq for every p P r1,8s.
Our goal is to prove:

Proposition 3.2. For every p P r1,8q, the countable set QpRnq is dense in LppRnq.
We will use the following fundamental fact from the theory of Lebesgue integration. Recall

that a function is called simple (or sometimes a step function) if it takes only finitely many
values. A simple function on a measure space pX,µq is measurable if and only if it is a finite
linear combination of characteristic functions of measurable sets, and it is then integrable if and
only if all of those sets have finite measure, which is equivalent to saying that the function’s
support has finite measure. The integrable simple functions form a linear subspace of LppXq for
every p P r1,8s, and shall denote it by

SpXq Ă LppXq.
Lemma 3.3. For every measure space pX,µq and 1 ď p ă 8, SpXq is dense in LppXq.
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Proof. Denote the measure on X by µ. Depending on your definition of integration, the p “ 1
case may be understood as either a theorem or a tautology; e.g. [Lan93] defines L1pXq to
be a quotient (modulo equality almost everywhere) of the L1-closure of SpXq. Let us take
the more common definition as in [Sal16], where

ş
Rn f dµ P r0,8s for a measurable function

f : X Ñ r0,8s is the supremum of
ş
Rn s dµ for all measurable simple functions with 0 ď s ď f ,

and for f : X Ñ R,
ş
X
f dµ :“ ş

X
f` dµ´ş

X
f´ dµ with f˘ : X Ñ r0,8q such that f “ f`´f´

and |f | “ f` ` f´. Then given f : X Ñ R of class Lp, there exist increasing sequences of
measurable simple functions 0 ď f1̆ ď f2̆ ď . . . ď f˘ such that fn̆ Ñ f˘ pointwise as nÑ8.
Then since px` yqp ě xp ` yp for all x, y ě 0 and p ě 1,8ż

X

|f`|p dµ`
ż
X

|f´|p dµ “
ż
X

p|f`|p ` |f´|pq dµ ď
ż
X

|f` ` f´|p dµ “
ż
X

|f |p dµ ă 8,
so

ş
X
|fn̆ |p dµ ď

ş
X
|f |p dµ ă 8. This implies that every |fn̆ |p (and therefore also every fn̆ ) is

a finite linear combination of characteristic functions of sets with finite measure, so fn̆ P SpXq,
and thus fn :“ fǹ ´ fń P SpXq. Now |f ´ fn|p Ñ 0 pointwise, and using the convexity of the
function x ÞÑ xp,

|f ´ fn|p “ |pf` ´ fǹ q ´ pf´ ´ fń q|p ď 2p´1|f` ´ fǹ |p ` 2p´1|f´ ´ fń |p ď 2p
`|f`|p ` |f´|p˘ ,

where the function on the right hand side is integrable, so the dominated convergence theorem
implies

ş
X
|f ´ fn|p dµÑ 0. The result for real-valued functions now easily extends to functions

valued in the finite-dimensional vector space V by choosing a real basis as in §0.1. �

Exercise 3.4. Show that SpXq is dense in L8pXq if and only if µpXq ă 8.

With Lemma 3.3 in hand, our goal is now to show that QpRnq is dense in SpRnq.
Lemma 3.5. Every open subset A Ă Rn is a union of a sequence of dyadic cubes Q1, Q2, Q3, . . .

whose interiors are all pairwise disjoint.

Proof. Let O denote the set of all dyadic cubes that are contained in A. Since dyadic cubes can
be arbitrarily small, A “ Ť

QPOQ, and the set O is countable since there are only countably

many dyadic cubes in total. Write O “ t pQ1, pQ2, . . .u; this is not the desired sequence since it

contains pairs pQj , pQk whose interiors intersect, but observe that for any such pair, the part ofpQj disjoint from pQk can be covered by finitely many smaller dyadic cubes whose interiors are

disjoint from each other and from pQk. We can therefore construct a new sequence Q1, Q2, . . . by

setting Q1 :“ pQ1 and then replacing each pQk for k ě 2 with a finite collection of dyadic cubes

with interiors that are disjoint from each other and from
Ťk´1

j“1
pQj . �

Lemma 3.6. For every open subset A Ă Rn with mpAq ă 8 and every v P V , ǫ ą 0 and
p P r1,8q, QpRnq contains a function f with }χAv ´ f}Lp ă ǫ.

Proof. Pick v0 P V0 with |v ´ v0| ă ǫp{mpAq and let Q1, Q2, Q3, . . . denote the sequence of
dyadic cubes provided by Lemma 3.5 to cover A. Since

ř8
k“1mpQkq “ mpAq ă 8, we have

limkÑ8
ř8

j“kmpQjq “ 0, so the functions fk :“
´řk

j“1 χQj

¯
v0 satisfy

}χAv ´ fk}pLp “
kÿ

j“1

|v ´ v0|pmpQjq `
8ÿ

j“k`1

|v|pmpQjq

ď |v ´ v0| ¨mpAq ` |v|p
8ÿ

j“k`1

mpQjq Ñ |v ´ v0| ¨mpAq as k Ñ 8,

thus }χAv ´ fk}Lp ă ǫ for k sufficiently large. �

8This inequality is an easy algebraic exercise when p P N, but when p is not an integer, one can argue as follows.
Assume y ą 0 since otherwise the result is obvious. Dividing by yp, it is then equivalent to prove p1`xqp ě 1`xp

for all x ě 0 and p ě 1. Differentiating with respect to x, it is easy to show that p1`xqp´ 1´xp is an increasing
function on tx ě 0u if p ě 1, and since it vanishes at x “ 0, it is therefore nonnegatve.
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We next appeal to the fact that the Lebesgue measure m is outer regular, meaning that for
every Lebesgue-measurable set A Ă Rn,

mpAq “ inf
 
mpA1q ˇ̌ A Ă A1 Ă Rn, A1 open

(
.

It follows that whenever mpAq ă 8, there exists a nested sequence of open sets A1 Ą A2 Ą
A3 Ą . . . Ą A1 :“ Ş

kPNAk Ą A such that mpAq “ mpA1q. The set A1 is not generally open, but
it is a Borel set, a so-called Gδ . In this situation, |χA´χAn|p converges almost everywhere to 0,
and since it is clearly also bounded by a fixed integrable function for every n, the dominated
convergence theorem implies χAn Ñ χA in Lp. Since Lemma 3.6 provides arbitrarily good
approximations fn P QpRnq for each χAnv P LppRnq, we’ve proved:

Lemma 3.7. Lemma 3.6 remains true with A replaced by an arbitrary Lebesgue-measurable set
in Rn with finite measure. �

Proof of Proposition 3.2 (and thus Theorem 3.1). By Lemma 3.3, it suffices to prove that QpRnq
is dense in SpRnq in the Lp-norm. Elements of SpRnq are of the form

řk
j“1 χAj

vj, where each
Aj Ă Rn is Lebesgue measurable with finite measure and vj P V . By Lemma 3.7, each χAj

vj
can be approximated arbitrarily well in the Lp-norm by functions in QpRnq, so we are done. �

It is not hard to see that for almost any interesting measure space pX,µq, L8pXq is not
separable:

Exercise 3.8.

(a) Show that if E is a Banach space containing an uncountable discrete subset, then E is
not separable.

(b) Suppose pX,µq is a measure space containing infinitely many disjoint subsets with posi-
tive measure. Show that L8pXq contains an uncountable subset S Ă L8pXq, consisting
of functions that take only the values 0 and 1, such that }f ´ g}L8 “ 1 for any two
distinct f, g P S.
Hint: If you’ve forgotten or never seen the proof via Cantor’s diagonal argument that R
is uncountable, looking it up may help.

Exercise 3.9. Here is another nonseparable Banach space that sometimes arises naturally.
Assume H is an infinite-dimensional separable Hilbert space, and let L pHq denote the Banach
space of bounded linear operators HÑ H. Use an orthonormal basis of H to find a continuous
embedding of L8pXq into L pHq for a suitable measure space X, and deduce from this that
L pHq cannot be separable.
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4. Weak convergence

In finite dimensions, a sequence xk P Kn converges to x8 P Kn if and only if the n sequences
formed by the coordinates of these vectors all converge to the corresponding coordinates of x8.
Writing e1, . . . , en P Kn for the standard orthonormal basis, the latter condition can be expressed
equivalently as

lim
kÑ8xej , xky “ xej , x8y for all j “ 1, . . . , n.

There is an obvious way to generalize this condition for a sequence xk in an infinite-dimensional
Hilbert space H, though the resulting notion of convergence turns out to depend on a choice of
orthonormal basis (see Exercise 4.2 below). A stronger condition that is clearly independent of
any choice of basis is

lim
kÑ8xv, xky “ xv, x8y for all v P H.

In light of the Riesz representation theorem, this can be expressed equivalently as:

lim
kÑ8Λpxkq “ Λpx8q for all Λ P H

˚.

In this form, the condition also makes sense in arbitrary normed vector spaces, leading to the
following important definition.

Definition 4.1. A sequence xn in a normed vector space E is said to converge weakly to
x P E, written

xn á x,

if Λpxnq Ñ Λpxq for all Λ P E˚.

With this definition in mind, the usual notion of convergence in a normed vector space (written
“xn Ñ x”) is sometimes also called strong convergence. If dimE ă 8, then it is easy to check
that there is no difference between weak and strong convergence. In infinite-dimensional spaces,
strong convergence clearly implies weak convergence due to the continuity of the functionals
Λ P E˚, but the following exercise shows that the converse is false.

Exercise 4.2. SupposeH is a Hilbert space containing an infinite orthonormal set ten P Hu8n“1.
Prove:

(a) The sequence en converges weakly to 0 but has no strongly convergent subsequence.
(b) For any bounded sequence λn P K, the sequence xn :“ λnen P H converges weakly to 0.
(c) For any unbounded sequence λn P K, xn :“ λnen P H satisfies limnÑ8xej , xny “ 0 for

every j P N, but is nonetheless not weakly convergent.
Hint: Given a subsequence λnj

with |λnj
| ě j for j “ 1, 2, 3, . . ., find a convergent series

of the form v :“ ř8
j“1 ajenj

P H for suitable scalars aj P K such that xv, xnj
y Û 0 as

j Ñ8.

Whenever we discuss a notion of convergence, there should be a topology in the background.
Every normed vector space E comes with a natural topology, usually called the norm topology
(sometimes also the strong topology), for which a set is open if and only if it is a union of
open balls. The weak topology on E is generally different: it is the locally convex topology
defined via the uncountably infinite family of seminorms

t} ¨ }Λ : E Ñ r0,8quΛPE˚ , where }x}Λ :“ |Λpxq|.
Notice that these are not norms since Λpxq “ 0 does not imply x “ 0, but they are seminorms
due to the linearity of Λ. The weak topology on E is thus the topology generated by all subsets
of the form

 
x P E ˇ̌ |Λpxq ´ Λpx0q| ă ǫ

(
for x0 P E, ǫ ą 0 and Λ P E˚, and a sequence xn P E

converges to x P E in the weak topology if and only if it converges in all the seminorms, which
means precisely that Λpxnq Ñ Λpxq for all Λ P E˚, i.e. xn á x. A subset U Ă E that belongs to
the weak topology is sometimes called weakly open. We will see below (see Remark 4.5) that
all weakly open sets are also open in the usual sense, but the converse is generally false.
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Remark 4.3. On a locally convex space E with topology generated by a family of seminorms
t} ¨ }α : E Ñ r0,8quαPI , it is conventional to require that no nonzero x P E can satisfy }x}α “ 0
for every α P I. This guarantees that a convergent sequence in E can only have one limit, and
is equivalent to the condition that the topology defined by the seminorms on E is Hausdorff.
The weak topology does satisfy this condition on every normed vector space, but this fact is not
always obvious: it depends on the knowledge that for every nonzero x P E there exists a dual
vector Λ P E˚ with Λpxq ‰ 0. In all of the explicit examples that we deal with, it will be clear
that this is true, e.g. Lemma 2.1 guarantees it for the Lp-spaces. For arbitrary Banach spaces,
it follows from the Hahn-Banach theorem (see Lemma 2.6).

Exercise 4.4. This exercise gives an alternative characterization of the weak topology on a
normed vector space E as the smallest topology for which the map E Ñ K defined by every
dual vector Λ P E˚ is continuous. In other words, the weak topology contains exactly the sets
that must be considered open in order for these maps to be called continuous, but no more.

(a) Show that for every Λ P E˚, the map Λ : E Ñ K is continuous in the weak topology.

Continuity of the maps Λ : E Ñ K means that for every Λ P E˚ and every open set U Ă K, the
set Λ´1pUq Ă E needs to be open. Let T denote the smallest topology on E that contains all
sets of this form, which means that a set is in T if and only if it is a union of finite intersections
of sets of the form Λ´1pUq for arbitrary dual vectors Λ P E˚ and open sets U Ă K. Part (a)
shows that the weak topology contains T . We now aim to show that these two topologies are
the same.

(b) Show that for every y P E, the translation map τy : E Ñ E : x ÞÑ x ` y is continuous
with respect to the topology T .

(c) Show that for every Λ P E˚, x0 P E and ǫ ą 0, the set
 
x P E ˇ̌ |Λpx´ x0q| ă ǫ

(
is in T ,

and conclude that T contains the weak topology.

Remark 4.5. Since every bounded linear functional Λ : E Ñ K is continuous in the norm topology
on E, it follows from Exercise 4.4 that the norm topology contains the weak topology, i.e. every
weakly open set is also open with respect to the norm. In general, however, the norm topology
is strictly larger, e.g. if E is an infinite-dimensional Hilbert space, then Exercise 4.2 exhibits a
sequence xn P E that converges to 0 in the weak topology but not in the norm topology—the
reason being that the norm topology has too many open neighborhoods of 0 for xn to lie in all
of them for n large. Relatedly, the fact that }xn} “ 1 for all n but xn á 0 in that exercise
demonstrates that the norm } ¨ } : E Ñ r0,8q is not a continuous function in the weak topology,
though it is of course continuous in the norm topology.

Exercise 4.6. In the setting of Exercise 4.2, show that every neighborhood of 0 P H in the
weak topology contains infinitely many of the vectors xn :“ ?

nen for n P N. In particular, the
closure of the set te1,

?
2e2,

?
3e3, . . .u Ă H contains 0.

Remark: In a topological space, a set is closed if and only if its complement is open, and the
closure of a set is by definition the intersection of all closed sets containing that set. Exercise 4.2
shows that the sequence

?
nen has no subsequence weakly convergent to 0, so the present exercise

demonstrates that the notion of the “closure” of a discrete set in the weak topology does not
match your intuition from the theory of metric spaces—this shows in fact that the weak topology
on H is not metrizable.

Combining Definition 4.1 with the Riesz representation theorem leads naturally to the follow-
ing notion:

Definition 4.7. For a measure space pX,µq and 1 ď p ă 8 such that either X is σ-finite or
p ą 1, we say that a sequence fn P LppXq is weakly Lp-convergent to a function f P LppXq
and write fn

Lpá f if for every g P LqpXq with 1
p
` 1

q
“ 1,ż

X

xg, fny dµÑ
ż
X

xg, fy dµ.
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For p “ 8, the notion of convergence in Definition 4.7 still makes sense but cannot be called
“weak convergence” since the dual space of L8pXq is generally larger than L1pXq. But we could
instead view L8pXq as the dual space of L1pXq and fit this notion into the following context.
For a normed vector space E, there is a natural topology on its dual space E˚ that is generally
even weaker9 than the weak topology. The weak˚ topology on E˚ is, namely, the locally
convex topology defined via the family of seminorms

t} ¨ }x : E˚ Ñ r0,8quxPE , where }Λ}x :“ |Λpxq|.
In light of the natural inclusion E ãÑ E˚˚, this family of seminorms is a subset of the family
that defines the weak topology, though the two families are exactly the same whenever E is a
reflexive Banach space, that is:

Proposition 4.8. If E is a reflexive Banach space, then the weak and weak˚ topologies on E˚
are identical. �

We observe that since the space LppXq for 1 ă p ă 8 is reflexive and can be identified with
the dual space of LqpXq for 1

p
` 1

q
“ 1, LppXq has a natural weak˚ topology which is the same

as its weak topology. On the other hand, the analogue of Definition 4.7 for p “ 8 describes
convergence in the weak˚ topology on L8pXq, which is strictly weaker than the weak topology,
due to the fact that the dual of L8pXq is strictly larger than L1pXq.

In analogy with Exercise 4.4, one can show that the weak˚ topology is the smallest topology
such that for every x P E, the function E˚ Ñ K : Λ ÞÑ Λpxq is continuous. A sequence Λn P E˚ is
weak˚ convergent if and only if for every x P E, Λnpxq Ñ Λpxq, i.e. the functionals Λn : E Ñ K

converge pointwise to Λ : E Ñ K. Notice that for every nonzero Λ P E˚, there necessarily exists
a vector x P E for which }Λ}x ‰ 0, thus limits of weak˚ convergent sequences are unique and the
weak˚ topology is Hausdorff (cf. Remark 4.3). This provides an easy proof (without requiring
the Hahn-Banach theorem) that the weak topology on E˚ is also Hausdorff, since every weak˚
open subset of E˚ is also weakly open; or in terms of convergence, every weakly convergent
sequence also converges in the weak˚ topology.

Remark 4.9. The definitions above do not require E to be complete, but there is a subtlety
to be aware of when considering normed vector spaces that are not Banach spaces. If E is a
Banach space and F Ă E is a proper dense subspace, then F ˚ “ E˚ since every bounded linear
functional on F extends uniquely to one on E. The norms on F ˚ and E˚ are also the same, so
as Banach spaces they are identical, but their weak˚ topologies may nonetheless be different. In
practice, we will only consider examples in which E is complete, in which case the reader may
feel free to ignore this remark.

The next result demonstrates that the weak˚ topology is often, indeed, much weaker than the
norm topology on E˚. Having fewer open sets means that sequences can more easily converge,
so they are more likely to have convergent subsequences.

Theorem 4.10 (Banach-Alaoglu theorem, separable case). Assume E is a separable normed
vector space. Then every bounded sequence in E˚ has a weak˚ convergent subsequence.

Proof. Fix a sequence Λn P E˚ satisfying }Λn} ď C for some constant C ą 0.
Claim 1: If F Ă E is a countable subset, then after replacing Λn with a suitable subsequence,

we can assume Λnpxq converges for every x P F . We prove this via the Cantor diagonal argument.
Let F “ tx1, x2, x3, . . .u, and observe that for each k, n P N, |Λnpxkq| ď C}xk}, thus for every

fixed k P N the sequence tΛnpxkqu8n“1 is bounded in K. Let Λ
p1q
n denote a subsequence of Λn such

9When comparing two topologies T1 and T2 on the same set, one says that T1 is weaker than T2 if T1 Ă T2.
In this context, “weaker” is a synonym for “smaller,” and the word coarser is also sometimes used with the
same meaning, while in the other direction, one says that T2 is stronger / finer / larger than T1. Weakening
a topology makes it easier for sequences to converge, i.e. every T2-convergent sequence is also T1-convergent, but
there may also be T1-convergent sequences that are not T2-convergent. Similarly, weakening the topology makes it
easier for maps from other spaces into X to be continuous, but harder for functions defined on X to be continuous.
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that the sequence Λ
p1q
n px1q converges in K. Then choose Λ

p2q
n to be a subsequence of Λ

p1q
n such

that the sequence Λ
p2q
n px2q also converges in K. Continuing in this way, we obtain a sequence of

sequences such that the diagonal subsequence Λ
pnq
n has the desired property.

Claim 2: If F Ă E is a dense subset such that Λnpxq converges for every x P F , then Λnpxq
also converges for every x P E. Indeed, for any given x P E, one can choose x1 P F arbitrarily
close to x and then estimate

|Λmpxq ´ Λnpxq| ď |Λmpxq ´ Λmpx1q| ` |Λmpx1q ´ Λnpx1q| ` |Λnpx1q ´ Λnpxq|
ď 2C}x´ x1} ` |Λmpx1q ´ Λnpx1q|.

Since Λnpx1q is a Cauchy sequence in K, this shows that Λnpxq is also a Cauchy sequence.
Finally, since E is separable, we are free to assume the two subsets denoted by F Ă E in

claims 1 and 2 are the same set, so both claims together allow us to replace Λn with a subsequence
such that Λnpxq is convergent for every x P E. Define Λ : E Ñ K by

Λpxq :“ lim
nÑ8Λnpxq.

It is easy to check that Λ is linear and satisfies |Λpxq| ď C}x}, thus Λ P E˚ and Λn is weak˚
convergent to Λ. �

Since LppΩq is separable and reflexive for 1 ă p ă 8 and Ω Ă Rn, this implies:

Corollary 4.11. Assume Ω Ă Rn is a Lebesgue-measurable subset and 1 ă p ă 8. Then every
Lp-bounded sequence fk P LppΩq has a weakly Lp-convergent subsequence. �

Exercise 4.12. Find a sequence fn P LppRq for 1 ă p ă 8 that converges weakly to 0 but
satisfies }fn}Lp “ 1 for all n, and deduce that fn has no Lp-convergent subsequence.

Remark 4.13. L8pΩq is also the dual space of a separable Banach space, namely L1pΩq, so
Theorem 4.10 implies that L8-bounded sequences have weak˚ convergent subsequences. This
case was not included in Corollary 4.11 since the weak and weak˚ topologies on L8pΩq are not
the same.

Example 4.14. There are two troubles with the case p “ 1 in Corollary 4.11, one more serious
than the other. The less serious problem is that L1pΩq is not the dual space of L8pΩq, though
since it is contained in the dual of L8pΩq, one could still deduce from Theorem 4.10 a result
about weakly L1-convergent subsequences if L8pΩq were separable. The lack of separability is
the more serious problem, and the following example shows that it cannot be overcome. For
n P N, define fn P L1pRq to be the characteristic function of the interval rn ´ 1, ns, so clearly
}fn}L1 “ 1 for every n. Consider an arbitrary subsequence fnk

for some 1 ď n1 ă n2 ă n3 ă . . .,
and define a function g P L8pRq such that g “ p´1qk on rnk ´ 1, nks for each k P N and g “ 0
everywhere else. Then the sequence

ş8
´8 gpxqfnk

pxq dx “ p´1qk does not converge, thus fnk

cannot be weakly convergent. The problem here is in essence that L8pRq is just too large a
space, and as a consequence, weak L1-convergence is harder to achieve than in the case p ą 1.

The Banach-Alaoglu theorem implies that even though the unit sphere in LppXq for 1 ă p ă
8 is not compact, it is weakly compact: arbitrary sequences with unit norm need not have
accumulation points with respect to the Lp-norm, but in the weak topology they do. You may
be wondering which points can arise as accumulation points in this scenario, e.g. must they also
lie in the unit sphere? Let us show that they are at least bounded:

Proposition 4.15. In any normed vector space pE, }¨}q, if xn á x, then }x} ď lim infnÑ8 }xn}.
Proof. Using Lemma 2.6, choose Λ P E˚ with }Λ} “ 1 and Λpxq “ }x}. Then since Λpxnq Ñ Λpxq
and |Λpxnq| ď }xn},

}x} “ Λpxq “ lim inf
nÑ8 Λpxnq ď lim inf

nÑ8 }xn}.
�
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Recall from §2.3 that LppXq is uniformly convex for 1 ă p ă 8. The next result therefore
gives a useful criterion for strong Lp-convergence in terms of weak convergence. But in light
of the Banach-Alaoglu theorem, it also says something that your geometric intuition may find
shocking: the unit sphere is not closed in the weak topology. In particular, every sequence in the
unit sphere that fails to have a strongly convergent subsequence has one that converges weakly to
something in the interior of the unit sphere. It is known in fact that for any infinite-dimensional
normed vector space E, the weak˚ closure of the unit sphere in E˚ is the entire closed unit ball
(cf. [BS18, Corollary 3.28]).

Theorem 4.16. If pE, } ¨ }q is a uniformly convex Banach space and xn P E is a sequence with
xn á x and }xn} Ñ }x}, then xn Ñ x.

Proof. We can assume x ‰ 0 since the statement is otherwise trivial. Since the norms converge,
we can also replace xn and x with xn{}xn} and x{}x} respectively in order to assume }xn} “
}x} “ 1 for all n without loss of generality. The weak convergence xn á x implies xn` xá 2x,
so combining Proposition 4.15 with the triangle inequality now gives

2 “ }2x} ď lim inf
nÑ8 }xn ` x} ď lim sup

nÑ8
}xn ` x} ď lim sup

nÑ8
p}xn} ` }x}q “ 2,

and hence }xn`x} Ñ 2, or equivalently,
››xn`x

2

››Ñ 1. The conclusion }xn´x} Ñ 0 then follows
from uniform convexity. �

Just out of interest, let us state the more general version of the Banach-Alaoglu theorem,
which does not require E to be separable. Its meaning is a bit harder to interpret, since
the weak˚ topology is not generally first countable, so compactness need not imply sequential
compactness.10 We will neither prove nor make use of this version of the theorem, but proofs
may be found e.g. in [RS80, §IV.5] or [BS18, §3.2]; it is a consequence of Tychonoff’s theorem
on the compactness of arbitrary products of compact topological spaces, which is equivalent to
the axiom of choice (see [Wen18, §6]).

Theorem 4.17 (Banach-Alaoglu theorem, general case). For any normed vector space E, the
closed unit ball in E˚ is compact in the weak˚ topology. �

10A topological space X is called first countable if for every x P X, there is a countable sequence Un Ă X of
neighborhoods of x such that every neighborhood of x contains Un for some n P N. First countability is a sufficient
condition for the compactness of a subset to imply that all of its sequences have convergent subsequences (see
e.g. [Wen18, §5]). It is easy to show that all metrizable topologies have this property, but scenarios like that of
Exercise 4.6 reveal that the weak and weak˚ topologies generally do not.
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5. Mollification

For this section, we consider functions defined on Lebesgue-measurable sets Ω Ă Rn and
define all integrals with respect to the Lebesgue measure m. For a Lebesgue-integrable function
f : ΩÑ V , we write the integral asż

Ω

f dm :“:
ż
Ω

f pxq dx :“:
ż
Ω

f px1, . . . , xnq dx1 . . . dxn.
We saw in §3 that the space QpRnq of functions that take constant values on finitely many
dyadic cubes is dense in LppRnq for every p P r1,8q. It is not hard to convince oneself that
every function in QpRnq can in turn be approximated arbitrarily well in the Lp-norm (again for
p ă 8) by a compactly supported continuous function, thus proving that the space of continuous
functions with compact support is dense in LppΩq.11 We would now like to prove something more
ambitious, and far more useful in applications:

Theorem 5.1. For every p P r1,8q, C8pRnq X LppRnq is a dense subspace of LppRnq.
Two important generalizations of Theorem 5.1 follow almost immediately. First: one can

replace Rn by an arbitrary open subset Ω Ă Rn and show that C8pΩq X LppΩq is dense in

LppΩq. For the proof, one extends any given function f P LppΩq to rf P LppRnq via
rf :“

#
f on Ω,

0 on RnzΩ,
and then approximates f with fǫ|Ω for smooth functions fǫ P C8pRnqXLppRnq that approximaterf in LppRnq. Further: C8pΩq X LppΩq in this statement can be replaced with

C8
0 pΩq :“

 
f P C8pΩq ˇ̌ f has compact support in Ω

(
.

To see this, one first chooses for any given f P LppΩq and ǫ ą 0 an approximation fǫ P C8pΩq X
LppΩq with }f ´ fǫ}Lp ă ǫ

2
, and then replaces fǫ with βfǫ for a smooth compactly supported

function β : ΩÑ r0, 1s that satisfies β|U ” 1 for a sufficiently large open subset U Ă Ω. Taking
a sequence of such cutoff functions βN and subsets UN such that

Ť
NPN UN “ Ω, one can arrange

that

}fǫ ´ βNfǫ}Lp ă ǫ

2
und therefore }f ´ βNfǫ}Lp ă ǫ

for N " 0 sufficiently large. For more details on this generalization, see e.g. [LL01, §2.19]; we
summarize the result as follows:

Corollary 5.2. For every p P r1,8q and every open subset Ω Ă Rn, C8
0 pΩq is dense in LppΩq.

�

Exercise 5.3. Show that the space of bounded continuous functions is not dense in L8pRq.
We prove Theorem 5.1 in the next several subsections using the convolution, a construction

that is worth getting to know well, as it has a multitude of applications beyond this one theorem.

5.1. Continuity under translation. For v P Rn and a function f : Rn Ñ V , the translation
operator τv produces a new function τvf : Rn Ñ V defined by

pτvf qpxq :“ f px` vq.
Clearly τv defines a bounded and norm-preserving linear map LppRnq Ñ LppRnq. Continuity of
f is equivalent to the condition that for every convergent sequence vk Ñ v8 in Rn, the functions
τvkf converge pointwise to τv8f . This is not true in general for functions f P LppRnq since they
are not generally continuous, but it will be useful to know that it becomes true if pointwise
convergence is replaced by Lp-convergence:

11For a discussion of the density of CpXq in LppXq on more general measure spaces X, see [Sal16, §4.3].
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Theorem 5.4. If 1 ď p ă 8 and f P LppRnq, then the map Rn Ñ LppRnq : v ÞÑ τvf is
continuous.

Proof. Since every τv defines a bounded linear operator LppRnq Ñ LppRnq with }τv}L pLpq “ 1,
we have }τw`vf ´ τwf}Lp “ }τwpτvf ´ f q}Lp ď }τvf ´ f}Lp . It will thus suffice to prove that

}τvf ´f}Lp Ñ 0 as v Ñ 0 for all f belonging to some dense subset of LppRnq. Let pQpRnq denote
the space of all finite linear combinations

ř
j χQj

fj : R
n Ñ V , where fj P V and each Qj Ă Rn

is a cube, i.e. any set of the form ra1, a1` ds ˆ . . .ˆ ran, an` ds for pa1, . . . , anq P Rn and d ą 0.

Then pQpRnq contains the set QpRnq spanned by characteristic functions of dyadic cubes, and

having proved in Proposition 3.2 that the latter is dense in LppRnq, it follows that pQpRnq is also
dense. For an individual cube Q “ ra1 ` d, . . . , an ` ds, we have

}τvχQ ´ χQ}pLp “
ż
Rn

|τvχQ ´ χQ|p dm “ m
`pv `QqzQ˘`m

`
Qzpv `Qq˘Ñ 0 as v Ñ 0,

thus for any f “ ř
j χQj

fj P pQpRnq, Minkowski’s inequality gives

}τvf ´ f}Lp ď
ÿ
j

››τvχQj
´ χQj

››
Lp ¨ |fj| Ñ 0 as v Ñ 0.

�

5.2. Convolution and regularity. The convolution of two scalar-valued functions f, g :
Rn Ñ K is a scalar-valued function f ˚ g defined by

(5.1) pf ˚ gqpxq :“
ż
Rn

f px´ yqgpyq dy.
More generally, one can also allow one of f or g to take values in the vector space V , so that
f ˚ g also takes values in V ; we will generally assume this in the following without further
commentary. The domain of f ˚ g is the set of all points x P Rn for which the integrand on the
right hand side of (5.1) is a Lebesgue-integrable function of y. It may happen that pf ˚ gqpxq
is defined for some but not all x P Rn. In practice, we will only consider situations in which
pf ˚ gqpxq is defined for almost every x; the function f ˚ g is then defined almost everywhere
on Rn. Since f ˚ g is defined via an integral, it does not change if either f or g is changed on a
set of measure zero; it can therefore make sense to speak of the convolution f ˚g of two elements
f P LppRnq and g P LqpRnq, and in such discussions we will typically not distinguish between
actual functions and equivalence classes of functions defined almost everywhere.

Remark 5.5. In many situations, it can also make sense to define f ˚g on a suitable subset of Rn

for two functions f and g that are not defined everywhere on Rn. One case that often arises is
when f is defined on some open subset Ω Ă Rn and g is defined on Rn but has compact support
in the r-ball Br Ă Rn about the origin for some small r ą 0. If x belongs to the set

Ωr :“  
x P Ω

ˇ̌
distpx,RnzΩq ě r

(
,

then either x´ y P Ω or gpyq “ 0 holds for every y P Rn, thus one can make sense of the right
hand side of (5.1) by interpreting the integrand to be 0 whenever gpyq “ 0. The convolution f ˚g
is thus defined on all points of Ωr for which this integrand (suitably interpreted) is integrable.

Exercise 5.6. Use a change of variables to prove f ˚ g “ g ˚ f .
An important property of the convolution is that f ˚ g is an general at least as “nice” as the

nicest function among f and g.12 In particular, if either f or g is of class C1, then Exercise 5.6
allows us to relabel the functions so that f is in C1 without loss of generality, and we can then
try to prove the formula

Bkpf ˚ gqpxq “ B
Bxk

ż
Rn

f px´ yqgpyq dy “
ż
Rn

Bkf px´ yqgpyq dy “ pBkf ˚ gqpxq.
12The technical term for this notion of “niceness” is regularity, e.g. proving regularity of a function typically

means proving that it is differentiable or smooth etc.
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This will be valid whenever f and g satisfy suitable conditions to apply Theorem 0.4 and justify
differentiating under the integral sign—in practice it is often easy to verify these conditions, and
importantly, they do not require g to be differentiable, nor even continuous. For example:

Theorem 5.7. For any f P C8
0 pRnq and g P L1

locpRnq, the function f ˚ g is smooth on Rn, and
for every multi-index α,

Bαpf ˚ gq “ pBαf q ˚ g.
Proof. By assumption f is smooth and vanishes outside of a compact subset K Ă Rn, which
implies that f is bounded. For every x P Rn, the integrand y ÞÑ f px ´ yqgpyq can then only
be nontrivial on the compact subset Kx :“ tx ´ k P Rn | k P Ku, and g is integrable on this
domain, implying that the whole integrand is integrable on Rn and pf ˚gqpxq is therefore defined
for every x P Rn.

The function x ÞÑ pf ˚ gqpxq is now defined as a parameter-dependent integral, where in the
integrand only f px´yq depends on the parameter x. The result thus follows from Theorem 0.4,
since:

‚ The integrand is Lebesgue integrable for every x P Rn;
‚ The integrability is also “locally uniform” in the sense that to every x0 P Rn, one can
associate a neighborhood U Ă Rn of x0 and an integrable function that bounds the
integrand from above for every x P U .

‚ The function x ÞÑ f px ´ yqgpyq is smooth for every y P Rn and has partial derivative
with respect to xj given by x ÞÑ Bjf px ´ yqgpyq, which is again a continuous function
of x.

Theorem 0.4 now implies Bjpf ˚ gq “ pBjf q ˚ g, and the generalization to arbitrary multi-indices
follows by induction. �

5.3. Young’s inequality. The following result is an elegant application of Fubini’s theorem
and Hölder’s inequality.13

Theorem 5.8. For arbitrary functions f P L1pRnq und g P LppRnq with 1 ď p ď 8, f ˚ g is
defined almost everywhere on Rn, belongs to LppRnq and satisfies

}f ˚ g}Lp ď }f}L1 ¨ }g}Lp .

Proof. The case p “ 8 is an easy exercise, so consider the case 1 ď p ă 8. Let q P r1,8s with
1
p
` 1

q
“ 1; then

|f px´ yqgpyq| “ |f px´ yq|1{p|gpyq| ¨ |f px´ yq|1{q,
and Hölder’s inequality implies for every x P Rn,

ϕpxq :“
ż
Rn

|f px´ yqgpyq| dy

ď
ˆż

Rn

|f px´ yq| ¨ |gpyq|p dy
˙1{p

¨
ˆż

Rn

|f px´ yq| dy
˙1{q

ď }f}1{q
L1

ˆż
Rn

|f px´ yq| ¨ |gpyq|p dy
˙1{p

.

Now apply Fubini’s theorem for nonnegative measurable functions to

Rn ˆ Rn Ñ r0,8s : px, yq ÞÑ |f px´ yq| ¨ |gpyq|p;

13For various more general forms of Young’s inequality, see [Sal16, Theorem 7.33] or [LL01, 4.2].
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it follows that ϕp is a measurable function and

}ϕ}pLp “
ż
Rn

rϕpxqsp dx “
ż
Rn

}f}p{q
L1

ˆż
Rn

|f px´ yq| ¨ |gpyq|p dy
˙
dx

“ }f}p{q
L1

ż
RnˆRn

|f px´ yq| ¨ |gpyq|p dx dy

“ }f}p{q
L1

ż
Rn

|gpyq|p
ˆż

Rn

|f px´ yq| dx
˙
dy “ }f}p{q`1

L1 ¨ }g}pLp

“ }f}p
L1 ¨ }g}pLp ă 8.

(5.2)

The function ϕp must therefore satisfy ϕp ă 8 almost everywhere, implying that ϕ ă 8 also
holds almost everywhere, from which it follows that the convoluation f ˚ g is defined almost
everywhere.

As a further application of Fubini’s theorem, one can show that f ˚ g is also a measurable
function; in fact, the convolution of two Lebesgue-measurable functions is always Borel measur-
able. We’ll skip the proof of this, though see [Sal16, Theorem 7.32(iii)]. Since |f ˚ g| ď ϕ, the
estimate }f ˚ g}Lp ď }f}L1 ¨ }g}Lp now follows. �

Exercise 5.9. Prove as a corollary of Theorem 5.8 that the convolution defines a continuous
bilinear operator

L1pRnq ˆ LppRnq Ñ LppRnq : pf, gq ÞÑ f ˚ g.
5.4. Approximate identities. We can now prove Theorem 5.1, and in the process explain a
useful general trick called mollification, by which non-smooth functions can be approximated
by smooth ones. One of the motivating ideas in the background is that of the “Dirac δ-function,”,
a fictional function δ : Rn Ñ R that one imagines being defined by δpxq “ 0 for x ‰ 0 and
δp0q “ 8 so that ż

Rn

ϕpxqδpxq dx “ ϕp0q
for all ϕ in some reasonable class of functions on Rn. While δ cannot be defined as an ac-
tual function, it can easily be approximated by smooth functions—such an approximation is
sometimes called a mollifier.

Definition 5.10. An approximate identity on Rn is a sequence of smooth functions ρj :
Rn Ñ r0,8q such that for every smooth compactly supported function ϕ on Rn,ż

Rn

ϕpxqρjpxq dxÑ ϕp0q as j Ñ 8.
The functions ρj in Definition 5.10 are not required to have compact support, and it will

be important when we prove the Fourier inversion formula in §8.5 to be able to choose specific
examples that are not compactly supported but have other nice properties. For applications
involving the convolution, however, it is useful to impose the following stricter condition.

Definition 5.11. A sequence of functions ρj on Rn will be said to have shrinking support if
for every ǫ ą 0, there exists N P N such that the support of ρj is contained in the ǫ-ball about
0 P Rn for every j ě N .

Lemma 5.12. A sequence of smooth functions ρj : Rn Ñ r0,8q with shrinking support is an
approximate identity if and only if

ş
Rn ρj dm Ñ 1 as j Ñ 8, and in this case, the condition in

Definition 5.10 is also satisfied for all (not necessarily smooth or compactly supported) measur-
able functions ϕ on Rn that are continuous at the origin.

Proof. Assume supppρjq is contained in the ball Brj Ă Rn of radius rj ą 0 for some sequence
rj Ñ 0. If ρj is an approximate identity, then we can choose N P N and a smooth compactly
supported function ϕ : Rn Ñ r0, 1s that equals 1 on Brj for all j ě N , and writeż

Rn

ρj dm “
ż
Brj

ρj dm “
ż
Brj

ϕρj dm “
ż
Rn

ϕρj dm ÝÑ ϕp0q “ 1 as j Ñ8.
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Conversely, if
ş
Rn ρj dmÑ 1, then for any function ϕ on Rn that is continuous at 0,ˇ̌̌̌

ϕp0q ´
ż
Rn

ϕρj dm

ˇ̌̌̌
“
ˇ̌̌̌
ϕp0q

ˆ
1´

ż
Rn

ρj dm

˙
`
ż
Rn

rϕp0q ´ ϕpxqs ρjpxq dx
ˇ̌̌̌

ď |ϕp0q| ¨
ˇ̌̌̌
1´

ż
Rn

ρj dm

ˇ̌̌̌
` sup

xPBrj

|ϕp0q ´ ϕpxq|
ż
Rn

ρj dmÑ 0.

�

Example 5.13. Choose a smooth function ρ : Rn Ñ r0,8q with compact support in the
unit ball B1 such that

ş
Rn ρ dm “ 1. For j P N, the functions ρj : Rn Ñ r0,8q defined by

ρjpxq :“ jnρpjxq then satisfy
ş
Rn ρj dm “ 1 and have compact support in B1{j for all j, so this

sequence forms an approximate identity with shrinking support.

Theorem 5.14. Fix an approximate identity ρj with shrinking support, and given f P LppRnq
with 1 ď p ă 8, let fj :“ ρj ˚ f “ f ˚ ρj for j P N, that is,

(5.3) fjpxq :“
ż
Rn

f px´ yqρjpyq dy.
Then:

(1) fj is a smooth function on Rn for every j P N.
(2) }fj}Lp ď C}f}Lp for every j P N and a constant C ą 0, which may be assumed arbitrarily

close to 1 for sufficiently large j.
(3) fj converges in LppRnq to f as j Ñ8.

Remark 5.15. The formula (5.3) can be interpreted as defining fjpxq to be a weighted average of
the values of f in a neighborhood of x, where the size of the neighborhood becomes arbitrarily
small as j becomes large. The latter follows from the assumption that ρj has shrinking support.

Remark 5.16. The motivation for the term “approximate identity” is that if the δ-function
existed as an actual function, it would satisfy δ ˚ f “ f ˚ δ “ f for all reasonable functions f ,
making it an identity element in the algebra defined via the convolution product. We will see in
§10 that this notion can be made rigorous by interpreting δ as a so-called generalized function,
or distribution.

Proof of Theorem 5.14. The first two statements in the theorem follow from Theorems 5.7
and 5.8 since, by Lemma 5.12, }ρj}L1 “ ş

Rn ρj dmÑ 1. Let us write

supppρjq Ă Brj and

ˇ̌̌̌ż
Rn

ρj dm´ 1

ˇ̌̌̌
ă ǫj

for a pair of sequences rj , ǫj ą 0 that converge to zero. For the third statement in the theorem,
we first give a proof under the additional assumption that f is almost everywhere bounded and
has compact support, i.e. assume there exists a constant R ą 0 such that

(5.4) }f}L8 ď R and f |RnzBR
” 0.

Since }ρj}L1 is bounded, Young’s inequality (Theorem 5.8) now implies that fj satisfies a uniform
L8-bound for all j, and since supppρjq Ă Brj with rj Ñ 0, we can also assume for large j that

fj has compact support in BR`1. It follows that f and fj are in L1pRnq, and we claim: fj Ñ f

in L1pRnq. To prove this, we use (5.3) and estimate

|fjpxq ´ f pxq| “
ˇ̌̌̌ż

Rn

rf px´ yq ´ f pxqs ρjpyq dy ` f pxq
ˆż

Rn

ρj dm´ 1

˙ˇ̌̌̌
ď
ż
Rn

|f px´ yq ´ f pxq|ρjpyq dy ` ǫj|f pxq|,
(5.5)
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so by Fubini’s theorem,

}fj ´ f}L1 ď
ż
Rn

ˆż
Rn

|f px´ yq ´ f pxq| ¨ ρjpyq dy
˙
dx` ǫj}f}L1

“
ż
Rn

ρjpyq
ˆż

Rn

|f px´ yq ´ f pxq| dx
˙
dy ` ǫj}f}L1

“
ż
Brj

ρjpyq}τ´yf ´ f}L1 dy ` ǫj}f}L1 ď sup
yPBrj

}τ´yf ´ f}L1 ¨ }ρj}L1 ` ǫj}f}L1 .

This goes to 0 as j Ñ 8 since ǫj , rj Ñ 0 and (by Theorem 5.4), y ÞÑ τyf is a continuous map
Rn Ñ L1pRnq.

Having established fj Ñ f in L1, we also know that fj has a subsequence for which |fj ´ f |p
converges pointwise almost everywhere to 0, and |fj´f |p is also uniformly bounded by a constant
multiple of the characteristic function of BR`1, which is integrable. The dominated convergence
theorem then implies

}fj ´ f}pLp “
ż
Rn

|fj ´ f |p dmÑ
ż
Rn

0 dm “ 0.

This conclusion applies at first to a subsequence, but if fj were not convergent to f in LppRnq,
then we could now find a subsequence that stays a positive distance away from f in the Lp-norm,
and the L1-convergence would then give a contradiction via the argument above, thus we have

actually proved the convergence fj
LpÑ f .

Without the additional conditions (5.4), one can instead argue as follows: for a given function
f P LppRnq and a constant R ą 0, define

fRpxq :“
#
f pxq if x P BR and |f pxq| ď R,

0 otherwise.

It is not hard to show that }f´fR}Lp can be made arbitrarily small by choosing R ą 0 sufficiently
large. Then fR satisfies the conditions (5.4) and can therefore be approximated arbitrarily well
in the Lp-norm by fRj :“ ρj ˚ fR. By Young’s inequality,

}fj ´ fRj }Lp “ }ρj ˚ pf ´ fRq}Lp ď }ρj}L1 ¨ }f ´ fR}Lp

can then also be made arbitrarily small, thus }f´fj}Lp becomes arbitrarily small for j sufficiently
large. �

While we are on this subject, we can prove a similar result on approximation of Cm-functions
that will be useful when we talk about distributions in §10. The statement requires a slight
expansion of the notion of Cm

loc-convergence defined in §0.3. Observe that if

Ω1 Ă Ω2 Ă . . . Ă ď
jPN

Ωj “ Ω Ă Rn

is a nested sequence of open subsets in Rn, then every compact set K Ă Ω belongs to Ωj for
j P N sufficiently large. A sequence of Cm-functions fj : Ωj Ñ V is said to be convergent
in Cm

locpΩq to a function f : Ω Ñ V if for every compact subset K Ă Ω and N P N such that
K Ă ΩN , the sequence of functions fN , fN`1, fN`2, . . . restricted to K is Cm-convergent to f |K.
The ony difference between this and the definition in §0.3 is that the limit function f may be
defined on a strictly larger domain than any function in the sequence.

Theorem 5.17. Suppose Ω Ă Rn is an open subset, f P CmpΩq for some integer m ě 0, and
ρj : R

n Ñ r0,8q for j P N is an approximate identity with shrinking support. Then there exists
a nested sequence of open subsets Ω1 Ă Ω2 Ă . . . Ă Ť

jPNΩj “ Ω such that for each j P N,

fj :“ ρj ˚ f is defined (in the sense of Remark 5.5) and smooth on Ωj, and the sequence fj
converges to f in Cm

locpΩq.
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Proof. Assume supppρjq Ă Brj with rj Ñ 0, and define

Ωj :“
 
x P Ω

ˇ̌
distpx,RnzΩq ą 2rj

(
.

Then fjpxq “ ş
Rn ρjpx ´ yqf pyq dy can be defined for all x P Ωj since y P Ω whenever x ´ y P

supppρjq. Smoothness follows by differentiating under the integral sign as in Theorem 5.7 to
prove Bαfjpxq “ pBαρj ˚ f qpxq for all multi-indices α and x P Ωj; here Theorem 0.4 is applicable
because ρj is bounded and f is integrable on the region Brj pxq where ρjpx´ ¨q can be nonzero.
To prove fj Ñ f in Cm

loc, suppose K Ă Ω is compact, and pick N P N large enough so that
K Ă ΩN and the slightly larger compact set

K 1 :“  
x P Rn

ˇ̌
distpx,Kq ď rj

(
is also contained in Ω. Then for x P K and j ě N , (5.5) gives

|fjpxq ´ f pxq| ď sup
yPBrj

|f px´ yq ´ f pxq| ¨ }ρj}L1 ` ǫj}f}C0pKq.

Since x and x´y in this expression both belong to K 1 and f is uniformly continuous on K 1, this
implies uniform convergence fj Ñ f on K. To prove the same for derivatives up to order m, we
observe that for any multi-index α with |α| ď m, x P K 1 and j sufficiently large,

Bαf pxq “ B|α|
Bxα

ż
Brj

f px´ yqρjpyq dy “
ż
Brj

Bαf px´ yqρjpyq dy “ pBαf ˚ ρjqpxq,

where Theorem 0.4 justifies differentiation under the integral sign since Bαf is well defined and
bounded on Brj pxq while ρj is integrable. The same argument that was used for fj then implies
uniform convergence Bαfj Ñ Bαf on K. �
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6. Absolute continuity

6.1. The fundamental theorem of calculus. Let us consider the following question.

Question 6.1. What is the largest class of functions f on a compact interval ra, bs Ă R such
that the formula f pxq “ f paq ` şx

a
f 1ptq dt holds?

Here we regard
şb
a
f ptq dt as alternative notation for the Lebesgue integral

ş
ra,bs f dm if a ď b,

or ´ ş
rb,as f dm if b ď a. The formula is easy to prove under the assumption that f is continuously

differentiable, but we already know it is valid somewhat more generally than this, e.g. it clearly
also holds if f is continuous and only piecewise C1, and it is not hard to think up examples in
which f is non-differentiable on a countably infinite subset but the formula still holds. In order
for the right hand side to make sense at all, f only needs to be differentiable almost everywhere
on ra, bs, and its (almost everywhere well-defined) derivative needs to be in L1pra, bsq. Is that
enough? No:

Example 6.2. The Cantor function is a continuous, surjective and monotone increasing
function f : r0, 1s Ñ r0, 1s whose derivative is well defined and vanishes on a subset of full
measure, namely the complement of the Cantor ternary set C Ă r0, 1s. In particular, f is
defined to be constant on each of the intervals that are removed in order to define C:

f |p1{3,2{3q :“ 1

2
,

f |p1{9,2{9q :“ 1

4
, f |p7{9,8{9q :“ 3

4
,

f |p1{27,2{27q :“ 1

8
, f |p7{27,8{27q :“ 3

8
, f |p19{27,20{27q :“ 5

8
, f |p25{27,26{27q :“ 7

8
and so forth (see Figure 4). The easiest way to define f at all other points is as the uniform limit
of a sequence of piecewise affine, continuous, increasing and surjective functions fn : r0, 1s Ñ
r0, 1s. Such a sequence is uniquely determined by the following conditions (Figure 5):

‚ f0pxq :“ x;
‚ For each n P N, fn takes the same constant values as f on each of the 2n´1 intervals of
length 1{3n that are removed in the definition of C, and has constant slope on all other
subintervals of r0, 1s.

It is easy to check from this definition that |fn ´ fn´1| ď c{2n for some constant c ą 0 and
all n P N, thus the sequence fn is uniformly Cauchy and therefore converges to a continuous
function f , which is automatically monotone and surjective.14

Since the Cantor function has values on the entire interval r0, 1s in spite of its derivative
vanishing almost everywhere, it clearly lacks whatever property is needed for the fundamental
theorem of calculus to hold. Let us reformulate the question slightly: suppose f P L1pra, bsq,
and consider the function F defined on ra, bs by

F pxq :“
ż x

a

f ptq dt.
One of the main results of this section (Corollary 6.12 below) will show that F must be differen-
tiable almost everywhere and its derivative is f . The Cantor function also has the first property,
but since it is evidently not the integral of its derivative, we deduce that the Cantor function
cannot be written as an integral of any Lebesgue-integrable function on r0, 1s. So, how do we
tell the difference, i.e. what properties does the function F have that the Cantor function does
not? Both are continuous, but it turns out that F satisfies a stronger condition than continuity.

14A more precise formula for f can be deduced from the fact that it is continuous and constant on a sequence
of intervals whose union is dense. It is easiest to express in terms of base-3 and base-2 expansions: since all points
x P C have unique base-3 expansions 0.a1a2a3 . . . with an P t0, 2u for all n “ 1, 2, 3, . . ., one can write fpxq P r0, 1s
so that its base-2 expansion is 0.b1b2b3 . . . with bn :“ an{2 for all n. In other words, f

`ř8
n“1

2an

3n

˘ “ ř8
n“1

an

2n
,

assuming an P t0, 1u for all n P N.
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Figure 4. An imperfect picture of the Cantor function. Despite the appearance
of jump discontinuities in the approximate graph drawn here, it is continuous.
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Figure 5. A sequence of piecewise affine functions converging uniformly to the
Cantor function.

Lemma 6.3. For any measure space pX,µq and any f P L1pXq, given ǫ ą 0, there exists δ ą 0
such that for all measurable subsets A Ă X,

µpAq ă δ ñ
ż
A

|f | dµ ă ǫ.

Proof. If the result is not true, then there exists a number ǫ ą 0 and a sequence of measurable
sets An Ă X such that

µpAnq ă 1

2n
but

ż
An

|f | dµ ě ǫ.

Define Bn :“ Ť8
k“nAk, so we have

B1 Ą B2 Ą B3 Ą . . . B :“ č
nPN

Bn,

and µpBnq ď ř8
k“n µpAkq ă ř8

k“n
1
2k

“ 1
2n´1 , thus µpBq “ limnÑ8 µpBnq “ 0. This implies

limnÑ8
ş
Bn
|f | dµ “ ş

B
|f | dµ “ 0, which is a contradiction since Bn Ą An for every n and thusş

Bn
|f | dµ ě ş

An
|f | dµ ě ǫ ą 0. �
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Returning to the function F pxq “ şx
a
f ptq dt with f P L1pra, bsq, consider the consequences

of Lemma 6.3 for subsets A Ă ra, bs defined as finite unions of intervals A “ ŤN
j“1raj , bjs with

a ď a1 ď b1 ď . . . ď aN ď bN ď b. The lemma provides for every ǫ ą 0 a δ ą 0 such that

whenever mpAq “ řN
j“1pbj ´ ajq ă δ, it follows that

Nÿ
j“1

|F pbjq ´ F pajq| “
Nÿ
j“1

ˇ̌̌̌
ˇ
ż bj

aj

f ptq dt
ˇ̌̌̌
ˇ ď Nÿ

j“1

ż
raj ,bjs

|f | dm “
ż
A

|f | dm ă ǫ.

In other words, F satisfies the following condition:

Definition 6.4. A function F on an interval I Ă R is called absolutely continuous if for
every ǫ ą 0 there exists δ ą 0 such that for all finite sequences a1 ď b1 ď . . . ď aN ď bN of
points in I,

Nÿ
j“1

pbj ´ ajq ă δ ñ
Nÿ
j“1

|F pbjq ´ F pajq| ă ǫ.

This definition would be the same as uniform continuity for functions on I Ă R if one only
allowed N “ 1, but the extension to all finite unions of intervals makes it a strictly stronger
condition than uniform continuity. The Cantor function, for example, is uniformly continuous
(as are all continuous functions on compact intervals), but the next exercise shows that it is not
absolutely continuous:

Exercise 6.5. Show that if F : ra, bs Ñ R is absolutely continuous, then it maps every set of
measure zero in ra, bs to a set of measure zero in R.

Exercise 6.6. Show that every Lipschitz continuous function on a compact interval ra, bs is also
absolutely continuous.

Here is the answer to Question 6.1:

Theorem 6.7 (Fundamental theorem of calculus for the Lebesgue integral). For a nontrivial
compact interval ra, bs Ă R and functions f on ra, bs, the following conditions are equivalent:

(1) f is absolutely continuous;
(2) f is differentiable almost everywhere, its derivative f 1 is in L1pra, bsq, and f pxq “ f paq`şx

a
f 1ptq dt for all x P ra, bs.

We have already proved the easy direction of this theorem, as a consequence of Lemma 6.3.
We will show in Corollary 6.12 that for any g P L1pra, bsq, the absolutely continuous function
given by F pxq “ c ` şx

a
gptq dt for a constant c “ F paq is almost everywhere differentiable and

its derivative is g. This statement is a consequence of the Lebesgue differentiation theorem,
introduced in the next subsection. What then remains to be proved is that every absolutely
continuous function f on ra, bs can be written in the form f pxq “ f paq ` şx

a
gptq dt for some

g P L1pra, bsq. We will prove this in §6.5 as a consequence of a simple version of the Radon-
Nikodým theorem, proved in §6.4.

Combining Exercise 6.6 with Theorem 6.7 produces a slightly surprising consequence:

Corollary 6.8. Every Lipschitz continuous function on a compact interval ra, bs Ă R with b ą a

is differentiable almost everywhere. �

Corollary 6.8 also holds for functions on open domains in Rn, and is known in that level of
generality as Rademacher’s theorem. For a concise proof built on top of the one-dimensional
case, see [Hei05].

6.2. The Lebesgue differentiation theorem. Here is another natural question, which we
will need to answer before we learn how to differentiate integrals of L1-functions.

Question 6.9. For locally integrable functions f on Rn, what relation is there between f pxq and
the “average” value of f on arbitrarily small balls about x?
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Let us denote by
Brpxq Ă Rn

the open ball of radius r ą 0 about a point x P Rn.

Definition 6.10. For a function f P L1
locpRnq, x P Rn is called a Lebesgue point of f if the

average value of |f ´ f pxq| on Brpxq converges to zero as r Ñ 0, i.e.

lim
rÑ0`

1

mpBrpxqq
ż
Brpxq

|f pyq ´ f pxq| dy “ 0.

Whenever x is a Lebesgue point of f , one has

(6.1) lim
rÑ0`

1

mpBrpxqq
ż
Brpxq

f pyq dy “ f pxq
since ˇ̌̌̌

ˇ 1

mpBrpxqq
ż
Brpxq

f dm´ f pxq
ˇ̌̌̌
ˇ “

ˇ̌̌̌
ˇ 1

mpBrpxqq
ż
Brpxq

pf ´ f pxqq dm
ˇ̌̌̌
ˇ

ď 1

mpBrpxqq
ż
Brpxq

|f ´ f pxq| dm.
Clearly x is a Lebesgue point whenever f is continuous at x, but Legesgue-integrable functions
can easily be discontinuous everywhere. Moreover, changing f on a set of measure zero changes
the right hand side of (6.1) at some points but not the left hand side, so the most one could
hope for in general is for (6.1) to be true for almost every x. That turns out to be true, and
thus gives the best possible answer to Question 6.9:

Theorem 6.11 (Lebesgue differentiation theorem). For any f P L1
locpRnq, almost every point

of Rn is a Lebesgue point of f .

To see why this is called a differentiation theorem, consider the case n “ 1. If f P L1pra, bsq,
extend f to a function in L1pRq that vanishes outside ra, bs, and consider the function F pxq :“şx
a
f ptq dt. If x P pa, bq is a Lebesgue point of f , then for all h ą 0 sufficiently small, we haveˇ̌̌̌

F px` hq ´ F pxq
h

´ f pxq
ˇ̌̌̌
“
ˇ̌̌̌
1

h

ż h

x

f ptq dt´ f pxq
ˇ̌̌̌
ď 1

h

ż h

x

|f ptq ´ f pxq| dt

ď 2
1

mppx´ h, x` hqq
ż x`h

x´h

|f ptq ´ f pxq| dt,
and the latter becomes arbitrarily small when h ą 0 is small. A similar statement is proved in
the same manner for h ă 0 and shows that at every Lebesgue point x, F 1pxq “ f pxq.
Corollary 6.12. For every f P L1pra, bsq, the function F pxq :“ şx

a
f ptq dt is differentiable almost

everywhere on pa, bq and satisfies F 1 “ f . �

The proof of Theorem 6.11 requires a result called the Hardy-Littlewood maximal inequality,
which we will discuss in the next subsection. In order to see what is needed, let us set up the
general framework of the proof first.

We begin with two easy observations:

(1) If f is a continuous function on Rn, then every point in Rn is a Lebesgue point.
(2) If almost every point is a Lebesgue point for all f P L1pRnq, then the same holds for all

f P L1
locpRnq.

The second statement follows from the purely local nature of the Lebesgue point condition,
i.e. it depends on f only in arbitrarily small neighborhoods of x. Then if we cut off the values
of f P L1

locpRnq outside the ball Bkp0q Ă Rn to produce a function in L1pRnq whose set of non-
Lebesgue points in Bkp0q we can prove has measure zero, it follows that the set of non-Lebesgue
points of f will be the union of these sets for all k P N, and thus also has measure zero.
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With this understood, let us associate to any f P L1pRnq and r ě 0 the functions f r : Rn Ñ
r0,8s defined by

f rpxq :“ 1

mpBrpxqq
ż
Brpxq

|f ´ f pxq| dm for r ą 0, f0pxq :“ lim sup
rÑ0

f rpxq.

The goal is to prove that f0 “ 0 almost everywhere. For each N P N, let

AN :“  
x P Rn

ˇ̌
f0pxq ą 1{N (

.

We will deduce the desired result from:

Lemma 6.13. For every N P N, AN is contained in a Lebesgue-measurable set of measure less
than 1

N
.

Indeed, if this lemma holds, then since A1 Ă A2 Ă A3 Ă . . ., it follows that every AN is a set
of measure zero. Their union therefore also has measure zero, and that is precisely the set on
which f0 ą 0.

In order to estimate the measure of AN , we appeal to the density of continuous functions
in L1pRnq and choose a sequence f1, f2, f3, . . . of continuous functions on Rn such that fk Ñ f

in L1. We can then pick k large and use fk to estimate f rpxq for r ą 0 small:

f rpxq “ 1

mpBrpxqq
ż
Brpxq

|f ´ f pxq| dm

ď 1

mpBrpxqq
ż
Brpxq

p|f ´ fk| ` |fk ´ fkpxq| ` |fkpxq ´ f pxq|q dm

“ 1

mpBrpxqq
ż
Brpxq

|f ´ fk| dm` f rk pxq ` |fkpxq ´ f pxq|.

(6.2)

We cannot assume fk Ñ f uniformly, so in this last expression, the third term might not become
arbitrarily small for all x as k Ñ 0, but it is easy to show that it does so outside of a set of small
measure. Indeed, we can associate to any given measurable function g on a measure space pX,µq
the sets At :“

 
x P X ˇ̌ |gpxq| ą t

(
for t ą 0, and then estimate }g}L1 ě ş

At
|g| dµ ě µpAtqt. The

result is known as Chebyshev’s inequality:

(6.3) µ
`  
x P X ˇ̌ |gpxq| ą t

( ˘ ď }g}L1

t
.

Applying this to f ´ fk P L1pRnq, we can arrange by choosing k sufficiently large to make
|fkpxq ´ f pxq| arbitrarily small for all x outside of a set that has arbitrarily small measure.
Having chosen k in this way, the second term in the last line of (6.2) also becomes arbitrarily
small as r Ñ 0. However, estimating the first term requires some non-obvious input: we would
like to claim that since |f ´ fk| has a small L1-norm, its average value over Brpxq also satisfies
some small bound as r Ñ 0. If we were first fixing r ą 0 and then letting k Ñ 8, it would be
obvious that this term vanishes in the limit, but unfortunately the order of quantifiers is the
other way around: we have already fixed k and need to estimate the average for all small r ą 0
in terms of }f ´ fk}L1 . This is what the Hardy-Littlewood maximal inequality is for.

6.3. Maximal functions and weak L1. We now introduce a missing ingredient in the proof
of Lemma 6.13.

Definition 6.14. For f P L1
locpRnq, the maximal function Mf : Rn Ñ r0,8s is defined by

Mf pxq :“ sup
rą0

1

mpBrpxqq
ż
Brpxq

|f | dm.

Lemma 6.15. For every f P L1
locpRnq, the maximal function Mf : Rn Ñ r0,8s is Borel

measurable.
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Proof. It suffices to show that pMf q´1ppt,8qq is a Borel set for every t P R; we will show in fact
that it is open, i.e. Mf is lower semicontinuous. The condition Mf pxq ą t implies that for some
r ą 0, 1

mpBrpxqq
ş
Brpxq |f | dm ą t. This remains true after replacing mpBrpxqq with mpBr1pxqq for

some slightly larger r1 ą r, and since Brpxq Ă Br1px1q for all x1 P Rn sufficiently close to x, we
then have

t ă 1

mpBr1pxqq
ż
Brpxq

|f | dm ď 1

mpBr1pxqq
ż
Br1pxq

|f | dm ďMf px1q.
�

It is clearly not possible to achieve a general pointwise bound on Mf for f P L1pRnq, e.g. if f
is defined as 1{a|x| on r´1, 1s and 0 on the rest of R, then f P L1pRq but its average values on
r´r, rs diverge to 8 as r Ñ8, givingMf p0q “ 8. A realistic hope, however, would be to bound
the measure of sets on which Mf exceeds any given value. If Mf P L1pRnq, then such a bound
follows from the Chebyshev inequality (6.3). In general, it would be too much to hope for Mf

to be globally integrable, but there also exist functions that are not in L1pRnq and nonetheless
satisfy a bound of the form (6.3), with the L1-norm replaced by some other constant. A simple
example is f pxq :“ 1{x, which is not in L1pRq but satisfies m`  

x P X ˇ̌ |f pxq| ą t
( ˘ “ 2{t, thus

it belongs to the following class of functions.

Definition 6.16. A measurable function f on pX,µq is called weakly integrable if there exists
a constant C ą 0 such that

µ
`  
x P X ˇ̌ |f pxq| ą t

( ˘ ď C

t
for all t ą 0.

We will denote the space of such functions by L1
weakpXq.

One can define a “norm” on L1
weakpXq by

}f}L1

weak

:“ sup
tą0

tµ
`  
x P X ˇ̌ |f pxq| ą t

( ˘
.

Just one caveat: } ¨ }L1

weak

satisfies }cf}L1

weak

“ |c| ¨ }f}L1

weak

for c P K and }f}L1

weak

“ 0 if and

only if f vanishes almost everywhere, but it does not satisfy the triangle inequality. Instead it
satisfies (see [Sal16, Lemma 6.2])

}f ` g}L1

weak

ď }f}L1

weak

λ
` }g}L1

weak

1´ λ
for 0 ă λ ă 1,

and b
}f ` g}L1

weak

ď
b
}f}L1

weak

`
b
}g}L1

weak

.

As a consequence, L1
weakpXq is not a normed vector space, but one can regard it as a topological

vector space with respect to the metric distpf, gq :“
b
}f ´ g}L1

weak

. The inequality (6.3) can

now be interpreted as saying that there is a natural continuous inclusion L1pXq ãÑ L1
weakpXq.

Theorem 6.17 (Hardy-Littlewood). There exists a constant C ą 0 depending only on the
dimension n such that the estimate }Mf}L1

weak

ď C}f}L1 holds for all f P L1pRnq.
The proof requires a simple version of a result known as the Vitali covering lemma.

Lemma 6.18 (Vitali). For every finite collection of open balls Br1px1q, . . . , BrN pxN q Ă Rn,
there exists a subset I Ă t1, . . . , Nu such that Bripxiq X Brj pxjq “ H for every i, j P I with
i ‰ j, and

Nď
i“1

Bripxiq Ă
ď
jPI

B3rj pxjq.

In particular, m

˜
Nď
i“1

Bripxiq
¸
ď 3n

ÿ
jPI

mpBrj pxjqq.
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Proof. Abbreviate Bi :“ Bripxiq, and reorder the balls so that, without loss of generality, r1 ě
. . . ě rN . Define I “ ti1, . . . , iℓu Ă t1, . . . , Nu such that i1 :“ 1 and, for each j ě 1, ij`1 is the
smallest number greater than ij such that Bij`1

is disjoint from Bi1 Y . . . Y Bij . This process
terminates after finitely many steps, and if k R I, it means that Bk intersects Bi for some i P I
with i ă k. Since rk ď ri, it follows that Bk Ă B3ripxiq. �

Proof of Theorem 6.17. We shall prove that the stated inequality holds with C “ 3n: in other
words, for every f P L1pRnq and t ą 0,

(6.4) mpAtq ď 3n ¨ }f}L1

t
, where At :“  

x P Rn
ˇ̌
Mf pxq ą t

(
.

By the inner regularity of the Lebesgue measure (see [Sal16, Theorem 2.13]), it will suffice to

prove that every compact set K Ă Rn with Mf |K ą t satisfies mpKq ď 3n¨}f}L1

t
. For each

x P K, the condition Mf pxq ą t means there exists a ball Bpxq Ă Rn about x such that

(6.5)
1

mpBpxqq
ż
Bpxq

|f | dm ą t.

Using the compactness of K, choose a finite subcollection B1, . . . , BN of such balls so that
K Ă ŤN

j“1Bj. After reordering the balls, we can then apply Lemma 6.18 to assume that

B1, . . . , Bℓ (for some ℓ ď N) are all disjoint and, using (6.5),

mpKq ď m

˜
Nď
j“1

Bj

¸
ď 3n

ℓÿ
j“1

mpBjq ă 3n
ℓÿ

j“1

1

t

ż
Bj

|f | dm ď 3n

t
}f}L1.

�

We now have enough tools to complete the proof of the Lebesgue differentiation theorem.

Proof of Lemma 6.13 (and thus Theorem 6.11). The estimate (6.2) implies

(6.6) f rpxq ďMpf ´ fkqpxq ` f rkpxq ` |fkpxq ´ f pxq|.
Given N P N, choose k large enough so that

}f ´ fk}L1 ă 1

3n ¨ 4N2
.

Then Chebyshev’s inequality (6.3) implies

m
` 
x P Rn

ˇ̌ |fkpxq ´ f pxq| ą 1{2N(˘ ď 2N}f ´ fk}L1 ă 1

3n ¨ 2N ă 1

2N
,

and by Theorem 6.17 (in particular (6.4)),

m
` 
x P Rn

ˇ̌
Mpf ´ fkqpxq ą 1{2N(˘ ď 2N ¨ 3n}f ´ fk}L1 ă 1

2N
,

thus for all x P Rn outside a set of measure at most 1{N , (6.6) becomes

f rpxq ď 1

2N
` f rkpxq ` 1

2N
“ f rkpxq ` 1

N
.

Letting r go to 0, we conclude f0pxq ď 1
N

since f0k pxq “ 0 by the continuity of fk. �

6.4. The Radon-Nikodým theorem. Recall that if pX,µq is a measure space and f : X Ñ
r0,8s a measurable function, then one can define another measure λ on the same σ-algebra by

(6.7) λpAq :“
ż
A

f dµ.

In order to show that absolutely continuous functions can always be written as integrals, we will
first answer the following question, which turns out to be easier:

Question 6.19. Given two measures µ and λ defined on the same measurable space X, does
there exist a measurable function f : X Ñ r0,8s such that (6.7) holds for all measurable sets A?
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The function f : X Ñ r0,8s in this relation, if it exists, is sometimes called the Radon-
Nikodým derivative of λ with respect to µ, and written as

dλ

dµ
:“ f.

It is not hard to think up necessary conditions for the existence of such a function. For example,
there clearly is no such function if µ is the counting measure on R and λ is the Lebesgue measure,
as

ş
A
f dµ “ ř

xPA f pxq then can only be finite when A Ă R is a countable set, whose Lebesgue
measure is therefore zero. It is also impossible if one takes the Lebesgue measure on Rn as µ
and the Dirac measure

δpAq :“
#
1 if 0 P A,
0 otherwise

as λ; this is just the statement that the “Dirac δ-function” so popular among physicists does
not actually exist. One thing both of these counterexamples have in common is that one can
find measurable sets A Ă X for which µpAq “ 0 but λpAq ‰ 0. This possibility clearly needs to
be excluded since

ş
A
f dµ “ 0 for every function when µpAq “ 0.

Definition 6.20. Given a measure space pX,µq, a measure λ defined on the same σ-algebra is
called absolutely continuous with respect to µ (written “λ Î µ”) if the implication

µpAq “ 0 ñ λpAq “ 0

holds for all measurable sets A Ă X.

The following exercise is not logically necessary for our exposition, but it demonstrates that
there are nontrivial connections between Definition 6.20 and the notion of absolutely continuous
functions.

Exercise 6.21 (cf. Lemma 6.3). Show that if λ Î µ and λpXq ă 8, then for every ǫ ą 0 there
exists a δ ą 0 such that for measurable sets A Ă X,

µpAq ă δ ñ λpAq ă ǫ.

Theorem 6.22 (Radon-Nikodým). If µ and λ are two σ-finite measures on the same measurable
space X, then the following conditions are equivalent:

(1) λ Î µ;
(2) There exists a measurable function f : X Ñ r0,8s satisfying λpAq “ ş

A
f dµ for all

measurable sets A Ă X.

The implication (2) ñ (1) is immediate. We will prove (1) ñ (2) using the natural isomor-
phism between L8 and the dual space of L1. To see how this arises, note that if λ is given by
(6.7), then for every real-valued λ-integrable function g P L1pX,λq,
(6.8)

ż
X

g dλ “
ż
X

gf dµ.

The non-obvious trick is to view Λpgq :“ ş
X
g dλ P R as defining a bounded linear functional

Λ : L1pX,λ ` µq Ñ R, which makes sense since pλ ` µqpAq :“ λpAq ` µpAq defines yet another
measure on the same σ-algebra as λ and µ, and we have

(6.9) |Λpgq| “
ˇ̌̌̌ż

X

g dλ

ˇ̌̌̌
ď
ż
X

|g| dλ ď
ż
X

|g| dpλ` µq “ }g}L1pλ`µq.

Since λ` µ is σ-finite, it follows then from the Riesz representation theorem that there exists a
real-valued function h P L8pX,λ ` µq with }h}L8pλ`µq ď 1 such that

(6.10)

ż
X

g dλ “
ż
X

hg dpλ` µq for all g P L1pX,λ ` µq.
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This is enough information to derive a formula for f in terms of h: indeed, combining (6.8) and
(6.10) givesż

X

gf dµ “
ż
X

hg dpλ` µq “
ż
X

hg dλ`
ż
X

hg dµ “
ż
X

phgf ` hgq dµ “
ż
X

ghpf ` 1q dµ
for all g P L1pX,λ` µq Ă L1pX,λq. This suggests the relation f “ hpf ` 1q, or equivalently

f “ h

1´ h
.

There are a few subtle issues to check before we can call this a proof—you may notice for instance
that we have not yet used the condition λ Î µ.

Proof of Theorem 6.22. Following the trick described above, we note that since λ and µ are both
σ-finite, λ`µ is also a σ-finite measure, so that the Riesz representation theorem (Theorem 2.4)
gives a natural isomorphism between L8pX,λ ` µq and the dual space of L1pX,λ ` µq. The
bounded linear functional Λ : L1pX,λ ` µq Ñ R defined by Λpgq :“ ş

X
f dλ therefore gives

rise to a unique (up to equality almost everywhere) real-valued function h P L8pX,λ ` µq
satisfying (6.10).

We claim that h satisfies 0 ď h ă 1 almost everywhere with respect to the measure µ. Indeed,
for n P N, let An :“ tx P X | h ď ´1{nu, and suppose A1

n Ă An is any subset for which
λpA1

nq ` µpA1
nq ă 8. The function g :“ χA1

n
is then in L1pX,λ ` µq, so plugging it into (6.10)

gives

0 ď λpA1
nq “

ż
X

g dλ “
ż
X

hg dpλ` µq “
ż
A1

n

hdpλ ` µq ď ´ 1

n

“
λpA1

nq ` µpA1
nq
‰ ď 0,

implying µpA1
nq “ λpA1

nq “ 0. Since λ and µ are both σ-finite, An is a union of countably many
subsets on which λ and µ are both finite, so having shown that µ and λ vanish on all of these
subsets, it follows that µpAnq “ λpAnq “ 0. The set on which h ă 0 is now the countable union
of the sets An for n P N, and therefore also has measure zero with respect to both µ and λ. The
other bound follows similarly by setting A :“ tx P X | hpxq ě 1u: for any subset A1 Ă A with
λpA1q and µpA1q both finite, we can plug g :“ χA1 into (6.10) and find

λpA1q “
ż
X

g dλ “
ż
X

hg dpλ` µq “
ż
A1
hdλ`

ż
A1
hdµ ě λpA1q ` µpA1q,

implying µpA1q “ 0. (Notice that this time, we do not immediately also obtain λpA1q “ 0; the
latter follows since λ Î µ, but it need not be true without the absolute continuity assumption.)
Appealing once more to the σ-finiteness of λ and µ, this implies µpAq “ 0.

The function f :“ h
1´h

therefore satisfies 0 ď f ă 8 almost everywhere with respect to µ, so
we can define a measure µf by

µf pAq :“
ż
X

f dµ.

We claim µf “ λ. To see this, let us rewrite the relation (6.10) in the formż
X

p1´ hqg dλ “
ż
X

hg dµ for all g P L1pX,λ ` µq.
Now if A Ă X is any measurable subset for which the function g :“ 1

1´h
χA is in L1pX,λ ` µq,

we obtain

λpAq “
ż
X

χA dλ “
ż
X

p1´ hqg dλ “
ż
X

hg dµ “
ż
X

h

1´ h
χA dµ “

ż
A

f dµ “ µf pAq.
To extend this to an arbitrary measurable subset A Ă X, we can again appeal to σ-finiteness
and write

X “ ď
nPN

Xn “
ď
nPN

Yn
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for two sequences of subsets X1 Ă X2 Ă . . . Ă X and Y1 Ă Y2 Ă . . . X with µpXnq ă 8 and
λpYnq ă 8. For n P N, let

An :“ tx P A | 1´ hpxq ě 1{nu XXn X Yn Ă X.

Then An has finite pµ ` λq-measure and 1
1´h

ď n on An, thus
1

1´h
χAn P L1pX,λ ` µq, so the

calculation above proves λpAnq “ µf pAnq. To finish, observe that since h ă 1 almost everywhere
with respect to µ, absolute continuity λ Î µ implies that this is also true with respect to λ, and
thus

λ
´
Az ď

nPN
An

¯
“ µf

´
Az ď

nPN
An

¯
“ 0.

This justifies the following limit computation:

λpAq “ lim
nÑ8λpAnq “ lim

nÑ8µf pAnq “ µf pAq.
�

Remark 6.23. Without the condition λ Î µ, the function h constructed in the proof above may
satisfy h “ 1 on a set with positive λ-measure, in which case limnÑ8 λpAnq ď λpAq in the last
step, producing an inequality ż

A

f dµ ď λpAq
which may in general be strict. The argument still proves that equality holds for every measur-
able set A Ă X such that the function 1

1´h
χpAq P L1pX,λ ` µq, but in pathological examples,

there may be no interesting sets with this property.

Exercise 6.24. Find the function f : Rn Ñ r0,8s that is constructed in the proof of Theo-
rem 6.22 for the case where µ :“ m is the Lebesgue measure and λ :“ δ the Dirac measure. On
which sets A Ă Rn is equality achieved in

ş
A
f dm ď δpAq?

Remark 6.25. There are more general versions of the Radon-Nikdým theorem for so-called signed
measures and complex measures, in which f in the formula λpAq “ ş

A
f dµ may be a real or

complex-valued µ-integrable function. See for example [Rud87, Chapter 6] or [Sal16, §5.4].

6.5. Absolutely continuous functions are integrals. In light of Corollary 6.12, the hard
direction of the fundamental theorem of calculus for the Lebesgue integral now follows from:

Lemma 6.26. Every absolutely continuous function F on ra, bs Ă R is given by

(6.11) F pxq “ F paq `
ż x

a

f ptq dt
for some f P L1pra, bsq.

The lemma is valid for functions F : ra, bs Ñ V with values in an arbitrary finite-dimensional
vector space, but we will focus on the case V “ R, which immediately implies the general case
after choosing a real basis of V . For real-valued functions, we will deduce it from the Radon-
Nikodým theorem. Some alternative approaches and interesting related facts are outlined in
§6.5.3.

6.5.1. The case of strictly increasing functions. Let us assume F : ra, bs Ñ R is absolutely
continuous and strictly increasing, i.e. it satisfies

F pyq ą F pxq whenever y ą x.

The following lemma produces another connection between the notions of absolute continuity
for functions and measures.

Lemma 6.27. F maps every set of measure zero in ra, bs to a set of measure zero in R.
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Proof. If A Ă ra, bs has measure zero, then for any given δ ą 0, A is contained in the union of a
sequence of disjoint intervals pai, biq such that

ř8
i“1pbi´aiq ă δ. Absolute continuity guarantees

that if ǫ ą 0 is given, δ ą 0 in the previous sentence can be chosen so that for every k P N,řk
i“1 |f pbiq ´ f paiq| ă ǫ, and consequently,

8ÿ
i“1

|f pbiq ´ f paiq| ď ǫ.

The image F pAq is therefore contained in a countable union of open intervals pF paiq, F pbiqq
whose total measure is at most ǫ. �

Exercise 6.28. Find a set of measure zero whose image under the Cantor function of Exam-
ple 6.2 has positive measure. (Note that in Lemma 6.27, we did not actually need to assume
that F is strictly increasing.)

Proof of Lemma 6.26 for F strictly increasing. We claim that the formula

λpAq :“ mpF pAqq
defines a measure on ra, bs with λ Î m.

We need to check first that the image under F of every Lebesgue measurable set A Ă ra, bs
is Lebesgue measurable. By the inner regularity of the Lebesgue measure (see [Sal16, Theo-
rem 2.13]), we can choose a sequence of compact subsets K1 Ă K2 Ă K3 Ă . . . Ă A such
that A is the disjoint union of a set A0 of measure zero with K8 :“ Ť

nPNKn. Since F is
continuous, F pKnq Ă R is also compact for each n, which makes F pK8q a countable union of
compact sets and thus a Borel set. By Lemma 6.27, F pA0q is another set of measure zero, thus
F pAq “ F pA0q Y F pK8q is Lebesgue measurable.

Since F : ra, bs Ñ R is strictly increasing, it is also injective, so disjoint measurable subsets
A1, A2, A3, . . . Ă ra, bs have disjoint images, and it follows that λ as defined above is σ-additive.
It is clearly also finite since F has bounded image, so this proves that λ is a measure, and
Lemma 6.27 implies that it is absolutely continuous with respect to the Lebesgue measure.

The Radon-Nikodým theorem now provides a measurable function f : ra, bs Ñ r0,8s such
that for all measurable subsets A Ă ra, bs,

mpF pAqq “
ż
A

f dm.

In particular for A :“ ra, xs, this gives F pxq ´ F paq “ şx
a
f ptq dt, and the global integrability of

f follows from this by setting x “ b. �

6.5.2. The general case. If F : ra, bs Ñ R is increasing but not strictly, then there is a cheap
trick to reduce Lemma 6.26 to the strictly increasing case: we consider the function

Gpxq :“ x` F pxq,
which is strictly increasing (and also absolutely continuous), even if F is constant on some
subinterval. The strictly increasing case therefore provides a function g P L1pra, bsq such that
Gpxq “ Gpaq ` şx

a
gptq dt, and it follows that

F pxq “ F paq `
ż x

a

rgptq ´ 1s dt.
The proof for increasing functions is thus complete.

The conclusion of the proof now follows from an important general observation about all
functions of bounded variation, which includes the absolutely continuous functions. Given any
function f on ra, bs, we define the total variation of f by

TV pf q :“ sup

#
Nÿ
i“1

|f pxiq ´ f pxi´1q|
ˇ̌̌̌
ˇ N ě 1 and a “ x0 ă x1 ă . . . ă xN “ b

+
P r0,8s,
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and say that f is of bounded variation if TV pf q ă 8. Notice that if f is of bounded variation,
then its restriction to every compact subinterval of ra, bs is also of bounded variation.

Lemma 6.29. If f is absolutely continuous on ra, bs, then it is of bounded variation, and the
function V f : ra, bs Ñ r0,8q defined by V f pxq :“ TV pf |ra,xsq is also absolutely continuous.

Proof. We note first that if a ď x ă c ă y ď b, then |f pyq´ f pxq| ď |f pyq´ f pcq|` |f pcq´ f pxq|,
thus if a ď x0 ă x1 ă . . . ă xN “ b is any partition of the interval ra, bs that does not include
c P pa, bq, adding c to the partition can only increase the value of the sum in the definition
of TV pf q. It follows that we lose no generality if we modify the definition of TV pf q so that the
supremum ranges only over partitions that include c, which gives rise to the relation

TV pf q “ TV pf |ra,csq ` TV pf |rc,bsq.
In particular, this implies

(6.12) V f pyq “ V f pxq ` TV pf |rx,ysq for every y ą x in ra, bs,
so the function V f : ra, bs Ñ r0,8s is increasing. Now choose ǫ ą 0 and δ ą 0 as in the
definition of absolute continuity, and choose a partition a “ t0 ă t1 ă . . . ă tN “ b such that
ti´ ti´1 ă δ for every i. Any partition of rti´1, tis is then a finite collection of closures of disjoint
open intervals with total length less than δ, implying TV pf |rti´1,tisq ă ǫ and thus

TV pf q “
Nÿ
i“1

TV pf |rti´1,tisq ă Nǫ ă 8.

Keeping the same ǫ and δ, if a ď a1 ă b1 ă . . . ă an ă bn ď b satisfy
řn

i“1pbi ´ aiq ă δ, then
(6.12) implies

nÿ
i“1

|V f pbiq ´ V f paiq| “
nÿ

i“1

TV pf |rai,bisq.

The latter is the supremum of sums
ř

j |f ptjq´f ptj´1q| over finite collections of intervals rtj´1, tjs
with disjoint interiors whose lengths add up to

řn
i“1pbi´aiq ă δ, hence the sum is less than ǫ. �

Lemma 6.30. For any function f : ra, bs Ñ R of bounded variation, the functions V f , V f ` f

and V f ´ f on ra, bs are increasing.

Proof. That V f is increasing follows already from (6.12), and in fact for y ą x,

V f pyq ´ V f pxq “ TV pf |rx,ysq ě |f pyq ´ f pxq|
since x ă y is a particular example of a partition of rx, ys. It follows that V f pyq ´ V f pxq ě
f pyq ´ f pxq and V f pyq ´ V f pxq ě f pxq ´ f pyq, thus

V f pyq ´ f pyq ě V f pxq ´ f pxq and V f pyq ` f pyq ě V f pxq ` f pxq.
�

Conclusion of the proof of Lemma 6.26. An arbitrary absolutely continuous function F : ra, bs Ñ
R can be decomposed as

F “ 1

2
pV F ` F q ´ 1

2
pV F ´ F q ,

where by Lemmas 6.29 and 6.30, V F ` F and V F ´ F are each absolutely continuous and
increasing. We have already proved therefore that both can be represented as integrals of L1-
functions on ra, bs, and the same thus follows for F . �
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6.5.3. Alternative approaches. There are other ways of proving Lemma 6.26 without using the
Radon-Nikodým theorem. Since we expect an absolutely continuous function F to be the integral
of its derivative, one method for finding the function f in (6.11) is to prove directly that F is
differentiable almost everywhere. This can be deduced from the following somewhat surprising
classical result of Lebesgue:

Theorem 6.31 (Lebesgue). Every monotone function f : ra, bs Ñ R is differentiable almost
everywhere.

A proof of this theorem using a more elaborate version of the Vitali covering lemma (cf.
Lemma 6.18) may be found in [Roy88, Chapter 5]; see also [RSN90] for a slightly different
exposition. It takes only slightly more effort to see that for a monotone function f : ra, bs Ñ R,
f 1 belongs to L1pra, bsq. The argument goes as follows: consider the case where f : ra, bs Ñ R

is increasing, and for convenience, extend f over R with constant values f pxq “ f paq for x ď a

and f pxq “ f pbq for x ě b. The difference quotients

Dhf pxq :“ f px` hq ´ f pxq
h

are then well-defined functions Dhf : ra, bs Ñ R for every h P Rzt0u, and they are clearly
measurable functions since f is measurable. By Theorem 6.31, there exists a function f 1 :
ra, bs Ñ R which can be defined as f 1pxq “ limhÑ0Dhf pxq wherever this limit exists and zero
everywhere else; this means Dhf Ñ f 1 almost everywhere as hÑ 0, thus f 1 is measurable. The
difference quotients are easily seen to satisfy a “discrete” variant of the fundamental theorem of

calculus: instead of
şb
a
f 1ptq dt “ f pbq ´ f pbq, one hasż

ra,bs
Dhf dm “ 1

h

ż b

a

rf px` hq ´ f pxqs dx “ 1

h

ż b`h

a`h

f pxq dx´ 1

h

ż b

a

f pxq dx

“ 1

h

ż
rb,b`hs

f dm´ 1

h

ż
ra,a`hs

f dm.

(6.13)

Taking h ą 0, in the situation at hand we have defined f to be constant on rb, b ` hs, and ´f
is bounded above by ´f paq on ra, a` hs, so this computation impliesż

ra,bs
Dhf dm ď f pbq ´ f paq for h ą 0.

Now if we consider the sequence of functions D1{nf for n P N, they have nonnegative values

since f is increasing, and they converge almost everywhere to f 1, thus Fatou’s lemma (see
[Sal16, Theorem 1.41]) givesż

ra,bs
f 1 dm “

ż
ra,bs

lim inf
nÑ8 D1{nhdm ď lim inf

nÑ8

ż
ra,bs

D1{nhdm ď f pbq ´ f paq.

Corollary 6.32. For every monotone function f : ra, bs Ñ R, f 1 is measurable and satisfies

}f 1}L1 ď |f pbq ´ f paq|.
�

Remark 6.33. Corollary 6.32 is analogous to the inequality in Remark 6.23 for a measure λ on
ra, bs that need not satisfy λ Î m. It comes with the caveat that without an assumption of
absolute continuity, the inequality may fail to carry any interesting information, e.g. the Cantor
function (Example 6.2) shows that the left hand side can simply vanish, even when the function
f is far from being constant.

Theorem 6.31 and Corollary 6.32 have an immediate consequence for the class of functions
f : ra, bs Ñ R that can be written as the difference f` ´ f´ between two increasing functions
f˘ : ra, bs Ñ R. This is precisely the class of functions with bounded variation that we saw in
§6.5.2, which includes all absolutely continuous functions, thus:
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Corollary 6.34. Every absolutely continuous function f : ra, bs Ñ R is differentiable almost
everywhere and its derivative belongs to L1pra, bsq. �

With this result in place, we can compare any given absolutely continuous function F on ra, bs
with the function F1pxq :“ şx

a
F 1ptq dt. The latter is also absolutely continuous and differentiable

almost everywhere, with F 1
1 “ F 1 by Corollary 6.12, so looking at F ´ F1 reduces the problem

to proving:

Lemma 6.35. Every absolutely continuous function on ra, bs whose derivative vanishes almost
everywhere is constant.

For a fairly short proof of this, based again on the Vitali covering lemma, see [Roy88, §5.4,
Lemma 13].

From a functional-analytic perspective, there is a more interesting alternative argument to
be found in the most recent edition [RF10] of Royden’s classic textbook, based originally on
the article [FH15]. It makes use of the following notion, which should seem natural in light of
Lemma 6.3:

Definition 6.36. A collection F of integrable functions on a measure space pX,µq is called
uniformly integrable (or equi-intebrable) if for every ǫ ą 0, there exists δ ą 0 such that for
all f P F and measurable subsets A Ă X,

µpAq ă δ ñ
ż
A

|f | dµ ă ǫ.

You should think of this definition as a close analogue of equicontinuity : the point is that the
correspondence between ǫ and δ is not allowed to depend on the choice of the function f P F .

Example 6.37. If F is any collection of measurable functions f satisfying |f | ď g for some
fixed g P L1pXq, then Lemma 6.3 implies that F is uniformly integrable.

The relevance of uniform integrability to this discussion arises from the following observation:

Lemma 6.38 ([FH15] or [RF10, §6.4]). A continuous function f on ra, bs is absolutely continu-
ous if and only if its family of difference quotients tDhfu0ăhď1 is uniformly integrable on ra, bs.

With this understood, one can now appeal to a useful generalization of the dominated con-
vergence theorem:

Theorem 6.39 (Vitali’s convergence theorem; see [RF10, §4.6]). For a Lebesgue-measurable
subset X Ă R with finite measure, if tfnunPN is a uniformly integrable collection of functions on
X such that fn Ñ f pointwise almost everywhere, then f P L1pXq and ş

X
fn dmÑ ş

X
f dm.

Remark 6.40. The convergence theorem is also true on general finite measure spaces if one adds
the condition f P L1pXq to the hypotheses; in our situation, that version would also suffice in
light of Corollary 6.34. There is also a version for spaces with infinite measure; see [RF10, §18.3].

Knowing that an absolutely continuous function f is differentiable almost everywhere, one
can now deduce

ş
ra,bs f

1 dt “ f pbq´ f paq as follows: setting h “ 1{n in (6.13) gives a sequence of

relations whose left hand sides converge as nÑ 8 to
ş
ra,bs f 1 dt due to Lemma 6.38 and Vitali’s

convergence theorem. At the same time, the right hand sides converge to f pbq ´ f paq since f is
continuous, so we are done.
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7. Fourier series

7.1. Fully periodic functions. In this section we consider functions f on Rn that are 1-
periodic in every variable, meaning that the relation

f px1, . . . , xj`1, xj ` 1, xj`1, . . . , xnq “ f px1, . . . , xnq
holds for every j “ 1, . . . , n. We shall refer to functions with this property as fully periodic
functions. Some obvious examples include the trigonometric functions

sinp2πkxjq, for k “ 1, 2, 3, . . . and j “ 1, . . . , n,

cosp2πkxjq, for k “ 0, 1, 2, . . . and j “ 1, . . . , n,
(7.1)

plus all products and linear combinations of these functions. The idea of a Fourier series is to
express arbitrary fully periodic functions as (possibly infinite) sums of products of precisely these
functions. Algebraically, it is much easier to work with complex exponentials than trigonometric
functions, thus we shall allow all our fully periodic functions to take values in a complex vector
space and, instead of writing them in terms of the functions in (7.1), try to express them as
linear combinations of products of the functions

(7.2) e2πikxj , for k P Z and j “ 1, . . . , n.

Notice that an arbitrary finite product of such functions takes the form

(7.3) ϕkpxq :“ e2πik¨x, for k P Zn,

where k ¨ x denotes the standard Euclidean inner product of two vectors k, x P Rn. We use
this notation to distinguish the inner product on Rn from the complex inner product x , y on
the finite-dimensional vector space V in which our functions will take their values. For this
discussion, we explicitly set

K :“ C,

and since it will often be relevant, we remind the reader that the standing convention for the
complex inner product on V is

xiv, wy “ ´ixv,wy, xv, iwy “ ixv,wy.
The main theorem on Fourier series states that every function in a sufficiently reasonable class

of fully periodic functions f : Rn Ñ V can be expressed as a convergent sum of the form

(7.4) f pxq “ ÿ
kPZn

e2πik¨x pfk
for a unique set of coefficients pfk P V , called the Fourier coefficients of f . The right hand side
of (7.4) is called the Fourier series of f . Since complex exponentials are linear combinations
of trigonometric functions, it is always possible (though often tiresome) to rewrite a Fourier
series as a sum of products of the trigonometric functions appearing in (7.1); in particular, the
Fourier series of a real-valued fully periodic function f : Rn Ñ R can always be re-expressed
as a real-linear combination of products of real-valued trigonometric functions, so that complex
numbers need not be mentioned. In applications, the complex numbers typically have no intrinsic
meaning but make calculations much easier.

7.2. Function spaces on the torus and the lattice. A fully periodic function on Rn can
equivalently be regarded as a funtion on an n-dimensional torus Tn, which is by definition an
n-fold Cartesian product of circles. The most convenient definition of Tn for our purposes is
as follows. The lattice Zn Ă Rn is a subgroup of Rn with respect to the operation of vector
addition, and since Rn is an abelian group, the subgroup is normal. We define Tn to be the
quotient group

Tn :“ Rn
L
Zn,
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so in other words, elements of Tn are equivalence classes of vectors in Rn, such that two vectors
x, y P Rn are in the same equivalence class if and only if x´ y P Zn. In the case n “ 1, the map

R{Z Q rts ÞÑ pcosp2πtq, sinp2πtqq P R2

gives a natural bijection between T1 and the unit circle in R2, which is also often denoted by
S1 Ă R2 since it is a “1-dimensional sphere”. Through this bijection, one can identify Tn with
the n-fold product of copies of S1.

We can make Tn into a metric space by defining

dprxs, rysq :“ infpx,yqPrxsˆrys |x´ y| ,
where | ¨ | denotes the standard Euclidean norm on Rn. You should take a moment to convince
yourself that this expression really defines a metric on Tn. Moreover, the natural projection
map

π : Rn Ñ Tn : x ÞÑ rxs
is continuous with respect to this metric, and since Tn is the image under π of the compact
subset r0, 1sn Ă Rn, it follows that Tn is compact.

The Lebesgue measure m on Rn also determines a natural measure on Tn. Let LpRnq denote
the σ-algebra of Lebesgue-measurable subsets of Rn, and define LpTnq Ă 2T

n
to consist of all sets

A Ă Tn with the property that π´1pAq P LpRnq. In other words, LpTnq is the largest σ-algebra
on Tn for which the projection map π : Rn Ñ Tn is measurable. For A P LpTnq, we then define

mpAq :“ mpπ´1pAq X r0, 1qnq ě 0.

It is straightforward to check that pTn,LpTnq,mq by this definition is a measure space, and
moreover, since r0, 1qn Ă Rn has finite Lebesgue measure, mpTnq is finite; indeed, mpTnq “ 1.

Exercise 7.1. Show that every fully periodic function f : Rn Ñ V corresponds to a unique
function F : Tn Ñ V such that

f pxq “ F prxsq for all x P Rn,

and conversely, every function F : Tn Ñ V determines a fully periodic function f : Rn Ñ V

via this same relation. Show moreover that f is continuous/measurable if and only if F is
continuous/measurable, respectively, and for an integrable function F : Tn Ñ V ,ż

Tn

F pxq dx :“
ż
Tn

F dm “
ż
r0,1qn

F ˝ π dm.

Since Tn is now both a compact metric space and a finite measure space, Exercise 7.1 has the
following useful consequences. First, every continuous fully periodic function is equivalent to a
continuous function on a compact metric space, and is therefore bounded. Second, a function
f : Tn Ñ V can be integrable even if f ˝ π : Rn Ñ V is not, as it is only the integral of
|f ˝ π| over the cube r0, 1qn that needs to be finite. In fact, periodicity guarantees that fully
periodic functions f : Rn Ñ V can never be Lebesgue integrable on Rn unless they vanish
almost everywhere, but this only happens because the function f : Rn Ñ V contains too much
redundant information. Integrating f instead over the finite measure space Tn circumvents this
problem.

In the following, we will keep Exercise 7.1 in mind and typically blur the distinction between
arbitrary functions Tn Ñ V and fully periodic functions Rn Ñ V . We will also drop the
equivalence classes from the notation and denote elements of Tn simply as vectors x P Rn when
there is no ambiguity; when this notational shortcut is used, it means that any representative
x P Rn of the given element in Tn may be chosen, and no important results will depend on this
choice.

Notice that if a fully periodic function is differentiable, then its partial derivatives are also
periodic functions, thus we can sensibly speak of differentiable functions on Tn and define the
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hierarchy of function spaces

C0pTnq Ą C1pTnq Ą C2pTnq Ą . . . Ą C8pTnq,
where for each k “ 0, 1, 2, . . . ,8 we define CkpTnq to be the vector space of fully periodic
functions Rn Ñ V that are k-times continuously differentiable. For k ă 8, these spaces all
admit natural Banach space structures, of which only the case k “ 0 will be especially important
for our purposes: the norm on C0pTnq is defined by

}f}C0 :“ max
xPRn

|f pxq|,
where the existence of the maximum is guaranteed by the fact that Tn is compact. Similarly, for
each p P r1,8s the measure on Tn gives rise to a Banach space of V -valued functions (defined
almost everywhere),

LppTnq :“ LppTn,mq, }f}Lp :“
#`ş

Tn |f |p dm˘1{p
for p ă 8,

ess sup |f | for p “ 8.
Note that since Tn is the image of the compact and finite-measure subset r0, 1qn under the
projection π : Rn Ñ Tn, a function f : Tn Ñ V will belong to LppTnq if and only if f ˝π : Rn Ñ V

is locally of class Lp on Rn, i.e. its restriction to every compact subset must be of class Lp, but
f ˝ π itself will not usually belong to LppRnq. The space L2pTnq has a natural complex inner
product defined by

xf, gyL2 :“
ż
Tn

xf pxq, gpxqy dx,
which makes L2pTnq into a Hilbert space.

Since the continuous functions on Tn are bounded and Tn has finite measure, C0pTnq is a
subspace of LppTnq for every p P r1,8s; so, therefore, is C8pTnq. In fact:

Proposition 7.2. For every p P r1,8q, C8pTnq is a dense linear subspace of LppTnq.
Proof. We shall deduce this from the result in §5 that C8pRnq is dense in LppRnq. Given
f P LppTnq, define F : Rn Ñ V by

F “ f ˝ π on r0, 1qn, F “ 0 elsewhere,

where π : Rn Ñ Tn is the quotient projection. Then F P LppRnq, so for every ǫ ą 0, there exists
a smooth function Fǫ P C8pRnq with

}F ´ Fǫ}Lp ă ǫ.

Given any δ ą 0, we can also choose a smooth function βδ : Rn Ñ r0, 1s that has compact
support in p0, 1qn and satisfies

βδ ” 1 on rδ, 1 ´ δsn.
The function βδFǫ : R

n Ñ V is then smooth and has compact support in p0, 1qn, so it gives rise
to a uniquely determined fully periodic smooth function Gδ

ǫ : Rn Ñ V such that Gδ
ǫ “ βδFǫ on

r0, 1qn. Let gδǫ : Tn Ñ V denote the corresponding function on the n-torus such that Gδ
ǫ “ gδǫ ˝π.

We claim that }f ´ gδǫ }Lp can be made arbitrarily small if ǫ and δ are each chosen sufficiently
small. Indeed, abbreviate Q :“ r0, 1qn and Qδ :“ rδ, 1 ´ δsn. Then

}f ´ gδǫ }pLp “
ż
Tn

|f ´ gδǫ |p dm “
ż
Q

|F ´Gδ
ǫ |p dm

“
ż
Qδ

|F ´Gδ
ǫ |p dm`

ż
QzQδ

|F ´Gδ
ǫ |p dm.

Since Gδ
ǫ “ βδFǫ “ Fǫ on Qδ, the first term in the second line isż

Qδ

|F ´Gδ
ǫ |p dm “

ż
Qδ

|F ´ Fǫ|p dm ď
ż
Rn

|F ´ Fǫ|p dm “ }F ´ Fǫ}pLp ă ǫp,
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which is made arbitrarily small by choosing ǫ ą 0 small. To estimate the other term in the
second line, we can use the fact that βδ takes values in r0, 1s and write

|F ´Gδ
ǫ | “ |F ´ βδFǫ| “ |F ´ Fǫ ` Fǫp1´ βδq| ď |F ´ Fǫ| ` |Fǫ|,

hence by Minkowski’s inequality,˜ż
QzQδ

|F ´Gδ
ǫ |p dm

¸1{p
ď
˜ż

QzQδ

p|F ´ Fǫ| ` |Fǫ|qp dm
¸1{p

ď
˜ż

QzQδ

|F ´ Fǫ|p dm
¸1{p

`
˜ż

QzQδ

|Fǫ|p dm
¸1{p

.

Here, the first term in the second line is bounded above by }F ´ Fǫ}Lp ă ǫ, while if ǫ ą 0 is
fixed, the second term can be made arbitrarily small for sufficiently small δ ą 0 since |Fǫ|p is
Lebesgue integrable and

Ş
δą0pQzQδq is a set of measure zero, so that limδÑ0

ş
QzQδ

|Fǫ|p dm “ 0.

This proves the claim. �

Since the Fourier coefficients of a function f : Tn Ñ V are meant to be a collection of vectorspfk associated to elements k P Zn, it will be useful to regard the collection of all these coefficients
as a function pf : Zn Ñ V.

There is no meaningful notion of continuity or differentiability for such functions, but we can
speak of Lp-spaces on Zn with respect to the counting measure, i.e. let ν : 2Z

n Ñ r0,8s denote
the measure such that νpAq for each A Ă Zn is the number of elements in A. The Lp-spaces
with respect to this measure are conventionally denoted by

ℓppZnq :“ LppZn, νq, 1 ď p ď 8,
and since nonempty subsets in Zn always have positive measure, the elements in these spaces
are actual functions, not just equivalence classes of functions. The counting measure identifies
integrals with infinite series and integrability with absolute summability, so for each p P r1,8q,
the ℓp-norm of a function f : Zn Ñ V is

}f}ℓp :“
˜ ÿ

kPZn

|f pkq|p
¸1{p

,

while

}f}ℓ8 :“ sup
kPZn

|f pkq|.

There is one more space of functions f : Zn Ñ V that we will need to consider, called the
space of rapidly decreasing coefficients and denoted by S pZnq. A function f : Zn Ñ V is
defined to be in S pZnq if and only if for every n-variable polynomial function P : Rn Ñ R, the
function

Zn Ñ V : k ÞÑ P pkqf pkq
is bounded. Equivalently, this means that for everym P N, the function k ÞÑ |k|mf pkq is bounded
on Zn. Since m in this expression can be chosen arbitrarily large, it is clear that functions f pkq
in S pZnq always decay to 0 as |k| Ñ 8. In fact:

Exercise 7.3. Show that S pZnq is a dense linear subspace of ℓppZnq for every p P r1,8q.
Hint: All functions Zn Ñ V with bounded support are in S pZnq.
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7.3. The transformations F and F˚. Suppose for the moment that pV, x , yq is C with its
standard Hermitian inner product. The functions ϕkpxq :“ e2πik¨x defined in (7.3) for k P Zn

can then be regarded as elements of C8pTnq since they are fully periodic and smooth. Since
they are bounded and Tn has finite measure, they can also be regarded as elements of L2pTnq,
and as it turns out, they form an orthonormal set:

Exercise 7.4. Show that }ϕk}L2 “ 1 for every k P Zn and xϕk, ϕk1yL2 “ 0 for every k ‰ k1 P Zn.

If we now assume pfk P C are coefficients such that the sum
ř

kPZn
pfkϕk converges in the

L2-norm to f P L2pTnq, then Exercise 7.4 makes it easy to compute the Fourier coefficients in
terms of f : we havepfk “ ÿ

pPZn

xϕk, pfpϕpyL2 “ xϕk, fyL2 “
ż
Tn

e´2πik¨xf pxq dx.

This computation generalizes in a straightforward way to functions valued in a general finite-
dimensional complex inner product space pV, x , yq if we engage in a slight abuse of notation:
let us define

xϕ,ψvyL2 :“ xϕ,ψyL2v P V for ϕ,ψ : Tn Ñ C,

which by linearity gives rise to a natural pairing xϕ, fy P V for any pair of L2-functions ϕ :

Tn Ñ C and f : Tn Ñ V . The computation of pfk above then becomes valid for vector-valued
functions. We shall take this formula as a definition of a transformation F , which sends functions
f : Tn Ñ V to functions

Ff :“ pf : Zn Ñ V : k ÞÑ pfk
whenever the integral on the right hand side of the following expression is well defined for all k:

(7.5) pFf qk :“ pfk :“
ż
Tn

e´2πik¨xf pxq dx.

It is clear, for instance, that if f P L1pTnq, then all of the coefficients pfk are well defined and
they satisfy a uniform bound

| pfk| ď }f}L1 ,

hence F defines a bounded linear operator

(7.6) F : L1pTnq Ñ ℓ8pZnq.
There is a similar transformation F˚ that associates to a function g : Zn Ñ V : k ÞÑ gk a

function
F

˚g :“ qg : Tn Ñ V

defined by

(7.7) pF˚gqpxq :“ qgpxq :“ ÿ
kPZn

e2πik¨xgk.

As with the definition of F in (7.5), this definition comes with the caveat that at first glance,
it only makes sense if the sum converges for every x. So for instance, it makes sense whenever
g P ℓ1pZnq, as the sum then converges absolutely and uniformly; since the partial sums are all
finite sums of continuous functions, it follows in this case that qg : Tn Ñ V is a continuous
function and satisfies |qgpxq| ď ř

kPZn |gk| “ }g}ℓ1 for all x P Tn, thus F˚ defines a bounded
linear operator

(7.8) F
˚ : ℓ1pZnq Ñ C0pTnq.

We have already seen that under certain circumstances, the operators F and F˚ are inverse
to each other, e.g. the computation following Exercise 7.4 above shows that if g : Zn Ñ C is
a function such that F˚g P L2pTnq and the series in the definition of F˚g converges in the
L2-norm, then FF˚g “ g. The next two theorems are the main results we need to prove about
Fourier series.
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Theorem 7.5. The transformations F and F˚ defined in (7.5) and (7.7) respectively have the
following properties:

(1) F maps C8pTnq bijectively onto S pZnq.
(2) F˚ maps S pZnq bijectively onto C8pTnq.
(3) The bijections F : C8pTnq Ñ S pZnq and F˚ : S pZnq Ñ C8pTnq are inverse to each

other.
(4) For every f P C8pTnq, the series

ř
kPZn e2πik¨x pfk converges absolutely and uniformly

with all derivatives to f .

Theorem 7.6 (Parseval’s identity). For every f, g P C8pTnq,
x pf, pgyℓ2 “ xf, gyL2 .

Since C8pTnq is dense in L2pTnq, Parseval’s identity gives rise to a unique bounded linear
extension of the operator F : C8pTnq Ñ S pZnq to an operator

(7.9) F : L2pTnq Ñ ℓ2pZnq.
In other words, for each f P L2pTnq, we can choose an approximating sequence fj P C8pTnq
with fj

L2Ñ f as j Ñ 8, and define pf “ Ff P ℓ2pZnq as the ℓ2-limit of the ℓ2-Cauchy sequencepfj P S pZnq. This description makes F : L2pTnq Ñ ℓ2pZnq sound more abstract than it really is:
in fact, since Tn has finite measure, L2pTnq is a subspace of L1pTnq, so the operator in (7.9) is
just the restriction of F : L1pTnq Ñ ℓ8pZnq to this subspace. In the other direction, the density
of S pZnq in ℓ2pZnq implies that F˚ : S pZnq Ñ C8pTnq extends uniquely to an operator

F
˚ : ℓ2pZnq Ñ L2pTnq,

defined similarly by choosing for any g P ℓ2pZnq an approximating sequence gj P S pZnq with
gj

ℓ2Ñ g and writing F˚g “ qg P L2pTnq for the L2-limit of the L2-Cauchy sequence qgj P C8pTnq.
Here there is an obvious choice of approximating sequence gj available, namely

gjpkq :“
#
gpkq if |k| ď j,

0 otherwise.

This makes qgj P C8pTnq a sequence of partial sums for the Fourier series
ř

kPZn e2πik¨xgpkq, so
the conclusion is that this series converges to qg in the L2-norm. It clearly cannot be expected to
converge uniformly since qg P L2pTnq is not generally continuous, and there is also no guarantee
of pointwise convergence, not even almost everywhere. The compositions F˚F : C8pTnq Ñ
C8pTnq and FF˚ : S pZnq Ñ S pZnq, of course, each extend to L2pTnq Ñ L2pTnq and ℓ2pZnq Ñ
ℓ2pZnq respectively as the identity map. We summarize this discussion as follows.

Corollary 7.7. The transformations F and F˚ defined in (7.5) and (7.7) give well-defined
unitary maps15 L2pTnq Ñ ℓ2pZnq and ℓ2pZnq Ñ L2pTnq respectively, where in the latter case, the
series should be interpreted as an L2-convergent (but not necessarily pointwise convergent) series
of functions in L2pTnq. Moreover, these two transformations are inverse to each other. �

In light of Exercise 7.4, another way to say this is as follows:

Corollary 7.8. For any orthonormal basis v1, . . . , vm of pV, x , yq, the functions!
e2πik¨xvj

)
kPZn, j“1,...,m

form an orthonormal basis of the Hilbert space L2pTnq. �

The remainder of §7 is concerned with the proofs of Theorems 7.5 and 7.6, and along the
way, we will prove some relations between the Fourier operations and differentiation which are
frequently useful in applications.

15A linear map T : H Ñ H
1 between two Hilbert spaces is called unitary if it is an isometry, i.e. xTx, Tyy “

xx, yy for all x, y P H. Such maps also satisfy }Tx} “ }x} for all x P H, hence they are continuous.
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7.4. Fourier series and derivatives. If one ignores the words “bijectively” and “onto,” then
the first statement in Theorem 7.5 becomes an easy consequence of the following exercise.

Exercise 7.9. Use integration by parts to show that for every f P C1pTnq, k “ pk1, . . . , knq P Zn

and j “ 1, . . . , n, yBjfk “ 2πikj pfk.
Recall from §0.3 that a multi-index in n variables is an n-tuple α “ pα1, . . . , αnq of nonneg-

ative integers, and we denote its order by |α| :“ α1` . . .`αn. This gives rise to the differential
operator

Bα :“ Bα1

1 . . . Bαn
n

of order |α| for functions on Rn, as well as a complex-valued polynomial function of z “
pz1, . . . , znq P Cn defined by

zα :“ zα1

1 . . . zαn
n .

For f P C8pTnq, repeating the formula in Exercise 7.9 finitely many times now yields

(7.10) yBαfk “ p2πikqα pfk
for any multi-index α.

Proof of Theorem 7.5, part 1. Assume f P C8pTnq, and choose any multi-index α. Since Bαf is
bounded and Tn has finite measure, Bαf also belongs to L1pTnq, implying in light of (7.6) thatyBαf P ℓ8pZnq. The relation (7.10) then implies that

kα pfk “ kα

p2πiq|α|kα
yBαfk “ 1

p2πiq|α|
yBαfk

is bounded independently of k P Zn. Since this is true for every multi-index α, it follows that

k ÞÑ P pkq pfk is a bounded function Zn Ñ V for every polynomial P , hence pf P S pZnq.
We’ve proved:

F pC8pTnqq Ă S pZnq.
�

The next exercise is an easy application of the standard theorem on term-by-term differen-
tiation of infinite series—the point is that whenever g P ℓ1pZnq, the partial sums of the seriesř

kPZn e2πik¨xgpkq converge uniformly with respect to x P Tn.

Exercise 7.10. Given a function g : Zn Ñ V and j P t1, . . . , nu, let gj : Zn Ñ V denote the
function defined by gjpkq :“ kjgpkq for k “ pk1, . . . , knq P Zn. Show that if g and gj both belong
to ℓ1pZnq, then qg : Tn Ñ V is continuous and has a continuous partial derivative Bjqg : Tn Ñ V

given by

Bjqgpxq “ ~2πigjpxq.
Proof of Theorem 7.5, part 2. We consider the second statement in the theorem: suppose g P
S pZnq. Then the function k ÞÑ kαgpkq also belongs to S pZnq for every multi-index α, and is
therefore in ℓ1pZnq. Iterating the result of Exercise 7.10 finitely many times then proves that
for every multi-index α, Bαqg exists and is continuous and is given by

(7.11) Bαqg “ p2πiq|α||gα,
where gα : Zn Ñ V is given by gαpkq :“ kαgpkq. In particular, qg : Tn Ñ V is smooth.

We’ve proved:

F
˚pS pZnqq Ă C8pTnq.

�
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The main remaining step in the proof of Theorem 7.5 is to show that

FF
˚|S pZnq “ IdS pZnq and F

˚
F |C8pTnq “ IdC8pTnq .

We have already proved the first relation, as a consequence of the L2-orthonormality of the

functions ϕk. We shall prove in §7.6 that the relation F˚ pf “ f holds for f P C8pTnq. As
preparation for the latter, we first need a quick digression on the topic of approximate identities.

7.5. Approximate identities. In §5.4, we considered sequences of smooth functions ρj : R
n Ñ

r0,8q that approximate the so-called “Dirac δ-function”. In the context of fully periodic func-
tions, the analogous object to δ : Rn Ñ r0,8q would be a nonnegative function δ on Tn that
satisfies ż

Tn

ϕpxqδpxq dx “ ϕp0q for all ϕ P C8pTnq.
If such a function existed, it would need to be identically zero on Tnzt0u and have an infinite
value at 0, so δ cannot be understood as a function in the classical sense, though one can make
sense of it as either a measure or a distribution (i.e. a “generalized function”, see §10). What is
perhaps more important in many applications is that one can approximate it with actual smooth
functions.

Definition 7.11. An approximate identity on Tn is a sequence ρj : T
n Ñ r0,8q of nonneg-

ative smooth functions such that for every ϕ P C8pTnq,
lim
jÑ8

ż
Tn

ρjpxqϕpxq dx “ ϕp0q.

Remark 7.12. The convolution of two functions on Tn is defined analogously to functions on Rn,
by

pf ˚ gqpxq :“
ż
Tn

f px´ yqgpyq dy,
where x ´ y P Tn “ Rn{Zn makes sense for x, y P Tn since the lattice Zn is a subgroup of Rn

with respect to vector addition. One can again use a change of variables to show f ˚ g “ g ˚ f
(cf. Exercise 5.6). The defining property of an approximate identity thus implies that for any
f P C8pTnq, pρj ˚ f qpxq “ pf ˚ ρjqpxq “ ş

Tn f px´ yqρjpyq dy Ñ f pxq, so
(7.12) ρj ˚ f Ñ f pointwise for f P C8pTnq.
The term “approximate identity” refers to the ring structure on L1pTnq defined via the convo-
lution operator. If a δ-function “δ :“ limjÑ8 ρj” existed, then it would satisfy δ ˚ f “ f ˚ δ “ f

for every smooth function f , thus it would define an identity element in the convolution ring.

The next result describes one of several simple tricks for finding examples of approximate
identities.

Proposition 7.13. Suppose ρ : Tn Ñ r0,8q is a smooth function satisfying ρp0q “ 1 and
ρpxq ă 1 for all x ‰ 0 P Tn, and for each j P N, let cj :“ ş

Tnrρpxqsj dx ą 0. Then the sequence
ρj : T

n Ñ r0,8q defined by

ρjpxq :“ 1

cj
rρpxqsj

is an approximate identity.

Proof. Let Bδp0q Ă Tn denote the open ball of radius δ ą 0 about 0 P Tn. We claim that for
every δ ą 0, ż

TnzBδp0q
ρjpxq dxÑ 0
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as j Ñ8. Indeed, ρ ă 1 on the compact set TnzBδp0q, thus ρ ď b on this set for some constant
b P p0, 1q. Choose a P pb, 1q: then since ρp0q “ 1, there also exists a δ1 P p0, δq such that ρ ě a

on Bδ1p0q. This implies

cj “
ż
Tn

rρpxqsj dx ě
ż
Bδ1p0q

rρpxqsj dx ě ajmpBδ1p0qq,
thus ż

TnzBδp0q
ρjpxq dx “ 1

cj

ż
TnzBδp0q

rρpxqsj dx ď bjmpTnzBδp0q
ajmpBδ1p0qq

“
ˆ
b

a

˙j
mpTnzBδp0q
mpBδ1p0qq Ñ 0.

Now given f P C8pTnq and any ǫ ą 0, choose δ ą 0 such that |f pxq´f p0q| ă ǫ for all x P Bδp0q.
Since

ş
Tn ρjpxq dx “ 1 for all j by construction, we then haveˇ̌̌̌ż

Tn

ρjpxqf pxq dx´ f p0q
ˇ̌̌̌
“
ˇ̌̌̌ż

Tn

ρjpxq rf pxq ´ f p0qs dx
ˇ̌̌̌
ď
ż
Tn

ρjpxq |f pxq ´ f p0q| dx

“
ż
Bδp0q

ρjpxq |f pxq ´ f p0q| dx`
ż
TnzBδp0q

ρjpxq |f pxq ´ f p0q| dx

ď ǫ

ż
Bδp0q

ρjpxq dx ` 2max
xPTn

|f pxq|
ż
TnzBδp0q

ρjpxq dx

ď ǫ` 2max
xPTn

|f pxq|
ż
TnzBδp0q

ρjpxq dxÑ ǫ as j Ñ 8.

Since ǫ ą 0 can be chosen arbitrarily small, this proves
ş
Tn ρjpxqf pxq dxÑ f p0q. �

If the δ-function existed, its Fourier coefficients would have to be δk “
ş
Tn e

´2πik¨xδpxq dx “ 1
for all k P Zn, giving rise to the formal expression

(7.13) δpxq “ ÿ
kPZn

e2πik¨x.

Both sides of this formula are nonsense mathematically, but it is worth remembering anyway, as
it encapsulates two rigorously provable statements about Fourier series of approximate identities:

Lemma 7.14. For any approximate identity ρj : T
n Ñ r0,8q, the Fourier coefficients ppρjqk P C

satisfy a uniform bound |ppρjqk| ď C for some constant C ą 0 independent of j P N and k P Zn,
and limjÑ8ppρjqk “ 1 for all k.

Proof. The convergence ppρjqk Ñ 1 as j Ñ 8 follows immediately from the formula ppρjqk “ş
Tn e

2πik¨xρjpxq dx and the defining property of an approximate identity. In particular for k “
0 P Zn, we have limjÑ8ppρjq0 “ 1, so there exists a bound ppρjq0 “ ş

Tn ρjpxq dx ď C independent
of j. Then

|ppρjqk| ď ż
Tn

ˇ̌̌
e2πik¨xρjpxq

ˇ̌̌
dx ď

ż
Tn

ρjpxq dx ď C

holds for every j P N and k P Zn. �

Lemma 7.15. There exists an approximate identity ρj : Tn Ñ r0,8q that is equal to its own
Fourier series for every j, i.e. it satisfies F˚Fρj “ ρj.

Proof. Define β : T1 Ñ r0,8q by βptq :“ cosp2πtq`1
2

and ρ : Tn Ñ r0,8q by
ρpx1, . . . , xnq :“ βpx1q . . . βpxnq,

and let ρj denote the approximate identity described by Proposition 7.13 in terms of this par-
ticular choice of ρ. Since β is a complex linear combination of e2πit and e´2πit, ρ is a finite
linear combination of functions from the orthonormal set tϕkukPZn , and the same is therefore
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true of all its powers rρpxqsj for j P N. This proves that ρj is equal to a finite Fourier series for
every j. �

7.6. Completeness. We are now ready to prove that F˚ pf “ f for every f P C8pTnq. Let us
first describe an informal “physicist’s version” of the proof, in which we refuse to worry about
annoying analytical issues like integrability, convergence, and whether the δ-function actually
exists. The main tool needed for this is Fubini’s theorem, which we apply for functions on
Tn ˆ Zn with the product of our Lebesgue-type measure m on Tn with the counting measure ν
on Zn. For f P C8pTnq, we compute:

pF˚ pfqpxq “ ÿ
kPZn

e2πik¨x pfk dx “ ż
Zn

e2πik¨x
ˆż

Tn

e´2πik¨yf pyq dy
˙
dνpkq

“
ż
TnˆZn

e2πik¨px´yqf pyq dpmpyq b νpkqq “
ż
Tn

˜ ÿ
kPZn

e2πik¨px´yqf pyq
¸
dy

“
ż
Tn

˜ ÿ
kPZn

e2πik¨px´yq
¸
f pyq dy “

ż
Tn

δpx´ yqf pyq dy “
ż
Tn

f px´ yqδpyq dy
“ f pxq.

Several steps in this derivation are formal manipulations that cannot be taken literally. The
interchange of the integral and the summation is meant to be a result of applying Fubini’s
theorem to the function py, kq ÞÑ e2πik¨px´yqf pyq on TnˆZn, though unfortunately, the latter is
not pm b νq-integrable. The δ-function then appears due to (7.13), and from there we apply a
straightforward change of variables followed by the defining property of the δ-function.

The way to make all this mathematically precise is by introducing the Fourier coefficients of
an approximate identity ρj in the second line. This will make the function on TnˆZn integrable
and thus produce a mathematically correct formula, which converges to the desired formula as
j Ñ8.

Proof of Theorem 7.5, part 3. Assume f P C8pTnq is given. By Lemma 7.15, we can choose
an approximate identity ρj : Tn Ñ r0,8q that equals its own Fourier series for every j, and
by Lemma 7.14, its Fourier coefficients are uniformly bounded and converge to 1. Since ρj
is smooth, the function k ÞÑ ppρjqk on Zn belongs to S pZnq Ă ℓ1pZnq, so that the function
F : Tn ˆ Zn Ñ V given by

F py, kq :“ e2πik¨xe´2πik¨yppρjqkf pyq
satisfies

|F py, kq| ď |ppρjqk| ¨ |f pyq|,
and is therefore pmb νq-integrable as a consequence of Fubini’s theorem for nonnegative mea-
surable functions. We can then apply Fubini’s theorem for integrable functions, givingÿ

kPZn

e2πik¨xppρjqk ˆż
Tn

e´2πik¨yf pyq dy
˙
“
ż
Tn

˜ ÿ
kPZn

e2πik¨px´yqppρjqk¸ f pyq dy.

The left hand side of this expression is
ř

kPZn e2πik¨xppρjqk pfk, and since pf P S pZnq Ă ℓ1pZnq,
Lemma 7.14 implies via the dominated convergence theorem (applied on Zn with the counting

measure) that this converges to pF˚ pf qpxq as j Ñ8. Since each ρj is equal to its Fourier series,
the right hand side is ż

Tn

ρjpx´ yqf pyq dy “ pρj ˚ f qpxq,
which converges in turn to f pxq by (7.12).

We’ve proved:
F

˚
Ff “ f for all f P C8pTnq.

�
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Proof of Theorem 7.5, conclusion. The first three statements in the theorem have already been
established, so it only remains to verify that for g P S pZnq, the Fourier series

ř
kPZn e2πik¨xgpkq

converges uniformly and so do its derivatives of all orders. The uniform convergence is clear
since S pZnq Ă ℓ1pZnq. Applying an arbitrary differential operator Bα to the terms of the series
changes the coefficients to p´2πikqαgpkq, and this function of k is still in S pZnq, so the resulting
series also converges uniformly. �

7.7. Parseval’s identity. The proof of Theorem 7.6 is based mainly on the observation that
F and F˚ are adjoint operations.

Lemma 7.16. For every f P C8pTnq and g P S pZnq,
xg,Ffyℓ2 “ xF˚g, fyL2 .

Proof. We again use Fubini’s theorem for a function on TnˆZn with the product measurembν:
xg,Ffyℓ2 “

ÿ
kPZn

B
gpkq,

ż
Tn

e´2πik¨xf pxq dx
F
“ ÿ

kPZn

ˆż
Tn

xgpkq, e´2πik¨xf pxqy dx
˙

“
ż
TnˆZn

e´2πik¨xxgpkq, f pxqy dpmpxq b νpkqq

“
ż
Tn

ˆ ÿ
kPZn

xe2πik¨xgpkq, f pxqy
˙
dx “

ż
Tn

B ÿ
kPZn

e2πik¨xgpkq, f pxq
F
dx

“
ż
Tn

xqgpxq, f pxqy dx “ xF˚g, fyL2 .

Here the use of Fubini’s theorem is justified since f is smooth and g is rapidly decreasing, so
px, kq ÞÑ |e´2πik¨xxgpkq, f pxqy| ď |gpkq| ¨ |f pxq| defines an integrable function on Tn ˆ Zn. �

Proof of Theorem 7.6. For f, g P C8pTnq, we have pf , pg P S pZnq, so Lemma 7.16 and the fact
that F and F˚ are inverses gives

x pf, pgyℓ2 “ xF˚f,F˚gyℓ2 “ xf,FF
˚gyL2 “ xf, gyL2 .

�
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8. The Fourier transform

8.1. The Fourier transform on the Schwartz space. In this section we again assume
pV, x , yq is a finite-dimensional complex inner product space, but we now consider functions
f : Rn Ñ V that are not periodic. One cannot expect these to be expressible in terms of
the fully periodic functions ϕkpxq :“ e2πik¨x for k P Zn. On the other hand, if the periodicity
condition is dropped, then the oscillatory function ϕk is well defined on Rn for every k P Rn,
and it is natural to wonder whether arbitrary functions on Rn can be regarded in some sense as
linear combinations of oscillatory functions of this type. Since k can now take uncountable many
distinct values, our notion of a “linear combination” needs to be expanded for this discussion:
instead of trying to write f pxq as a series, we would now like to write it as an integral

(8.1) f pxq “
ż
Rn

e2πip¨x pfppq dp
for some function pf : Rn Ñ V , called the Fourier transform of f . Our discussion of the
Fourier transform in this section will closely parallel that of the Fourier series, but it is in some
respects more elegant, as the theory of the Fourier transform exhibits a certain symmetry that is
lacking in the periodic case. This is evident when one sees the formulas for the transformations
F and F˚, each of which converts a function Rn Ñ V into another function Rn Ñ V : for
any class of functions f, g : Rn Ñ V such that the following integrals converge, we define the
Fourier transform of f and Fourier inverse transform of g respectively by16

(8.2) pFf qppq :“ pfppq :“ ż
Rn

e´2πip¨xf pxq dx,
and

(8.3) pF˚gqpxq :“ qgpxq :“ ż
Rn

e2πip¨xgppq dp.

Both are clearly well defined if f, g P L1pRnq, in which case pf and qg are both bounded functions;
in fact, one can easily show via Theorem 0.4 that in this case they are continuous, so that F

and F˚ each define bounded linear operators

F ,F˚ : L1pRnq Ñ C0
b pRnq.

Recall from §0.3 that C0
b pRnq is the Banach space of bounded continuous functions on Rn, with

the usual sup-norm17

}f}C0 :“ sup
xPRn

|f pxq|.
Before we can discuss in what sense these two operators are inverse to each other, we must
introduce suitable function spaces on which they will both be bijective. In the setting of Fourier
series, this role was played by the spaces C8pTnq and S pZnq. In the present setting, we need
a single space of functions on Rn that combines features of both of these.

Definition 8.1. The Schwartz space S pRnq, also known as the space of smooth and rapidly
decreasing functions, consists of all smooth functions f : Rn Ñ V with the property that for
every pair of multi-indices α and β, the function Rn Ñ V given by xαBβf pxq is bounded.

16The literature contains several differing opinions on where the factor of 2π should appear in (8.2) and (8.3).
Our convention is the same as in [LL01,DM72], but many books omit it from the exponent, at the cost of having
to insert some power 1{2π (depending on the dimension) in front of one or both integrals. A professor of mine
once told of a lecture on Fourier analysis in which the speaker had solved this problem right at the beginning by
saying, “Let 2π “ 1.”

17Unlike the norm for continuous functions on the compact space Tn, the supremum in the definition of }f}C0

need not be achieved for continuous functions on Rn, and C0

b pRnq does not contain all continuous functions on Rn,
since not all of them are bounded.
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Exercise 8.2. Show that a smooth function f on Rn belongs to S pRnq if and only if for every
multi-index α and every k P N, there exists a constant C ą 0 dependent on α and k such that

|Bαf pxq| ď C

1` |x|k for all x P Rn.

Exercise 8.3. Show that S pRnq Ă LppRnq for every p P r1,8s, and for every f P S pRnq and
every multi-index α, the functions Bαf and x ÞÑ xαf pxq also belong to S pRnq.

The next two theorems are the main results we aim to prove in this section about the Fourier
transform.

Theorem 8.4. The transformations F and F˚ each map S pRnq bijectively to itself, and they
are inverse to each other.

Theorem 8.5 (Plancherel’s theorem). For every f, g P S pRnq, xf, gyL2 “ x pf, pgyL2.

In particular, the linear operators F ,F˚ : S pRnq Ñ S pRnq are isometries (and are therefore
continuous) with respect to the L2-norm. The Schwartz space contains the space of smooth
compactly supported functions, which is dense in L2pRnq, thus S pRnq is also dense in L2pRnq,
so this result implies:

Corollary 8.6. The operators F ,F˚ : S pRnq Ñ S pRnq admit unique extensions to unitary
isomorphisms L2pRnq Ñ L2pRnq such that F˚ “ F´1. �

Proposition 8.7. For f P L1pRnq X L2pRnq, the definitions of Ff and F˚f in (8.2) and
(8.3) respectively agree (up to equality almost everywhere) with their definitions as described in
Corollary 8.6 via Plancherel’s theorem and the density of S pRnq Ă L2pRnq.
Proof. To avoid confusion, let us denote by pfL1 and pfL2 the two possible definitions of pf as
defined via (8.2) or via the density of S pRnq Ă L2pRnq. We claim first that there exists a
sequence of smooth compactly supported functions fj P C8

0 pRnq that converge to f in both the
L1- and L2-norms. Indeed, choosing an approximate identity ρj : Rn Ñ r0,8q with shrinking
support as in §5, the smooth functions ρj ˚ f converge to f in both L1 and L2 according to
Theorem 5.14, and one can then define fj by multiplying these by suitable compactly supported
cutoff functions as in the discussion preceding Corollary 5.2. With this sequence chosen, the

functions fj P C8
0 pRnq also belong to S pRnq, so the L2-convergence fj Ñ f implies that pfj

converges in L2 to pfL2 , and it follows that pfj also has a subsequence converging pointwise almost

everywhere to pfL2 . But since F : L1pRnq Ñ C0
b pRnq as defined by (8.2) is a bounded linear map,

the L1-convergence fj Ñ f implies additionally that pfj converges uniformly to the continuous

function pfL1 . This can only be true if pfL1 “ pfL2 almost everywhere. A completely analogous
argument works for F˚. �

For a function f P L2pRnq that is not in L1pRnq, the formula for pf in (8.2) does not strictly
make sense, because the integral does not converge, but the continuity of F : L2pRnq Ñ L2pRnq
means that one can define pf as the L2-limit of the L2-Cauchy sequence pfj P C0

b pRnq for any
sequence fj P L1pRnqXL2pRnq converging in L2 to f . Exercise 8.9 below describes a reasonable
trick for carrying this out in practice.

Remark 8.8. If f P L2pRnq but f R L1pRnq, then pf and qf are not functions, strictly speaking,

but rather equivalence classes of functions up to equality almost everywhere, so their values pfppq
and qfppq at individual points p P Rn are not well defined. In contrast, pfppq and qfppq are well
defined for every p P Rn via the integrals (8.2) or (8.3) if f P L1pRnq.
Exercise 8.9. Show that for f, g P L2pRnq, the following conditions are equivalent:

(1) pf “ g almost everywhere;
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(2) There exists a sequence Rj Ñ8 such that limjÑ8
ş
BRj

e´2πip¨xf pxq dx “ gppq for almost

every p P Rn. (Here BR Ă Rn denotes the ball of radius R about the origin.)

Hint: Multiply f by characteristic functions to define L2-close approximations that are also
in L1pRnq.
8.2. Fourier transforms and derivatives. For f P L1pRnq, the function e´2πp¨xf pxq is con-
tinuous with respect to p and also, as a function of x, bounded for every p P Rn by the fixed

Lebesgue-integrable function |f | : Rn Ñ r0,8q. Viewing pfppq as a parameter-dependent integral

and applying Theorem 0.4 (and similarly for qfpxq) thus proves:
Proposition 8.10. If f P L1pRnq, then Ff and F˚f belong to C0

b pRnq, and the resulting maps
F ,F˚ : L1pRnq Ñ C0

b pRnq are bounded linear operators. �

Exercise 8.11. Use integration by parts and/or Theorem 0.4 to establish the following ana-
logues of Exercises 7.9 and 7.10:

(1) Suppose f P L1pRnq, f has a continuous partial derivative Bjf : Rn Ñ V that also
belongs to L1pRnq for some j “ 1, . . . , n, and f “decays at infinity” in the sense that
limRÑ8 supxPRnzBR

|f pxq| “ 0, where BR Ă Rn denotes the ball of radius R about
0 P Rn. Then yBjfppq “ 2πipj pfppq and }Bjf pxq “ ´2πixj qfpxq
for each p “ pp1, . . . , pnq P Rn and x “ px1, . . . , xnq P Rn.

(2) Given f : Rn Ñ V and j P t1, . . . , nu, let fj : Rn Ñ V denote the function fjpxq :“
xjf pxq for x “ px1, . . . , xnq P Rn. If f and fj both belong to L1pRnq, then qf, pf : Rn Ñ V

are continuous and have continuous partial derivatives Bj qf, Bj pf : Rn Ñ V given by

Bj qfpxq “2πifjpxq and Bj pf ppq “ {́2πifjppq.
If f P S pRnq, then the conditions in both parts of Exercise 8.11 are satisfied and the formulas

may be iterated arbitrarily many times, proving that for every multi-index α,yBαfppq “ p2πipqα pfppq, }Bαfpxq “ p´2πixqα qf pxq,
Bα qf pxq “ p2πiq|α||fαpxq, Bα pfppq “ p´2πiq|α|xfαppq,(8.4)

where fαpxq :“ xαf pxq. Implicit in the last two formulas is that Bα qf and Bα pf exist for every α,

i.e. in this case, qf and pf are also smooth.

Proof of Theorem 8.4, part 1. For f P S pRnq, we have already shown above that pf is smooth,

and for each pair of multi-indices α, β Bα pf satisfies

pβBα pfppq “ pβp´2πiq|α|xfαppq “ p´2πiq|α|
p2πiq|β| p2πipq

βxfαppq “ p´2πiq|α|
p2πiq|β|

zBβfαppq.
By the definition of the Schwartz space, fα and Bβfα also belong to S pRnq, so in particular,

the latter is in L1pRnq and its Fourier transform is therefore bounded. This proves pf P S pRnq.
One shows in the same manner that qf P S pRnq, so we have proved:

F pS pRnqq Ă S pRnq and F
˚pS pRnqq Ă S pRnq.

�

8.3. The Gaussian. One class of functions in S pRnq whose Fourier transforms can be com-

puted explicitly are the Gaussians, i.e. functions of the form Ae´c|x|2 for constants A, c ą 0.
The computation carried out in this subsection is more than just an amusing exercise: the proof
of the inversion formula in §8.5 will require an approximate identity with particular properties,
and Gaussians furnish the most convenient construction of such an object.
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Proposition 8.12. For any constant a ą 0, the function f pxq :“ e´a2|x|2 on Rn satisfies

pf pxq “ qf pxq “ πn{2
an

e´pπ{aq2|x|2 .

Proof. By Fubini’s theorem,

pfppq “ ż
Rn

e´a2px2
1
`...`x2

nqe´2πipp1x1`...`pnxnq dx “
ż
Rn

e´a2x2
1 . . . e´a2x2

ne´2πip1x1 . . . e´2πipnxn dx

“
ˆż 8

´8
e´a2x2

1e´2πip1x1 dx1

˙
. . .

ˆż 8

´8
e´a2x2

ne´2πipnxn dxn

˙
,

thus it will suffice to prove that the stated formula for pf is correct in the case n “ 1. Consider

f pxq :“ e´a2x2

on R. Instead of computing the integral

pfppq “ ż 8

´8
e´a2x2

e´2πipx dx

explicitly for every p P R, we shall identify the function pf as the unique solution to a certain
initial value problem. For p “ 0, we have

pfp0q “ ż 8

´8
e´a2x2

dx “ 1

a

ż 8

´8
e´u2

du “
?
π

a
,

which follows via the substitution u “ ax and the well-known formula
ş8
´8 e´u2

du “ ?
π.

Applying (8.4) and then integrating by parts, we also have

pf 1ppq “ ´2πixxfppq “ ´2πi
ż 8

´8
xe´a2x2

e´2πipx dx “ iπ

a2

ż 8

´8
d

dx

´
e´a2x2

¯
¨ e´2πipx dx

“ ´ iπ
a2

ż 8

´8
e´a2x2 d

dx

`
e´2πipx

˘
dx “ iπ

a2
¨ 2πip

ż 8

´8
e´a2x2

e´2πipx dx “ ´2π2

a2
p pfppq,

in other words, pf : RÑ C satisfies the initial value problem$’&’%
d pf
dp

“ ´2pπ{aq2p pf,pfp0q “ ?
π{a.

The unique solution to this problem is pfppq “ ?
π
a
e´pπ{aq2p2 .

Since f is a real-valued function, qf is the complex conjugate of pf , which is pf itself. �

Corollary 8.13. The Gaussian f pxq “ e´a2|x|2 with a ą 0 satisfies F˚Ff “ FF˚f “ f . �

8.4. Approximate identities revisited. If the Dirac δ-function δ : Rn Ñ r0,8s were an
actual function in S pRnq, its Fourier transform would be

pδppq “ ż
Rn

e´2πip¨xδpxq dx “ 1,

leading to the slightly nonsensical formula

(8.5) δpxq “
ż
Rn

e2πip¨x dp.

As with most things involving the δ-function, one can make mathematical sense of this formula
in terms of approximate identities, and the proof of the Fourier inversion formula in the next
subsection will require the existence of an approximate identity for which the inversion formula
is known to hold. For our purposes in this context, “approximate identity” means the following:
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Definition 8.14. A tempered approximate identity on Rn is a sequence ρj : R
n Ñ r0,8q

of nonnegative functions in S pRnq such that for every ϕ P S pRnq,
(8.6) lim

jÑ8

ż
Rn

ρjpxqϕpxq dx “ ϕp0q.
Note that the assumption ρj P S pRnq implies that the convolution ρj ˚ f is a well-defined

function Rn Ñ V for every f P S pRnq, and (8.6) then implies pρj ˚ f qpxq “ pf ˚ ρjqpxq “ş
Rn f px´ yqρjpyq dy Ñ f pxq, hence
(8.7) ρj ˚ f Ñ f pointwise for f P S pRnq.
Lemma 8.15. Suppose ρ : Rn Ñ r0,8q is a smooth function satisfying

ş
Rn ρpxq dx “ 1. Then

the sequence ρj : R
n Ñ r0,8q defined by

ρjpxq :“ jnρpjxq
satisfies (8.6) for every bounded continuous function ϕ : Rn Ñ V .

Proof. We use the change of variables y :“ jx to writeż
Rn

ρjpxqϕpxq dx “
ż
Rn

ρpyqϕpy{jq dy.
Since ϕ is bounded and continuous, the integrands on the right converge pointwise as j Ñ 8
to ϕp0qρ and are uniformly bounded by a constant multiple of the integrable function ρ. The
dominated convergence theorem thus implies that the integrals converge to

ş
Rn ϕp0qρ dm “

ϕp0q. �

Lemma 8.16. There exists a tempered approximate identity ρj P S pRnq with the following
properties:

(1) F˚pρj “ ρj for every j;
(2) The functions pρj satisfy a uniform bound |pρj| ď C for all j and converge pointwise to 1.

Proof. Set ρpxq :“ 1?
π
e´|x|2 and use this to define ρj as in Lemma 8.15. Then ρj is a Gaussian

for every j, so both ρj and pρj are in S pRnq, and Corollary 8.13 implies F˚pρj “ ρj. Applying
Lemma 8.15 with the bounded continuous function f pxq “ e´2πip¨x for each p P Rn, we also have

lim
jÑ8 pρjppq “ lim

jÑ8

ż
Rn

e´2πip¨xρjpxq dx “ 1

and
|pρjppq| ď }ρj}L1 “ }ρ}L1 “ 1,

where a quick computation via change of variables gives
ş
Rn ρj dm “ ş

Rn ρ dm. Alternatively,
these last two statements also follow from the explicit computation of pρj in Proposition 8.12. �

8.5. The Fourier inversion formula. We can now prove that the operators F and F˚ on
S pRnq are inverse to each other.

The “physicist’s proof” that F˚ pf “ f works via the following adventurous application of
Fubini’s theorem:

pF˚ pfqpxq “ ż
Rn

e2πip¨x pf ppq dp “ ż
Rn

e2πip¨x
ˆż

Rn

e´2πip¨yf pyq dy
˙
dp

“
ż
RnˆRn

e2πip¨px´yqf pyq dy dp “
ż
Rn

ˆż
Rn

e2πip¨px´yqf pyq dp
˙
dy

“
ż
Rn

ˆż
Rn

e2πip¨px´yq dp
˙
f pyq dy “

ż
Rn

δpx ´ yqf pyq dy “
ż
Rn

f px´ yqδpyq dy
“ f pxq.

Here the δ-function appears due to the formal relation (8.5), and something clearly must be

modified to justify the use of Fubini’s theorem since py, pq ÞÑ e2πip¨px´yqf pyq is not an integrable
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function on RnˆRn for any x P Rn. In analogy with §7.6, the remedy is to multiply this function
by the Fourier transform of a tempered approximate identity ρj P S pRnq, and then take the
limit of the resulting relation as j Ñ8.

Proof of Theorem 8.4, conclusion. Given f P S pRnq, we need to show F˚ pf “ f . Choose a
tempered approximate identity ρj with the properties listed in Lemma 8.16. We then havepρj P L1pRnq, and for every x P Rn, the function F : Rn ˆ Rn Ñ C given by

F py, pq :“ e2πip¨xe´2πip¨ypρjppqf pyq
is therefore integrable. Applying Fubini’s theorem to the integral of F over Rn ˆ Rn now givesż

Rn

e2πip¨xpρjppqˆż
Rn

e´2πip¨yf pyqdy
˙
dp “

ż
Rn

ˆż
Rn

e2πip¨px´yqpρjppq dp˙ f pyq dy.
The left hand side is

ş
Rn e

2πip¨xpρjppq pf ppq dp, which converges via the dominated convergence

theorem as j Ñ 8 to
ş
Rn e

2πip¨x pfppq dp since pf P S pRnq Ă L1pRnq while (by Lemma 8.16) pρj
is uniformly bounded and converges pointwise to 1. The right hand side is likewise

ş
Rn ρjpx ´

yqf pyq dy “ pρj ˚ f qpxq, which converges to f pxq by (8.7). We’ve proved:

F
˚
Ff “ f for all f P S pRnq.

An almost identical argument proves FF˚f “ f for all f P S pRnq. �

8.6. Plancherel’s theorem. With the Fourier inversion formula in hand, Plancherel’s theorem
will follow easily from the observation that F and F˚ are adjoints:

Lemma 8.17. For every f, g P S pRnq,
xg,FfyL2 “ xF˚g, fyL2 .

Proof. Since f and g are both in S pRnq Ă L1pRnq, the function px, pq ÞÑ |e´2πip¨xxgppq, f pxqy| ď
|gppq| ¨ |f pxq| is integrable on Rn ˆ Rn, so Fubini’s theorem gives

xg,FfyL2 “
ż
Rn

B
gppq,

ˆż
Rn

e´2πip¨xf pxq dx
˙F

dp “
ż
Rn

ˆż
Rn

xgppq, e´2πip¨xf pxqy dx
˙
dp

“
ż
RnˆRn

e´2πip¨xxgppq, f pxqy dpmpxq bmppqq “
ż
Rn

ˆż
Rn

xe2πip¨xgppq, f pxqy dp
˙
dx

“
ż
Rn

Bż
Rn

e2πip¨xgppq dp, f pxq
F
dx “

ż
Rn

xqgpxq, f pxqy dx “ xF˚g, fyL2 .

�

Proof of Theorem 8.5. For f, g P S pRnq, the Fourier transforms pf, pg are also in S pRnq, so
Lemma 8.17 together with the relation FF˚ “ Id gives

x pf, pgyL2 “ xF˚f,F˚gyL2 “ xf,FF
˚gyL2 “ xf, gyL2 .

�

8.7. Convolutions. If f and g are functions of class L1 and L2 respectively on Rn and at
least one of them is assumed to be scalar valued (so that pointwise products f pxqgpxq are
well defined), then Young’s inequality (Theorem 5.8) implies that the convolution f ˚ g is a

well-defined function in L2pRnq. Since pf , qf P C0
b pRnq and pg, qg P L2pRnq in this situation, the

pointwise products pfpg and qfqg are also well-defined functions in L2pRnq, and the formulas in the
following result therefore make sense:

Theorem 8.18. If f P L1pRnq and g P L2pRnq, then F pf ˚ gq “ pfpg and F˚pf ˚ gq “ qfqg almost
everywhere.
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Proof. We focus on the formula for F pf ˚ gq, as the same argument works for F˚pf ˚ gq. If
f, g P L1pRnq, then the formula is a straightforward application of Fubini’s theorem, which we
leave as a (highly recommended!) exercise. To extend this result to general g P L2pRnq, one can
choose a sequence gk P S pRnq with gk Ñ g in L2: then {f ˚ gk “ pfpgk since S pRnq Ă L1pRnq,
and Young’s inequality implies f ˚ gk Ñ f ˚ g in L2, hence by Plancherel’s theorem, pfpgk “{f ˚ gk L2Ñ zf ˚ g. At the same time, pf P C0

b pRnq and Plancherel’s theorem also implies pgk Ñ pg
in L2, thus pfpgk also converges in L2 to pfpg. �

There are two analogues of Theorem 8.18 for fully periodic functions and Fourier series. We
defined in Remark 7.12 the convolution of two periodic functions f and g as an integral over the
torus Tn. There is a similar definition for functions on Zn, with Lebesgue integration replaced
by summation (i.e. integration with respect to the counting measure): for two functions f, g on
Zn such that at least one is scalar valued, we write

pf ˚ gqpkq :“ ÿ
jPZn

f pk ´ jqgpjq.

This is considered well-defined for a given k P Zn if and only if the sum on the right hand side
converges absolutely.

Exercise 8.19. Adapt the proof of Theorem 5.8 to show that Young’s inequality also holds for
functions on Tn and Zn, that is:

(a) For any f P L1pTnq and g P LppTnq with 1 ď p ď 8, pf ˚gqpxq is defined for almost every
x P Tn and determines a function f ˚ g P LppTnq such that }f ˚ g}Lp ď }f}L1 ¨ }g}Lp .

(b) For any f P ℓ1pZnq and g P ℓppZnq with 1 ď p ď 8, pf ˚ gqpkq is defined for all k P Zn

and satisfies }f ˚ g}ℓp ď }f}ℓ1 ¨ }g}ℓp .
Exercise 8.20. Prove the following analogues of Theorem 8.18 for Fourier series:

(a) For any f, g P L1pTnq, the Fourier coefficients of f ˚ g P L1pTnq are given by zf ˚ gk “pfkpgk.18
(b) If f P C0pTnq and g P L2pTnq have Fourier coefficients pf P ℓ1pZnq and pg P ℓ2pZnq, then

the Fourier coefficients of fg are given by xfgk “ p pf ˚ pgqk.
The following amusing variation on Theorem 8.18 will be useful in our discussion of nowhere

differentiable functions in the next subsection. Suppose f is a fully periodic function on Rn,

expressed as a Fourier series f pxq “ ř
kPZn e2πik¨x pfk. This function does not belong to LppRnq

for any p ă 8 unless it is zero almost everywhere, thus we cannot define a Fourier transform
for f in the usual sense.19 In the following paragraph, we shall ignore this difficulty as we did in
the initial “physicist’s proofs” of Theorems 7.5 and 8.4, thus the reader is asked to temporarily
suspend all skepticism about issues like convergence, interchange of summation and integration,
and the existence of the Dirac δ-function. The logical gaps will be filled in subsequently.

With this understood, let us pretend that pf is a well-defined function on Rn given by the usual

formula pfppq “ ş
Rn e

´2πip¨xf pxq dx. To write it down more precisely, observe that the inverse

Fourier transform of the (fictional) Dirac δ-function is given by qδpxq “ ş
Rn e

2πip¨xδppq dp “ 1,

so applying the Fourier inversion formula gives the formal relation p1 “ δ, or in verbose form
(cf. (8.5)),

(8.8) δppq “
ż
Rn

e´2πip¨x dx.

18We are not mentioning the case g P L2pTnq here because it is redundant: since T2 has finite measure,
L2pTnq Ă L1pTnq.

19A function f R L2pRnq may nonetheless have a well-defined Fourier transform that is not a function but a

tempered distribution; see §10.6. This notion can be used to give rigorous meaning to formulas like p1 “ δ, though
it is not required for the present discussion.
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This suggests the formula

(8.9) pfppq “ ż
Rn

e´2πip¨x ÿ
kPZn

e2πik¨x pfk dx “ ÿ
kPZn

ˆż
Rn

e´2πipp´kq¨x dx
˙ pfk “ ÿ

kPZn

δpp´ kq pfk.
The support of this “function” is Zn since δppq “ 0 for all p ‰ 0. Now for a given k P Zn, choose

a smooth compactly supported function pψ : Rn Ñ r0, 1s that satisfies pψpkq “ 1 and has no other

points of Zn in its support. We have labeled it pψ because, as an element of S pRnq, pψ is the

Fourier transform of another function ψ P S pRnq. The product of pψ with the right hand side of

(8.9) is δpp´ kq pfk, which is formally the Fourier transform of e2πik¨x pfk, i.e. a single term in the
Fourier series for f . Since products of Fourier transforms are Fourier transforms of convolutions
according to Theorem 8.18, we can take this formal discussion as motivation for the formula

(8.10) pψ ˚ f qpxq “ e2πik¨x pfk.
In contrast with several other questionable things that have been said in this paragraph, (8.10)
does not look at all implausible, e.g. both sides are smooth bounded functions on Rn (for the
left hand side this follows from Theorem 5.7 and Young’s inequality since ψ P S pRnq Ă L1pRnq
and f P L8pRnq). Let us now give a rigorous proof.

Lemma 8.21. Suppose f is a continuous fully periodic function on Rn with absolutely summable

Fourier coefficients pf P ℓ1pZnq, and ψ : Rn Ñ C is the inverse Fourier transform of a functionpψ P S pRnq with pψpkq “ 1 for some k P Zn and pψpk1q “ 0 for all k1 P Znztku. Then (8.10) holds.

Proof. The reversal of summation and integration in the following computation is justified by

the dominated convergence theorem since
ˇ̌̌
ψpyqřjPZn e2πij¨px´yq pfj ˇ̌̌ ď |ψpyq| ¨ } pf}ℓ1 and ψ P

S pRnq Ă L1pRnq:

pψ ˚ f qpxq “ pf ˚ ψqpxq “
ż
Rn

f px´ yqψpyq dy “
ż
Rn

ψpyq
´ ÿ

jPZn

e2πij¨px´yq pfj¯ dy
“ ÿ

jPZn

e2πij¨x
ˆż

Rn

ψpyqe´2πij¨y dy
˙ pfj “ ÿ

jPZn

e2πij¨x pψpjq pfj “ e2πik¨x pfk.
�

8.8. Nowhere differentiable functions. Fix constants a, b ą 1 and consider the function
f : RÑ C defined by

(8.11) f pxq :“
8ÿ

k“0

1

ak
e2πib

kx.

Since
ř8

k“0
1
ak
ă 8, the partial sums of this series converge uniformly to a continuous function.

If b P N, then f is periodic, and (8.11) is an expression of its Fourier series. Differentiating it
term by term gives

(8.12) f 1pxq “ 2πi
8ÿ

k“0

bk

ak
e2πib

kx,

a formula that should be taken with a grain of salt until we have investigated whether the right
hand side converges. In fact, the series converges absolutely and uniformly if b ă a, and it
follows in this case that f is indeed continuously differentiable. The interesting question is what
happens when b ě a.

Theorem 8.22. If b ě a ą 1, then the function f in (8.11) is not differentiable at any point.
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Up to unimportant details such as the factor of 2π in the exponent, the real part of f is
the function that was introduced by Weierstrass in 1872 as the first published example of a
continuous but nowhere differentiable function. It was later [Ban31,Maz31] shown that, while
such functions are typically not so easy to write down, they are not at all unusual, e.g. the
subset of C0pr0, 1sq consisting of nowhere differentiable functions is dense, and even better, it is
comeager, meaning it is a countable intersection of open and dense subsets.20 In other words,
“almost all” continuous functions are nowhere differentiable in some quantifiable sense.

The version of Theorem 8.22 proved by Weierstrass included the extra conditions that b is an
odd integer and b{a ą 1` 3

2
π, which are not necessary. In the form stated here, Theorem 8.22

is due to Hardy [Har16], and our proof below is adapted from [Joh10].
Some initial intuition for Theorem 8.22 comes from (8.12), as we have already learned to

expect some correspondence between the differentiability of a function and the rate at which its
Fourier coefficients decay. This correspondence typically goes in only one direction, e.g. absolute

summability of the series
ř

k
pfk or

ř
k |k|pfk implies continuity of f or f 1 respectively, but not

every continuous function has summable Fourier coefficients. The challenge in Theorem 8.22
is similar, as we need to show that if f is differentiable at some point, then the coefficients on
the right hand side of (8.12) must indeed be absolutely summable. The Weierstrass function
has a special property that makes proving results like this more feasible: its Fourier series is
lacunary, meaning that most of its Fourier coefficients are zero, and the gaps between its
nonzero terms become wider (at an exponential rate) as the series continues. We will not give
a more precise definition of this property here, nor mention it explicitly in the proof below, but
you may recognize where it is used implicitly if you pay careful attention. A similar result worth
mentioning is that for any function g on S1 :“ T1 with a lacunary Fourier series, g is bounded
if and only if its Fourier coefficients are absolutely summable; see [Kat04, §V.1.4].

Proof of Theorem 8.22. As already mentioned, the absolute summability of
ř8

k“0
1
ak

for a ą 1
implies that f is continuous and bounded. Let us assume that for some x0 P R, the difference
quotients

F phq :“ Dhf px0q :“ f px0 ` hq ´ f px0q
h

for h P Rzt0u
have a well-defined limit f 1px0q “ limhÑ0 F phq. Since f is bounded, it follows that F extends to a
bounded continuous function on R. We will show that this assumption implies limkÑ8pb{aqk “ 0,
and thus b ă a.

In order to estimate pb{aqk for large k P N, we will use the convolution formula (8.10). Choose

a smooth function pψ : R Ñ r0, 1s with pψp1q “ 1 and compact support in the interval p1{b, bq,
and for each k P Z, let pψkppq :“ pψpp{bkq,
which satisfies

suppp pψkq Ă pbk´1, bk`1q, thus pψkpbnq “
#
1 if n “ k,

0 if n P Zztku.
Since pψk P C8

0 pRq Ă S pRq, these functions are Fourier transforms of Schwartz-class functions
ψk P S pRq, and an easy change of variables in the Fourier inversion formula gives

ψkpxq “
ż 8

´8
e2πipx pψpp{bkq dp “ bk

ż 8

´8
e2πib

kpx pψppq dp “ bkψpbkxq.

Notice also that since 0 P R lies outside the support of pψk for each k P Z, we have

(8.13) 0 “ pψkp0q “
ż 8

´8
ψkpxq dx

20Comeager sets are the complements of meager sets, which are countable unions of nowhere dense sets. Since
there is no meaningful notion of “Lebesgue measure” on an infinite-dimensional vector space, meager sets often
play the role of “sets of measure zero” in the infinite-dimensional context.
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and

(8.14) 0 “ pψ1kp0q “ ´2πi
ż 8

´8
xψkpxq dx.

The first of these two relations implies
ş8
´8 f px0qψkpxq dx “ 0, so we now plug in (8.10) and

compute:

1

ak
e2πib

kx0 “ pf ˚ ψkqpx0q “
ż 8

´8
f px0 ´ xqψkpxq dx “

ż 8

´8
rf px0 ´ xq ´ f px0qsψkpxq dx

“ ´
ż 8

´8
xF p´xqψkpxq dx “ ´bk

ż 8

´8
xF p´xqψpbkxq dx “ ´

ż 8

´8
x

bk
F p´x{bkqψpxq dx,

implying ˆ
b

a

˙k

e2πib
kx0 “ ´

ż 8

´8
F p´x{bkqxψpxq dx.

Since ψ P S pRq and F is bounded, the integrand on the right hand side is bounded for every
k ě 0 by a constant times |x|ψ P L1pRq, and it converges pointwise as k Ñ 8 to F p0qxψpxq “
f 1px0qxψpxq. Applying the dominated convergence theorem and the k “ 0 case of (8.14), we
conclude

lim
kÑ8

ˆ
b

a

˙k

e2πib
kx0 “ ´f 1px0q

ż 8

´8
xψpxq dx “ 0,

thus b ă a. �

Exercise 8.23. Show that the Weierstrass function (8.11) with arbitrary constants a, b ą 1 is
of class Cm but has no derivative of order m`1 at any point, where m ě 0 is the unique integer
such that m ă logb a ď m` 1.
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9. Sobolev spaces via Fourier analysis

9.1. The general idea of Sobolev spaces. In order to study PDEs via functional-analytic
methods, one needs function spaces on which derivatives can be defined as bounded linear
operators. For instance, the spaces CmpRnq and CmpTnq of bounded functions on Rn (or in the
latter case fully periodic functions on Rn) that have bounded partial derivatives up to order m
is a Banach space with respect to the norm

(9.1) }f}Cm :“ ÿ
0ď|α|ďm

sup
x
|Bαf pxq|,

where the sum ranges over all multi-indices of order at most m. For each j “ 1, . . . , n, the
operation of taking the partial derivative with respect to coordinate xj then defines a bounded
linear operator

Bj : C1pRnq Ñ C0pRnq or Bj : C1pTnq Ñ C0pTnq,
and similarly, any multi-index α of order |α| “ m defines Bα : CmpRnq Ñ C0pRnq or Bα :
CmpTnq Ñ C0pTnq. That is all fine, but unfortunately the Banach spaces CmpRnq and CmpTnq
do not have enough nice properties to be very useful in technical arguments. They are, for
example, not reflexive, and their dual spaces are not easy to describe, e.g. by the Riesz-Markov
theorem (see [Sal16, §3.3]), the dual of the space of continuous functions on a compact domain
can be identified with a space of measures, which is inconveniently much larger than a space of
functions. In this sense, the Lp-spaces are much nicer, but they have the obvious drawback that
functions of class Lp are typically not even continuous, much less differentiable, so operators like
Bj cannot be defined on LppRnq or LppTnq.

The theory of Sobolev spaces, which is indispensable for the modern theory of PDEs, provides
a means of keeping the good properties of the Lp-spaces while also permitting differentiation to
be a bounded linear operator. Let us suppose first that we want to be able to handle first-order
differential operators for functions on an open domain Ω Ă Rn. There are a few ways that one
can imagine defining a suitable generalization of LppΩq for this purpose:
Idea 1. Define X1pΩq to be the space of functions f P LppΩq that are differentiable almost
everywhere and satisfy Bjf P LppΩq for every j “ 1, . . . , n. A natural choice of norm on this
space is

(9.2) }f}X1
:“ }f}Lp `

nÿ
j“1

}Bjf}Lp .

Unfortunately, it will turn out that this space is not complete, i.e. it is a reasonable normed
vector space, but not a Banach space.

Idea 2. Since X1pΩq as defined above is not complete, one could defineX2pΩq to be the closure of
X1pΩq Ă LppΩq with respect to the X1-norm. This is a reasonable definition, but not convenient
to work with—we would prefer to be able to say precisely what the elements of X2pΩq are, rather
than just calling it the closure of a dense subspace whose elements we can explicitly describe.

Idea 3. In the case n “ 1 with Ω “ pa, bq Ă R, one can consider the space X3pΩq of functions
that have absolutely continuous extensions to ra, bs such that their (almost everywhere defined)
derivatives are of class Lp on pa, bq. This is also a reasonable definition, but it only makes sense
for functions of one real variable—on domains in Rn, the notion of absolute continuity can be
defined for measures, but not functions. It also doesn’t give much of a hint how we should
handle higher-order derivatives.

The general solution to these problems will be to generalize the notion of the derivative and
thus talk about “weakly differentiable” functions; we will do this in §10 by introducing the
theory of distributions. But before that, we observe that in the setting of Ω “ Rn with p “ 2, a
simpler solution is available using the properties of the Fourier transform.
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9.2. The spaces HmpRnq and HmpTnq. Let us start by writing down a norm that measures
derivatives up to order m ě 0 by integrating them instead of taking suprema (as the Cm-norm
does). The case m “ 1 appeared already in (9.2), and it generalizes naturally to

(9.3) }f}Wm,p :“ ÿ
|α|ďm

}Bαf}Lp ,

where the summation ranges over all multi-indices α of order at most m; note that this includes
the trivial multi-index with |α| “ 0, so the Lp-norm of f is one of the terms in the sum. If p “ 2,
we can use Plancherel’s theorem and (8.4) to rewrite this norm asÿ

|α|ďm

}p2πipqα pf}L2 .

Up to equivalence of norms, the factors of 2πi in this expression clearly make no difference, and
every monomial of order at most m satisfies |pα| ď cp1 ` |p|2qm{2 for some constant c ą 0, thus
an equivalent norm is given by the simpler expression

(9.4) }f}Hm :“
›››p1` |p|2qm{2 pf›››

L2
“

ˆż
Rn

p1` |p|2qm| pfppq|2 dp˙1{2
P r0,8s.

Notice that this formula does not require f to be differentiable, nor even continuous; it is
defined for all L2-functions on Rn, though we have no guarantee in general that it will be finite.
Finiteness of this norm determines a subspace

HmpRnq :“  
f P L2pRnq ˇ̌ }f}Hm ă 8(

.

We now observe two interesting things about this definition: first, it does not actually mention
any derivatives of f , so }f}Hm might potentially be finite even if f is not differentiable or contin-
uous. We plan to interpret HmpRnq nonetheless as the space of L2-functions whose derivatives
up to order m are also of class L2, and this interpretation will turn out to be correct as soon
as we enlarge our notion of what the word “derivative” can mean in §10. Second, the stated
definition of the Hm-norm does not actually require m to be a nonnegative integer. It makes
sense in fact for any m P R as long as f belongs to a class of functions whose Fourier transforms
can be defined, e.g. one can even allow m ă 0 and drop the condition f P L2 by allowing f
to be a so-called tempered distribution (see §10.6). We will not discuss the case m ă 0 here,
but the case of nonnegative real numbers other than integers gives rise to a notion of fractional
differentiability that is sometimes useful in applications.

Theorem 9.1. For every m ě 0, HmpRnq is a Hilbert space with respect to the inner product

xf, gyHm :“
ż
Rn

p1` |p|2qmx pfppq, pgppqy dp.
Proof. The map HmpRnq Ñ L2pRnq : f ÞÑ p1`|p|2qm{2 pf is a bijective isometry, so completeness
of HmpRnq follows from completeness of L2pRnq.21 �

For fully periodic functions, there is a natural analogue of the space HmpRnq whose definition
uses Fourier series instead of the Fourier transform. We define for each f P L2pTnq the norm

}f}Hm :“
›››p1` |k|2qm{2 pf›››

ℓ2
“

˜ ÿ
kPZn

p1` |k|2qm| pfk|2¸1{2
P r0,8s,

and set

HmpTnq :“  
f P L2pTnq ˇ̌ }f}Hm ă 8(

.

The proof of the next statement is an easy adaptation of Theorem 9.1.

21Theorems 9.1 and 9.2 are also true and can be proved in the same way for m ă 0, but we are not stating
them for that case because our definition of Hm as a subspace of L2 is only correct for m ě 0. For a more general
discussion, see e.g. [Tay96].
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Theorem 9.2. For every m ě 0, HmpTnq is a Hilbert space with respect to the inner product

xf, gyHm :“ ÿ
kPZn

p1` |k|2qmx pfk, pgky.
�

Exercise 9.3. Show that S pRnq Ă HmpRnq and C8pTnq Ă HmpTnq for every m ě 0.

By construction, any L2-function f on Rn or Tn that has continuous derivatives up to order
m ě 0 which are also of class L2 belongs to HspRnq or HspTnq respectively for every s ď m. In
particular, every smooth function with compact support is of class Hm for every m. If α is a
multi-index with |α| ď m, then for f of class C8

0 , (7.10) and (8.4) determine formulas for Bαf in
terms of the Fourier series or transform of f . These formulas also make sense if f is not smooth
but is of class Hm, and in this way one also obtains a bound on }Bαf}L2 in terms of }f}Hm ,
proving:

Proposition 9.4. For any multi-index α of order |α| “ m P N, the operator Bα on smooth
functions with compact support has a natural extension to a bounded linear map Bα : HmpRnq Ñ
L2pRnq or Bα : HmpTnq Ñ L2pTnq. �

Exercise 9.5. Extend Proposition 9.4 to define Bα as a bounded linear map Hs`mpRnq Ñ
HspRnq or Hs`mpTnq Ñ HspTnq for every s ě 0 whenever |α| “ m.

Exercise 9.6. Show that for a, b ą 1 with b P N, the Weierstrass function f pxq “ ř8
k“0

1
ak
e2πib

kx

belongs to HmpS1q :“ HmpT1q if and only if m ă logb a.

For the Weierstrass functions, comparing Exercises 8.23 and 9.6 reveals a fairly straightforward
correspondence: for each integer m ě 0, f P CmpS1q :“ CmpT1q if and only if f P HmpS1q,
and Cm-functions must also belong to HspS1q for some s P pm,m ` 1q. In particular, f can
be nowhere differentiable but will still belong to HspS1q for s P p0, 1q sufficiently small. But
the simplicity of this correspondence is slightly misleading. Beyond the Weierstrass functions,
it cannot be true in general that every function of class Hm for an integer m ě 0 is also of
class Cm; this is clearly false for m “ 0, since not all L2-functions are continuous. The following
exercises exhibit some less obvious examples.

Exercise 9.7. Two simple examples of discontinuous real-valued periodic functions on R are
the square and sawtooth waves, defined respectiely as the obvious periodic extensions of

f pxq :“
#
1 if 0 ď x ă 1{2,
´1 if 1{2 ď x ă 1,

and gpxq :“ x for 0 ď x ă 1.

Show that both belong to HmpS1q for all m ă 1{2 but not for m ě 1{2.
Exercise 9.8. The goal of this exercise is to show that the improper integral

(9.5) f pxq :“
ż 8

2

e2πipx

p ln p
dp :“ lim

NÑ8

ż N

2

e2πipx

p ln p
dp, x P Rzt0u

defines a discontinuous function in H1{2pRq. Note that the integrand e2πipx

p ln p
is not a Lebesgue-

integrable function of p P R, so the limit is necessary in order to define the integral, and its
convergence is not obvious.

(a) Show that there exists a function g P L2pRq whose Fourier transform is given almost
everywhere by

pgppq “ #
1

p ln p
if p ě 2,

0 if p ă 2,

and that this function belongs to HmpRq if and only if m ď 1{2.
(b) Show that the function g in part (a) is the L2-limit of the functions fN pxq :“ şN

2
e2πipx

p ln p
dp

as N Ñ8.
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(c) Use integration by parts to prove that for every M ě 2 and x P Rzt0u, the limitş8
M

e2πipx

p ln p
dp :“ limNÑ8

şN
M

e2πipx

p ln p
dp exists, depends continuously on x, and satisfiesˇ̌̌̌ż 8

M

e2πipx

p ln p
dp

ˇ̌̌̌
ď 1

π|x| ¨M lnM
.

Deduce from this that the function g in part (a) matches (almost everywhere) the func-
tion f defined in (9.5), which is continuous on Rzt0u.
Hint: Recall that L2-convergence implies pointwise almost everywhere convergence of a
subsequence.

(d) Prove that limxÑ0 |f pxq| “ 8.
Hint: Break up the integral over the intervals r2, ǫ{|x|s and rǫ{|x|,8q for some small
ǫ ą 0 with |x| ă ǫ{2. The estimate in part (c) will bound it on the second interval, while

on the first, its absolute value should be larger than some positive multiple of
şǫ{|x|
2

dp
p ln p

whenever ǫ is sufficiently small. Now let |x| Ñ 0 and use the fact that
ş8
2

dp
p ln p

“ 8.

Exercise 9.9. Adapt the argument of Exercise 9.8 to show that the L2-convergent Fourier series

f pxq :“ ř8
k“2

e2πikx

k lnk
defines a discontinuous function in H1{2pS1q :“ H1{2pT1q.

Hint: Proving a bound on
ˇ̌̌ř8

k“M
e2πikx

k ln k

ˇ̌̌
for x ‰ 0 requires an analogue of integration by parts

for summations, which is easy to prove if you regard the “derivative” of a sequence ak as the
sequence a1k :“ ak`1 ´ ak. If you need more inspiration, see [Rud76, pp. 70–71].

9.3. The Sobolev embedding theorem. Exercises 9.7, 9.8 and 9.9 demonstrate that func-
tions of class Hm for m ď 1{2 on S1 or R need not be continuous, though it seems that
discontinuous examples for the case m “ 1{2 are not so easy to construct. We will now show
that it becomes impossible for m ą 1{2, and in fact, such a threshold also exists for functions
on Tn or Rn and depends on the dimension n. Recall that HmpRnq and HmpTnq were defined
as subspaces of L2pRnq and L2pTnq respectively, so their elements are not actually functions,
but rather equivalence classes of functions defined almost everywhere. This is different from
the Banach spaces CmpRnq and CmpTnq, whose elements are actual functions. We will say that
there exists a continuous inclusion

HspRnq ãÑ CmpRnq
whenever the following is true: every f P HspRnq is equal almost everywhere to a unique functionrf P CmpRnq, and the resulting map HspRnq Ñ CmpRnq : f ÞÑ rf is a bounded linear operator.
The existence of a continuous inclusion thus comes with an estimate of the form

}f}Cm ď c}f}Hs for some constant c ą 0 independent of f ,

where we abuse notation by forgetting the distinction between the Cm-function f and the
equivalence class in HspRnq that it represents. There is an obvious similar definition for the
spaces of fully periodic functions HspTnq and CmpTnq.
Theorem 9.10 (Sobolev embedding theorem, case p “ 2). Assume n P N and s ą 0 satisfy
2s ą n. Then there exist continuous inclusions

Hs`mpRnq ãÑ CmpRnq and Hs`mpTnq ãÑ CmpTnq
for every integer m ě 0.

Proof. We first consider functions f P HspRnq with 2s ą n. The main step is to establish a

bound on } pf}L1 , as f is then equal almost everywhere to F˚ pf , which is continuous since F˚
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defines a bounded linear operator L1pRnq Ñ C0pRnq. We use the Cauchy-Schwarz inequality:

} pf}L1 “
ż
Rn

1

p1` |p|2qs{2 ¨
ˇ̌̌
p1` |p|2qs{2 pf ˇ̌̌ dp ď ›››› 1

p1` |p|2qs{2
››››
L2

¨
›››p1` |p|2qs{2 pf›››

L2

ď
ˆż

Rn

1

p1` |p|2qs dp
˙1{2

¨ }f}Hs

Using n-dimensional polar coordinates, we see that the integral in the second line converges if and

only if
ş8
1

rn´1

p1`r2qs dr ă 8. For large r ą 0, the latter integrand behaves like rn´1{r2s “ rn´2s´1,

so the integral converges if and only if n ´ 2s ă 0, which is exactly the condition 2s ą n. This
proves the continuous inclusion of HspRnq into C0pRnq.

If f P Hs`mpRnq with m P N, then the same argument bounds the L1-norm of the function

p ÞÑ pα pfppq for each multi-index α with |α| ď m in terms of }f}Hs`m, so the argument of
Exercise 8.11 shows that the partial derivatives Bαf up to order m exist and are continuous.

Moreover, their C0-norms are bounded in terms of the L1-norm of pα pf , which gives a bound for
}f}Cm in terms of }f}Hs`m .

The result for fully periodic functions follows by essentially the same argument, except that
the version of the Cauchy-Schwarz inequality one needs is }fg}ℓ1 ď }f}ℓ2 ¨ }g}ℓ2 for functions
f, g : Zn Ñ r0,8q. The crucial detail is then the convergence of the seriesÿ

kPZn

1

p1` |k|2qs ă 8 for 2s ą n,

which can be established by comparing it with the integral
ş
Rn

1
p1`|p|2qs dp. �

Corollary 9.11. Any function belonging to HspRnq for all s ě 0 is (after changing its values
on a set of measure zero) smooth, and its derivatives of all orders are bounded. Similarly,Ş

sě0H
spTnq “ C8pTnq. �

Theorem 9.10 leads to the intuition that functions of class Hs have “s´ n
2
continuous deriva-

tives,” where in general the number s ´ n{2 need not be an integer, but should be assumed
positive in order for the statement to carry any meaning. We will make this more precise for
the case 0 ă s´ n{2 ă 1 in §9.6.

9.4. Compact inclusions. A much more obvious fact than the Sobolev embedding theorem
is that for every t ą s ě 0, there are continuous inclusions HtpRnq ãÑ HspRnq and HtpTnq ãÑ
HspTnq. If we think of functions of class Hs as being ps ´ n{2q-times differentiable, then these
inclusions are analogous to the obvious continuous inclusions Cm ãÑ Ck for m ą k. Let us
focus for this subsection on fully periodic functions, which can be regarded as functions on
the compact metric space Tn. One interesting fact about the inclusion CmpTnq ãÑ CkpTnq for
m ą k is that it is a compact operator. A bounded linear operator A : X Ñ Y between Banach
spaces is called a compact operator if it maps every bounded subset of X to a precompact
subset of Y , or equivalently, for every bounded sequence xn P X, the sequence Axn P Y has
a convergent subsequence. Such compactness properties furnish a favorite source of existence
results in applications, e.g. if one can find a sequence of functions that approximate solutions to
a PDE arbitrarily well, then a convergent subsequence can be expected to have a limit that is
an exact solution.

Exercise 9.12. Use the Arzelà-Ascoli theorem to show that for any integers m ą k ě 0, the
inclusion CmpTnq ãÑ CkpTnq is a compact operator.
Hint: Compositions of compact operators are also compact, thus it suffices to prove that
Ck`1pTnq ãÑ CkpTnq is compact for every k ě 0. Start with k “ 0, and notice that any
C1-bounded sequence in C1pTnq is equicontinuous.
Exercise 9.13. Find a bounded sequence in C1pRnq that converges pointwise to 0 but does not
have any C0-convergent subsequence.
Hint: Translations!
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The analogue of Exercise 9.12 for Sobolev spaces is known as the Rellich-Kondrachov com-
pactness theorem:

Theorem 9.14 (Rellich-Kondrachov for p “ 2). For every t ą s ě 0, the natural inclusion
HtpTnq ãÑ HspTnq is compact.

Exercise 9.15. Adapt Exercise 9.13 to show that the inclusion HspRnq ãÑ L2pRnq for s ą 0
is not compact; in particular, there exists an Hs-bounded sequence that converges pointwise to
0 but stays a fixed positive distance away from 0 in the L2-norm, thus it has no L2-convergent
subsequence.

To prove Theorem 9.14, we will appeal to two very useful general facts about compact oper-
ators. The first concerns bounded linear operators with finite rank:

Proposition 9.16. If X and Y are Banach spaces and A : X Ñ Y is a bounded linear operator
with finite-dimensional image, then A is compact.

Proof. The image of a bounded sequence xn P X is a bounded sequence Axn P Y , but by
assumption it also belongs to a finite-dimensional subspace imA Ă Y . The result thus follows
from the fact that all bounded sequences in finite-dimensional vector spaces have convergent
subsequences. �

Proposition 9.17. If X and Y are Banach spaces and An : X Ñ Y is a sequence of compact
operators that converge in the operator norm to an operator A : X Ñ Y , then A is also compact.

Proof. Suppose xn P X is a bounded sequence. Since A1 : X Ñ Y is compact, xn has a

subsequence x
p1q
n such that A1x

p1q
n converges. We can then use the compactness of A2 to extract

from x
p1q
n a further subsequence x

p2q
n such that A2x

p2q
n converges. Continuing in this manner, one

obtains a sequence of subsequences x
pjq
n such that Ajx

pjq
n converges as n Ñ 8 for every j P N.

The diagonal subsequence
xp8qn :“ xpnqn

then has the property that Ajx
p8q
n converges as nÑ8 for every j.

We claim now that Ax
p8q
n also converges, which will imply that A : X Ñ Y is compact. Since

Y is complete, it suffices to show that Ax
p8q
n is a Cauchy sequence. Given ǫ ą 0, choose M P N

such that
}A´AM} ă ǫ

3
sup
nPN

}xn},
and then choose N P N such that }AMx

p8q
n ´ AMx

p8q
m } ă ǫ{3 for all m,n ě N ; the latter is

possible since AMx
p8q
n is a Cauchy sequence. It follows that for all m,n ě N ,

}Axp8qn ´Axp8qm } ď }pA´AM qxp8qn } ` }AM pxp8qn ´ xp8qm q} ` }pAM ´Aqxp8qm } ď ǫ

3
` ǫ

3
` ǫ

3
“ ǫ,

thus proving the claim. �

Corollary 9.18. Any bounded linear operator in the closure (with respect to the operator norm)
of the space of finite-rank operators is compact. �

Remark 9.19. We will not need this at present, but if X is a separable Hilbert space, then the
converse of Corollary 9.18 is also true for bounded linear operators X Ñ X, i.e. they are compact
if and only if they can be approximated arbitrarily well in the operator norm by operators with
finite rank. The proof is not hard; see [RS80, Theorem VI.13].

Proof of Theorem 9.14. Fix t ą s ě 0, and consider for each N P N the operator

AN : HtpTnq Ñ HspTnq : f ÞÑ ÿ
|k|ďN

e2πik¨x pfk.
The image of AN is finite dimensional since there are only finitely many lattice points k P Zn

satisfying |k| ď N . The goal is now to show that AN converges in the operator norm as N Ñ8
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to the inclusion A : HtpTnq ãÑ HspTnq, hence the latter is a limit of finite-rank operators and is
therefore compact.

To prove }A´AN } Ñ 0, we observe that for each f P HtpTnq, the functions pA´AN qf have
the same Fourier coefficients as f except that every coefficient for k P Zn with |k| ď N is set to
zero, hence

}pA´AN qf}2Hs “
ÿ

|k|ąN

p1` |k|2qs| pfk|2 “ ÿ
|k|ąN

1

p1` |k|2qt´s
p1` |k|2qt| pfk|2

ď 1

p1`N2qt´s

ÿ
kPZn

p1` |k|2qt| pfk|2 “ 1

p1`N2qt´s
¨ }f}2Ht.

This proves }A´AN}2 ď 1
p1`N2qt´s , and the latter converges to 0 as N Ñ8 since t ą s. �

9.5. Approximation by smooth functions. The following result says that HspTnq and
HspRnq could just as well have been defined as the closures of the subspaces C8pTnq Ă L2pTnq
and S pRnq Ă L2pRnq with respect to the Hs-norm. As a first application, it implies that for
each s ě 0 and each multi-index α with order |α| “ m, the extension of the classical differential
operator Bα to a bounded linear operator Hs`mpTnq Ñ HspTnq or Hs`mpRnq Ñ HspRnq is
unique (cf. Proposition 9.4 and Exercise 9.5).

Theorem 9.20. The subspaces C8pTnq Ă HspTnq and S pRnq Ă HspRnq are dense for every
s ě 0.

Proof. We begin with the easiest case: suppose f P HspTnq, and for j P N, let

fjpxq :“
ÿ
|k|ďj

e2πik¨x pfj.
Since f is a finite sum of smooth functions, it is smooth, and we have

}f ´ fj}2Hs “
ÿ
|k|ąj

p1` |k|2qs| pfk|2 Ñ 0 as j Ñ8

since
ř

kPZnp1` |k|2qs| pfk|2 “ }f}2Hs ă 8.

For f P HspRnq, we have p1`|p|2qs{2 pf P L2pRnq, and the density of C8
0 pRnq in L2pRnq implies

that there exists a sequence hj P C8
0 pRnq with
hj

L2ÝÑ p1` |p|2qs{2 pf.
The functions gjppq :“ hjppq

p1`|p|2qs{2 are then also in C8
0 pRnq, and they satisfy

(9.6) p1` |p|2qs{2gj L2ÝÑ p1` |p|2qs{2 pf.
Since C8

0 pRnq Ă S pRnq, each gj is then the Fourier transform of a unique function fj P S pRnq,
and (9.6) implies fj Ñ f in Hs. �

Remark 9.21. A stronger result is true for functions on Rn: the space of smooth compactly
supported functions C8

0 pRnq, which is a subspace of S pRnq, is also dense in HspRnq. For a proof
of this in the more general setting of Wm,p-spaces (assuming m P Z), see [AF03, Theorem 3.22].

Recall from §5 that the density of smooth functions in Lp is proved by taking convolutions of
f P LppRnq with an approximate identity ρj , a trick often referred to as mollification. For most
purposes, Theorem 9.20 can also be placed into this context: for instance, the approximating
sequence fj Ñ f P HspTnq in the proof above was constructed by defining its Fourier coefficients

to be pfj “ χ sBj

pf : Zn Ñ V , where χ sBj
: Zn Ñ r0, 1s denotes the characteristic function of the
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intersection of Zn with the closed ball of radius j in Rn. Clearly χ sBj
P S pZnq, so χ sBj

defines

the Fourier coefficients of a smooth function, namely

ρjpxq :“
ÿ
|k|ďj

e2πik¨x.

Since this function belongs to L1pTnq, Exercise 8.20 implies

fj “ ρj ˚ f.
For f P HspRnq, if we wanted to approximate f with smooth functions in HspRnq but did

not care whether they are rapidly decreasing, we could use a similar trick:

Exercise 9.22. Suppose ρ P S pRnq satisfies ş
Rn ρpxq dx “ 1, and define ρjpxq :“ jnρpjxq.

(a) Show that for any s ě 0 and f P HspRnq, the sequence ρj ˚ f P C8pRnq satisfies
}ρj ˚ f}Hs ď }f}Hs and ρj ˚ f HsÝÑ f as j Ñ8.

Hint: Compute pρj in terms of pρ, then use change of variables and dominated convergence
to prove }f ´ ρj ˚ f}Hs Ñ 0.

(b) Show that the same result holds if ρj P S pRnq is instead defined as qψj for a sequence of
smooth functions ψj : R

n Ñ r0, 1s with compact support in Bj`1 and ψj|Bj
” 1.

Exercise 9.23. Suppose α is a multi-index of order |α| “ m P N.

(a) Use the definition of Bα : HmpRnq Ñ L2pRnq in Proposition 9.4 to prove that for every
ψ P L1pRnq and f P HmpRnq, Bαpψ ˚ f q “ ψ ˚ Bαf P L2pRnq.

(b) Use the result of part (a) to give an alternative proof that for any f P HmpRnq with
m P N and any approximate identity ρj as in §5.4, ρj ˚ f Ñ f in Hm.

9.6. Hölder estimates. The compactness of the inclusions HtpTnq ãÑ HspTnq has an inter-
esting consequence related to the Sobolev embedding theorem: if 2s ą n, then there also exists
some t ă s such that 2t ą n, and the continuous inclusion Hs`mpTnq ãÑ CmpTnq thus factors
into a composition of two inclusions,

Hs`mpTnq ãÑ Ht`mpTnq ãÑ CmpTnq.
The first of these is compact, and therefore so is the composition:22

Corollary 9.24. For 2s ą n, the continuous inclusions Hs`mpTnq ãÑ CmpTnq in Theorem 9.10
are also compact. �

There is a second way to see the compactness of Hs`mpTnq ãÑ CmpTnq that provides more
information, while also yielding a practical interpretation of the motto that functions in HspTnq
are “ps´ n{2q-times differentiable”.

Assume Ω is a measurable subset of either Rn or Tn, regarded in each case as a metric space
with metric denoted by distpx, yq “ |x´y|. Recall that a function f : ΩÑ V is called Lipschitz
continuous if there exists a constant C ą 0 such that

|f pxq ´ f pyq| ď C|x´ y| for all x, y P Ω.

For example, a continuously differentiable function on an open domain U Ă Rn is Lipschitz
continuous on every subset Ω Ă U on which the partial derivatives are bounded. Classic examples
of non-Lipschitz continuous functions include f pxq :“ |x|α for 0 ă α ă 1 on any neighborhood of
0 P R. These instead satisfy the following condition, which is the same as Lipschitz contintuity
for α “ 1, but weaker for 0 ă α ă 1:

22Lemma: Any composition of a compact operator with a bounded linear operator is compact. Proof: Easy
exercise.
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Definition 9.25. A function f on Ω Ă Rn is called Hölder continuous if there exists a number
α P p0, 1s and a constant C ą 0 such that

|f pxq ´ f pyq| ď C|x´ y|α for all x, y P Ω.

The space of Hölder continuous functions on Ω with fixed Hölder exponent α P p0, 1s is
denoted by C0,αpΩq.

Hölder continuity can be quantified by the Hölder seminorms, defined for each α P p0, 1s
by

|f |C0,α :“ sup
x‰yPΩ

|f pxq ´ f pyq|
|x´ y|α ,

thus a continuous function is α-Hölder continuous if and only if |f |C0,α ă 8. This is a seminorm
rather than a norm since it vanishes for constant functions, even if they are nonzero. A norm
on the space C0,αpΩq can then be defined by

}f}C0,α :“ }f}C0 ` |f |C0,α.

Exercise 9.26. Prove:

(a) | ¨ |C0,α is a seminorm.
(b) If fn P C0,αpΩq converges uniformly to f P C0pΩq and satisfies a uniform bound |fn|C0,α ď

C for all n, then f P C0,αpΩq.
(c) The norm } ¨ }C0,α on C0,αpΩq is complete, i.e. C0,αpΩq is a Banach space.

Hint: Show that if fn is C0-convergent to f and |fn´fm|C0,α ă ǫ holds for all m,n ě N ,
then |f ´ fn|C0,α ď ǫ holds for all n ě N . Here is a start:

|pf ´ fnqpxq ´ pf ´ fnqpyq| ď |pf ´ fmqpxq| ` |pfm ´ fnqpxq ´ pfm ´ fnqpyq| ` |pfm ´ f qpyq|.
Keep in mind that after fixing n ě N and x ‰ y, m can be chosen arbitrarily large.

For functions that can be written down in simple formulas, it is typically easy to prove a
C0,1-bound by differentiating and bounding the derivative. As the example of the Weierstrass
function in §8.8 shows, this trick cannot be relied upon for functions that arise as uniform limits
of sequences. This is precisely the situation in which one often encounters functions that are
Hölder but not necessarily Lipschitz continuous, and the following lemma provides a useful tool
to recognize this.

Lemma 9.27. Suppose fk is a sequence of continuous functions on Ω Ă Rn converging uniformly
to f , and there exist constants a ą 1, b ě 1, C ą 0 and β P p0, 1s such that

}f ´ fk}C0 ď C

ak
and |fk|C0,β ď Cbk.

Then f P C0,αpΩq for α :“ β

1` loga b
.

Exercise 9.28. Fill in the gaps in the following proof of Lemma 9.27. The estimate |f pxq ´
f pyq| ď C|x´ y|α only needs to be proved for all x, y P Ω with 0 ă |x´ y| ď c for some constant
c ą 0. For any k P N, we have

|f pxq ´ f pyq| ď |f pxq ´ fkpxq| ` |fkpxq ´ fkpyq| ` |fkpyq ´ f pyq| ď 2C

ak
` Cbk|x´ y|β

for all x, y P Ω. Assuming 0 ă |x´ y| ď c for some c ą 0 sufficiently small, choose k P N such
that 1

pabqk`1 ď |x´ y|β ď 1
pabqk . Use this to show |f pxq ´ f pyq| ď 3aC

ak`1 , and then use the identity

a1`loga b “ ab.

Exercise 9.29. The Cantor function f : r0, 1s Ñ R from Example 6.2 satisfies f p1{3nq “ 1{2n
for every n P N. Use this to prove f R C0,αpr0, 1sq for α ą log3 2. Then show that the C0-
convergent sequence fn in Example 6.2 satisfies |fn|C0,1 “ p3{2qn, and use it to prove f P
C0,αpr0, 1sq for all α ď log3 2.
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Exercise 9.30. For any θ P p0, 1q, there is a distinguished set Cθ Ă r0, 1s of full measure such
that C1{3 is the usual Cantor ternary set: it is constructed by an inductive procedure in which at

step n P N, one removes from the middle of each of 2n´1 intervals of identical lengths ln an open
interval of length θln. Follow this idea to its logical conclusion in order to prove the following
statement: for every α0 P p0, 1q, there exists a surjective increasing function f : r0, 1s Ñ r0, 1s
such that f P C0,αpr0, 1sq if and only if α ď α0, and f has vanishing derivative almost everywhere
(and is therefore not absolutely continuous).

Exercise 9.31. Show that for b ě a ą 1, the Weierstrass function f pxq “ ř8
k“0

1
ak
e2πib

kx

belongs to C0,αpRq for every α P p0, 1q with α ď logb a.
Remark: f is nowhere differentiable by Theorem 8.22, so it cannot be absolutely continuous and
therefore (by Exercise 6.6) cannot be Lipschitz, even if logb a “ 1.

Exercise 9.32. Suppose g : r0,8q Ñ R is a strictly increasing smooth function with gpkqp0q “ 0

for all k ě 0, e.g. one can take gpxq “ e´1{x2

for x ą 0 and gp0q “ 0. There is a unique extension
of g to an odd function R Ñ R, which is also strictly increasing and continuous, so it admits a
continuous inverse f :“ g´1 : I Ñ R on a sufficiently small interval I “ r´a, as, a ą 0. Prove
that f is absolutely continuous on I, but does not belong to C0,αpIq for any α P p0, 1s.
Hint: The vanishing of gpkqp0q implies an estimate of the form |x|1{k ď ck|f pxq| for some constant
ck ą 0. For absolute continuity, prove directly that f satisfies the fundamental theorem of
calculus, starting from the fact that this is clearly true on any interval not containing 0.

If the domain Ω Ă Rn is open, then we can also discuss differentiability of functions on Ω and
define for Cm-functions the norm

}f}Cm,α :“ }f}Cm ` ÿ
|β|“m

|Bβf |C0,α ,

where the sum ranges over all multi-indices β of order m. This norm is finite if and only if f
is of class Cm with bounded and α-Hölder continuous partial derivatives up to order m. (Note
that the Hölder continuity of derivatives of order less than m follows already from the fact
that derivatives of higher order are bounded, so the norm does not need to include any terms
|Bβf |C0,α with |β| ă m.) The space of functions satisfying this condition is denoted by

Cm,αpΩq Ă CmpΩq.
Exercise 9.33. Prove that Cm,αpΩq is a Banach space for every integer m ě 0 and α P p0, 1s.
Exercise 9.34. Use the Arzelà-Ascoli theorem to prove that if Ω is an open subset of Rn or Tn

with compact closure, then for every α P p0, 1s, the obvious continuous inclusion

C0,αpΩq ãÑ C0pΩq
is compact. Then generalize by induction to the statement that for each integer m ě 0 and
α P p0, 1s, the inclusion

Cm,αpΩq ãÑ CmpΩq
is compact.

Exercise 9.35. Extend Exercise 9.34 to show that under the same assumption on Ω, for every
integer m ě 0 and 0 ă α ă β ď 1, the obvious inclusion

Cm,βpΩq ãÑ Cm,αpΩq
is compact.
Hint: For m “ 0, Exercise 9.34 guarantees for any C0,β-bounded sequence a C0-convergent
subsequence, and Exercise 9.26 then implies that the limit is also of class C0,β, though the
convergence need not be in the C0,β-topology. To show that the subsequence is C0,α-convergent
for α ă β, the following relation can help:

|f pxq ´ f pyq|
|x´ y|α “

ˆ |f pxq ´ f pyq|
|x´ y|β

˙α{β
¨ |f pxq ´ f pyq|1´α

β .
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Exercise 9.34 holds in particular for fully periodic functions on Rn since Tn is compact. Thus
Corollary 9.24 can now be seen as a consequence of the following enhancement of the Sobolev
embedding theorem (Theorem 9.10):

Theorem 9.36. Assume n P N, s ą 0 and α P p0, 1q satisfy α ď s ´ n
2
. Then there exist

continuous inclusions

Hs`mpRnq ãÑ Cm,αpRnq and Hs`mpTnq ãÑ Cm,αpTnq
for every integer m ě 0.

Remark 9.37. Note that Theorem 9.36 only gives us something new when 0 ă s´n{2 ď 1, as the
case s´ n{2 ą 1 is already handled by Theorem 9.10, which gives an inclusion Hs`m ãÑ Cm`1

and therefore also into Cm,α for every α P p0, 1s. In the case s´ n{2 “ 1, one should be careful
to note that α is not allowed to equal 1, so we are not claiming anything about an inclusion
Hs`m ãÑ Cm,1. We will point out the specific step in the proof below that would fail if α “ 1,
and an actual counterexample to the statement for this case may be found in Example 9.38.

Proof of Theorem 9.36. We will establish the inclusion HspRnq ãÑ C0,αpRnq for α P p0, 1q with
α ď s ´ n{2 and leave the remaining cases as exercises. In light of the inclusions Ht ãÑ Hs for
t ą s, we can assume

0 ă s´ n{2 “ α ă 1

without loss of generality. Then Theorem 9.10 already implies that f P HspRnq is continuous
and satisfies an estimate of the form }f}C0 ď C}f}Hs, so our remaining task is to find a similar
bound for its Hölder seminorm |f |C0,α. In other words, we need to find a constant C ą 0
independent of f P HspRnq such that

|f px` yq ´ f pxq| ď C}f}Hs ¨ |y|α for all x, y P Rn with y ‰ 0.

The proof of Theorem 9.10 shows that pf P L1pRnq, thus we can write down the usual integral

formula for f in terms of pf and use the assumption }f}Hs “ }p1` |p|2qs{2 pf}L2 ă 8 to apply the
Cauchy-Schwarz inequality:

|f px` yq ´ f pxq| “
ˇ̌̌̌ż

Rn

e2πip¨px`yq pfppq dp´ ż
Rn

e2πip¨x pfppq dpˇ̌̌̌ ď ż
Rn

ˇ̌
e2πip¨y ´ 1

ˇ̌ ¨ | pfppq| dp
“
ż
Rn

ˇ̌
e2πip¨y ´ 1

ˇ̌
p1` |p|2qs{2 ¨ p1` |p|2qs{2| pf | dp ď ˜ż

Rn

ˇ̌
e2πip¨y ´ 1

ˇ̌2
p1` |p|2qs dp

¸1{2
¨ }f}Hs

ď
˜ż

Rn

ˇ̌
e2πip¨y ´ 1

ˇ̌2
|p|2s dp

¸1{2
¨ }f}Hs

(9.7)

To estimate the integral in the last line, we first observe that the function RÑ C : t ÞÑ e2πit has
globally bounded derivative 2πie2πit and thus satisifes |e2πit ´ 1| ď 2π|t| for all t P R, implying

(9.8)
ˇ̌
e2πip¨y ´ 1

ˇ̌ ď 2π|p ¨ y| ď 2π|p| ¨ |y|.
Now partition Rn into the domains

E0 :“
 
p P Rn

ˇ̌ |p| ď 1{|y|( and E8 :“  
p P Rn

ˇ̌ |p| ą 1{|y|( ,



LEBESGUE, FOURIER AND SOBOLEV 83

and let VolpSn´1q denote the pn´ 1q-dimensional volume of the unit sphere in Rn. Integrating
in n-dimensional polar coordinates then givesż

E0

ˇ̌
e2πip¨y ´ 1

ˇ̌2
|p|2s dp ď 4π2|y|2

ż
E0

1

|p|2s´2
dp “ 4π2 VolpSn´1q ¨ |y|2

ż 1{|y|

0

rn´1

r2s´2
dr

“ 4π2 VolpSn´1q ¨ |y|2
ż 1{|y|

0

rn´2s`1 dr “ 4π2 VolpSn´1q
n´ 2s` 2

¨ |y|2 1

|y|n´2s`2

“ 2π2 VolpSn´1q
1´ α

¨ |y|2α,
where the convergence of

ş1{|y|
0

rn´2s`1 dr relies on the assumption n ´ 2s ` 2 “ 2p1 ´ αq ą 0.
(This step in the proof would fail if we allowed α “ 1.) On E8, the estimate (9.8) is not
useful since |p| may be large, so instead we use the simpler estimate |e2πip¨y ´ 1| ď 2 arising
from the triangle inequality, and the convergence of the integral will depend on the assumption
n´ 2s “ ´2α ă 0:ż
E8

ˇ̌
e2πip¨y ´ 1

ˇ̌2
|p|2s dp ď 4

ż
E8

1

|p|2s dp “ 4VolpSn´1q
ż 8

1{|y|
rn´1

r2s
dr “ 4VolpSn´1q

ż 8

1{|y|
rn´1´2s dr

“ 4VolpSn´1q
n´ 2s

rn´2s

ˇ̌̌̌r“8
r“1{|y|

“ 4VolpSn´1q
2α

1

|y|´2α
“ 2VolpSn´1q

α
|y|2α.

Putting both pieces of the integral together gives an estimate
ş
Rn

|e2πip¨y´1|2
|p|2s dp ď c|y|2α for a

suitable constant c ą 0, so plugging this into (9.7) gives the result we were hoping for. �

Example 9.38. Let f pxq :“ ř8
k“2

e2πikx

k2 lnk
. Up to multiplication by a constant, differentiating this

series term by term gives the Fourier series of Exercise 9.9, so f P H3{2pS1q, and Theorem 9.36
thus implies f P C0,αpS1q for every α P p0, 1q. One can also show as in Exercise 9.8 that the
differentiated series converges uniformly on compact subsets of tx ‰ 0u, thus f is continuously
differentiable on S1zt0u. But its derivative blows up at x “ 0, showing that f R C0,1pS1q.
Remark 9.39. One should not assume that the constants in Theorem 9.36 are always optimal.

Consider for instance the Weierstrass function f pxq “ ř8
k“0

1
ak
e2πib

kx for b P N with 1 ă ?
b ă

a ď b. According to Exercise 9.6, f P HspS1q if and only if s ă logb a. Since a ą
?
b, this range

includes values s ą 1{2, so Theorem 9.36 implies f P C0,αpS1q for all α ă logb a ´ 1
2
. But in

fact, Exercise 9.31 shows that f P C0,αpS1q for all α ă logb a.

9.7. Elliptic regularity. To demonstrate the power of the Fourier transform and Sobolev
spaces, in this section we shall give a brief taste of the theory of elliptic PDEs.

To understand the goal, consider first a second-order ordinary differential equation of the
form

(9.9) :xptq “ F pxptq, 9xptqq
for paths x : p´ǫ, ǫq Ñ Rn, where F : Rn ˆ Rn Ñ Rn is a function of class Cm, 1 ď m ď 8. A
solution to this equation must by definition be twice differentiable at every point, but it is easy
to see that it must in fact be better, i.e. more “regular,” which for this discussion you can take
to be a synonym for “smoother”. Indeed, if :x always exists, then x and 9x are both continuous,
and (9.9) thus implies that :x is continuous, hence x is of class C2 and 9x is of class C1. Since we
also assumed F P C1, thus implies F ˝ px, 9xq P C1 and therefore :x P C1, so x is of class C3. One
can repeat this argument until F runs out of derivatives. The conclusion is that if the data in
the equation is of class Cm, then any solution must be at least two steps more regular, namely
of class Cm`2; in particular, if F is smooth, then so is x. This is true even though the equation
itself makes sense for any function x that is everywhere twice differentiable.

The following example shows that partial differential equations, by contrast, do not always
have this “regularizing” property.
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Example 9.40. The simplest version of the wave equation is the second-order PDE

B2t u´ B2xu “ 0

for a function u : R2 Ñ R of two variables pt, xq P R2. For any C2-function f : RÑ R, the wave
equation has solutions given by

upt, xq :“ f pt˘ xq.
Notice that although the wave equation is linear with constant (and thus smooth) coefficients,
its solutions need not be smooth; the function f P C2pRq can be chosen arbitrarily, and the
solution u will then have only as many derivatives as f does.

There is a special class of PDEs, called elliptic, that do exhibit the same regularizing behavior
as ODEs. For this discussion, we shall only consider the simplest and most popular example:
the Poisson equation

∆f :“
nÿ

j“1

B2j f “ g,

where g : Rn Ñ R is a given function, and the solution is meant to be a function f : Rn Ñ R.
The second-order differential operator ´∆ :“ ´řn

j“1 B2j is called the Laplacian, and arises

often in physics (e.g. in the study of electrostatic or gravitational potentials), as well as in
differential geometry.23 We shall consider the Poisson equation on the torus Tn, that is, we
assume g : Rn Ñ R is a fully periodic function and consider solutions f : Rn Ñ R that are also
fully periodic.

Theorem 9.41. For any integer m ě 0 and smooth function g : Tn Ñ R, all C2-solutions
f : Tn Ñ R to the equation ∆f “ g are also smooth.

I would encourage the reader at this point to take out a piece of paper and consider whether
Theorem 9.41 might be proved by some trick as simple as the ODE discussion at the top of
this subsection. You will quickly run into difficulties, because the Laplace operator ∆ gives us
information about a particular linear combination of second partial derivatives of a solution f ,
but we cannot deduce from this anything about any individual partial derivative. From this
perspective, Theorem 9.41 is a very surprising result. It follows from the next theorem, which is
of a slightly more technical nature since it involves Sobolev spaces. To prepare the statement,
observe that by Proposition 9.4, ∆ defines a bounded linear operator

∆ : H2pTnq Ñ L2pTnq,
which is defined in the obvious way on the dense subspace C8pTnq but requires Fourier trans-
forms in order to define ∆f for f P H2pTnqzC2pTnq. Recall that functions in H2pTnq need not be
twice differentiable in general; when n ą 3, they need not even be continuous (cf. Theorem 9.10).

Theorem 9.42. If m P N and f P H2pTnq satisfies ∆f P HmpTnq, then f P Hm`2pTnq.
To prove Theorem 9.41 from this statement, observe that if g P CmpTnq, then g P HmpTnq

since g has derivatives up to order m that are continuous, and therefore also in L2pTnq. If
f P C2pTnq satisfies ∆f “ g P C8pTnq, it follows that f P H2pTnq and ∆f P HmpTnq for
every m P N. Theorem 9.42 then implies f P Hm`2pTnq, thus f belongs to all of the Sobolev
spaces HspTnq for s ě 0, and is therefore smooth according to the Sobolev embedding theorem
(Theorem 9.10).

Proof of Theorem 9.42. Suppose f P H2pTnq and ∆f “ g P HmpTnq for m P N. The Fourier
coefficients of f and g are then related by

x∆fk “ nÿ
j“1

yB2j fk “ nÿ
j“1

p2πikjq2 pfk “ ´4π2|k|2 pfk “ pgk
23The minus sign in the definition of the Laplace operator appears in some sources and not in others. It is

appropriate if one wants to consider the spectrum of the operator: the minus sign ensures that all of its eigenvalues
are positive. For our present discussion this makes no difference.
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for all k P Zn. For s ď m` 2, this impliesÿ
kPZnzt0u

|k|2s| pfk|2 “ C
ÿ

kPZnzt0u

|k|2s
|k|4 |pgk|2 “ C

ÿ
kPZnzt0u

|k|2ps´2q|pgk|2 ď C
ÿ

kPZnzt0u
|k|2m|pgk|2

ď C}g}2Hm

for a suitable constant C ą 0, thus f P Hm`2pTnq. �
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10. Distributions

Throughout this section, we assume unless stated otherwise that

Ω Ă Rn

is an open subset, and we again consider functions on Ω with values in an arbitrary finite-
dimensional inner product space pV, x , yq over the field K P tR,Cu. At the beginning of §9,
we heuristically sketched the definition of a Banach space Wm,ppΩq consisting of functions in
Lp that have derivatives up to order m also in Lp. Here we assume m ě 0 is an integer and
1 ď p ď 8. The quickest rigorous definition of this space is as the closure with respect to the
Wm,p-norm

(10.1) }f}Wm,p :“ ÿ
|α|ďm

}Bαf}Lp ,

of the space of all smooth functions f : Ω Ñ V with }f}Wm,p ă 8. There is nothing wrong
with defining Wm,ppΩq in this way, but it leaves open the question of precisely which functions
actually belong to Wm,ppΩq. For p “ 2 and Ω “ Rn, we found an elegant solution to the
this problem in §9 by using the Fourier transform to identify differentiation with the operation
of multiplication by a polynomial, so that the space HmpRnq :“ Wm,2pRnq could be defined
without having to explicitly differentiate its elements. We also saw that functions of class Hm

really need not be m times differentiable, e.g. Example 9.38 describes a function in H1pS1q that
is of class C1 on the complement of one point but has its derivative blowing up at that point. To
understand this phenomenon properly in the cases p ‰ 2 or Ω Ĺ Rn where the Fourier transform
is not available, we need a new trick for talking about derivatives of functions that might not
be classically differentiable.

10.1. Weak derivatives. The trick we have in mind arises from the following straightforward
exercise combining Fubini’s theorem with integration by parts:

Exercise 10.1. Show that if f : Ω Ñ V and ϕ : Ω Ñ K are functions of class C1 and ϕ has
compact support in Ω, then for each j “ 1, . . . , n,ż

Ω

ϕ ¨ Bjf dm “ ´
ż
Ω

Bjϕ ¨ f dm.

Hint: The function ϕf has an obvious extension to a C1-function on Rn that vanishes outside
of Ω. Compute

ş
Rn Bjpϕf q dm.

In this exercise, requiring ϕ to have compact support ensures on the one hand that ϕ ¨Bjf and
Bjϕ ¨ f are both Lebesgue-integrable functions, and it also eliminates the boundary terms that
would otherwise appear when carrying out integration by parts. The resulting formula can be
used to uniquely characterize the partial derivatives of f : namely, if f : Ω Ñ V and g : Ω Ñ V

are functions of class C1 and C0 respectively such that

(10.2)

ż
Ω

ϕg dm “ ´
ż
Ω

Bjϕ ¨ f dm for all ϕ P C8
0 pΩq,

then g “ Bjf . Indeed, h :“ g ´ Bjf is then a continuous function on Ω satisfyingż
Ω

ϕh “ 0 for all ϕ P C8
0 pΩq,

and if hpxq ‰ 0 for some x P Ω, then the latter relation is contradicted by any smooth bump
function ϕ that satisfies ϕpxq “ 1 and vanishes outside a sufficiently small neighborhood of x.

Notice: the condition (10.2) does not explicitly mention any derivative of f . In fact, both
sides of the relation are well defined as soon as f and g are locally integrable functions on Ω.
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Definition 10.2. A function f P L1
locpΩq is said to be weakly differentiable if there exist

functions g1, . . . , gn P L1
locpΩq such that for each j “ 1, . . . , n,ż

Ω

ϕgj dm “ ´
ż
Ω

Bjϕ ¨ f dm for all ϕ P C8
0 pΩq.24

We then call gj a weak partial derivative of f with respect to the variable xj , and write
Bjf :“ gj .

Three important remarks should be understood immediately:

(1) If f is of class C1, then its classical partial derivatives are also weak partial derivatives,
thus for this class of functions there is no ambiguity in denoting weak derivatives by Bjf .
(There will occasionally be ambiguity if we talk about functions that are differentiable
almost everywhere—these sometimes also have weak derivatives, but sometimes they do
not.)

(2) In contrast with classical derivatives, weak derivatives are well defined only up to equality
almost everywhere, i.e. if g “ Bjf weakly and h “ g almost everywhere, then h is also
a weak derivative of f . Similarly, f can be changed on a set of measure zero without
changing its weak derivatives.

(3) Related to the second point: weak differentiability is a property of the whole function
f P L1

locpΩq, and it is not purely local, i.e. it generally makes no sense to ask whether
f is weakly differentiable at an individual point x P Ω, nor what the value of Bjf pxq is,
though one can ask what

ş
E
Bjf dm is for any given measurable subset E Ă Ω.

Since weak derivatives of locally integrable functions are also locally integrable functions, one
can iterate the definition in obvious ways to define higher-order weak differentiability and weak
derivatives Bαf , which will be uniquely characterized by the relationż

Ω

ϕ ¨ Bαf dm “ p´1q|α|
ż
Ω

Bαϕ ¨ f dm for all ϕ P C8
0 pΩq.

There is again no problem in making sense of this condition since ϕ is always assumed to be
infinitely differentiable with compact support; we only need f and Bαf to be of class L1

loc.
Let us clarify that a function may indeed have a weak derivative without being classically

differentiable:

Exercise 10.3. Show that the function f : RÑ R : x ÞÑ |x| has weak derivative f 1pxq :“ x{|x|.
(It is not necessary to specify a value for f 1p0q since t0u Ă R is a set of measure zero.) Then
show that f 1 P L1

locpRq is not weakly differentiable.

For functions that are not of class C1, we have not yet shown that weak derivatives are
uniquely defined almost everywhere, but this is true, and follows from:

Lemma 10.4. If f P L1
locpΩq satisfies

ş
ϕf dm “ 0 for every smooth compactly supported func-

tion ϕ : ΩÑ R, then f “ 0 almost everywhere.

Proof. Given x0 P Ω, choose ǫ ą 0 small enough so that the closed ǫ-ball sBǫpx0q about x0 lies
in Ω, and consider the function g P L1pRnq defined by

g :“
#
f on Bǫpx0q,
0 everywhere else.

Choose an approximate identity ρj : R
n Ñ r0,8q with shrinking support. For x P Bǫ{2px0q and

j sufficiently large so that supppρjq Ă Bǫ{2p0q, the function ρjpx ´ ¨q : Rn Ñ r0,8q then has

24The function ϕ P C8
0 pΩq in this definition can be taken to have either real or complex values; it does not

matter.
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compact support in Bǫ{2pxq Ă Bǫpx0q and can therefore be regarded as an element of C8
0 pΩq,

implying that the convolution

pρj ˚ gqpxq “
ż
Rn

ρjpx´ yqgpyq dy “
ż
Bǫ{2pxq

ρjpx´ yqgpyq dy “
ż
Ω

ρjpx´ ¨qf dm

vanishes for x P Bǫ{2px0q. By Theorem 5.14, ρj ˚ g Ñ g in L1pRnq as j Ñ 8, so we conclude
that g (and therefore f) vanishes almost everywhere on Bǫ{2px0q. Since Ω can be covered by
countably many subsets of the form Bǫ{2px0q with x0 P Ω and ǫ ą 0, it follows that f vanishes
almost everywhere in Ω. �

Corollary 10.5. If f P L1
locpΩq is weakly differentiable, then its weak partial derivatives are

unique up to equality almost everywhere. �

Exercise 10.6. Consider the Cantor function f from Example 6.2 on the domain Ω :“ p0, 1q Ă
R, which has classical derivative f 1 “ 0 at almost every point. Show however that f is not
weakly differentiable.
Hint: Show first that if a weak derivative existed, it would necessarily vanish almost everywhere
on each of the intervals that are removed to form the Cantor set.

10.2. Test functions and the space of distributions. Let us fit the notion of weak deriva-
tives into a larger context. We saw in Exercise 10.3 that locally integrable functions can be
weakly differentiable without being classically differentiable, but also that not all functions in
L1
loc have weak derivatives. We will now see that if our notion of what a “function” can be

is suitably enlarged, then every L1
loc function can be understood to have a derivative in some

sense.
The key observation is that for weak differentiation, what matters is not the values of a

function f : ΩÑ V at points in Ω, but rather the values of the linear map

Λf : C8
0 pΩq Ñ V : ϕ ÞÑ

ż
Ω

ϕf.

This suggests that instead of talking about functions on Ω, we should talk about linear maps
C8
0 pΩq Ñ V , e.g. in the case V “ K, we are talking about the dual space of C8

0 pΩq. To do
this properly, we should consider only linear functionals that are continuous, which requires
endowing C8

0 pΩq with a topology.

Definition 10.7. A test function on Ω is defined to be a smooth function ϕ : Ω Ñ K with
compact support, and the vector space of all such functions is denoted by DpΩq. A sequence
ϕj P DpΩq is said to converge to ϕ8 P DpΩq if there exists a compact subset K Ă Ω such that
ϕj has support contained in K for every j P N Y t8u and Bαϕj converges uniformly to Bαϕ8
for every multi-index α. A K-linear map Λ : DpΩq Ñ V is then said to be continuous if and
only if Λpϕjq Ñ Λpϕ8q for every convergent sequence ϕj Ñ ϕ8 P DpΩq.

Putting Definition 10.7 on firm mathematical footing requires the following result, whose
proof is outsourced to §10.8 in order to avoid too much of a digression into abstract topology:

Proposition 10.8 (see §10.8). The space of test functions DpΩq admits a natural topology that
induces the notions of convergence and continuity described in Definition 10.7.

Definition 10.9. A scalar-valued distribution on Ω is a continuous K-linear functional Λ :
DpΩq Ñ K. Similarly, a vector-valued distribution with values in the finite-dimensional vector
space V over K is a continuous K-linear map Λ : DpΩq Ñ V . We shall generally assume that all
our distributions take values in a fixed vector space V , and denote the the space of vector-valued
distributions by

D
1pΩq “  

Λ : DpΩq Ñ V
ˇ̌
Λ is K-linear and continuous

(
.

The space D 1pΩq is endowed with the weak˚-topology, i.e. the locally convex topology generated
by the seminorms }Λ}ϕ :“ |Λpϕq| for all ϕ P DpΩq. In particular, a sequence Λj P D 1pΩq
converges to Λ8 P D 1pΩq if and only if Λjpϕq Ñ Λ8pϕq for every ϕ P DpΩq.
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Remark 10.10. If V is a complex vector space, then one can regard it as a real vector space (of
twice the dimension) and set K “ R without changing any result in the theory of distributions.
The reason is that every real-linear map from the space of real-valued test functions to a complex
vector space has a unique complex-linear extension to the space of complex-valued test functions.
Thus for most purposes, it makes no difference whether we set K to be R or C, and many books
on distributions treat only the case K “ R. We will need to set K “ C however when we discuss
Fourier transforms in §10.6.

Note that choosing a basis of V identifies each vector-valued distribution with a finite tuple
of scalar-valued distributions, just as for vector-valued functions. Since the choice of the space
V almost never plays an important role in our discussion, we shall suppress it from the notation
whenever possible.

Example 10.11. There is a natural linear map

L1
locpΩq Ñ D

1pΩq : f ÞÑ Λf , Λf pϕq :“
ż
Ω

ϕf dm,

and by Lemma 10.4, this map is injective. (Exercise: check that Λf : DpΩq Ñ V is continuous.)
In this way, every locally integrable function determines a distribution, and we shall often abuse
terminology by identifying one with the other, e.g. when we say “Λ P D 1pΩq is a function,”
we mean that there exists a (necessarily unique up to equality almost everywhere) function
f P L1

locpΩq such that Λ “ Λf .

Convention. We will sometimes also denote the action of a distribution Λ P D 1pΩq on test
functions ϕ P DpΩq by

pΛ, ϕq :“ Λpϕq,
and abbreviate the case of a locally integrable function f P L1

locpΩq by
pf, ϕq :“ Λf pϕq :“

ż
Ω

ϕf dm.

Exercise 10.12. Show that the map L1
locpΩq Ñ D 1pΩq in Example 10.11 is continuous, where

L1
locpΩq is endowed with the Fréchet space topology defined in §0.3.

Example 10.13. The most popular scalar-valued distribution that is not a function is what
physicists call the Dirac delta function: for each x P Ω, we define δx P D 1pΩq by

δxpϕq :“ ϕpxq.
On Ω “ Rn, one typically abbreviates δ :“ δ0 for the δ-function centered at the origin, so
that pretending δ is an actual function on Rn gives rise to the usual formula

ş
Rn ϕpxqδpxq dx “

ϕp0q. A formal change of variables transforms this into δxpϕq “ ϕpxq “ ş
Rn ϕpy ` xqδpyq dy “ş

Rn ϕpuqδpu ´ xq du, motivating the notation

δp¨ ´ xq :“ δx P D
1pΩq.

Example 10.14. Suppose µ is a measure defined on the Borel subsets of Ω Ă Rn such that
µpKq ă 8 whenever K Ă Ω is compact. Then Λpϕq :“ ş

Ω
ϕdµ defines a real-valued distribution.

The distributions Λf in Examples 10.11 (with f : ΩÑ r0,8q) and δx in Example 10.13 are both
special cases of this, with measures defined by

µpEq :“
ż
E

f dm and µpEq :“
#
1 if x P E,
0 otherwise

respectively. The latter is of course also known as the Dirac measure centered at x.

Example 10.15. Here is a distribution that is not a special case of Example 10.14: for k P N

and x P Ω Ă R, define

Λpϕq :“ ϕpkqpxq.
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Exercise 10.16. Verify that the linear maps DpΩq Ñ V described in Examples 10.11, 10.13,
10.14 and 10.15 are all continuous.

The trick via integration by parts in the definition of weak differentiation now generalizes as
follows.

Definition 10.17. Given Λ P D 1pΩq and j “ 1, . . . , n, the distributional derivative (or
derivative “in the sense of distributions”) of Λ with respect to the variable xj is a distribution
BjΛ P D 1pΩq defined by

pBjΛqpϕq :“ ´ΛpBjϕq.
More generally, if α is any multi-index with order |α| ě 0, one defines BαΛ P D 1pΩq by

pBαΛqpϕq :“ p´1q|α|ΛpBαϕq.
It is easy to check that the distributions in Definition 10.17 are always well defined continuous

linear maps, so every distribution is infinitely differentiable, and the operators Bα : D 1pΩq Ñ
D 1pΩq are continuous linear maps. In this language, a function is weakly differentiable if and
only if its derivative in the sense of distributions is also represented by a function. For functions
of class C1, the distributional derivatives can always be represented by the classical derivatives.

Exercise 10.18. The function f pxq :“ x{|x| appeared in Exercise 10.3 as the weak derivative
of the function |x|. Show that the derivative of f in the sense of distributions (meaning the
derivative of the distribution Λf ) is 2δ.

Example 10.19. Up to a sign, the distribution in Example 10.15 is the kth derivative of the

δ-function: concretely, Λ “ p´1qkδpkqx .

When we talk about distributions represented by functions, we typically assume these func-
tions to be locally integrable so that expressions like

ş
Ω
ϕf dm make sense for all ϕ P DpΩq. This

is not always strictly necessary, however: the next exercise exhibits a locally integrable function
that is not weakly differentiable in the sense of Definition 10.2, but its distributional derivative
can (with a little care) be represented by a function that is not of class L1

loc.

Exercise 10.20. Show that the function f pxq :“ ln |x| is locally integrable on R, and its
derivative in D 1pRq is given by

Λ1f pϕq “ p. v.

ż
R

ϕpxq
x

dx :“ lim
ǫÑ0`

ż
|x|ěǫ

ϕpxq
x

dx.

Here the notation p. v. stands for “Cauchy principal value” and is defined as the limit on the
right. Check that this expression gives a well-defined distribution even though 1{x is not a
locally integrable function on R.

The product of a distribution Λ P D 1pΩq with a smooth scalar-valued function f P C8pΩq
defines a distribution fΛ P D 1pΩq via the obvious formula

pfΛqpϕq :“ Λpfϕq.
This is well defined because ϕ ÞÑ fϕ defines a continuous map DpΩq Ñ DpΩq; note that this
depends on f having derivatives of all orders (though it does not need to have compact support),
so the product of an arbitrary distribution Λ with a non-smooth function is not well defined in
general. It is easy to check that for every f P C8pΩq, the linear map D 1pΩq Ñ D 1pΩq : Λ ÞÑ fΛ
is also continuous.

Exercise 10.21. Show that for f P C8pΩq and Λ P D 1pΩq, distributional derivatives satisfy the
Leibniz rule

BjpfΛq “ pBjf qΛ` fBjΛ,
where on the right hand side, Bj denotes a classical derivative in the first term and a distributional
derivative in the second.
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10.3. Smoothness of distributions. For applications of distributions in the theory of PDEs,
we need a more concrete understanding of the relationship between classical and distributional
derivatives. This includes the answers to two questions:

‚ How well can an arbitrary distribution be approximated by a Cm-function? (see Corol-
lary 10.32)

‚ How can one recognize whether a given distribution is representable by a Cm-function?
(see Theorem 10.33)

The most useful tool toward these ends is a generalization of the convolution operator.

10.3.1. The convolution. Recall from §5.2 that for any locally integrable function f : Rn Ñ V

and any test function ϕ P DpRnq, the convolution ϕ ˚ f : Rn Ñ V is a well-defined function at
every point x P Rn. It can be expressed in terms of the distribution Λf P D 1pRnq if we introduce
two natural operations on the space of test functions: one is the translation operator

τv : DpRnq Ñ DpRnq, τvϕpxq :“ ϕpx` vq for v P Rn,

which we considered on Lp-spaces in §5.1. The other is the antipodal reflection operator

σ : DpRnq Ñ DpRnq, σϕpxq :“ ϕp´xq.
Both τv and σ extend naturally to operations on the space of distributions on Rn. For f P
L1
locpRnq and ϕ P DpRnq, we have

Λτvf pϕq “
ż
Rn

ϕpxqf px` vq dx “
ż
Rn

ϕpx´ vqf pxq dx “ Λf pτ´vϕq,
which motivates defining

τv : D
1pRnq Ñ D

1pRnq, τvΛ :“ Λ ˝ τ´v.

Similarly,

Λσf pϕq “
ż
Rn

ϕpxqf p´xq dx “
ż
Rn

ϕp´xqf pxq dx “ Λf pσϕq,
and we therefore define

σ : D
1pRnq Ñ D

1pRnq, σΛ :“ Λ ˝ σ.
One verifies easily that τv and σ are each continuous linear maps on both DpRnq and D 1pRnq.

The convolution of ϕ P DpRnq with f P L1
locpRnq can now be expressed as

pϕ ˚ f qpxq “
ż
Rn

ϕpx´ yqf pyq dy “
ż
Rn

σϕpy ´ xqf pyq dy “
ż
Rn

τ´xσϕpyqf pyq dy “ Λf pτ´xσϕq.
It is therefore sensible to define the convolution of any distribution Λ P D 1pRnq with a test
function ϕ P DpRnq as the function ϕ ˚ Λ : Rn Ñ V given by

(10.3) pϕ ˚ Λqpxq :“ Λpτ´xσϕq “ τxΛpσϕq.
With a little care, this definition can be extended to include distributions that are defined

only on an open subset Ω Ă Rn. Given subsets A,B Ă Rn and v P Rn, let us denote

A˘ v :“  
x˘ v P Rn

ˇ̌
x P A( ,

A˘B :“  
x˘ y P Rn

ˇ̌
x P A and y P B( ,

´A :“  ´x P Rn
ˇ̌
x P A( .

Then for any function ϕ : Rn Ñ K with support in a subset K Ă Rn, and for any v P Rn,

supppϕq Ă K ñ supppτvϕq Ă K ´ v and supppσϕq Ă ´K.
It follows that for open sets Ω,Ω1 Ă Rn and v P Rn, there is a well-defined continuous linear
operator

τv : DpΩq Ñ DpΩ1q whenever Ω´ v Ă Ω1,
and similarly

σ : DpΩq Ñ DpΩ1q whenever ´Ω Ă Ω1.
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Now if Λ P D 1pΩq and K Ă Rn is any compact set containing the support of ϕ P DpRnq, then
(10.3) defines ϕ ˚ Λ as a function on the open set

Ω1 :“  
x P Rn

ˇ̌ ´K ` x Ă Ω
(
.

One must keep in mind that this set may be empty, but we will mostly be interested in situations
where K is an arbitrarily small compact neighborhood of the origin, in which case Ω1 is a
nonempty subset of Ω. Since convolutions of functions are symmetric, we define

Λ ˚ ϕ :“ ϕ ˚ Λ.
Exercise 10.22. Prove that for v P Rn and k “ 1, . . . , n, the operators τv, σ and Bk, acting on
either the space of test functions or the space of distributions, are related to each other by

τv ˝ Bk “ Bk ˝ τv, σ ˝ Bk “ ´Bk ˝ σ, τv ˝ σ “ σ ˝ τ´v.

We will see below that even in cases where Λ is not a function, the function ϕ ˚ Λ inherits
the smoothness of ϕ. The proof of this rests on the smoothness of the translation operator τx
as a function of x P Rn, i.e. the fact that for any fixed ϕ P DpRnq and Λ P D 1pΩ1q, the function
x ÞÑ pτxΛqpϕq “ Λpτ´xϕq is smooth on a suitable open domain in Rn. This follows in turn from
a more general result related to differentiation under the integral sign.

The setting for the result we need is as follows. Assume U Ă Rm and Ω Ă Rn are open
subsets, ϕ : UˆΩÑ K is a smooth function such that ϕx :“ ϕpx, ¨q P DpΩq for every x P U , and
f P L1

locpΩq. One can then consider the function F on U defined via the parameter-dependent
integral

F pxq :“
ż
Ω

ϕpx, yqf pyq dy “ Λf pϕxq.
If ϕ satisfies sufficient hypotheses for the application of Theorem 0.4, then one should expect
this function to be smooth and satisfy

B|α|F
Bxα pxq “

ż
Ω

B|α|ϕ
Bxα px, yqf pyq dy “ Λf

˜
B|α|ϕ
Bxα px, ¨q

¸
for every multi-index α in the variables x “ px1, . . . , xmq P U Ă Rm. It turns out that under a
mild assumption about the support of ϕ, this also works when Λf is replaced by an arbitrary
distribution:

Proposition 10.23. Assume U Ă Rm and Ω Ă Rn are open subsets and ϕ : U ˆ Ω Ñ K is a
smooth function such that for every compact set K Ă U , ϕ|KˆΩ has compact support. Then for
any Λ P D 1pΩq, the function

F : U Ñ V : x ÞÑ Λpϕpx, ¨qq
is smooth and satisfies

B|α|F
Bxα pxq “ Λ

˜
B|α|ϕ
Bxα px, ¨q

¸
for all multi-indices α in the variables x “ px1, . . . , xmq P U Ă Rm.

The proof requires two preparatory lemmas about the space of test functions.

Lemma 10.24. Under the assumptions of Proposition 10.23, the map U Ñ DpΩq : x ÞÑ ϕx :“
ϕpx, ¨q is continuous.

Proof. Given a convergent sequence xj Ñ x8 in U , choose a compact set C Ă U containing an
open neighborhood of x8. By assumption, there then exists a compact set K Ă Ω such that ϕx

vanishes outside K for all x P C, thus supppϕxj
q Ă K for all j sufficiently large. It thus remains

only to prove C8-convergence of ϕxj
to ϕx8 . Uniform convergence follows from the fact that

since CˆK is compact, ϕ is uniformly continuous on CˆK. The same argument proves uniform
convergence Bαϕxj

Ñ Bαϕx8 for all multi-indices α in the variables y “ py1, . . . , ynq P Ω Ă Rn,

since B|α|ϕ
Byα is also continuous. �
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Lemma 10.25. Under the assumptions of Proposition 10.23, the functions ϕx :“ ϕpx, ¨q : ΩÑ
K satisfy

lim
hÑ0

ϕx`hek ´ ϕx

h
“ Bϕ
Bxk px, ¨q

for every x P U and k “ 1, . . . ,m, where e1, . . . , em P Rm denotes the standard Euclidean basis,
and the convergence of the limit is in the topology of DpΩq.
Proof. Fix x P U and k P t1, . . . ,mu. For all h P Rzt0u close enough to 0, we can assume x`hek
belongs to a compact subset in U such that all the functions ϕx`hek : Ω Ñ R have support
contained in some fixed compact subset K Ă Ω. Now use the fundamental theorem of calculus
to write

ϕx`hekpyq ´ ϕxpyq “ h

ż 1

0

Bϕ
Bxk px` thek, yq dt,

and note that for any multi-index α in the variables y “ py1, . . . , ynq P Ω Ă Rn, the operator B|α|
Byα

can be passed under the integral sign on the right hand side since ϕ is smooth. We thus haveˇ̌̌̌
ˇ B|α|Byα

ˆ
ϕx`hekpyq ´ ϕxpyq

h

˙
´ B|α|
Byα

Bϕ
Bxk pyq

ˇ̌̌̌
ˇ ď

ż 1

0

ˇ̌̌̌
ˇB|α|Byα

Bϕ
Bxk px` thek, yq ´ B|α|

Byα
Bϕ
Bxk px, yq

ˇ̌̌̌
ˇ dt.

Since B|α|
Byα

Bϕ
Bxk

px ` thek, yq can be assumed to vanish for all y R K and |h| sufficiently small,

uniform continuity implies that the integrand on the right hand side becomes arbitrarily small
uniformly in y P Ω as hÑ 0. �

Proof of Proposition 10.23. The continuity of F follows immediately from Lemma 10.24 and the
continuity of Λ. The main task is thus to prove that F has first partial derivatives given by

BF
Bxk pxq “ Λ

ˆ Bϕ
Bxk px, ¨q

˙
,

since a similar application of Lemma 10.24 will then imply that these derivatives are also con-
tinuous, and the argument can be repeated inductively for all higher-order derivatives. For the
computation of BF

Bxk
pxq, one can again appeal to the continuity of Λ, together with Lemma 10.25,

which gives

F px` hekq ´ F pxq
h

“ Λpϕx`hekq ´ Λpϕxq
h

“ Λ

ˆ
ϕx`hek ´ ϕx

h

˙
Ñ Λ

ˆ Bϕ
Bxk px, ¨q

˙
as hÑ 0. �

Corollary 10.26. For an open set Ω Ă Rn and a compact set K Ă Rn, consider the open set

U :“  
x P Rn

ˇ̌
K ` x Ă Ω

(
.

For any ϕ P DpRnq with supppϕq Ă K, associate to each Λ P D 1pΩq the function FΛ defined on
U by

FΛpxq :“ pτxΛqpϕq.
Then FΛ is smooth and satisfies BαFΛ “ FBαΛ for every multi-index α.

Proof. Apply Proposition 10.23 with the smooth function U ˆ ΩÑ R : px, yq ÞÑ ϕpy ´ xq. �

This is enough preparation to prove the first main result about the convolution.

Theorem 10.27. Suppose Λ P DpΩq for an open set Ω Ă Rn, and ϕ P DpRnq has support
contained in the compact set K Ă Rn. Then (10.3) defines a smooth function ϕ ˚Λ on the open
domain Ω1 :“  

x P Rn
ˇ̌ ´K ` x Ă Ω

(
, and it satisfies

Bαpϕ ˚ Λq “ pBαϕq ˚ Λ “ ϕ ˚ pBαΛq
for every multi-index α, where the operator Bα denotes a classical derivative in the first formula
and a distributional derivative in the second.
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Proof. The second formula is immediate from Corollary 10.26 and the definition of the convo-
lution. Since Bk commutes with translation operators and anticommutes with σ, we also have

pϕ ˚ BkΛqpxq “ τxBkΛpσϕq “ BkΛpτ´xσϕq “ ´ΛpBkτ´xσϕq “ Λpτ´xσBkϕq “ τxΛpσBkϕq
“ pBkϕ ˚ Λqpxq

for all x P Ω1 and k “ 1, . . . , n. The relation ϕ ˚ BαΛ “ Bαϕ ˚ Λ follows from this by induction
on the order of differentiation. �

Since ϕ ˚Λ is always a smooth function on Ω1, it also defines an element of D 1pΩ1q. We would
next like to give an alternative characterization of this distribution. For the case Λ “ Λf with
f P L1pΩq, f can be extended to a function on Rn vanishing outside of Ω without changing the
values of ϕ ˚ Λf “ ϕ ˚ f on Ω1. For any ψ P DpΩ1q, we can similarly extend ψ as 0 on RnzΩ1,
and then use Fubini’s theorem to show

pϕ ˚ f, ψq “
ż
Rn

ψpxqpϕ ˚ f qpxq dx “
ż
RnˆRn

ψpxqϕpx ´ yqf pyq dx dy

“
ż
RnˆRn

pσϕqpy ´ xqψpxqf pyq dx dy “
ż
Rn

pσϕ ˚ ψqpyqf pyq dy “ pf, σϕ ˚ ψq.
It turns out that this formula remains valid when f is replaced by an arbitrary distribution.
The proof requires a preparatory exercise.

Exercise 10.28. Show that for any ϕ,ψ P DpRnq with supppϕq Ă K Ă Rn and supppψq Ă
K 1 Ă Rn, ϕ ˚ ψ is also in DpRnq and has supppϕ ˚ ψq Ă K `K 1. Moreover, if ψj is a sequence
converging to ψ in DpRnq, then ϕ ˚ ψj Ñ ϕ ˚ ψ in DpRnq.
Hint: Focus on proving uniform convergence of ϕ ˚ψj to ϕ ˚ψ. Everything involving derivatives
then follows easily from the formula Bαpϕ ˚ ψq “ Bαϕ ˚ ψ “ ϕ ˚ Bαψ.
Proposition 10.29. For any Λ and ϕ satisfying the assumptions of Theorem 10.27 and any
ψ P DpΩ1q, the smooth function σϕ ˚ ψ has compact support in Ω, and

pϕ ˚ Λ, ψq “ pΛ, σϕ ˚ ψq.
Proof. Since supppσϕq Ă ´K and ψ has compact support in Ω1, Exercise 10.28 together with
the definition of Ω1 in Theorem 10.27 imply σϕ ˚ ψ P DpΩq.

To prove the stated formula, we shall exploit the linearity of Λ by approximating the integral
defining F pxq :“ pσϕ ˚ ψqpxq “ ş

Rn σϕpx ´ yqψpyq dy with Riemann sums. For ǫ ą 0 and
any given x P Rn, the compact support of ψ implies that the function y ÞÑ σϕpx ´ yqψpyq is
nonzero on at most finitely many points in the lattice ǫZn Ă Rn, thus we can define a function
Fǫ : R

n Ñ K by

Fǫpxq :“ ǫn
ÿ

yPǫZn

σϕpx´ yqψpyq “ ǫn
ÿ

yPǫZn

τ´yσϕpxqψpyq.

In fact, this is a finite linear combination of smooth functions with compact supports contained
in ´K ` supppψq Ă ´K ` Ω1 Ă Ω, thus it belongs to DpΩq and its support is contained in a
compact subset of Ω independent of ǫ. The function Fǫpxq can also be written as

ş
Rn fǫ,xpyq dy for

a step function fǫ,x : Rn Ñ K whose value at each y is the value of f0,xpyq :“ σϕpx´yqψpyq at the
nearest lattice point y P ǫZn. Since ϕ and ψ are both uniformly continuous, for every δ ą 0 there
exists ǫ0 ą 0 such that }fǫ,x´ f0,x}C0 ă δ for all x P Rn and ǫ ă ǫ0, thus Fǫ converges uniformly
to F as ǫ Ñ 0. The same is then true for all derivatives: since BαF pxq “ pBαpσϕq ˚ ψqpxq
and BαFǫpxq “ ǫn

ř
yPǫZn Bαpσϕqpx ´ yqψpyq for all multi-indices α, the same arguments imply

that all derivatives of Fǫ converge uniformly to F , hence Fǫ Ñ F in DpΩq. The continuity and
linearity of Λ then imply

pΛ, σϕ˚ψq “ ΛpF q “ lim
ǫÑ0`

ΛpFǫq “ lim
ǫÑ0`

ǫn
ÿ

yPǫZn

ψpyqΛpτ´yσϕpxqq “ lim
ǫÑ0`

ǫn
ÿ

yPǫZn

ψpyqpϕ˚Λqpyq.
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This last expression is a Riemann sum approximating the integral
ş
Ω1 ψpyqpϕ ˚ Λqpyq dy, whose

integrand is also a smooth function with compact support, so the sum converges to the integral
as ǫÑ 0. �

10.3.2. Approximation of distributions by smooth functions.

Example 10.30. The Dirac δ-function δ P D 1pRnq satisfies pϕ˚δqpxq “ δpτ´xσϕq “ τ´xσϕp0q “
σϕp´xq “ ϕpxq, i.e. ϕ ˚ δ “ δ ˚ ϕ “ ϕ for every ϕ P DpRnq.

The definition of the term approximate identity in §5.4 can now be restated as follows: a
sequence of smooth functions ρj : R

n Ñ r0,8q is an approximate identity if and only if

ρj Ñ δ in D
1pRnq,

where we are of course identifying the functions ρj with the distributions Λρj P D 1pRnq that they
determine. If ρj also has shrinking support, then we can assume for any given open neighborhood
Ω Ă Rn of the origin that ρj belongs to DpΩq for large j.

Now suppose Λ P D 1pΩq is an arbitrary distribution on some open set Ω Ă Rn, and ρj is
an approximate identity with supppρjq Ă Brj for some sequence rj Ñ 0. The convolutions
Λj :“ ρj ˚ Λ are then defined on the subsets

(10.4) Ωj :“
 
x P Ω

ˇ̌
distpx,RnzΩq ą rj

(
,

whose union for all j is Ω. It follows that any ϕ P DpΩq has support contained in Ωj for all j
sufficiently large, so that the integrals

ş
Ω
ϕΛj dm :“ ş

Ωj
ϕΛj dm can be defined for large j by

regarding the integrand as 0 wherever ϕ vanishes. The statement of the following result should
be understood in these terms.

Theorem 10.31. Suppose ρj : R
n Ñ r0,8q is an approximate identity with shrinking support,

Λ P D 1pΩq is a distribution defined on some open set Ω Ă Rn, and Λj :“ ρj ˚ Λ. Then for every
ϕ P DpΩq, ş

Ω
ϕΛj dmÑ Λpϕq.

Proof. Assume j is large enough for supppϕq to be contained in the domain of Λj . Then according
to Proposition 10.29, ż

Ω

ϕΛj dm “ pρj ˚ Λ, ϕq “ Λpσρj ˚ ϕq.
The functions σρj are also an approximate identity with shrinking support, so the result follows
via the continuity of Λ and the following claim: for any approximate identity ρj with shrinking
support and any ϕ P DpΩq, the functions ρj ˚ ϕ have compact support in Ω for all j sufficiently
large and converge in DpΩq to ϕ as j Ñ 8. Indeed, Exercise 10.28 implies that supppρj ˚ϕq lives
in an arbitrarily small compact neighborhood of supppϕq for large j, and Theorem 5.17 gives
convergence ρj ˚ ϕ Ñ ϕ in C8

locpΩq. In light of the supports, C8
loc-convergence in this situation

implies uniform convergence of all derivatives and thus convergence in DpΩq. �

Corollary 10.32. For every open set Ω Ă Rn, C8
0 pΩq is dense in D 1pΩq.

Proof. Given an approximate identity ρj with shrinking support, define Λj :“ ρj ˚Λ, a sequence
of smooth functions defined on the nested sequence of open subsets Ω1 Ă Ω2 Ă . . . Ă Ť

jPNΩj

described in (10.4). Choose a corresponding sequence of smooth functions βj : Ω Ñ r0, 1s with
supppβjq Ă Ωj and βj |Ωj´1

” 1. Then βjΛj can be extended to smooth functions on Ω that
vanish outside of Ωj, and since every ϕ P DpΩq has support in Ωj for j large, Theorem 10.31
implies βjΛj Ñ Λ in D 1pΩq. �

10.3.3. Distributions of class Cm.

Theorem 10.33. For a distribution Λ P D 1pΩq on an open set Ω Ă Rn and integers m,k ě 0,
the following conditions are equivalent:

(1) Λ is represented by a function of class Ck`m;
(2) BαΛ is represented by a function of class Ck for each multi-index α of order m.
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Proof. The main step is to prove the special case with k “ 0 and m “ 1, as the rest then follows
by a straightforward inductive argument. Let us therefore assume Λ P D 1pΩq has the property
that BkΛ “ Λgk for every k “ 1, . . . , n, with continuous functions gk P C0pΩq. The goal is then
to show that Λ “ Λf for some f P C1pΩq.

Choose an approximate identity ρj with shrinking support, and consider the sequence of
smooth functions fj :“ ρj ˚ Λ, which are defined on a nested sequence of open subdomains
Ωj Ă Ω whose union is Ω. By Theorem 10.27, Bkfj “ ρj ˚ gk for each k “ 1, . . . , n, and since
the gk are continuous, it follows via Theorem 5.17 that Bkfj Ñ gk in C0

locpΩq. We claim that
fj also converges in C1

locpΩq to a function f P C1pΩq. Indeed, by the fundamental theorem of
calculus, every x0 P Ω has a convex neighborhood Ux0

Ă Ω in which for x “ x0 ` h P Ux0
with

h “ ph1, . . . , hnq P Rn,

(10.5) fjpxq ´ fjpx0q “
nÿ

k“1

hk

ż 1

0

Bkfjpx0 ` thq dt,

and the right hand side converges uniformly in x to
řn

k“1 hk
ş1
0
gkpx0`thq dt. If fjpx0q converges,

it follows that fj converges uniformly on a neighborhood of x, and the limiting function will
then satisfy

f pxq ´ f px0q “
nÿ

k“1

hk

ż 1

0

gkpx0 ` thq dt,

implying that f is of class C1 on this neighborhood with Bkf “ gk. The claim will thus follow
if we can prove that fjpx0q converges. To this end, choose a test function ϕ : Rn Ñ r0,8q
that is positive at x0 and has support in a neighborhood Ux0

of x0 which can be assumed to be
arbitrarily small. By Theorem 10.31,

(10.6) lim
jÑ8

ż
Ux0

ϕfj dmÑ Λpϕq.

Now if fjpx0q does not converge, then at least one of the following occurs after passing to a
subsequence:

(1) |fjpx0q| Ñ 8. Since (10.5) implies that |fjpxq ´ fjpx0q| is bounded independently
of j for all x P Ux0

, it follows if supppϕq is sufficiently concentrated around x0 thatˇ̌̌ş
Ux0

ϕfj dm
ˇ̌̌
Ñ 8, contradicting (10.6).

(2) f2j´1px0q and f2jpx0q each converge to different limits. A similar argument via (10.5)
then implies that if ϕ has support sufficiently concentrated near x0, then

ş
Ux0

ϕf2j´1 dm

and
ş
Ux0

ϕf2j dm each converge to different limits, giving another contradiction to (10.6).

These contradictions prove the claim.
We’ve now proved that fj converges in C1

locpΩq to a function f P C1pΩq, and it follows that
for every ϕ P DpΩq, ş

Ω
ϕfj dmÑ ş

Ω
ϕf dm. The latter equals Λpϕq according to Theorem 10.31,

so Λ “ Λf . �

Here is a consequence that is much less obvious than it looks:

Corollary 10.34. If f and g are two functions on a connected open set Ω Ă Rn that have the
same weak first-order partial derivatives almost everywhere, then f ´ g is equal to a constant
almost everywhere.

Proof. The assumptions imply that h :“ f´g satisfies h1 “ 0 in the sense of distributions. Since
0 is a continuous function, Theorem 10.33 then implies that h is equal almost everywhere to a
C1-function whose classical gradient is zero; since Ω is connected, that function is a constant. �

Exercise 10.35. Consider a linear differential operator of the form L “ ř
α cαBα acting on

scalar-valued functions on Rn, where the coefficients cα are scalars and the sum runs over
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finitely many multi-indices, which may be of various orders. A distribution K P D 1pRnq is called
a fundamental solution25 for the operator L if it satisfies LK “ δ.

(a) Show that if K is a fundamental solution for L, then for every smooth compactly sup-
ported function f : Rn Ñ K, u :“ K ˚ f is a smooth solution to the partial differential
equation Lu “ f .

(b) Find a locally integrable function K : R Ñ R that is a fundamental solution for the
operator B2x, and verify explicity that u :“ K ˚ f satisfies u2 “ f for any f P C8

0 pRq.
Exercise 10.36. Show that the functions

Kpxq :“ ´ 1

2π
ln |x| for n “ 2, Kpxq :“ 1

pn´ 2qVolpSn´1q|x|n´2
for n ě 3,

where VolpSn´1q ą 0 denotes the volume of the unit sphere in Rn, are in L1
locpRnq and are

fundamental solutions for the Laplace operator ∆ :“ ´řn
j“1 B2j on Rn with n ě 2. In particular,

they have (weak) first derivatives

Kjpxq :“ BjKpxq “ ´ 1

VolpSn´1q
xj

|x|n ,
and their second derivatives (in the sense of distributions) take the form

Kjkpxq :“ BjBkKpxq “ 1

VolpSn´1q
xjxk

|x|n`2
, for j ‰ k,

and B2jK “ ´ 1

n
δ `Kjj, where

Kjjpxq :“ 1

VolpSn´1q
ÿ
k

x2j ´ x2k

|x|n`2
,

and the evaluation of Kjk P D 1pRnq on test functions is defined via principal value integrals as
in Exercise 10.20, that is,

pKjk, ϕq :“ lim
ǫÑ0`

ż
RnzBn

ǫ

Kjkpxqϕpxq dx.

10.4. Product distributions. In this subsection we assume for simplicity that all distributions
are scalar valued, though the discussion can be generalized for vector-valued distributions with
minor adjustments (see Remark 10.42).

Recall that for any two σ-finite measure spaces pX,µq and pY, νq, there is a product measure
µb ν on X b Y , which is uniquely determined by the condition

pµb νqpAˆBq “ µpAqνpBq
for arbitrary measurable sets A Ă X and B Ă Y . Fubini’s theorem is essentially the statement
that product measures exist and are unique, together with a useful recipe for computing integrals
with respect to product measures. We would now like to establish a variation on Fubini’s theorem
for distributions.

Definition 10.37. If f : X Ñ K and g : Y Ñ K are two scalar-valued functions on sets X and
Y respectively, we define a scalar-valued function f b g : X ˆ Y Ñ K by

pf b gqpx, yq :“ f pxqgpyq.
Given two open sets Ω1 Ă Rm, Ω2 Ă Rn and distributions Λ1 P D 1pΩ1q and Λ2 P D 1pΩ2q, a
distribution on Ω1ˆΩ2 Ă Rm`n is called a product distribution for Λ1 and Λ2, and denoted
by Λ1 b Λ2 P D 1pΩ1 ˆ Ω2q, if it satisfies

pΛ1 b Λ2qpϕ1 b ϕ2q “ Λ1pϕ1qΛ2pϕ2q for all ϕ1 P DpΩ1q and ϕ2 P DpΩ2q.
25Fundamental solutions are also often called Green’s functions.
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Example 10.38. If Λ1 and Λ2 are given by measures as in Example 10.14, then the product
measure defines a product distribution Λ1 b Λ2. (Note that a measure satisfying the condition
stated in Example 10.14 is always σ-finite.)

Exercise 10.39. Use Fubini’s theorem to show that for any locally integrable scalar-valued
functions f P L1

locpΩ1q and g P L1
locpΩ2q, f b g belongs to L1

locpΩ1 ˆ Ω2q and Λfbg “ Λf b Λg P
D 1pΩ1 ˆ Ω2q.

In the setting of Exercise 10.39, Fubini’s theorem provides the following recipe for evaluating
Λf b Λg on an arbitrary test function ϕ P DpΩ1 b Ω2q: extending f and g to functions on Rm

and Rn that vanish outside Ω and Ω1 respectively, the compact support of ϕ in Ω ˆ Ω1 makes
px, yq ÞÑ ϕpx, yqf pxqgpyq a well-defined function in L1pRm`nq and thus implies

pΛf b Λg, ϕq “
ż
ΩˆΩ1

ϕpx, yqf pxqgpyq dx dy “
ż
Rm`n

ϕpx, yqf pxqgpyq dx dy

“
ż
Rm

ˆż
Rn

ϕpx, yqgpyq dy
˙
f pxq dx “ Λf px ÞÑ Λgpϕpx, ¨qqq

“
ż
Rn

ˆż
Rm

ϕpx, yqf pxq dx
˙
gpyq dy “ Λg py ÞÑ Λf pϕp¨, yqqq .

Implicit in our notation in the last two lines is that x ÞÑ Λgpϕpx, ¨qq and y ÞÑ Λf pϕp¨, yqq define
smooth compactly supported scalar-valued functions on Ω and Ω1 respectively, so they can be
regarded as test functions and fed into distributions for evaluation. As an easy consequence of
Proposition 10.23, the same holds when Λf and Λg are replaced by arbitrary distributions:

Exercise 10.40 (cf. Proposition 10.23). Show that if Ω1 Ă Rm and Ω2 Ă Rn are open sets,
ϕ P DpΩ1ˆΩ2q and Λ P D 1pΩ1q, then ψpyq :“ Λpϕp¨, yqq defines a smooth compactly supported
function on Ω2.

Theorem 10.41 (Fubini’s theorem for distributions). In the setting of Definition 10.37, there
exists a unique product distribution Λ1 b Λ2 P D 1pΩ1 ˆΩ2q, and its evaluation on arbitrary test
functions ϕ P DpΩ1 ˆ Ω2q is given by

(10.7) pΛ1 b Λ2qpϕq “ Λ1 px ÞÑ Λ2pϕpx, ¨qqq “ Λ2 py ÞÑ Λ1pϕp¨, yqqq .
Proof. We first prove the uniqueness of Λ1bΛ2. Given two product distributions for Λ1 and Λ2,
their difference is a distribution Λ P D 1pΩ1 ˆ Ω2q such that Λpϕ b ψq “ 0 for all ϕ P DpΩ1q
and ψ P DpΩ2q. The idea is now to use an approximate identity to approximate Λ with smooth

functions that vanish. For k “ 1, 2, let ρ
p1q
j and ρ

p2q
j : Rn Ñ r0,8q denote approximate identities

on Rm and Rn respectively, both with shrinking support. The functions ρj :“ ρ
p1q
j b ρ

p2q
j :

Rm`n Ñ r0,8q then also have shrinking support, and by Fubini’s theorem, they satisfyż
Rm`n

ρj dm “
ˆż

Rm

ρ
p1q
j dm

˙ˆż
Rn

ρ
p2q
j dm

˙
Ñ 1 as j Ñ8,

so by Lemma 5.12, ρj is an approximate identity on Rm`n. Theorem 10.31 then implies that
for any ϕ P DpΩ1 ˆ Ω2q, ρj ˚ Λ is a smooth function defined on a neighborhood of the support
of ϕ for j sufficiently large and satisfyingż

ΩˆΩ1
ϕpρj ˚ Λq Ñ Λpϕq as j Ñ8.

But the function ρj ˚ Λ is given by

pρj ˚ Λqpx, yq “ τpx,yqΛpσρjq “ Λpτ´xσρ
p1q
j b τ´yσρ

p2q
j q

for all px, yq P Rm`n in its domain of definition, so taking px, yq P Ω1 ˆ Ω2 and j large enough

for τ´xσρ
p1q
j and τ´yσρ

p2q
j to have support in Ω1 and Ω2 respectively, the defining property of Λ

implies that ρj ˚ Λ vanishes, proving Λpϕq “ 0.
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It is easy to see that both of the expressions on the right hand side of (10.7) evaluate like a
product distribution on test functions of the form ϕ1 b ϕ2 P DpΩ1 ˆ Ω2q, thus with uniqueness
established, the rest of the theorem will follow if we can show that both of these expressions
really define distributions, i.e. they are continuous linear maps on DpΩ1ˆΩ2q. The proof works
the same for both expressions, so let us focus on the first one and consider the linear map
Λ : DpΩ1 ˆ Ω2q Ñ K defined by

Λpϕq “ Λ1 px ÞÑ Λ2pϕpx, ¨qqq .
To show that this is continuous, suppose ϕj Ñ ϕ8 in DpΩ1 ˆ Ω2q, and pick compact subsets
K1 Ă Ω1 and K2 Ă Ω2 such that supppϕjq Ă K :“ K1 ˆK2 for all j. Then the sequence ϕj is
also convergent with respect to the C8-topology on

DKpΩ1 ˆ Ω2q :“  
ϕ P DpΩ1 ˆΩ2q

ˇ̌
supppϕq Ă K

(
,

which is a closed subspace of the Fréchet space of C8-functions with bounded derivatives of all
orders on Ω1ˆΩ2. Since Λ restricts to a continuous linear functional on this subspace, a standard
result on continuous linear operators (see Lemmas 10.93 and 10.94 in §10.8, or [RS80, §V.1])
implies that there exists a continuous seminorm } ¨ } on DKpΩ1 ˆ Ω2q such that |Λpϕq| ď }ϕ}
holds for every ϕ P DKpΩ1 ˆ Ω2q. Since the topology on DKpΩ1 ˆ Ω2q is generated by the
increasing sequence of norms } ¨ }Cm for m P N, this actually means that for sufficiently large
constants C ą 0 and m P N,

|Λpϕq| ď C}ϕ}Cm for all ϕ P DKpΩ1 ˆ Ω2q.
This estimate applies in particular to the sequence ϕj and its derivatives Bαϕj for every multi-
index α. Writing ψjpxq :“ Λ2pϕjpx, ¨qq, Proposition 10.23 gives

Bαψjpxq “ Λ2

˜
B|α|ϕj

Bxα px, ¨q
¸
,

thus

|Bαψ8pxq ´ Bαψjpxq| “
ˇ̌̌̌
ˇΛ2

˜
B|α|ϕ8
Bxα px, ¨q ´ B|α|ϕj

Bxα px, ¨q
¸ˇ̌̌̌
ˇ ď C

›››››B|α|ϕ8Bxα px, ¨q ´ B|α|ϕj

Bxα px, ¨q
›››››
Cm

ď C }ϕ8 ´ ϕj}Cm`|α| Ñ 0 as j Ñ8,
giving C8-convergence ψj Ñ ψ8. Since supppϕjq Ă K1 ˆ K2, we also have supppψjq Ă K1

for all j, thus ψj Ñ ψ8 in DpΩ1q, and the continuity of Λ1 now implies Λpϕjq “ Λ1pψjq Ñ
Λ1pψ8q “ Λpϕ8q. �

Remark 10.42. One can also define the notion of a product distribution Λ1 b Λ2 if Λ1 is scalar
valued and Λ2 is vector valued (or the other way around), but in this case an extra definition is
needed before one can make sense of (10.7), as x ÞÑ Λ2pϕpx, ¨qq is now a vector-valued function
and thus does not belong to DpΩ1q. The quickest way to rectify this is to choose a basis e1, . . . , ek
of V and extend Λ1 : DpΩ1q Ñ K to a linear map from the space of compactly supported smooth
functions Ω1 Ñ V to V by Λ1přj ϕjejq :“ ř

j Λ1pϕjqej for ϕ1, . . . , ϕk P DpΩ1q. It is easy to
check that this definition is independent of the choice of basis, and Theorem 10.41 then becomes
valid for the product of a scalar-valued and a vector-valued distribution.

10.5. The Sobolev spaces Wm,ppΩq. Let us now explain how to generalize the Sobolev spaces
HmpRnq to arbitrary open domains Ω Ă Rn and p ‰ 2. The theory of distributions is not strictly
needed for this discussion, but it makes some aspects of it seem easier and more natural.

Definition 10.43. For an open set Ω Ă Rn, an integer m ě 0 and a real number p P r1,8s,
the space Wm,ppΩq is defined to consist of all f P LppΩq such that for every multi-index α with
|α| ď m, the weak derivative Bαf exists and is also in LppΩq. The norm on Wm,ppΩq is defined
by

}f}Wm,p :“ ÿ
|α|ďm

}Bαf}Lp .
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Remark 10.44. In contrast to §9, we are not considering non-integer values of m in our definition
of Wm,ppΩq. Such a notion does exist but is much more complicated to define; details may be
found in [AF03].

It is not hard to show that Wm,ppΩq is a Banach space, as it admits a natural continuous
linear inclusion

Wm,ppΩq ãÑ à
|α|ďm

LppΩq

sending each f P Wm,ppΩq to a finite tuple of Lp-functions whose “α-coordinate” is Bαf , and
Exercise 10.45 below shows that the image of this inclusion is a closed subspace. More generally,
one defines

W
m,p
loc pΩq :“

 
f P Lp

locpΩq
ˇ̌
f has weak derivatives Bαf P Lp

locpΩq for all |α| ď m
(
,

which is equivalently the space of functions on Ω (up to equality almost everywhere) whose
restrictions to every open subset with compact closure are of class Wm,p. As with Lp

loc (cf. §0.3),
one can use the Wm,p-norms over an exhausting nested sequence of open subsets with compact
closures Ω1 Ă sΩ1 Ă Ω2 Ă sΩ2 Ă . . . Ă Ť

jPNΩj “ Ω to endow W
m,p
loc pΩq with the structure of a

Fréchet space.

Exercise 10.45. Suppose fj PWm,ppΩq is a sequence such that for every multi-index α of order
at most m, Bαfj is Lp-convergent to some gα P LppΩq. Show that the function f :“ limjÑ8 fj P
LppΩq is then in Wm,ppΩq and satisfies Bαf “ gα for all |α| ď m.
Hint: For any test function ϕ P DpRnq, the Lp-convergence Bαfj Ñ gα implies L1-convergence
on the support of ϕ.

Example 10.46. As shown in Exercise 10.3, the function f pxq :“ |x| on R has a bounded weak
derivative, thus f PW 1,ppΩq for every bounded open interval Ω Ă R and 1 ď p ď 8. This shows
that there is no value of p for which functions of class W 1,p must be everywhere differentiable
in the classical sense.

One can use approximate identities to show that the subspace

Wm,ppΩq X C8pΩq ĂWm,ppΩq
is dense for all p ă 8, thus an equivalent definition of Wm,ppΩq for these cases would be as the
closure of the space of smooth functions on Ω with respect to theWm,p-norm. The next exercise
proves a slightly stronger variant of this result in the case Ω “ Rn.

Exercise 10.47. Prove via the following steps that C8
0 pRnq is dense in Wm,ppRnq for every

m ě 0 and p ă 8:

(a) If f P Wm,ppRnq and ρj : Rn Ñ r0,8q is an approximate identity with shrinking support,
use Theorems 5.14 and 10.27 to show that fj :“ ρj ˚ f is in Wm,ppRnq X C8pRnq and
converges in Wm,p to f as j Ñ8.

(b) Fix a smooth function ψ : Rn Ñ r0, 1s that equals 1 on the unit ball and has compact
support in the ball of radius 2, and let ψǫpxq :“ ψpǫxq for ǫ ą 0. Show that for any
f P Wm,ppRnq X C8pRnq, ψǫf Ñ f in Wm,p as ǫÑ 0.
Hint: You need to estimate }Bαrp1´ ψǫqf s}Lp for every multi-index α with |α| ď m.
Consider separately the terms that either do or do not involve derivatives of ψǫ.

Remark 10.48. While C8pΩqXWm,ppΩq is always dense in Wm,ppΩq, it is not true for arbitrary
open domains Ω Ă Rn that C8

0 pΩq is dense in Wm,ppΩq. In general, the Wm,p-closure of C8
0 pΩq

defines a closed subspace Wm,p
0 pΩq Ă Wm,ppΩq that is often useful in applications to boundary

value problems, as it can be regarded as the space of Wm,p-functions on Ω that “vanish at the
boundary”. The proof in Exercise 10.47 that C8

0 pRnq is dense inWm,ppRnq implicitly makes use
of the fact that one has an infinite amount of room in Rn to “stretch out” the cutoff functions
ψǫ without losing control of their derivatives. This trick does not work more generally, e.g. when
Ω Ă Rn is bounded.
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We can now clarify the relationship of Wm,ppΩq to the Sobolev spaces we defined earlier via
the Fourier transform.

Proposition 10.49. For every integer m ě 0, Wm,2pRnq “ HmpRnq.
Proof. Both spaces are linear subspaces of L2pRnq, and by Theorem 9.20 and Exercise 10.47,
both contain the Schwartz space S pRnq as a dense subspace. One can easily show that the
Wm,2-norm and Hm-norm are equivalent on S pRnq, thus the two spaces are the closures of
S pRnq with respect to equivalent norms, and are therefore identical. �

Exercise 10.50. Prove:

(a) If f is an absolutely continuous function on an interval ra, bs, then its classical derivative
f 1 (defined almost everywhere according to Theorem 6.7) is also its weak derivative on
the domain pa, bq, hence f P W 1,1ppa, bqq.
Hint: For any ϕ P Dppa, bqq, ϕf defines an absolutely continuous function on ra, bs that
vanishes at the end points.

(b) If f P W 1,1
loc pΩq for an open subset Ω Ă R, then f is equal almost everywhere to a function

that is absolutely continuous on every compact subinterval of Ω.
Hint: On ra, bs Ă Ω, define gpxq :“ şx

a
f 1ptq dt and apply Corollary 10.34.

(c) For any open interval Ω Ă R, there exists a constant c ą 0 such that

}f}C0 ď c}f}W 1,1 for all f PW 1,1pΩq.
Hint: The fundamental theorem of calculus implies |f pxq´f pyq| ď }f 1}L1 for all x, y P Ω,
and thus |f pxq| ě }f}C0 ´ }f 1}L1 for all x P Ω.

Exercise 10.51. Consider the function f pxq :“ ln
ˇ̌
ln |x|ˇ̌ on the r-ball Br Ă Rn about the

origin for some r P p0, 1q.
(a) Show that the classical first derivatives Bjf , defined on Brzt0u, are also weak derivatives

of f on Br.
Hint: Since f and Bjf are both in L1pBrq, for any ϕ P DpBrq supported in some cube
Q Ă Br around 0, you can approximate

ş
Q
Bjpϕf q dm by integrating over Qzt|xj| ă ǫu

for small ǫ ą 0, and then use integration by parts. There will be a boundary term; you
need to show that the singularity of f at 0 is not bad enough to make the boundary
term matter as ǫÑ 0.

(b) Show that for n “ 1, f R W 1,ppBrq for any p ě 1, but for n ě 2, f P W 1,ppBrq if and
only if p ď n.

We saw in §9 that in general, functions of class W 1,p need not be anywhere differentiable, and
on higher-dimensional domains, Exercise 10.51 shows that they need not even be continuous—
the continuity result in Exercise 10.50 is special to one-dimensional domains. The Sobolev
embedding theorem gives sharp criteria saying to what extent the functions in any given Sobolev
space must be classically differentiable. The proof of this important result, which generalizes
Theorems 9.10 and 9.36 beyond the case p “ 2 and Ω “ Rn, belongs more properly to a course
on PDEs, so we will not include it, but here is the statement:

Theorem 10.52 (Sobolev embedding theorem). Suppose k P N and p P r1,8q satisfy the
relation

0 ă k ´ n{p ď 1,

and Ω Ă Rn is either Rn or an open subset whose closure is a compact C1-smooth manifold with
boundary.26 Then for every integer m ě 0 and every α P p0, 1q with α ď k ´ n{p, there exists a
continuous inclusion

W k`m,ppΩq ãÑ Cm,αpΩq.
26The hypothesis on Ω can be generalized considerably; here we are only stating a version that can be under-

stood without too many extra definitions. The theorem as stated remains true for any (bounded or unbounded)
open domain Ω Ă Rn whose boundary satisfies something called the “strong local Lipschitz condition”; see
[AF03, §4.12] for details.
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Exercise 10.53. Show that in the situation of Theorem 10.52, whenever Ω is bounded and the
strict inequality α ă k ´ n{p is satisfied, the inclusion W k`m,ppΩq ãÑ Cm,αpΩq is compact. In
particular, there is a continuous inclusion W k`m,ppΩq ãÑ CmpsΩq whenever kp ą n, and it is
compact if Ω Ă Rn is bounded. (See §0.3 for the definition of the Banach space CmpsΩq.)

Theorem 10.52 motivates thinking of functions in W k,ppΩq as functions that have “k ´ n{p
continuous derivatives” whenever kp ą n, where the number k´n{p need not be an integer. This
intuition is further supported by the following generalization of the obvious inclusion HtpRnq ãÑ
HspRnq for t ą s. The case with Ω bounded is known as the Rellich-Kondrachov compactness
theorem (cf. Theorem 9.14):

Theorem 10.54. Under the same assumptions on Ω as in Theorem 10.52, suppose 1 ď p, q ă 8
and k,m ě 0 are integers satisfying

k ě m, p ď q, and k ´ n

p
ě m´ n

q
.

Then there exists a continuous inclusion W k,ppΩq ãÑWm,qpΩq, and this inclusion is compact if
the inequality k ´ n

p
ě m´ n

q
is strict and Ω is bounded.

Exercise 10.55. When Ω is a bounded interval pa, bq Ă R, Theorem 10.52 says that for all
integers m ě 0, there are continuous inclusions

W 1`m,pppa, bqq ãÑ Cm,αppa, bqq if 0 ă α ă 1, 1 ă p ď 8 and α ď 1´ 1

p

W 2`m,1ppa, bqq ãÑ Cm,αppa, bqq if 0 ă α ă 1.

Prove this as follows:

(a) Deduce the inclusionsW 2,1 ãÑ C0,α for α P p0, 1s from a continuous inclusionW 2,1 ãÑ C1

using Exercise 10.50.
(b) Deduce the inclusion W 1,p ãÑ C0 for every p ě 1 from Exercise 10.50.
(c) For a ď x ă y ď b, the fundamental theorem of calculus implies |f pxq ´ f pyq| ď

}f 1}L1prx,ysq for f PW 1,pppa, bqq since (by Exercise 10.50) f is absolutely continuous. Use

Hölder’s inequality to deduce a Hölder-type estimate |f pxq ´ f pyq| ď c}f 1}Lp ¨ |x ´ y|α
for 0 ă α ď 1´ 1{p whenever p ą 1. The proof for m “ 0 is thus complete.

(d) Extend the result to all m P N by induction.

According to Theorem 10.52, the condition kp ą n guarantees continuity for functions of
class W k,p on n-dimensional domains. We saw in Exercise 10.50 that the situation is slightly
better when n “ 1: here the condition kp “ n already suffices for continuity, but the function in
Exercise 10.51 demonstrates that this is false in dimensions n ě 2. The situation with kp “ n

is often called the Sobolev borderline case. Even in dimension one, the borderline case has the
disadvantage that functions of class W 1,1 need not be Hölder continuous, and so in contrast to
Exercise 10.53, the inclusion W 1,1pΩq ãÑ C0pΩq for bounded intervals Ω Ă R is not compact.

Exercise 10.56. Find a sequence of smooth functions fj : p´1, 1q Ñ R such that }fj}L1 and
}f 1j}L1 are bounded but fj has no C0-convergent subsequence.

Hint: Construct fj so that it converges in L1 to a (discontinuous) characteristic function.

Remark 10.57. The Sobolev embedding theorem furnishes one major reason why it is useful
to study the properties of all the Lp-spaces for 1 ď p ď 8, rather than just L2, which might
otherwise be easier since the latter is a Hilbert space. As a concrete example, suppose you
are studying a first-order PDE for functions on 2-dimensional domains. If you want to work
only with Hilbert spaces but also want all your functions to be continuous, then Theorem 10.52
requires you to take functions of class Hm “Wm,2 with m ě 2, which involves at least one more
(weak) derivative than the PDE itself actually needs. In such a situation, it may be easier to
work with functions of class W 1,p for some p ą 2, as these are continuous, and one only needs to
compute first-order derivatives in order to verify whether a given function belongs to this space.
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10.6. Tempered distributions and Fourier transforms. Since we are going to talk about
Fourier transforms in this subsection, we need to assume K “ C.

We would now like to define Fourier transforms of functions for which the usual integral
formula cannot even approximately make sense, e.g. functions that are not in L2pRnq, and ideally,
distributions. One can almost deduce the correct definition by considering the distribution
Λf P D 1pRnq corresponding to a function f P L1pRnq: by Fubini’s theorem, we have

pFf, ϕq “
ż
Rn

ϕppq
ˆż

Rn

e´2πip¨xf pxq dx
˙
dp “

ż
Rn

ˆż
Rn

e´2πip¨xϕppq dp
˙
f pxq dx “ pf,Fϕq

for all ϕ P DpRnq. This suggests defining FΛ P D 1pRnq for arbitrary Λ P D 1pRnq by pFΛqpϕq :“
ΛpFϕq, but this definition as it stands does not quite make sense: Fϕ might not have compact
support, in which case it is not a test function and ΛpFϕq will not make sense for arbitrary
distributions Λ. The solution is to replace the usual space of test functions with the Schwartz
space S pRnq, since the latter is closed under the Fourier transform.

Before defining what a continuous linear functional on S pRnq is, we need to define a topology
on S pRnq. As with DpRnq, we would like this topology to be relatively strong, so that as many
functionals as possible are continuous, but also to have the property that continuity can be
characterized purely in terms of convergent sequences (cf. Proposition 10.8). This turns out to
be easier for S pRnq than for DpRnq: the natural choice is to endow S pRnq with the topology
generated by the countable family of seminorms

}ϕ}α,β :“ }xαBβϕ}C0

for all multi-indices α, β, so convergence ϕk Ñ ϕ in S pRnq will mean that for every polynomial
function P : Rn Ñ R and every multi-index β, the functions PBβϕk converge uniformly on
Rn to PBβϕ. It follows easily from the completeness of the C0-norm that sequences that are
Cauchy with respect to all of these seminorms must also converge, hence S pRnq is now a Fréchet
space. In particular, the topology we have defined on S pRnq is metrizable, thus continuity and
sequential continuity of functions defined on S pRnq are equivalent notions.

Exercise 10.58. Show that the natural inclusions DpRnq ãÑ S pRnq and S pRnq ãÑWm,ppRnq
for all m ě 0 and p P r1,8s are continuous.

Exercise 10.59. Show that the following linear operators S pRnq Ñ S pRnq are continuous:

(a) Bα and ϕ ÞÑ xαϕ for every multi-index α;
(b) F and F˚.

Definition 10.60. A complex-valued tempered distribution on Rn is a continuous complex-
linear functional Λ : S pRnq Ñ C. Similarly, a vector-valued tempered distribution with values in
the finite-dimensional complex vector space V is a continuous complex-linear map Λ : S pRnq Ñ
V . We shall generally assume that all tempered distributions take values in a fixed vector space
V , and denote the the vector space of vector-valued tempered distributions by

S
1pRnq “  

Λ : S pRnq Ñ V
ˇ̌
Λ is complex linear and continuous

(
.

The space S 1pRnq is endowed with the weak˚-topology, i.e. the locally convex topology generated
by the seminorms }Λ}ϕ :“ |Λpϕq| for all ϕ P S pRnq, hence a sequence Λj P S 1pRnq converges
to Λ8 P S 1pRnq if and only if Λjpϕq Ñ Λ8pϕq for every ϕ P S pRnq.

The inclusion DpRnq ãÑ S pRnq in Exercise 10.58 gives rise to a natural continuous inclusion
S 1pRnq ãÑ D 1pRnq, i.e. every tempered distribution is also a distribution in the usual sense.
The converse is false, and in fact S 1pRnq does not even contain all locally integrable functions,

e.g. f pxq :“ ex
2

does not define an element Λf P S 1pRq since there exist functions ϕ P S pRq
for which

ş
R
ϕf dm is not defined. However, most important examples of distributions are

also tempered distributions: these include large classes of functions as in the following two
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exercises,27 as well as standard singular examples like the Dirac δ-function and its derivatives.
By a slight abuse of notation, we shall write L1

locpRnq X S 1pRnq for the space of all locally
integrable functions f on Rn such that ϕf P L1pRnq for every ϕ P S pRnq and the formula
Λf pϕq :“ ş

Rn ϕf dm defines a tempered distribution Λf P S 1pRnq.
Exercise 10.61. A function f P L1

locpRnq is said to have polynomial growth if it satisfies
|f | ď |P | for some polynomial function P : Rn Ñ R; equivalently, this is true if and only if there
exist constants C ą 0 and k P N such that

|f pxq| ď Cp1` |x|kq for all x P Rn.

Show that any function with this property is in S 1pRnq.
Exercise 10.62. Show that LppRnq Ă S 1pRnq for every p P r1,8s, and the inclusions LppRnq ãÑ
S 1pRnq are continuous.
Hint: Use the continuity of the inclusions S pRnq ãÑ LqpRnq and the natural injection Lp ãÑ
pLqq˚ for 1

p
` 1

q
“ 1.

Partial derivative operators are defined as continuous linear maps on S 1pRnq in the same way
as D 1pRnq; continuity in this case follows from the continuity of Bα on S pRnq (Exercise 10.59).
The product of a smooth function f P C8pRnq with a tempered distribution Λ P S 1pRnq is not
well defined unless ϕ ÞÑ fϕ is a continuous map S pRnq Ñ S pRnq, which is not true e.g. for

f pxq :“ ex
2

on R, but is true if f and its derivatives of all orders have polynomial growth as
in Exercise 10.61. Under this assumption, it is straightforward to show that the Leibniz rule in
Exercise 10.21 also holds for tempered distributions.

Remark 10.63. For a function f P L1
locpRnq that defines a tempered distribution, we now have two

potentially inequivalent definitions for the notion of weak derivatives Bjf , depending whether
we want Bjf to define an element of D 1pRnq or S 1pRnq. In the latter case, it needs to sat-
isfy a stronger condition involving integration against test functions in S pRnq, a larger space
than DpRnq; it could happen for instance that f has a locally integrable weak derivative Bjf that
grows too fast at infinity to define a tempered distribution, in which case the stronger condition
fails. However, if a weak derivative Bjf does define a tempered distribution—which is always the
case for instance if Bjf is of class Lp for some p, and notably if f belongs to a suitable Sobolev
space—then it also satisfies the stronger condition, i.e. it is also a derivative of f in the sense of
tempered distributions. The reason is that, by Exercise 10.64 below, DpRnq is dense in S pRnq,
so any two tempered distributions that evaluate the same on DpRnq are identical.

Exercise 10.64. Show that for any ϕ P S pRnq and the family of compactly supported smooth
cutoff functions ψǫ : R

n Ñ r0, 1s in Exercise 10.47, ψǫϕÑ ϕ in S pRnq as ǫÑ 0. In particular,
DpRnq is dense in S pRnq.
Hint: For any multi-indices α and β, the condition ϕ P S pRnq implies }xαBβϕ}C0pRnzBRq Ñ 0
as RÑ8. (Why?)

The next set of exercises generalizes the convolution operator and its main properties from
§10.3 to the context of tempered distributions.

Exercise 10.65. Recall the translation operator τv for functions f on Rn and v P Rn, defined
by pτvf qpxq :“ f px` vq.

(a) Show that for every pair of multi-indices α and β, there exists a constant C ą 0 and a
finite set of pairs of multi-indices tpαi, βiquNi“1 such that

}τvϕ}α,β ď C

˜
Nÿ
i“1

}ϕ}αi,βi

¸
p1` |v||α|q for all ϕ P S pRnq, v P Rn.

27The word “tempered” refers to conditions as in Exercise 10.61 and 10.62 that rule out functions like ex
2

,
which grow too fast at infinity.
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In particular, τvϕ is also in S pRnq for every ϕ P S pRnq and v P Rn.
Hint: By Exercise 8.2, you can assume |Bβϕpxq| ď c

1`|x|k for some k P N arbitrarily large

and a constant c ą 0 determined by k and finitely many seminorms of ϕ. Estimate
|xαBβϕpx` vq| by looking separately at the cases |x| ď 2|v| and |x| ě 2|v|.

(b) Show that Lemmas 10.24 and 10.25 remain valid with the space of test functions replaced
by the Schwartz space (ignoring all conditions that involve compact support).

Exercise 10.66. Reread the proof of Corollary 10.26 and verify that, in light of Exercise 10.65,
the function FΛpxq :“ pτxΛqpϕq defined on Rn for any Λ P S 1pRnq and ϕ P S pRnq is smooth
and satisfies BαFΛ “ FBαΛ for all multi-indices α.

Exercise 10.67. Show that for any ϕ P S pRnq and Λ P S 1pRnq, the formula (10.3) defines a
smooth function ϕ˚Λ on Rn satisfying Bαpϕ˚Λq “ pBαϕq ˚Λ “ ϕ˚ pBαΛq for all multi-indices α.

Exercise 10.68. Consider the convolution of two Schwartz functions ϕ,ψ P S pRnq.
(a) Show that ϕ ˚ ψ is continuous and bounded on Rn.
(b) Show that if ψj is a sequence converging in S pRnq to ψ, then ϕ˚ψj converges uniformly

to ϕ ˚ ψ.
(c) For k “ 1, . . . , n and a function f on Rn, let Pkf denote the function on Rn defined by

pPkf qpxq :“ xkf pxq, so e.g. by Exercise 10.59, Pk defines a continuous linear operator
S pRnq Ñ S pRnq. Show that Pkpϕ˚ψq “ pPkϕq˚ψ`ϕ˚Pkψ, and deduce that Pkpϕ˚ψq
is continuous and bounded.

(d) Deduce that ϕ ˚ ψ P S pRnq, and for any sequence ψj Ñ ψ in S pRnq, ϕ ˚ ψj Ñ ϕ ˚ ψ
in S pRnq.

Proposition 10.69. For ϕ P S pRnq and Λ P S 1pRnq, ϕ˚Λ is a polynomially bounded function
and thus defines an element of S 1pRnq. Moreover, if ϕj P S pRnq converges to ϕ in S pRnq,
then the tempered distributions ϕj ˚ Λ converge to ϕ ˚ Λ in S 1pRnq.
Proof. We start by proving that ϕ˚Λ has polynomial growth. By one of the standard character-
izations of continuity for linear operators on locally convex spaces (see Lemmas 10.93 and 10.94
in §10.8, or [RS80, §V.1]), the continuity of Λ : S pRnq Ñ V means that there exists a finite set
of pairs of multi-indices tpαi, βiquNi“1 and a constant C ą 0 such that

|Λpϕq| ď C

Nÿ
i“1

}ϕ}αi,βi
for all ϕ P S pRnq.

Using Exercise 10.65, the convolution ϕ ˚ Λ thus satisfies

|pϕ ˚ Λqpxq| “ |Λpτ´xσϕq| ď C

Nÿ
i“1

}τ´xpσϕq}αi,βi
ď C

Nÿ
i“1

cip1` |x||αi|q ď C 1p1` |x|kq

for suitable constants ci ą 0, C 1 ą 0 and k P N sufficiently large. In this expression, the constant
C ą 0 is determined entirely by Λ, while only c1, . . . , cN (and therefore also C 1) depend on ϕ;
looking more closely at Exercise 10.65, we see moreover that they can be bounded linearly in
terms of finitely many of the seminorms }ϕ}α,β. For this reason, if ϕj Ñ ϕ is a convergent
sequence in S pRnq, the same argument gives

|pϕ ˚ Λqpxq ´ pϕj ˚ Λqpxq| “ |Λpτ´xσpϕ´ ϕjqq| ď Cjp1` |x|kq
for constants Cj ą 0 that converge to 0 as j Ñ8, thus for any ψ P S pRnq,

|pϕ ˚ Λ, ψq ´ pϕj ˚ Λ, ψq| ď
ż
Rn

|ψ| ¨ |ϕ ˚ Λ´ ϕj ˚ Λ| dm ď Cj

ż
Rn

|ψpxq|p1` |x|kq dxÑ 0.

�

Exercise 10.70. Use Proposition 10.29 and the density of DpRnq in S pRnq to deduce that the
relation pϕ ˚ Λ, ψq “ Λpσϕ ˚ ψq also holds for all ϕ,ψ P S pRnq and Λ P S 1pRnq.



106 CHRIS WENDL

Exercise 10.71. Suppose ρj : R
n Ñ r0,8q is an approximate identity with shrinking support.

Prove:

(a) For any ϕ P S pRnq, ρj ˚ ϕÑ ϕ in S pRnq as j Ñ8.
(b) For any Λ P S 1pRnq, ρj˚ΛÑ Λ in S 1pRnq as j Ñ8. (This proves that C8pRnqXS 1pRnq

is dense in S 1pRnq.)
(c) For any f P C8pRnq X S 1pRnq and the family of compactly supported smooth cutoff

functions ψǫ : R
n Ñ r0, 1s in Exercise 10.47, ψǫf Ñ f in S 1pRnq as ǫÑ 0. (This proves

that C8
0 pRnq is dense in S 1pRnq.

While distributions are easier to work with than tempered distributions for many purposes,
the major advantage of the latter is that they admit natural definitions of the Fourier transform
and Fourier inverse operators.

Definition 10.72. We define F ,F˚ : S 1pRnq Ñ S 1pRnq by
pFΛqpϕq :“ pΛpϕq :“ Λppϕq and pF˚Λqpϕq :“ qΛpϕq :“ Λpqϕq.

The continuity of F and F˚ on S pRnq (Exercise 10.59) implies that they are also continuous
on S 1pRnq, and the relations FF˚ “ F˚F “ 1 extend immediately from S pRnq to S 1pRnq.
The calculation via Fubini’s theorem at the beginning of this subsection shows that our definition
of FΛ and F˚Λ for any Λ “ Λf with f P L1pRnqmatches the result of the usual integral formula.

Exercise 10.73. For f P L2pRnq, use approximation by L1-functions to show that FΛf “ ΛFf

and F˚Λf “ ΛF˚f , where Ff and F˚f are defined as in §8.

Remark 10.74. Recall from Lemma 10.4 that two locally integrable functions are equal almost
everywhere if and only if they define the same distribution. The same is true for tempered
distributions since DpRnq Ă S pRnq. Exercise 10.73 thus shows that the most general possi-
ble definition of the Fourier transform, given by Definition 10.72, matches the definition we
previously had for functions in L2pRnq.

We can now make rigorous sense of formal relations such as
ş
Rn e

´2πip¨x dx “ δpxq that
appeared in §8, for instance:

Exercise 10.75. Regarding the Dirac δ-function and the constant function 1 as tempered
distributions on Rn, show that F pδq “ F˚δ “ 1, hence F˚p1q “ F p1q “ δ.

Exercise 10.76. Show that the relations in (8.4) between the operators F , F˚ and Bα remain
valid when f P S pRnq is replaced by a tempered distribution Λ P S 1pRnq.
Exercise 10.77. Show that the relations F pϕ ˚ Λq “ pϕpΛ and F˚pϕ ˚ Λq “ qϕqΛ hold for all
ϕ P S pRnq and Λ P S 1pRnq.
10.7. Distributions with compact support. We saw in §8 that the Fourier transform ex-
changes regularity properties of a function with decay conditions at infinity, e.g. one can see this
in the relations (8.4) that transform differentiation into multiplication by polynomials, and the
fact that Lebesgue-integrable functions have continuous Fourier transforms. We would now like
to explain a beautiful extension of this phenomenon into the realm of distributions.

Definition 10.78. The support supppΛq Ă Ω of a distribution Λ P D 1pΩq is the complement
of the union of all open subsets U Ă Ω such that Λpϕq “ 0 for all ϕ P DpΩq with supppϕq Ă U .
Equivalently, supppΛq is the intersection of all closed subsets V Ă Ω such that Λpϕq “ 0 for all
ϕ P DpΩq with supppϕq X V “ H.

Remark 10.79. The support of Λ P D 1pΩq is in fact the smallest closed subset such that Λ
vanishes on all test functions with support disjoint from supppΛq, or equivalently, its complement
is the largest open subset U Ă Ω such that Λpϕq vanishes whenever supppϕq Ă U . To see that
Ωz supppΛq has the latter property, observe that for any ϕ P DpΩq with supppϕqXsupppΛq “ H,
the compactness of supppϕq implies that it is contained in the union of a finite collection of open
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subsets U1, . . . ,UN such that supppψq Ă Ui implies Λpψq “ 0 for any ψ P DpΩq. One can then

use a partition of unity to write ϕ as
řN

i“1 ϕi for some ϕi P DpΩq with supppϕiq Ă Ui, implying
Λpϕiq “ 0 for all i and thus Λpϕq “ 0.

Example 10.80. If f P L1
locpΩq vanishes outside of some closed subset V Ă Ω, then supppΛf q Ă

V.

Example 10.81. For any Λ P D 1pΩq and f P C8pΩq, fΛ P D 1pΩq has supppfΛq Ă supppf q
since fϕ ” 0 whenever ϕ P DpΩq has support disjoint from that of f .

Lemma 10.82. A distribution Λ P D 1pΩq has compact support if and only if there exists a
distribution Λ1 P D 1pΩq and a smooth compactly supported function f : Ω Ñ K such that
Λ “ fΛ1.
Proof. The statement is obvious in one direction since supppfΛ1q Ă supppf q. Conversely, sup-
pose there exists a compact subset K Ă Ω such that Λpϕq “ 0 whenever supppϕq XK “ H.
Choose an open neighborhood U Ă Ω of K with compact closure and a compactly supported
function f : ΩÑ r0, 1s such that f |U ” 1. We claim that fΛ “ Λ. Indeed, for any ϕ P DpΩq, we
can write ϕ “ fϕ`p1´ f qϕ, where p1´ f qϕ vanishes on U , thus its support is disjoint from K,
implying Λpϕq “ Λpfϕq “ pfΛqpϕq. �

Proposition 10.83. If Λ P D 1pΩq has compact support, then Λ extends to a continuous linear
map on the space C8pΩq of all scalar-valued smooth functions with the C8

loc-topology.

Proof. Suppose ϕj P DpΩq is a sequence converging in the C8
loc-topology to ϕ8 P DpΩq. By

Lemma 10.82, we can write Λ “ fΛ1 for some Λ1 P D 1pΩq and a smooth function f : ΩÑ K with
support in a compact set K Ă Ω. Since ϕj Ñ ϕ8 in the C8-topology over K, it follows that
fϕj is C8-convergent to fϕ8, thus fϕj Ñ fϕ8 in DpΩq, so that the continuity of Λ1 implies

Λpϕjq “ Λ1pfϕjq Ñ Λ1pfϕ8q “ Λpϕjq.
This proves that Λ : DpΩq Ñ V is continuous with respect to C8

loc-convergence. Since DpΩq is
dense in C8pΩq with respect to this topology, it follows that Λ has a unique continuous extension
to the larger space. �

Remark 10.84. Proposition 10.83 also has a converse; see Proposition 10.104.

In light of the obvious continuous inclusion S pRnq ãÑ C8pRnq, in which C8pRnq carries the
C8
loc-topology, we also have:

Corollary 10.85. Every compactly supported distribution Λ P D 1pRnq is also a tempered distri-
bution, i.e. it has a unique extension to a continuous linear map on S pRnq. �

If f P L1
locpRnq has compact support, then f also belongs to L1pRnq, so its Fourier transform

is given by pf ppq “ ż
Rn

e´2πip¨xf pxq dx “ Λf pe´2πip¨xq,
where we have used Proposition 10.83 to extend the domain of Λf to smooth functions such as
x ÞÑ e´2πip¨x that need not have compact support. As we saw in §8, the fact that f is of class

L1 implies that pf is continuous, but we can now say more: since the product of f with any

polynomial is also a compactly supported L1
loc-function and therefore belongs to L1pRnq, pf also

has continuous derivatives of all orders, i.e. it is smooth. The remarkable fact is that this result
still holds when f is replaced by an arbitrary compactly supported distribution, which may have
very badly behaved local singularities but still satisfies the best possible “decay” condition at
infinity:

Theorem 10.86. For any compactly supported distribution Λ on Rn, Ff and F˚f are smooth
functions on Rn given by

FΛppq “ Λpe´2πip¨xq, F
˚Λppq “ Λpe2πip¨xq,

where Proposition 10.83 is used for evaluating Λ on smooth functions with noncompact support.
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Proof. By Exercise 10.76, smoothness will follow immediately once we have proved that the
stated formulas for FΛ and F˚Λ are correct, as multiplying Λ by any polynomial preserves
the condition of compact support. We shall focus on the formula for FΛ, since the parallel
statement for F˚Λ has an almost identical proof. By Lemma 10.82, it would be equivalent to
prove that for every Λ P D 1pRnq and every compactly supported smooth function ψ : Rn Ñ K,xψΛ P S 1pRnq is given by the function p ÞÑ Λpψe´2πip¨xq on Rn. The latter encapsulates two
claims:

(1) The function gppq :“ Λpψe´2πip¨xq has sufficiently tame behavior at infinity to define a
tempered distribution;

(2) For all ϕ P S pRnq,

(10.8) pψΛ, pϕq “ ż
Rn

ϕppqgppq dp.

For the first claim, let us show that g has polynomial growth. Indeed, a straightforward change-
of-variable calculation gives

ψpxqe´2πip¨x “ F
˚pτp pψqpxq,

thus

gppq “ ΛpF˚τp pψq “ pF˚Λqpτp pψq “ τ´p
qΛp pψq “ τ´p

qΛpσpσ pψqq “ pσ pψ ˚ qΛqp´pq,
and the claim follows from Proposition 10.69 since σ pψ P S pRnq and qΛ P S 1pRnq.

In light of this result, both sides of (10.8) now clearly define continuous linear functions of
ϕ P S pRnq, so to prove that they are identical, it will suffice to show this for all ϕ in the dense
subspace DpRnq. The goal is thus to prove that

Λ

ˆ
x ÞÑ ψpxq

ż
Rn

e´2πip¨xϕppq dp
˙
“
ż
Rn

ϕppqΛpψe´2πip¨xq dp

holds for all Λ P D 1pRnq and ϕ,ψ P DpRnq. Writing 1 P D 1pRnq for the scalar-valued distribution
1pϕq :“ ş

Rn ϕdm, Theorem 10.41 identifies both sides of this equation with pΛb 1qpF q for the
test function F P DpRn ˆ Rnq given by F px, pq :“ ψpxqϕppqe´2πip¨x. �

10.8. Appendix: The topology of the space of test functions. For a working knowledge
of the theory of distributions, it is usually not necessary to understand the topology of the space
DpΩq beyond the notions described in Definition 10.7 of convergent sequences and continuity
of linear maps on DpΩq. Nonetheless, the further development of the theory requires knowing
that DpΩq can also be viewed as a topological vector space, in which convergence and continuity
are determined by the topology. You may have noticed in Definition 10.7 that the notion of
convergence in DpΩq is extremely strict, i.e. it is very hard for a sequence of test functions to
converge. This strictness is an advantage, because it means that it is that much easier for a
linear functional on DpΩq to be continuous; in other words, having fewer convergent sequences
in DpΩq makes the space of distributions D 1pΩq larger. This will mean that the topology of
DpΩq needs to be quite strong,28 e.g. it needs to involve conditions on derivatives of arbitrarily
high orders, and therefore cannot be described merely in terms of a norm, so DpΩq will not be a
Banach space. One might reasonably hope for it to be a Fréchet space, like the Schwartz space
S pRnq (see §10.6), but this will also turn out to be too ambitious (see Remark 10.89). The next
best thing would be a locally convex space, and this is not hard to achieve.

28Given two topologies T1 and T2 on the same set X, one says that T1 is stronger (or finer, or larger) than
T2 if every set in T2 also belongs to T1. One also says in this case that T2 is weaker (or coarser or smaller)
than T1. Making a topology on X stronger makes it harder for sequences in X to converge and harder for maps
from other spaces into X to be continuous, but easier for maps from X to other spaces to be continuous.
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10.8.1. Definition and properties of the topology. For a compact subset K Ă Ω, consider the
linear subspace

DKpΩq :“
 
ϕ P DpΩq ˇ̌ supppϕq Ă K

(
.

The countable family of norms } ¨ }Cm for integers m ě 0 endows DKpΩq with the structure
of a Fréchet space such that convergence of a sequence ϕj Ñ ϕ8 in DKpΩq means uniform
convergence Bαϕj Ñ Bαϕ8 for every multi-index α. We shall assume DKpΩq to be endowed
with this Fréchet space topology from now on. It will frequently be useful to observe that since
DKpΩq is metrizable, a function defined on DKpΩq is continuous if and only if it is sequentially
continuous.

According to Definition 10.7, a convergent sequence in DKpΩq is also convergent in DpΩq, so
the topology we define on DpΩq should have the property that the obvious inclusion

(10.9) DKpΩq ãÑ DpΩq
is sequentially continuous for every compact set K Ă Ω. If these inclusions are continuous, and
} ¨ } is a seminorm on DpΩq that is continuous with respect to its topology, then } ¨ } will also
restrict to a continuous seminorm on DKpΩq. The following definition therefore produces the
strongest locally convex topology on DpΩq for which the inclusions (10.9) are all continuous.

Definition 10.87. A good seminorm on DpΩq is a seminorm whose restriction to the subspace
DKpΩq Ă DpΩq is continuous for every K Ă Ω compact. We endow DpΩq with the locally convex
topology generated by the family of all good seminorms, i.e. a set U Ă DpΩq is open if and only
if for every ϕ P U , there exists a seminorm } ¨ } on DpΩq such that 

ψ P DpΩq ˇ̌ }ψ ´ ϕ} ă 1
( Ă U

and } ¨ } is continuous on DKpΩq for all K Ă Ω compact.29

The next exercise shows that good seminorms on DpΩq exist in abundance, thus the topology
we have defined on DpΩq is quite large.

Exercise 10.88. Show that each of the following defines a good seminorm on DpΩq:
(a) }ϕ}α :“ maxxPΩ |Bαϕpxq| for any multi-index α. (The Cm-norm for any m ě 0 is a finite

sum of seminorms of this type, thus it is also a good seminorm.)
(b) }ϕ}f :“ }fϕ} where } ¨ } is any good seminorm and f : ΩÑ R is any smooth function.
(c) }ϕ}f,α :“ }fϕ}α for any multi-index α and continuous function f : Ω Ñ R. For this

example, the open set t}ϕ}f,α ă 1u describes all ϕ P DpΩq that satisfy |Bαϕ| ă 1{|f |
everywhere on Ω, where we adopt the convention 1{0 :“ 8 so that the condition is
vacuous wherever f “ 0.

Remark 10.89. The following observations show that the topology we’ve defined on DpΩq cannot
be metrizable, so DpΩq is not a Fréchet space. If d were a metric defining the topology of DpΩq,
then for every ϕ P DpΩq, the sets Uj :“  

ψ P DpΩq ˇ̌ dpϕ,ψq ă 1{j( for j P N would define
a countable sequence of neighborhoods of ϕ with the property that every neighborhood of ϕ
contains Uk for some k P N.30 Since the topology is determined by good seminorms, this would
equivalently mean that there exists a sequence of good seminorms } ¨ }j for j P N such that
for every good seminorm } ¨ }, the set

 
ψ P DpΩq ˇ̌ }ψ} ă 1

(
contains

 
ψ P DpΩq ˇ̌ }ψ}k ă 1

(
for

some k P N; in other words,

} ¨ } ď } ¨ }k for some k P N.

29In describing the topology of DpΩq in this way, we are using the easily verifiable fact that the maximum
of any finite collection of good seminorms is also a good seminorm, and so is any positive multiple of a good
seminorm. This implies that for any collection of good seminorms } ¨ }i and any ǫi ą 0 with i “ 1, . . . , N , the
finite intersection of the open neighborhoods tψ P DpΩq | }ψ ´ ϕ}i ă ǫiu for i “ 1, . . . , N can equally well be

described as tψ P DpΩq | }ψ ´ ϕ} ă 1u where }f} :“ max
! }f}1

ǫ1
, . . . ,

}f}N
ǫN

)
defines another good seminorm.

30A collection of neighborhoods with this property is called a countable neighborhood base of ϕ. A
topological space in which every point admits a countable neighborhood base is called first countable. What
Remark 10.89 shows in effect is that every metrizable space is first countable, but DpΩq is not.
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By Exercise 10.88, it would follow that for every continuous function f : Ω Ñ R, there exists
k P N such that

}fϕ}C0 ď }ϕ}k for all ϕ P (Ωq.
To see that this is impossible, pick a sequence of nontrivial functions ϕ1, ϕ2, ϕ3, . . . P DpΩq
whose supports are pairwise disjoint compact sets K1,K2,K3, . . . Ă Ω, and choose f : ΩÑ R to
be a continuous function that satisfies

f ą }ϕj}j
}ϕj}C0

on Kj for all j P N.

Then }fϕj}C0 ą }ϕj}j for every j P N, giving a contradiction.

Lemma 10.90. If ϕj Ñ ϕ8 in the topology of DpΩq, then there exists a compact subset K Ă Ω
such that ϕj P DKpΩq for every j P NY t8u.
Proof. If not, then after replacing ϕj with a subsequence, we can find a sequence of points
xj P Ω that lie outside the support of ϕ8, have no accumulation point, and satisfy ϕjpxjq ‰ 0
for every j. Choose a continuous function f : Ω Ñ p0,8q such that f pxjq ď |ϕjpxjq| for
every j. Then by Exercise 10.88, U :“  

ϕ P DpΩq ˇ̌ |ϕ´ ϕ8| ă f
(
is an open neighborhood of

ϕ8 in DpΩq, but ϕj R U for every j, so ϕj cannot converge to ϕ8. �

Corollary 10.91. A sequence ϕj P DpΩq converges to ϕ8 P DpΩq if and only if there exists a
compact set K Ă Ω such that ϕj P DKpΩq for all j P N Y t8u and ϕj Ñ ϕ8 in the topology
of DKpΩq. �

As preparation for the next result, we need some general facts about continuity for linear
maps between locally convex spaces. A preliminary remark about locally convex topologies is
in order. If X carries the locally convex topology generated by a given family of seminorms
t}x}αuαPI ,then by definition, every open set in X is a union of finite intersections of sets of the
form

 
x P X ˇ̌}x´ x0}α ă ǫ

(
for arbitrary x0 P X, α P I and ǫ ą 0. Equivalently, a set U Ă Y is

open if and only if for every x0 P U , there exists a nonempty finite subset I0 Ă I and numbers
ǫα ą 0 for α P I0 such that

x P X with }x´ x0}α ă ǫα for all α P I0 ñ x P U .

The seminorms } ¨ }α : X Ñ r0,8q are each continuous functions, and in the situation above,

}x} :“ ř
αPI0

}x}α
ǫα

also defines a continuous seminorm; the aforementioned condition can then
equally well be described as

x P X with }x´ x0} ă 1 ñ x P U .

This provides a briefer way of characterizing open sets: U Ă X is open if and only if for every
x0 P U , there exists a continuous seminorm } ¨ } such that every x P X with }x´x0} ă 1 belongs
to U . The sufficiency of this condition is clear since continuity of } ¨ } implies that every set of
the form

 
x P X ˇ̌ }x´ x0} ă 1

(
is open.

Lemma 10.92. On a topological vector space X, a seminorm } ¨ } : X Ñ R is continuous if and
only if the set

 
x P X ˇ̌ }x} ă 1

( Ă X is open.

Proof. In one direction, the implication is an immediate consequence of the definition of conti-
nuity and the fact that p´1, 1q Ă R is open. For the converse, we use the fact that for every
x0 P X and ǫ ą 0, the invertible affine map Φ : X Ñ X : x ÞÑ x0 ` ǫx is a homeomorphism,
thus if B :“  

x P X ˇ̌}x} ă 1
(
is open, then so is ΦpBq “  

x P X ˇ̌ }x´ x0} ă ǫ
(
. Given this,

if V Ă r0,8q is any open subset and x0 P X satisfies }x0} P V, then choosing any ǫ ą 0 such
that p}x0} ´ ǫ, }x0} ` ǫq Ă V, the triangle inequality implies that every x P X in the open set
tx P X | }x´x0} ă ǫu satisfies }x} ď }x0}`}x´x0} ă }x0}`ǫ and }x} ě }x0}´}x0´x} ą }x0}´ǫ,
so this open subset belongs to the preimage of V under }¨}, proving that this preimage is open. �
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Lemma 10.93. Suppose X is a locally convex space whose topology is determined by the family
of seminorms t} ¨ }αuαPI . Then a seminorm } ¨ } on X is continuous if and only if there exists a
nonempty finite subset I0 Ă I and a constant C ą 0 such that

}x} ď C
ÿ
αPI0

}x}α for all x P X.

Proof. We claim first that if } ¨ }1 is a continuous seminorm and } ¨ } ď } ¨ }1, then } ¨ } is also
continuous. Indeed, consider B :“ tx P X | }x} ă 1u, and for any x0 P B, choose ǫ ą 0 such
that }x0} ` ǫ ă 1. If } ¨ }1 is continuous, then the set U :“  

x P X ˇ̌ }x´ x0}1 ă ǫ
(
is an open

neighborhood of x0, and if } ¨ } ď } ¨ }1, then every x P U satisfies

}x} ď }x0} ` }x´ x0} ď }x0} ` }x´ x0}1 ă }x0} ` ǫ ă 1,

implying U Ă B. This proves that B Ă X is open, so by Lemma 10.92, } ¨ } is continuous.
By the assumptions of the lemma, the seminorms } ¨ }α are continuous for all α P I, thus

C
ř

αPI0 } ¨ }α is also a continuous seminorm for any C ą 0 and any finite set I0 Ă I. The claim
in the previous paragraph thus implies one direction of the lemma.

For the other direction, assume } ¨ } is continuous, so B :“ tx P X | }x} ă 1u is an open set.
Since the family of seminorms t} ¨ }αuαPI generates the topology of X, it follows that B contains
a neighborhood of 0 P X in the form

U :“  
x P X ˇ̌ }x}α ă ǫα for every α P I0(

for some nonempty finite subset I0 Ă I and real numbers tǫα ą 0uαPI0 . In other words,

(10.10) }x}α ă ǫα for every α P I0 ñ }x} ă 1.

We claim that }x} ď C
ř

αPI0 }x}α holds for every x P X, where C ą 0 is a constant independent
of x. There is nothing to prove if }x} “ 0, so consider x P X with }x} ą 0. At least one of
the }x}α for α P I0 must then also be positive, as otherwise multiplying x by a sufficiently large
positive scalar would produce a contradiction to (10.10). The quotient

Qpxq :“ }x}ř
αPI0 }x}α

is therefore well defined whenever }x} ą 0, and we claim that on this subset of X, it is bounded.
If not, then there exists a sequence xj P X with }xj} ą 0 and Qpxjq Ñ 8. But each xj can be
multiplied by a positive scalar without changing the value of Qpxjq, thus we are free to assume
without loss of generality that the denominator in the definition of Qpxjq some fixed constant
less than minαPI0 ǫα for every j. In this case, (10.10) implies that the numerator is less than 1
and thus gives a bound on Qpxjq, which is a contradiction. �

Lemma 10.94. For two locally convex spaces X and Y , a linear map Λ : X Ñ Y is continuous
if and only if for every continuous seminorm } ¨ }Y on Y , there exists a continuous seminorm
} ¨ }X on X such that }Λpxq}Y ď }x}X .

Proof. Assume the second condition holds, V Ă Y is an open set, and x0 P X is a point with
y0 :“ Λpx0q P V. The openness of V implies that for some continuous seminorm which we will
denote by } ¨ }Y ,

 
y P Y ˇ̌ }y ´ y0}Y ă 1

(
defines an open neighborhood of y that is contained

in V. If } ¨ }X is a continuous seminorm on X satisfying }Λpxq}Y ď }x}X for all X, it follows
that

 
x P X ˇ̌ }x´ x0}X ă 1

(
is an open neighborhood of x0 in X such that for all x in this

neighborhood, }Λpxq´y0}Y “ }Λpx´x0q}Y ď }x´x0}X ă 1, implying x P Λ´1pVq. This proves
that Λ´1pVq Ă X is open and thus that Λ is continuous.

Conversely, suppose Λ is continuous and } ¨ }Y is an arbitrary continuous seminorm on Y .
Then B :“  

y P Y ˇ̌ }y}Y ă 1
(
is open, hence Λ´1pBq Ă X is an open neighborhood of 0 and

therefore contains U :“  
x P X ˇ̌ }x}X ă 1

(
for some continuous seminorm } ¨ }X on X. In other

words, we have

(10.11) }x}X ă 1 ñ }Λpxq}Y ă 1
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for all x P X. We claim that }Λpxq}Y ď }x}X holds for all x P X. If }Λpxq}Y “ 0 there is nothing
to prove, so assume }Λpxq} ą 0. Then }x}X must also be positive, as otherwise multiplying x
by a sufficiently large positive scalar produces a contradiction to (10.11). It follows that the
quotient Qpxq :“ }Λpxq}Y {}x}X ą 0 is well defined whenever its numerator is nonzero, and
clearly it does not change if x is multiplied by any positive scalar, thus we are free to assume
}x}X “ 1´ǫ for any ǫ ą 0 arbitrarily small. Under this assumption, (10.11) implies |Λpxq}Y ă 1
and thus Qpxq ă 1{p1 ´ ǫq; since ǫ ą 0 was arbitrary, it follows that Qpxq ď 1. �

Proposition 10.95. For any locally convex space X, a linear map Λ : DpΩq Ñ X is continuous
if and only if its restrictions Λ|DKpΩq : DKpΩq Ñ X are continuous for all compact K Ă Ω.

Proof. Since the inclusions DKpΩq ãÑ DpΩq are continuous, the statement is obvious in one
direction. We need to show that if Λ has a continuous restriction to every DKpΩq, then it is
continuous on DpΩq. For this, it will be convenient to choose an open covering of Ω by countably
many subsets tΩjujPN with the following properties:

(1) The covering is locally finite, i.e. every point in Ω has a neighborhood that intersects
at most finitely many of the Ωj;

(2) Kj :“ sΩj is compact for every j.

For a concrete construction of tΩjujPN, choose a strictly increasing sequence rj ą 0 with
limjÑ8 rj “ supt|x| | x P Ωu, another sequence ǫj ą 0 such that r1 ´ ǫ1 ą 0 and rj ´ ǫj ą rj´1

for every j ě 2, and define

Ωj :“
 
x P Ω

ˇ̌
rj´1 ´ ǫj´1 ă |x| ă rj

(
where for j “ 1 we interpret the lower bound on |x| as a vacuous condition. With this construc-
tion, it is clear that one can also find a sequence of smooth functions ρj : Ω Ñ r0, 1s such that
each ρj is supported in Ωj and

ř8
j“1 ρj ” 1, where the sum is finite at every point due to the

local finiteness of the open covering.31 Any ϕ P DpΩq can now be decomposed as

ϕ “
8ÿ
j“1

ϕj , where ϕj :“ ρjϕ has support in Kj .

Observe that for every ϕ P DpΩq, only finitely many of the functions ϕj can be nonzero: indeed,
the local finiteness of the covering tΩju implies that at most finitely many of the sets Ωj can
intersect the compact set supppϕq.

To show that Λ : DpΩq Ñ X is continuous, it suffices by Lemma 10.94 to show that for
any continuous seminorm } ¨ }X on X, there exists a good seminorm } ¨ } on DpΩq such that
}Λpϕq}X ď }ϕ} for all ϕ P DpΩq. The topology of DKj

pΩq for each j P N is generated by the
monotone sequence of norms } ¨ }Cm for m “ 0, 1, 2, . . ., thus continuity of Λ on DKj

pΩq implies
that there exists an integer mj ě 0 and a positive number cj such that

}Λpψq}X ď cj}ψ}Cmj for all ψ P DKj
pΩq.

Since the sum ϕ “ ř
j ϕj is finite for each ϕ P DpΩq and ϕj P DKj

pΩq for j “ 1, 2, 3, . . ., we can
apply the triangle inequality and write

}Λpϕq}X ďÿ
j

}Λpϕjq}X ďÿ
j

cj}ϕj}Cmj ď c1j}ϕ}Cmj ,

where each of the modified constants c1j ą 0 depends on the Cmj -norm of ρj but not on ϕ. With
these constants fixed, it is easy to check that

}ϕ} :“
8ÿ
j“1

c1j}ϕ}Cmj pΩjq

defines a good seminorm on DpΩq, as for any compact K Ă Ω, the restriction of this seminorm
to DKpΩq has only finitely many nonzero terms, and C8-convergence in DKpΩq implies that

31A collection of functions ρj with these properties is called a partition of unity on Ω.
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each individual term converges. Since }Λϕ}X ď }ϕ} by construction, this establishes that
Λ : DpΩq Ñ Y is continuous. �

The following easy consequence completes the proof of Proposition 10.8:

Corollary 10.96. For any locally convex space X, a linear map Λ : DpΩq Ñ X is continuous if
and only if it is sequentially continuous, i.e. for every convergent sequence ϕj Ñ ϕ8 in DpΩq,
Λpϕjq Ñ Λpϕ8q.
Proof. By a standard result in point-set topology, continuous maps are always sequentially
continuous. Conversely, if Λ : DpΩq Ñ X is sequentially continuous, then its restriction to
DKpΩq for each compact set K Ă Ω is sequentially continuous, and since DKpΩq is metrizable,
it follows that the restriction of Λ to DKpΩq is also continuous. By Proposition 10.95, Λ itself
is therefore continuous. �

Remark 10.97. By another standard result in point-set topology (see e.g. [Wen18, §4]), a se-
quentially continuous map f : X Ñ Y between two topological spaces is continuous whenever
X is first countable. We did not claim this to be true for DpΩq, which is not first countable
according to Remark 10.89, but Corollary 10.96 says that it is nonetheless true specifically for
linear maps to other locally convex spaces. Philosophically, the reason this works is that DpΩq
can be viewed—in a sense to be made precise in §10.8.2 below—as a limit of a family of spaces
in which sequential continuity does imply continuity, namely the metrizable spaces DKpΩq for
K Ă Ω compact.

10.8.2. Inductive limits. The topology we’ve defined on DpΩq is often referred to as an inductive
limit topology. While one can understand all of its properties without knowing what this term
means, let us take a moment to discuss the wider context in which it arises.

We need to introduce a few notions from abstract category theory. For the particular appli-
cation relevant here, the “category” we have in mind is the class of locally convex spaces (these
are the objects of the category), and the natural class of maps between two such spaces consists
of all continuous linear maps (these are the morphisms of the category). We shall formulate the
definitions below in terms of this particular category just for concreteness, but they would still
make sense in any other category, e.g. topological spaces and continuous maps, vector spaces
and linear maps, groups and group homomorphisms, and so forth.

Suppose I is a set with a pre-order ă, i.e. ă is reflexive (α ă α) and transitive (α ă β and
β ă γ implies α ă γ), but the relations α ă β and β ă α need not imply α “ β, so ă need not
be a partial order. The pair pI,ăq is called a directed set if for every pair α, β P I, there exists
γ P I with γ ą α and γ ą β. An obvious example is N with its usual total order ă:“ď. A more
interesting and relevant example for our purposes is to define I as the set of all compact subsets
in a fixed open set Ω Ă Rn, with K ă K 1 defined to mean K Ă K 1. Notice that the ordering
relation in this example is a partial order, but not a total order since for any two compact
subsets, it need not be true that either is contained in the other. It forms a directed set because
whenever K,K 1 Ă Ω are both compact, K YK 1 is another compact subset of Ω that contains
both of them.

Definition 10.98. A direct system (or inductive system) of locally convex spaces consists
of a directed set pI,ăq and a family of locally convex spaces tXαuαPI together with continuous
linear maps ϕβα : Xα Ñ Xβ defined for each α, β P I with α ă β, such that

ϕαα “ IdXα

and the diagram

Xα Xβ Xγ

ϕβα

ϕγα

ϕγβ

commutes for every triple α, β, γ P I with α ă β ă γ.
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The notion of “convergence” for a direct system must necessarily look somewhat different
from what we’ve seen before for sequences, as there is no meaningful topology to be defined
on the “set” of all locally convex spaces.32 The idea is instead to measure the convergence of
a direct system tXα, ϕβαu in terms of the continuous linear maps from each Xα to other fixed
spaces.

Definition 10.99. For a direct system tXα, ϕβαu of locally convex spaces over the directed
set pI,ăq, a target tY, fαu of the system consists of a locally convex space Y together with
associated continuous linear maps fα : Xα Ñ Y for each α P I such that the diagram

Xα Xβ

Y

ϕβα

fα

fβ

commutes for every pair α, β P I with α ă β.

Definition 10.100. A target tX8, ϕαu of the direct system tXα, ϕβαu is called a direct limit
(or inductive limit or colimit) of the system and written as

X8 “ limÝÑtXαu
if it satisfies the following “universal” property: for all targets tY, fαu of tXα, ϕβαu, there exists
a unique continuous linear map f8 : X8 Ñ Y such that the diagram

Xα X8

Y

ϕα

fα
f8

commutes for every α P I.
The essential meaning of a direct limit can be encoded in the diagram

Xα Xβ Xγ . . . limÝÑtXαu

Y

ϕβα ϕγβ

where we assume α ă β ă γ ă . . . P I. The key feature of the space limÝÑtXαu is that whenever a
space Y and continuous linear maps Xα Ñ Y in a commuting diagram of this type are given, the
“limit” map from limÝÑtXαu to Y indicated by the dashed arrow must also exist (as a continuous
linear map) and be unique.

Note that these definitions on their own give no guarantee for any given direct system that a
direct limit must exist, and if it exists, then it is generally not unique. Indeed:

Exercise 10.101. If tX, fαu is a direct limit of tXα, ϕβαu and Y is another locally convex space
such that there exists a continuous linear isomorphism ψ : X Ñ Y with a continuous inverse,
show that tY, ψ ˝ fαu is also a direct limit of tXα, ϕβαu.
Remark: The invertibility of ψ is needed only for showing that tY, ψ ˝ fαu satisfies the universal
property; it is already a target without this.

The non-uniqueness exhibited by the exercise above is however the worst thing that can
happen: if tX, fαu and tY, gαu are any two direct limits of the same system tXα, ϕβαu, then
the universal property provides unique continuous linear maps g8 : X Ñ Y and f8 : Y Ñ X

satisfying g8 ˝ fα “ gα and f8 ˝ gα “ fα for every α P I. It follows that f8 ˝ g8 is the unique
continuous linear map X Ñ X satisfying pf8 ˝ g8q ˝ fα “ fα for every α P I, which implies

32And strictly speaking, the collection of all locally convex spaces is far too large to be called a set ; it is instead
a proper class. This remark is included only for the sake of readers who truly care about abstract set theory.
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f8 ˝ g8 “ IdX . A similar argument shows g8 ˝ f8 “ IdY , thus X and Y are isomorphic, and
there is a distinguished isomorphism relating them. For this reason, we typically refer to “the”
(rather than “a”) direct limit of any system for which a limit exists.

Example 10.102. Given an open set Ω Ă Rn, take pI,ăq to be the set of all compact subsets
K Ă Ω with K ă K 1 defined to mean K Ă K 1. There is then a direct system tXK , ϕK 1,Ku
over pI,ăq such that XK “ DKpΩq and ϕK 1,K is the obvious inclusion map DKpΩq ãÑ DK 1pΩq,
defined whenever K Ă K 1. Define ϕK : DKpΩq ãÑ DpΩq also as the natural inclusion for each
K P I. Proposition 10.95 can then be reinterpreted as the statement that tDpΩq, ϕKu is a
universal target for the direct system tDKpΩq, ϕK 1,Ku, in other words,

DpΩq “ limÝÑtDKpΩqu.
This is why the topology of DpΩq is often called the inductive limit topology determined by
the natural Fréchet space topologies of DKpΩq for all compact K Ă Ω.

Remark 10.103. One really should call the topology on DpΩq a locally convex inductive
limit topology, as omitting the words “locally convex” can potentially cause confusion. A
topologist would interpret the words “inductive limit topology” to mean a universal target in
the sense of Definition 10.100, but with X8 and Y allowed in general to be arbitrary topological
spaces (not necessarily topological vector spaces), and all maps required to be continuous but
not necessarily linear. It is not hard to show that the direct limit in this sense of the system
tDKpΩq, ϕK 1,Ku can be identified again with the vector space DpΩq, but endowed with an even
stronger topology, for which a set U Ă DpΩq is open if and only if U X DKpΩq Ă DKpΩq is
open for every compact K Ă Ω. This topology has the same notion of convergent sequences as
the locally convex topology we defined, and it has the nice property that for any topological
space X, a (not necessarily linear) map f : DpΩq Ñ X is continuous if and only if its restriction
to DKpΩq is continuous for every compact K Ă Ω. However, since this topology contains sets
that are not open in the locally convex inductive limit topology, it cannot be locally convex—in
fact there is no good reason to expect DpΩq with this topology to be a topological vector space.

10.8.3. Comparison with other topologies. There are other natural topologies one could imagine
defining on the space of smooth functions with compact support, and it is natural to wonder
why the inductive limit topology defined in §10.8.1 is a better choice. The obvious answer is
that since we defined the topology on DpΩq to be as strong as possible while still being locally
convex, this makes the space of distributions D 1pΩq as large as possible. But let us briefly discuss
some alternatives. In order to avoid confusion, we will refer to the space of smooth compactly
supported functions ΩÑ R in this subsection as

C8
0 pΩq,

reserving the notation DpΩq for the case where this space is endowed with the specific topology
from §10.8.1.

Alternative 1: The C8
loc-topology.

The space C8pΩq of all (not necessarily compactly supported) smooth functions ΩÑ R admits a
natural Fréchet space topology for which convergence means uniform convergence of derivatives
of all orders on compact subsets. This is often called C8

loc-convergence. A countable family
of seminorms for the C8

loc-topology, also sometimes called the weak or compact-open C8-
topology, is given by

}ϕ}m,j :“ }ϕ}CmpKjq for integers m ě 0, j ě 1,

where K1 Ă K2 Ă K3 Ă . . .
Ť

jPNKj “ Ω is any exhausting sequence of compact subsets such
thatKj is contained in the interior ofKj`1 for every j. This gives the right notion of convergence
because every compact set is contained in Kj for j sufficiently large, and it defines a metrizable
topology since the family of seminorms is countable (see e.g. [RS80, Theorem V.5]). Continuity
on C8pΩq is thus equivalent to sequential continuity, and since the notion of C8

loc-convergence
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can be expressed without referring to the specific choice of exhaustion K1 Ă K2 Ă K3 Ă . . ., the
C8
loc-topology is also independent of that choice.
As a subspace of C8pΩq, C8

0 pΩq inherits a metrizable topology for which convergence means
C8
loc-convergence. The first thing to notice, however, is that C8

0 pΩq is not a Fréchet space with
this topology, i.e. it is not complete, because it is not a closed subspace of C8pΩq. In fact,
by choosing any sequence of smooth cutoff functions ρj P C8

0 pΩq with ρj |Kj
” 1 for every j,

it is easy to check that for every ϕ P C8pΩq, ϕj :“ ρjϕ Ñ ϕ in C8
loc, thus C

8
0 pΩq is dense

in C8pΩq with respect to the C8
loc-topology. This has an immediate consequence for the space of

continuous linear functionals on C8
0 pΩq: any linear functional Λ : C8

0 pΩq Ñ R that is continuous
in the C8

loc-topology must admit a continuous extension to a linear functional on C8pΩq. Most
distributions clearly do not have this property; since functions ϕ P C8pΩq can grow arbitrarily
large near infinity or near the boundary of Ω, even globally integrable functions f : Ω Ñ R do
not generally define continuous functionals of ϕ P C8pΩq under the pairing Λf pϕq :“ ş

Ω
ϕf dm.

On the other hand, it is possible to give a precise characterization of the distributions for which
this works.

Proposition 10.104. A distribution Λ P D 1pΩq is continuous with respect to the C8
loc-topology

on C8
0 pΩq if and only if it has compact support.

Proof. In one direction, this statement follows from Proposition 10.83. For the converse, conti-
nuity of Λ P D 1pΩq with respect to C8

loc-convergence implies since C8
0 pΩq is dense in C8pΩq that

Λ extends to a C8
loc-continuous linear functional on C

8pΩq. If supppΛq is not compact, then for
every compact set K Ă Ω, there exists a test function ϕ P DpΩq with supppϕq XK “ H and
Λpϕq ‰ 0. We can therefore find an exhausting sequence of compact subsets K1 Ă K2 Ă
K3 Ă . . . Ă Ť

jPNKj “ Ω and associated test functions ϕ1, ϕ2, ϕ3, . . . P DpΩq such that

supppϕjq Ă KjzKj´1 and Λpϕjq ‰ 0 for all j. For any choice of constnts cj P R, the se-

quence ψk :“ řk
j“1 ϕj P DpΩq is then C8

loc-convergent to a smooth function ψ8 P C8pΩq, but
the constants cj can easily be chosen to make sure that Λpψkq “ řk

j“1 cjΛpϕjq diverges as
k Ñ 8, giving a contradiction. �

Alternative 2: The C8-topology.
The countable family of norms } ¨ }Cm for integers m ě 0 determines a Fréchet space topology
on the subspace

C8
b pΩq :“

 
ϕ P C8pΩq ˇ̌ Bαϕ is bounded for every multi-index α

( Ă C8pΩq.
The associated notion of C8-convergence means uniform convergence for derivatives of all orders,
not just on compact subsets but globally on Ω, thus C8-convergence implies (but is not implied
by) C8

loc-convergence, and the C8-topology on the subspace C8
0 pΩq is strictly stronger than

the C8
loc-topology. This sounds like good news for the theory of distributions, as it means that

the space of C8-continuous linear functionals is larger than the space of compactly supported
distributions considered in Proposition 10.104. But the next exercise shows that it is still not
large enough to contain all locally integrable functions.

Exercise 10.105. Find a sequence ϕj P C8
0 pRq such that ϕj Ñ 0 in the C8-topology, butş

R
ϕj dm “ 1 for all j. This implies that the distribution Λf : DpΩq Ñ R defined via the locally

integrable function f :“ 1 on R is not continuous with respect to the C8-topology.

A further hint that the C8-topology is not an ideal choice for DpΩq arises from the obser-
vation that C8

0 pΩq is not a C8-closed subspace of C8
b pΩq; one can easily find C8-convergent

sequences of compactly supported functions whose limits do not have compact support. It fol-
lows that every C8-continuous linear functional on C8

0 pΩq must admit a continuous extension
to a subspace of C8

b pΩq that is strictly larger than C8
0 pΩq. Exercise 10.105 shows that even

relatively tame functions like f ” 1 on R need not define distributions that are extendable in
this sense.
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Remark 10.106. One other theoretical drawback of the C8-topology is worth mentioning. All
the other topologies discussed in this section can be defined in more general contexts, e.g. for
the space of compactly supported smooth functions on a finite-dimensional manifold, and the
weak and strong C8-topologies can even be defined for spaces of smooth maps from one finite-
dimensional manifold to another. Generalizations of this type are essential for certain funda-
mental perturbation results in differential topology (see e.g. [Hir94, Chapter 2]). The definitions
in this setting become more complicated, as they necessarily involve choices of local coordinate
charts, and one must then verify that the topologies defined in this way are independent of
choices. For the weak C8-topology and its strong variants to be discussed below, this is not
difficult, because while the Cm-norm of a function can certainly change if one composes the
function with a smooth coordinate transformation, this change can be bounded as long as it is
only being considered over a compact subset. The ordinary C8-topology for functions Ω Ñ R

is simpler to define, but since it involves Cm-norms over noncompact sets, it does not have such
coordinate-invariant properties and thus cannot be defined in a meaningful way for functions on
a noncompact manifold.

Alternative 3: The (strong) Whitney C8-topology.
To describe the Whitney C8-topology, one should first describe the Whitney Cm-topology for
0 ď m ă 8 on C8pΩq. We give two definitions: first, it is the smallest topology containing all
sets of the form

Upϕ,α, f q :“  
ψ P C8pΩq ˇ̌ |Bαpψ ´ ϕq| ă f

(
for arbitrary choices of ϕ P C8pΩq, multi-indices α of order at most m and continuous functions
f : ΩÑ p0,8q. Equivalently, one can generate this topology with sets of the form

(10.12) Vpϕ, tΩiu, tkiu, tǫiuq :“
!
ψ P C8pΩq ˇ̌ }ψ ´ ϕ}Cki pΩiq ă ǫi

)
,

for all positive choices of ϕ P C8pΩq, locally finite open coverings tΩiuiPI of Ω, and collections
of numbers tki P t0, . . . ,muuiPI and tǫi ą 0uiPI .
Exercise 10.107. Show that the two definitions of the Whitney Cm-topology given above are
equivalent.

The Whitney C8-topology is now defined to be the smallest topology on C8pΩq that
contains the Whitney Cm-topology for every m ě 0, i.e. it is generated by the sets Upϕ,α, f q
without any bound on the order of the multi-index α, or by Vpϕ, tΩiu, tkiu, tǫiuq, in which the
set of integers tki ě 0uiPI is always required to be bounded, but no fixed bound is imposed.

It is straightforward to transform the definitions of Upϕ,α, f q Ă C8pΩq and Vpϕ, tΩiu, tkiu, tǫiuq
into conditions of the form t}ψ ´ ϕ} ă 1u for suitable seminorms } ¨ }, thus the Whitney C8-
topology is locally convex. One can however use the argument of Remark 10.89 to show that
it is not first countable, and thus not metrizable. Here is a clear advantage of the Whitney
topology in comparison with the C8 and C8

loc-topologies:

Proposition 10.108. In the Whitney C8-topology, C8
0 pΩq is a closed subspace of C8pΩq.

Proof. One needs to show that C8pΩqzC8
0 pΩq is open. If ϕ P C8pΩq does not have compact

support, then there exists a continuous function f : Ω Ñ p0,8q and a sequence xj P Ω with no
accumulation point such that f pxjq ă |ϕpxjq| for all j. The set

 
ψ P C8pΩq ˇ̌ |ψ ´ ϕ| ă f

(
is

then a Whitney-open neighborhood of ϕ consisting of functions ψ that satisfy ψpxjq ‰ 0 for all
j and thus never have compact support. �

A similar argument to Lemma 10.90 and Corollary 10.91 also shows:

Proposition 10.109. A sequence in C8
0 pΩq converges in the Whitney C8-topology if and only

if it converges in DpΩq. �

One can easily show that the seminorms one uses to define the open sets Upϕ,α, f q or
Vpϕ, tΩiu, tkiu, tǫiuq are also good seminorms in the sense of Definition 10.87, thus the topology
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of DpΩq contains the Whitney C8-topology, and Proposition 10.109 reveals that the two topolo-
gies are evidently quite similar. In fact, the Whitney C0-topology is already strong enough to
make all functionals of the form Λf pϕq “

ş
Ω
ϕf dm for f P L1

locpΩq continuous, thus the Whitney
C8-topology also has this clearly desirable property. The next example shows however that the
topology of DpΩq is strictly stronger, so that the space of distributions is still strictly larger
than the space of linear functionals on C8

0 pΩq that are continuous in the Whitney topology. In
light of Corollary 10.96, this also reveals that for the Whitney topology on C8

0 pΩq, sequential
continuity of a linear functional does not imply continuity.

Example 10.110. Consider the real-valued distribution Λ : DpRq Ñ R defined by

Λpϕq :“
8ÿ

k“0

ϕpkqpkq.

This is well defined on any individual test function ϕ P DpRq since only finitely many terms in
the sum are nonzero, and the same is true for any convergent sequence of test functions, thus
Λ is sequentially continuous and therefore continuous on DpRq. But it is not continuous with
respect to the Whitney C8-topology on C8

0 pRq. To see this, consider Λ´1pp´1, 1qq. If this were
open in the Whitney topology, then there would need to exist a finite collection of multi-indices
α1, . . . , αN and continuous functions f1, . . . , fN : R Ñ p0,8q such that

ŞN
j“1 Up0, αj , fjq Ă

Λ´1pp´1, 1qq, meaning

|Bαjϕ| ă fj for all j “ 1, . . . , N ñ |Λpϕq| ă 1.

But this condition constrains only finitely many derivatives of ϕ, thus one can always find a
function that satisfies it but has |Λpϕq| ě 1 due to the behavior of some derivative of even
higher order.

Alternative 4: The (very) strong C8-topology. A minor modification to the definition of
the Whitney C8-topology gives rise to an even stronger topology which we shall refer to as the
strong C8-topology.33 It is generated by all sets of the form Vpϕ, tΩiu, tkiu, tǫiuq as in (10.12), for
arbitrary locally finite open coverings tΩiuiPI , sets of nonnegative integers tkiuiPI and positive
numbers tǫiuiPI . The crucial difference is that in our definition of the Whitney C8-topology, the
set of integers tkiuiPI was always required to be bounded, and this is no longer required. Note
that since the open covering tΩiuiPI is locally finite, only finitely many of the sets can intersect
any given compact subset of Ω, but there still may be infinitely many sets in the covering. The
result is that neighborhoods generating the strong topology are required to satisfy conditions
on only finitely many derivatives over each individual compact subset, but globally on Ω, there
may be conditions on derivatives of all orders.

If one only considers convergence of sequences, then there is no difference between the strong
and Whitney C8-topologies: Proposition 10.109 admits the same proof for the strong topology
and shows that it also has the same notion of convergence as DpΩq. That it is nonetheless
strictly stronger than the Whitney topology follows from Example 10.110 and the following:

Exercise 10.111. Show that the strong C8-topology on C8
0 pΩq is equivalent to the topology

of DpΩq.
The strong C8-topology is thus merely a different perspective on the locally convex inductive

limit topology, one that does not require talking about the Fréchet subspaces DKpΩq withK Ă Ω
compact. This approach to the topology of DpΩq is discussed in more detail in [Hor66, §2.12],
which gives in particular an explicit family of good seminorms generating the topology.

33The literature is not unanimous on the terminology for these topologies: different sources may use the words
“strong topology” or “Whitney topology” to refer to either of alternatives 3 and 4, and one occasionally even finds
an authoritative source that fails to distinguish between them. (I am thinking especially of [Hir94], which defines
the Whitney topology in §2.1 and the strong topology in §2.4 but states erroneously that they are equivalent.)
Alternative 4 is occasionally also called the very strong C8-topology, e.g. in [Ill03].



LEBESGUE, FOURIER AND SOBOLEV 119

References

[AF03] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam),
vol. 140, Elsevier/Academic Press, Amsterdam, 2003.

[AE01] H. Amann and J. Escher, Analysis. III, Grundstudium Mathematik. [Basic Study of Mathematics],
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