
FREDHOLM OPERATORS

(NOTES FOR FUNCTIONAL ANALYSIS)

CHRIS WENDL

We assume throughout the following that X and Y are Banach spaces over the field K P tR,Cu
unless otherwise specified. For a bounded linear operator T P L pX,Y q, we denote its transpose,
also known as its dual operator, by T ˚ : Y ˚ Ñ X˚ : Λ ÞÑ Λ ˝ T .
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1. Definitions and examples

A bounded linear operator T : X Ñ Y is called a Fredholm operator if

dim kerT ă 8 and dim cokerT ă 8,

where by definition the cokernel of T is

cokerT :“ Y
L

imT,

so the second condition means that the image of T has finite codimension. The Fredholm
index of T is then the integer

indpT q :“ dim kerT ´ dim cokerT P Z.
Fredholm operators arise naturally in the study of linear PDEs, in particular as certain types of
differential operators for functions on compact domains (often with suitable boundary conditions
imposed).

Example 1.1. For periodic functions of one variable x P S1 “ R{Z with values in a finite-
dimensional vector space V , the derivative Bx : CkpS1q Ñ Ck´1pS1q is a Fredholm operator with
index 0 for any k P N. Indeed,

ker Bx “
 

constant functions S1 Ñ V
(

Ă CkpS1q,

and

im Bx “

"

g P Ck´1pS1q

ˇ

ˇ

ˇ

ˇ

ż

S1

gpxq dx “ 0

*

;

the latter follows from the fundamental theorem of calculus since the condition
ş

S1 gpxq dx “ 0

ensures that the function fpxq :“
şx
0 gptq dt on R is periodic. The surjective linear map

Ck´1pS1q Ñ V : g ÞÑ

ż

S1

gpxq dx

thus has im Bx as its kernel, so it descends to an isomorphism coker Bx Ñ V , implying indpBxq “
dimV ´ dimV “ 0.

1
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Example 1.2. For the same reasons as explained in Example 1.1, Bx : Ck,αpS1q Ñ Ck´1,αpS1q

is Fredholm with index 0 for every k P N and α P p0, 1s.

Exercise 1.3. Use Fourier series to show that the unique extension of Bx : C8pS1q Ñ C8pS1q

to a bounded linear operator Hs`1pS1q Ñ HspS1q is also Fredholm with index 0 for every s ě 0.

Exercise 1.4. Show that for functions taking values in a vector space V of dimension n, the
derivative Bx : Ckpr0, 1sq Ñ Ck´1pr0, 1sq is a surjective Fredholm operator with index n, but
imposing the boundary condition fp0q “ fp1q “ 0 produces an injective Fredholm operator

!

f P Ckpr0, 1sq
ˇ

ˇ

ˇ
fp0q “ fp1q “ 0

)

Bx
ÝÑ Ck´1pr0, 1sq

with index ´n.

Exercise 1.5. Show that for n ě 2 and each j “ 1, . . . , n, the bounded linear operators
Bj : CkpTnq Ñ Ck´1pTnq, Bj : Ck,αpTnq Ñ Ck´1,αpTnq and Bj : Hs`1pTnq Ñ HspTnq have
infinite-dimensional kernels and are thus not Fredholm.

Example 1.6. The Laplacian ∆ :“
řn
j“1 B

2
j on fully periodic functions of n variables valued in

a finite-dimensional vector space V defines a Fredholm operator

∆ : Hs`2pTnq Ñ HspTnq
with index 0 for each s ě 0. Indeed, if u P Hs`2pTnq and f “ ∆u, then f has Fourier coefficients

pfk “
n
ÿ

j“1

yB2
juk “ ´4π2|k|2puk P V,

thus

}f}2Hs “
ÿ

kPZn

p1` |k|2qs| pfk|
2 “ 16π4

ÿ

kPZn

p1` |k|2qs|k|4|puk|
2 ď 16π4

ÿ

kPZn

p1` |k|2qs`2|puk|
2

“ 16π4}u}2Hs`2 ,

proving that ∆ is bounded from Hs`2 to Hs. If ∆u “ 0, then pfk “ 0 for all k P Zn, implying
puk “ 0 for all k P Znzt0u, but there is no condition on the coefficient pu0 P V , thus ker ∆ is the
space of functions in Hs`2pTnq whose only nonvanishing Fourier coefficient is pu0, also known
as the constant functions Tn Ñ V . Similarly, the equation ∆u “ f can be solved for a given

f P HspTnq by writing puk “ ´
1

4π2|k|2
pfk for all k P Znzt0u, but this is only possible if pf0 “ 0, thus

im ∆ “

!

f P HspTnq
ˇ

ˇ pf0 “ 0
)

, and the surjective linear map HspTnq Ñ V : f ÞÑ pf0 therefore

descends to an isomorphism coker ∆ Ñ V . We conclude ind ∆ “ dimV ´ dimV “ 0.

Exercise 1.7. Show that the wave operator B2
t ´ B

2
x : Hs`2pT2q Ñ HspT2q for fully periodic

functions of two variables pt, xq P R2 has infinite-dimensional kernel, so it is not Fredholm.
Hint: Consider functions of the form pt, xq ÞÑ fpt˘ xq.

Example 1.8. On any bounded open domain Ω Ă Rn, the Laplacian defines bounded linear
operators Ck`2psΩq Ñ CkpsΩq, Ck`2,αpΩq Ñ Ck,αpΩq for each k ě 0 and α P p0, 1s, as well as
W k`2,ppΩq Ñ W k,2pΩq for each p P r1,8s, but none of these operators are Fredholm. The
reason is that all smooth solutions to the equation ∆u “ 0 on Rn (these are called harmonic
functions) belong to the kernels of these operators, and there is an infinite-dimensional space of
such solutions. This is especially easy to see in the case n “ 2, where one can identify R2 “ C
and extract harmonic functions from the real parts of holomorphic functions CÑ C.

2. The Sobolev spaces H1
0 pΩq and H´1pΩq

The Laplacian ∆ is the most popular example of an elliptic operator; in contrast to the wave
operator of Exercise 1.7, it has the right properties to produce a Fredholm operator in suitable
functional-analytic settings, as demonstrated by Example 1.6. The problem with Example 1.8
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turns out to be not the operator ∆ itself, but the fact that it is being considered on a bounded
domain without imposing any boundary condition.1

To discuss the Laplacian with boundary conditions, it is useful to introduce a few new varia-
tions on the usual Sobolev spaces HspRnq. We shall assume in the following that all functions
take values in a fixed finite-dimensional complex inner product space pV, x , yq unless otherwise
noted. Recall that HspRnq is defined for each s ě 0 as the space of functions f P L2pRnq
with the property that the product of the Fourier transform pf : Rn Ñ V with the function
Rn Ñ R : p ÞÑ p1 ` |p|2qs{2 is also in L2pRnq. The same definition does not quite make sense

for s ă 0 since in that case, p1 ` |p|2qs{2 pf could very well be of class L2 without pf itself being
of class L2, in which case one should not require HspRnq to be a subspace of L2pRnq. The
remedy is to define HspRnq for s ă 0 as a space of tempered distributions rather than functions.
In fact, the resulting definition also makes sense for s ě 0, but reduces then to the previous
definition since tempered distributions whose Fourier transforms are L2-functions can always be
represented by L2-functions.

Definition 2.1. For any s P R, we define HspRnq Ă S 1pRnq as the space of all tempered

distributions Λ whose Fourier transforms are represented by functions of the form pΛppq “ p1`

|p|2q´s{2fppq for some f P L2pRnq. The Hs-norm is then defined via the inner product

xΛ,Λ1yHs :“
A

p1` |p|2qs{2pΛ, p1` |p|2qs{2pΛ1
E

L2
“

ż

Rn

p1` |p|2qsxpΛppq, pΛ1ppqy dp.

It is easy to see that HspRnq is a Hilbert space, as it admits a natural unitary isomorphism

to L2pRnq, defined by taking Fourier transforms and multiplying by p1` |p|2qs{2.

Exercise 2.2. Assuming s P R, prove:

(a) A distribution Λ P S 1pRnq is in H´spRnq if and only if it satisfies a bound |Λpϕq| ď
c}ϕ}Hs for all test functions ϕ P S pRnq.

(b) The space of vector-valued Schwartz-class functions S pRnq is dense in HspRnq.
(c) The pairing S pRnq ˆ S pRnq Ñ C : pϕ,ψq ÞÑ xϕ,ψyL2 extends to a continuous real-

bilinear pairing

x , ys : H´spRnq ˆHspRnq Ñ C,

xΛ, fys :“
A

p1` |p|2q´s{2pΛ, p1` |p|2qs{2 pf
E

L2
“

ż

Rn

xpΛppq, pfppqy dp,

such that the real-linear map Λ ÞÑ xΛ, ¨ys sends H´spRnq isomorphically to the dual
space of HspRnq.

Definition 2.3. For each s P R and an open subset Ω Ă Rn, we identify C80 pΩq with the space
of smooth functions Rn Ñ V that have compact support in Ω, and define the closed subspace

rHspΩq Ă HspRnq

as the closure of C80 pΩq in the Hs-norm. We also define the closed subspace

Hs
ΩcpRnq :“

 

Λ P HspRnq
ˇ

ˇ Λpϕq “ 0 for all ϕ P DpΩq
(

Ă HspRnq,

i.e. Hs
ΩcpRnq is the space of distributions in HspRnq whose supports are contained in Ωc :“ RnzΩ.

Finally, we define the quotient Banach space

HspΩq :“ HspRnq
L

Hs
ΩcpRnq.

1The reader might protest at this point that in Exercise 1.4, we saw an example of a differential operator for
functions on a bounded domain that was Fredholm despite no mention of any boundary condition. The domain
in that example, however, had dimension 1, and since boundaries of 1-dimensional domains are isolated points
at which functions take values in a finite-dimensional space, the difference between having a boundary condition
or not in this situation is finite dimensional. Moreover, differential equations for functions of one variable are
governed by the Picard-Lindelöf theorem on local existence and uniqueness of solutions. The situation for PDEs
in more than one variable is radically different.
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Exercise 2.4. Given s P R, let I : H´spRnq Ñ pHspRnqq˚ denote the natural real-linear
isomorphism in Exercise 2.2, and assume Ω Ă Rn is an open set. Prove:

(a) I maps H´sΩc pRnq Ă H´spRnq onto the annihilator of rHspΩq, i.e. the space of bounded

linear functionals on HspRnq that vanish on rHspΩq.

(b) The map H´spRnq Ñ
`

rHspΩq
˘˚

: Λ ÞÑ IpΛq|
rHspΩq

descends to the quotient H´spΩq “

H´spRnq
L

H´sΩc pRnq to define a Banach space isomorphism H´spΩq Ñ
`

rHspΩq
˘˚

.

It is straightforward to show that the obvious inclusion

HspRnq ãÑ S 1pRnq
is continuous, as the topology defined on HspRnq by the Hs-norm is stronger than the usual
weak˚-topology on the space of tempered distributions. Given an open set Ω Ă Rn, the con-
tinuous inclusion DpΩq ãÑ S pRnq dualizes to define a continuous restriction map S 1pRnq Ñ
D 1pΩq : Λ ÞÑ Λ|DpΩq, so that composing this with the inclusion above yields a natural continuous
linear map

HspRnq Ñ D 1pΩq.

The kernel of this map is Hs
ΩcpRnq, thus it descends to the quotient HspΩq “ HspRnq{Hs

ΩcpRnq
as a natural continuous linear injection

(2.1) HspΩq ãÑ D 1pΩq : rΛs ÞÑ Λ|DpΩq.

It is useful to keep this injection in mind and regard elements of HspΩq as distributions on Ω:
from this perspective, HspΩq is precisely the space of distributions on Ω that arise as restrictions
to Ω of distributions in HspRnq. For elements rΛs P HspΩq such that Λ can be represented by
a locally integrable function f : Rn Ñ V (as is for instance always possible when s ě 0),
the corresponding distribution on Ω is represented by f |Ω, which is uniquely determined up to
equality almost everywhere on Ω. In particular, HspΩq for each s ě 0 is identified in this way
with a linear subspace of L2pΩq.

Exercise 2.5. For any integer k ě 0 and open subset Ω Ă Rn, show that the the map rf s ÞÑ f |Ω
defines an injective bounded linear operator HkpΩq ÑW k,2pΩq with norm at most 1.
Hint: Recall that HkpRnq “ W k,2pRnq, so the Hk-norm for functions on Rn is equivalent to a
norm written in terms of weak derivatives instead of Fourier transforms.

Remark 2.6. The injection HkpΩq ãÑ W k,2pΩq is also surjective, and thus a Banach space
isomorphism, whenever it can be shown that every f P W k,2pΩq admits an extension over Rn
that belongs to W k,2pRnq “ HkpRnq. This is not true in general, but it is trivially true for
k “ 0, thus giving a natural isomorphism H0pΩq “ L2pΩq. By a standard extension result in
the theory of Sobolev spaces, it is also true for every k P N if the boundary of Ω satisfies certain
regularity assumptions, e.g. it is true whenever Ω is bounded and its closure in Rn is a smooth
submanifold with boundary.

As a closed subspace of a Hilbert space, rHspΩq is also a Hilbert space, and a Hilbert space
structure can also be assigned to HspΩq by identifying it with the Hs-orthogonal complement of
Hs

ΩcpRnq Ă HspRnq, though for our purposes, it will usually suffice to regard HspΩq as a Banach
space with the natural quotient norm. Notice that since C80 pΩq Ă HspRnq for every s P Rn,
there is a natural inclusion

C80 pΩq ãÑ HspΩq : f ÞÑ rf s.

The following definition and subsequent proposition are not strictly necessary for our exposition
in these notes, but we include them in order to make our notation consistent with what is found
in most textbooks.

Definition 2.7. For s ą 0 and an open subset Ω Ă Rn, the closed subspace

Hs
0pΩq Ă HspΩq

is defined as the Hs-closure of C80 pΩq Ă HspΩq.
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Remark 2.8. The reason to restrict to s ą 0 in Definition 2.7 is that for s ď 0, C80 pΩq is
already dense in HspΩq, so the definition would in those cases give nothing new. The density
of C80 pΩq Ă HspΩq for s ď 0 is an easy consequence of the case s “ 0, for which Exercise 2.5
and Remark 2.6 give a natural identification HkpΩq “ L2pΩq and we can appeal to the fact
that C80 pΩq is dense in L2pΩq. One can then deduce from the density of S pRnq Ă HspRnq that
L2pΩq is dense in HspΩq for every s ă 0.

Proposition 2.9. For any open set Ω Ă Rn and each k P N, there is a natural isomorphism
rHkpΩq Ñ Hk

0 pΩq : f ÞÑ rf s.

Proof. The quotient projection HkpRnq Ñ HkpΩq : f ÞÑ rf s restricts to an injection on the
subspace C80 pΩq Ă HkpRnq, and since it is bounded with respect to the Hk-norm, it has a

unique extension to a bounded linear map Φ : rHkpΩq Ñ HkpΩq. The closure of the image of Φ
is Hk

0 pΩq by definition, thus our task is to prove that Φ is injective with closed image. To see
this, we use the W k,2-inner product as a substitute for the Hk-inner product and claim that
every f P C80 pΩq is W k,2-orthogonal to the subspace Hk

ΩcpRnq. Indeed, elements of Hk
ΩcpRnq

can be regarded as functions g P L2pRnq that vanish almost everywhere on Ω and have weak
derivatives Bαg P L2pRnq for every multi-index α of order |α| ď k, and it follows that these weak
derivatives also vanish almost everywhere on Ω. We thus have

xf, gyWk,2 “
ÿ

|α|ďk

xBαf, BαgyL2 “ 0,

as the integrand in each of these L2-inner products vanishes almost everywhere. Since the

W k,2- and Hk-norms are equivalent, it follows that the closure rHkpΩq is contained in the W k,2-
orthogonal complement of Hk

ΩcpRnq Ă HkpRnq. The quotient projection HkpRnq Ñ HkpΩq
restricts to the latter space as a Banach space isomorphism, and the restriction of that isomor-

phism to the smaller closed subspace rHkpΩq is Φ, whose injective image is therefore also a closed
subspace. �

For any multi-index α of order |α| “ m, it is straightforward to show that the differential
operator Bα defines bounded linear maps

Bα : Hs`mpRnq Ñ HspRnq

for each s P R, and since Bα preserves the space of distributions with support disjoint from any
given open set Ω Ă Rn, Bα descends to a bounded linear map of the quotients

Bα : Hs`mpΩq Ñ HspΩq.

For f P Hs`mpΩq and g P HspΩq, each represented via (2.1) as distributions on Ω, the meaning
of the relation Bαf “ g can now be understood as follows. By definition, f and g each admit

extensions rf P Hs`mpRnq and rg P HspRnq whose restrictions to Ω are f and g respectively,

and Bαf “ g then holds in HspΩq “ HspRnq{Hs
ΩcpRnq if and only if Bα rf ´ rg is in Hs

ΩcpRnq,
which projects trivially to the quotient. This means that Bα rf ´ rg vanishes on all test functions
supported in Ω, which is the same as saying that Bαf and g are identical distributions in D 1pΩq.
If f and g are locally integrable functions, this means exactly what one would expect: g is
equal to a weak derivative Bαf over the domain Ω. (Note that the notion of weak differentiation

depends on the choice of domain, and no claim is being made here about the relation Bα rf “ rg
holding on any domain larger than Ω.)

Allowing linear combinations of such differential operators, the remarks of the previous para-
graph apply in particular to the Laplace operator ∆ with m “ 2. The following can then
be regarded as an existence and uniqueness result for distributional solutions of the Pois-
son equation ∆u “ f with boundary condition u|BsΩ ” 0; in particular, it provides for every
f P L2pΩq Ă H´1pΩq a unique weak solution u in the space H1

0 pΩq.
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Theorem 2.10. For any bounded open set Ω Ă Rn, the Laplacian defines a Fredholm operator

H1
0 pΩq

∆
ÝÑ H´1pΩq

with trivial kernel and cokernel, i.e. it is a Banach space isomorphism.

This result is the first step in the study of the Dirichlet problem, which seeks solutions to the
Laplace equation ∆u “ 0 on a bounded domain Ω Ă Rn with prescribed boundary values u|BsΩ
(see for instance [Tay96, §5.1]). We will prove the theorem via a series of exercises in §6, by
showing that ∆ can be written as the sum of an isomorphism with a compact operator; as a
“compact perturbation” of an index 0 Fredholm operator, it is therefore an index 0 Fredholm
operator. A straightforward integration by parts argument then shows that the operator is
injective, and since its index is 0, surjectivity follows immediately.

3. Main theorems

The simplest examples of Fredholm operators come from finite-dimensional linear algebra:
every linear map A : Kn Ñ Km is Fredholm, and the fact that A descends to an isomorphism
Kn{ kerAÑ imA reveals that the index of A is

dim kerA´ pm´ dim imAq “ n´ pn´ kerAq ` dim imA´m “ n´m.

Notice that this result depends only on the dimensions of the domain and target of A, not on A
itself. For a Fredholm operator T : X Ñ Y in infinite dimensions, one cannot so readily extract
information from the isomorphism X{ kerT – imT since both sides are infinite dimensional.
The remarkable fact is that the index of T , while dependent on more data than merely the
spaces X and Y , still does not change under small perturbations or continuous deformations of
T through families of Fredholm operators.

Theorem 3.1. The set FredpX,Y q Ă L pX,Y q of Fredholm operators from X to Y is open,
and the function

ind : FredpX,Y q Ñ Z
is continuous, i.e. it is locally constant.

Corollary 3.2. For any continuous map r0, 1s Ñ FredpX,Y q : s ÞÑ Ts, indpTsq is independent
of s. �

Our second main result is the following theorem on “compact perturbations,” proved in §6.

Theorem 3.3. If T P FredpX,Y q and K P L pX,Y q is a compact operator, then T `K is also
Fredholm.

Notice that in the setting of Theorem 3.3, the operators tK : X Ñ Y are also compact
for every t P r0, 1s, giving rise to a continuous family of Fredholm operators Ts :“ T ` sK.
Corollary 3.2 thus implies

indpT q “ indpT `Kq whenever T is Fredholm and K is compact.

This applies in particular to all operators of the form 1 ´ K for compact K P L pXq: they
are Fredholm with index 0 since the isomorphism 1 : X Ñ X also is. The following con-
sequence of this observation is known as the Fredholm alternative, and should remind you of
finite-dimensional linear algebra.

Corollary 3.4 (the Fredholm alternative). For any compact operator K : X Ñ X, exactly one
of the following holds:

(i) The linear homogeneous equation x ´Kx “ 0 has a nontrivial finite-dimensional space
of solutions;

(ii) The linear inhomogeneous equation x´Kx “ y has a unique solution for every y P X.

Proof. Since indp1 ´ Kq “ 0, it satisfies dim kerp1 ´ Kq “ dim cokerp1 ´ Kq ă 8. The first
alternative occurs when these dimensions are positive, and the second when they are zero. �
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As a concrete example of Corollary 3.4, consider the Banach space isomorphism ∆ : H1
0 pΩq Ñ

H´1pΩq for a bounded open subset Ω Ă Rn. We will see in Exercise 6.2 that the natural inclusion
j : H1

0 pΩq ãÑ H´1pΩq is compact, thus for any scalar λ P C, the operator λj∆´1 : H´1pΩq Ñ
H´1pΩq is the composition of a bounded operator with a compact operator and thus compact.
The equation

`

1´ λj∆´1
˘

u “ 0

is then satisfied if and only if u is a function in H1
0 pΩq with ∆u “ λu, i.e. it is an eigenfunction

of ∆ over the domain Ω, with eigenvalue λ. Corollary 3.4 thus guarantees among other things
that for any eigenvalue λ of ∆ on a bounded domain Ω with the boundary condition u|BsΩ ” 0,
the corresponding eigenspace is finite dimensional.

Exercise 3.5. Show that for any finite-dimensional vector space V and any continuous periodic
functions g : S1 Ñ R and h : S1 Ñ V satisfying

ş

S1 gpxq dx ‰ 0, the linear inhomogeneous
differential equation

f 1 ` gf “ h

has a unique periodic solution f : S1 Ñ V .
Hint: Show that T : C1pS1q Ñ C0pS1q : f ÞÑ f 1` gf is a compact perturbation of the Fredholm
operator in Example 1.1.

As preparation for the proof of Theorem 3.1, the following result is in some sense dual to the
fact that all finite-dimensional subspaces of a Banach space are complemented.

Lemma 3.6. If T P L pX,Y q has finite-codimensional cokernel, then imT Ă Y is closed.

Proof. Choose w1, . . . , wn P Y such that the equivalence classes rw1s, . . . , rwns form a basis of
cokerT “ Y { imT , and define the linear injection

Φ : Rn ãÑ Y : pλ1, . . . , λnq ÞÑ
n
ÿ

j“1

λjwj .

We can use this to define a surjective bounded linear operator

Ψ : X ‘ Rn Ñ Y : px, zq ÞÑ Tx` Φpzq,

whose kernel is kerT ‘t0u Ă X‘Rn. The surjectivity of this operator implies that it has closed
image, so by Exercise 3.7 below, there exists a constant c ą 0 such that

}Ψpx, zq} ě c ¨ inf
vPkerT

}px` v, zq}

for all px, zq P X ‘ Rn. In particular, setting z “ 0 in this estimate yields

}Tx} ě c ¨ inf
vPkerT

}x` v},

which by Exercise 3.7 implies that imT Ă Y is closed. �

Exercise 3.7. Prove:

(a) An injective operator T P L pX,Y q has closed image if and only if it satisfies a bound
of the form }Tx} ě c}x} for some constant c ą 0 independent of x P X.

(b) Every T P L pX,Y q descends to a bounded linear operator X{ kerT Ñ Y : rxs ÞÑ Tx.
(c) An operator T P L pX,Y q has closed image if and only if it satisfies a bound of the form

}Tx} ě c ¨ inf
vPkerT

}x` v}

for some constant c ą 0 independent of x P X.

Remark 3.8. Some sources explicitly include the condition that imT Ă Y is closed as part of
the definition of a Fredholm operator T : X Ñ Y . Lemma 3.6 shows that this is unnecesary,
but it makes little difference in practice, as the standard ways of proving that T is a Fredholm
operator (e.g. Lemma 5.2 below) typically include an explicit proof that T has closed image.
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Since finite-dimensional and finite-codimensional closed subspaces always admit closed com-
plements, we now obtain the following useful picture of an arbitrary Fredholm operator T0 :
X Ñ Y . Let us abbreviate

K :“ kerT0 Ă X, W :“ imT0 Ă Y,

and choose closed subspaces V Ă X and C Ă Y such that

(3.1) X “ V ‘K and Y “W ‘ C,

keeping in mind that dimK ă 8 and dimC “ dimpY {W q ă 8. The restriction A0 :“ T0|V :
V Ñ imT0 “ W is not a bounded linear bijection, so by the inverse mapping theorem, it is a
Banach space isomorphism, meaning its inverse A´1

0 : W Ñ V is also bounded. In block form
with respect to the splittings (3.1), T0 now takes the form

(3.2) T0 “

ˆ

A0 0
0 0

˙

: V ‘K ÑW ‘ C.

We can of course use the same splittings to write any other operator T P L pX,Y q in a similar
block form

(3.3) T “

ˆ

A B
C D

˙

: V ‘K ÑW ‘ C

for bounded linear operators A : V Ñ W , B : K Ñ W , C : V Ñ C and D : K Ñ C, e.g. A
is the composition ΠWTιV where ιV : V ãÑ X is the continuous inclusion and ΠW : Y Ñ W
is the continuous projection along C, and so forth. The most useful observation will be that
since the space of Banach space isomorphisms V ÑW is an open subset of L pV,W q, the term
A : V ÑW will remain invertible whenever T is sufficiently close to T0.

Proof of Theorem 3.1. Given T0 P FredpX,Y q, choose splittings as in (3.1) with K “ kerT0

and W “ imT0 in order to write each T P L pX,Y q in block from as in (3.3). Since the block
A P L pV,W q depends continuously on T and the set of invertible bounded linear maps is open,
we can define an open neighborhood U Ă L pX,Y q of T0 by

U :“
 

T P L pX,Y q
ˇ

ˇ A : V ÑW is invertible
(

.

We claim that every T P U is Fredholm, with

dim kerT ď dim kerT0, dim cokerT ď dim cokerT0, and indT “ indT0.

To see this, we can associate to each T P U a pair of Banach space isomorphisms Φ P L pXq and
Ψ P L pY q, expressed in block form with respect to the splittings X “ V ‘K and Y “ W ‘ C
as

Φ :“

ˆ

1 ´A´1B
0 1

˙

, Ψ :“

ˆ

1 0
´CA´1 1

˙

.

That these are both Banach space isomorphisms is straightforward to check: their inverses are
namely

Φ´1 :“

ˆ

1 A´1B
0 1

˙

, Ψ´1 :“

ˆ

1 0
CA´1 1

˙

.

The linear map T : X Ñ Y is thus conjugate to

T 1 :“ ΨTΦ “

ˆ

A 0
0 T red

˙

,

where we define the “reduced” operator

T red :“ D ´ CA´1B P L pK,Cq.

There are two crucial things to observe about the block-diagonal operator T 1: its top left block is
invertible, and its bottom right block is a linear map between finite-dimensional vector spaces.
We thus have

kerT “ ΦpkerT 1q “ Φpt0u ‘ kerT redq,
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implying dim kerT “ dim kerT red ď dimK “ dim kerT0. Similarly, Ψ maps imT 1 “W‘imT red

isomorphically to imT and thus descends to an isomorphism Ψ : cokerT 1 Ñ cokerT , where

cokerT 1 “ pW ‘ Cq
L

pW ‘ imT redq – C ‘ imT “ cokerT red,

which gives dim cokerT “ dim cokerT red ď dimC “ dim cokerT0. Observe finally that as an
operator between finite-dimensional spaces, the index of T red : K Ñ C depends only on the
spaces theselves, so it is the same as the index of the zero map K Ñ C, giving

indT “ indT red “ ind
´

K
0
Ñ C

¯

“ dimK ´ dimC “ indT0.

�

4. Some preparatory results

The results of this and the next section will serve as preparation for the proof of Theorem 3.3
on compact perturbations.

Proposition 4.1. A normed vector space is finite dimensional if and only if the closed unit ball
about the origin is compact.

Proof. One direction of the statement follows from first-year analysis, since all closed and
bounded subsets of finite-dimensional vector spaces are compact. For the converse, assume
X is a normed vector space and ĞB1p0q Ă X is compact. We will give an argument that, with
minor modifications,2 also applies to arbitrary topological vector spaces, proving that the finite-
dimensional vector spaces are the only locally compact topological vector spaces.

Let U :“ B1p0q Ă X and assume its closure sU is compact. Observe that for each x P X, the
set x` 1

2U Ă X is a neighborhood of x, so compactness implies

(4.1) U Ă sU Ă
n
ď

i“1

ˆ

xi `
1

2
U
˙

for some finite set x1, . . . , xn P X. We will show that the finite-dimensional subspace V Ă X
spanned by x1, . . . , xn is in fact X. Indeed, (4.1) implies U Ă V ` 1

2U , and rescaling then implies
1
2U Ă V ` 1

4U since V is a linear subspace, and thus

U Ă V `
1

2
U Ă V `

1

4
U .

Repeating this argument finitely many times produces

U Ă V `
1

2n
U

for every n P N. It follows that every x P U belongs for each n P N to the ball of radius 1{2n

about some point in V , and is therefore in the closure of V . Since dimV ă 8, V is already
closed, so this implies U Ă V . For an arbitrary x P X, we can now choose ε ą 0 so that εx P U ,
and it follows that x “ 1

ε εx P V . �

Remark 4.2. Another popular proof of Proposition 4.1 (which however does not generalize to
topological vector spaces) uses a basic geometric result called the Riesz lemma, which states
that for any closed proper subspace V in a normed vector space X,

sup
xPX, }x}“1

distpx, V q “ 1.

If dimX “ 8, one can use this to construct for any δ P p0, 1q a sequence xn P X that satisfies
}xn} “ 1 for all n but }xn´xm} ě δ for all m ‰ n, so that no subsequence can be Cauchy. (See
e.g. [BS18, §2.2].) If X is an inner product space, then one can do better and achieve δ “

?
2

by constructing xn to be orthonormal.

2see in particular https://terrytao.wordpress.com/2011/05/24/locally-compact-topological-vector-spaces/

https://terrytao.wordpress.com/2011/05/24/locally-compact-topological-vector-spaces/
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Proposition 4.3. If K P L pX,Y q is compact, then so is K˚ P L pY ˚, X˚q.

Proof. Assume K : X Ñ Y is compact and Λn P Y
˚ is a sequence satisfying }Λn} ď C for some

constant C ą 0. Letting ĞB1p0q Ă X denote the closed unit ball in X, the set

M :“ KpĞB1p0qq Ă Y

is then compact. The functions Λn|M : M Ñ K then satisfy

|Λnpyq| ď C ¨max
yPM

}y}

and are thus uniformly bounded; they also satisfy the Lipschitz condition

|Λnpyq ´ Λnpy
1q| ď C ¨ }y ´ y1}

for y, y1 P M , so they are equicontinuous. It now follows from the Arzelà-Ascoli theorem that
after replacing Λn with a subsequence, the sequence Λn|M : M Ñ K is uniformly convergent.
(Note that in applying the Arzelà-Ascoli theorem, we are using the fact that M Ă Y is compact,
which follows from the compactness of K.) This implies that the sequence K˚Λn|ĞB1p0q

“ Λn ˝

K|
ĞB1p0q

: ĞB1p0q Ñ K also converges uniformly, hence it is uniformly Cauchy, implying that

K˚Λn is also a Cauchy sequence and therefore convergent in X˚. �

Remark 4.4. We will not need to use this, but the converse of Proposition 4.3 is also true; see
[BS18, Theorem 4.28(iii)].

The annihilator of a subset V Ă X is defined by

V K :“
 

Λ P X˚
ˇ

ˇ Λ|V “ 0
(

Ă X˚,

and similarly, the pre-annihilator of a set of dual vectors V Ă X˚ is

KV :“
 

x P X
ˇ

ˇ Λpxq “ 0 for all Λ P V
(

Ă X.

In other words, KV “ J´1pV Kq Ă X for the canonical inclusion J : X Ñ X˚˚. It is easy to
check that whenever V is a linear subspace of X or X˚, V K or KV respectively is a closed linear
subspace.

Exercise 4.5. For a closed subspace V Ă X with inclusion map i : V ãÑ X and quotient
projection π : X Ñ X{V , prove:

(1) The map i˚ : X˚ Ñ V ˚ descends to a Banach space isomorphism X˚{V K Ñ V ˚.
(2) The map π˚ : pX{V q˚ Ñ X˚ defines a Banach space isomorphism onto V K Ă X˚.

Proposition 4.6. For any T P L pX,Y q,

pimT qK “ kerT ˚ and KpimT ˚q “ kerT.

If additionally imT Ă Y is closed, then imT ˚ Ă X˚ is also closed, and

imT “ KpkerT ˚q and imT ˚ “ pkerT qK.

Proof. The first two equalities are readily verified from the definitions, where in the second case,
one needs to use the fact that y P Y vanishes if and only if Λpyq “ 0 for every Λ P Y ˚, which
follows from the Hahn-Banach theorem. It is similarly straightforward to verify the inclusions
imT Ă KpkerT ˚q and imT ˚ Ă pkerT qK.

We claim moreover that imT is always dense in KpkerT ˚q. Indeed, consider a bounded linear
functional Λ : KpkerT ˚q Ñ K such that Λ|imT “ 0, and use the Hahn-Banach theorem to
extend Λ to a bounded linear functional on Y . Then Λ P pimT qK “ kerT ˚, thus Λpyq “ 0 for all
y P KpkerT ˚q by definition, implying that the original unextended functional was trivial. The
density of imT now follows from the Hahn-Banach theorem. This proves that imT “ KpkerT ˚q
if and only if imT is closed.
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It remains to prove that if imT is closed, then pkerT qK Ă imT ˚; this will imply that imT ˚

is also closed since pkerT qK always is. As a first step, Exercise 3.7 gives an estimate

(4.2) }Tx} ě c ¨ inf
vPkerT

}x` v}

for some constant c ą 0. Now suppose Λ P pkerT qK Ă X˚, so Λpvq “ 0 for all v P kerT and thus

|Λpxq| “ |Λpx` vq| ď }Λ} ¨ }x` v}

for all x P X and v P kerT . Taking the infimum over v P kerT and combining this with (4.2)
gives

(4.3) |Λpxq| ď
1

c
}Λ} ¨ }Tx}.

To show that Λ P imT ˚, observe that there exists a unique bounded linear functional λ0 :
imT Ñ K such that

λ0pTxq “ Λpxq for all x P X;

indeed, the value of Λpxq is independent of the choice of x P T´1pTxq since Λpxq “ 0 whenever
Tx “ 0, and the estimate (4.3) implies that this functional is bounded. Extending λ0 to λ P Y ˚

via the Hahn-Banach theorem, we now have Λ “ λ0 ˝ T “ λ ˝ T “ T ˚λ. �

5. The semi-Fredholm property

A bounded linear map T : X Ñ Y is said to be semi-Fredholm if

dim kerT ă 8 and imT is closed.

This condition often turns out to be a convenient stepping stone toward proving the Fredholm
property.

Lemma 5.1. The following conditions on an operator T P L pX,Y q are equivalent:

(1) T and T ˚ are both semi-Fredholm.
(2) T is Fredholm.
(3) T ˚ is Fredholm.

Moreover, when these conditions hold,

dim kerT ˚ “ dim cokerT and dim cokerT ˚ “ dim kerT,

hence indT ˚ “ ´ indT .

Proof. Assume T and T ˚ are both semi-Fredholm, so kerT and kerT ˚ are both finite dimen-
sional and imT and imT ˚ are both closed. Using the isomorphisms from Exercise 4.5 and
Proposition 4.6, we have

pkerT q˚ – X˚{pkerT qK “ X˚{ imT ˚ “ cokerT ˚,

and

pcokerT q˚ “ pY { imT q˚ – pimT qK “ kerT ˚,

so the finite-dimensionality of kerT and kerT ˚ implies that cokerT and cokerT ˚ are also both
finite dimensional. This proves p1q ñ p2q and p1q ñ p3q, along with the stated relations between
dimensions.

If we instead assume T is Fredholm, then Lemma 3.6 and Proposition 4.6 imply that imT
and imT ˚ are both closed, so the isomorphisms above still hold, and the finite-dimensionality
of kerT and cokerT implies the same for kerT ˚ and cokerT ˚, proving p2q ñ p3q. The proof
that p3q implies p1q or p2q requires an additional argument to show that imT is closed whenever
imT ˚ is closed, but we shall omit this since it is not needed in the sequel. (A proof may be
found in [BS18, Theorem 4.16].) �
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Lemma 5.2. An operator T P L pX,Y q is semi-Fredholm if and only if there exists a Banach
space Z and compact operator K P L pX,Zq satisfying

(5.1) }x} ď c p}Tx} ` }Kx}q

for all x P X and some constant c ą 0 independent of x.

Proof. Assume T : X Ñ Y is semi-Fredholm. Its finite-dimensional kernel Z :“ kerT Ă X then
admits a closed complement, so there is a continuous linear projection map K : X Ñ Z. This
operator is clearly compact since it has finite rank. The linear map

X Ñ Y ‘ Z : x ÞÑ pTx,Kxq

is then bounded and injective, with image the closed subspace imT ‘Z Ă Y ‘Z, so Exercise 3.7
gives the estimate

}pTx,Kxq} “ }Tx} ` }Kx} ě c}x}

for some constant c ą 0 independent of x P X.
Conversely, suppose a compact operator K : X Ñ Z is given such that the estimate }x} ď

c}Tx}`c}Kx} is satisfied. We will show that the closed unit ball in kerT is compact, implying via
Proposition 4.1 that dim kerT ă 8. Indeed, if xn P kerT is a sequence satisfying }xn} ď 1, then
after reducing to a subsequence, we can assume Kxn converges in Z, due to the compactness
of K. In particular, Kxn is a Cauchy sequence, and since Txn “ 0 for all n, applying the
estimate (5.1) to xn ´ xm yields

}xn ´ xm} ď c}Kxn ´Kxm}.

This proves that xn is a Cauchy sequence in X, so xn converges, and kerT is therefore finite
dimensional.

To prove that imT is closed, we first simplify the situation by restricting T to a closed subspace
V Ă X that is complementary to kerT ; such a subspace necessarily exists since finite-dimensional
subspaces are always complemented, and the restricted operator T |V : V Ñ Y is now injective
but has the same image as T . Now if xn P V is a sequence such that Txn Ñ y P Y , we claim that
xn must be bounded. If not, then after restricting to a subsequence, we can assume }xn} Ñ 8

and thus T pxn{}xn}q Ñ 0, while the boundedness of xn{}xn} implies without loss of generality
that Kpxn{}xn}q converges. Arguing as in the previous paragraph via Cauchy sequences, we
now conclude from (5.1) that xn{}xn} converges to some x8 P V with }x8} “ 1 but Tx8 “ 0,
and that is impossible since kerT X V “ t0u. But now that we know xn is bounded, Kxn
must in turn have a convergent subsequence, while Txn converges by assumption, so another
application of (5.1) to Cauchy sequences proves that xn has a subsequence convergent to some
element x P V , which must then satisfy Tx “ y, proving that imT is closed. �

6. Compact perturbations

Let us now restate and prove Theorem 3.3.

Theorem 6.1. If T P L pX,Y q is Fredholm, then so is T ` K for every compact operator
K P L pX,Y q.

Proof. We claim first that if T is semi-Fredholm, then so is T `K. We use the characterization
of the semi-Fredholm condition in Lemma 5.2: assume T satisfies an estimate of the form
}x} ď c}Tx} ` c}K0x} for some compact operator K0 : X Ñ Z. The perturbed operator
T `K : X Ñ Y then satisfies

}x} ď c}Tx} ` c}K0x} ď c}pT `Kqx} ` c}Kx} ` c}K0x} “ c p}pT `Kqx} ` }K1x}q ,

where we define the operator K1 : X Ñ X ‘ Z : x ÞÑ pKx,K0xq, and K1 is compact since both
K0 and K are compact. Lemma 5.2 then implies that T `K is semi-Fredholm.

Now if T is Fredholm, Lemma 5.1 implies that T ˚ : Y ˚ Ñ X˚ is also Fredholm, while
K˚ : Y ˚ Ñ X˚ is also compact due to Proposition 4.3. The result of the previous paragraph
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thus implies that T ˚ `K˚ “ pT `Kq˚ is also semi-Fredholm, so by Lemma 5.1, T `K is also
Fredholm. �

The next four exercises furnish the proof of Theorem 2.10, which stated that the Laplace
operator defines a Banach space isomorphism

∆ : H1
0 pΩq Ñ H´1pΩq

for any bounded open subset Ω Ă Rn. It will be convenient to assume in the following that

(6.1) sΩ Ă p0, 1qn,

though it should be clear via scaling and translation that if the result is true for this special
case, then it is true in general.

Exercise 6.2. Assume (6.1) holds.

(a) Associate to each f P C80 pΩq the unique function F P C8pTnq such that fpxq “ F pxq
for x P p0, 1qn. Show that the map C80 pΩq Ñ C8pTnq : f ÞÑ F extends to bounded
linear injections

L2pΩq ãÑ L2pTnq and rH1pΩq ãÑ H1pTnq

whose images are closed.
Hint: Avoid Fourier analysis here by replacing the usual H1-norm with the equivalent
norm }u}W 1,2 :“

ř

|α|ď1 }B
αu}L2 . This works equally well on Rn or Tn.

(b) Deduce via the natural isomorphism rH1pΩq Ñ H1
0 pΩq from Proposition 2.9 and the

compactness of the inclusion H1pTnq ãÑ L2pTnq that the linear injection H1
0 pΩq ãÑ

L2pΩq : rf s ÞÑ f |Ω is also compact.
(c) Deduce that the natural inclusion H1

0 pΩq ãÑ H´1pΩq is compact by presenting it as a
composition of bounded linear operators in which at least one is compact.

Remark: This result is a special case of the Rellich-Kondrachov compactness theorem. No-
tice that the boundedness of Ω plays an essential role in the proof; by contrast, the inclusion
H1pRnq ãÑ H´1pRnq for instance is not compact.

Exercise 6.3. Consider the bounded linear operator

rΦ : H1pRnq Ñ H´1pRnq : u ÞÑ u´
1

4π2
∆u,

which descends to quotients to define a bounded linear operator Φ : H1pΩq Ñ H´1pΩq. Prove:

(a) rΦ : H1pRnq Ñ H´1pRnq is a unitary isomorphism.

(b) Let I : H´1pΩq Ñ
`

rH1pΩq
˘˚

denote the natural real-linear isomorphism from Exer-

cise 2.4, and denote by Q : H´1pRnq Ñ H´1pΩq “ H´1pRnq{H´1
Ωc pRnq the quotient

projection. Then the map

I ˝Q ˝ rΦ|
rH1pΩq

: rH1pΩq Ñ
`

rH1pΩq
˘˚

is an isometric real-linear isomorphism. Deduce from this that Φ : H1pΩq Ñ H´1pΩq
restricts to H1

0 pΩq as an isomorphism H1
0 pΩq Ñ H´1pΩq.

Hint: Write down an explicit formula for IQrΦpuqf for u, f P rH1pΩq.

Exercise 6.4. Writing j : H1
0 pΩq ãÑ H´1pΩq for the natural inclusion, deduce from the formula

∆ “ 4π2pj ´ Φq : H1
0 pΩq Ñ H´1pΩq and the previous exercises that ∆ is a Fredholm operator

with index 0.

Exercise 6.5. Prove:

(a) Every u P C80 pRnq satisfies ´

ż

Rn

xu,∆uy dm “

ż

Rn

|∇u|2 dm.
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(b) For any open subset Ω Ă Rn, the relation in part (a) extends to ´x∆u, uy1 “ }∇u}2L2

for every u P rH1pΩq, where x , y1 : H´1pRnq ˆH1pRnq Ñ C denotes the duality pairing
in Exercise 2.2.

(c) The operator ∆ : H1
0 pΩq Ñ H´1pΩq is injective.

Caution: This is not difficult, but since H´1pΩq is a quotient, it is slightly more compli-

cated than just assuming u P rH1pΩq satisfies ∆u “ 0 and applying part (b).
(d) The operator ∆ : H1

0 pΩq Ñ H´1pΩq is also surjective if Ω Ă Rn is bounded.
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