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Problem 1
Prove that in local coordinates on some open subset I/ of a pseudo-Riemannian 2-manifold
(3, g), the Riemann tensor R € T'(T3Y) is determined on U by the component Rj12.

Problem 2
The Ricci tensor Ric € T'(TY M) can be defined on a Riemannian n-manifold (M, g) by

Ric(Y, Z) := Y (ej, R(e;,Y)Z) = ) Riem(ej,e;,Y, Z) € R, for Y, Z e T,M, (1)
j=1

j=1
where eq, ..., e, is any choice of orthonormal basis of T),M at a point p € M. The following
sequence of exercises is aimed showing that this definition does not depend on the choice
of basis eq,...,e,, and also generalizing it to the pseudo-Riemannian case:

(a) Use the Einstein summation convention to give a one-line proof that tr(AB) =
tr(BA) for all pairs of square matrices A and B.

(b) Define tr(A) for any linear map A : V' — V on a finite-dimensional vector space V.
(There is only one reasonable definition. Show that it is independent of choices.)

(c¢) Show that Ric(Y, Z) according to is the trace of the linear map T,M — T,M :
X R(X,Y)Z.

(d) If (M,g) is a pseudo-Riemannian manifold, then the trace in part (c) can be taken
as a definition of Ric, but the formula is not quite right if g is indefinite. Fix it.

(e) Show that in local coordinates, the components Ry of Ric are given by Ryy = Riiu.
The trick used above to turn a type (1,3) tensor into a type (0,2) tensor is called con-

traction. One can contract further to define the scalar curvature, a function Scal : M — R
that, on a Riemannian manifold (M, g), can be written as

n n
Scal(p) := Z Ric(ej, e5) = Z Riem(e;, e, ex, ex) € R, (2)
j=1 k=1
where eq, ..., e, € T,M again denotes an orthonormal basis.

(f) Show that is independent of the choice of orthonormal basis e1,...,e, € T,M
by reinterpreting it as a contraction (i.e. trace) of the tensor Ric* € I'(T} M) defined
via the relation (Y, Ric*(Z)) = Ric(Y, Z).

(g) Taking the trace in part (f) as a general definition of Scal : M — R for pseudo-
Riemannian manifolds (M, g), rewrite (2]) so that it is also valid when g is indefinite.

(h) Show that in local coordinates, Scal = g*R?., .

(i) Prove that if dim M = 2, then R € I'(T4 M) is fully determined by Scal : M — R.
Hint: Use Problem 1 in well-chosen coordinates near a given point p € M.

(j) Show that on a Riemannian 2-manifold, Scal is twice the Gaussian curvature Kg.
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Problem 3

Prove: A closed surface ¥ in Euclidean R3 cannot have K < 0 everywhere.

Hint: For some R > 0, 3 must lie inside the closed ball of radius R and touch its boundary
tangentially at some point.

Problem 4

1
Prove that for the hyperboloid H := {z? + y? — 22 = 1} in Euclidean R3, Kg(p) = —

I
Hint: This can be a horrible computation, but it doesn’t have to be. For instance, there|pa|1re
some obvious isometries that make it sufficient to consider a point of the form (r,0, z) € H
with 12 — 22 = 1, which is the intersection of the smooth curves a(t) = (cosht,0,sinht)
and 3(t) = (rcost,rsint, z) in H. Since H is a level set of f(z,y, z) = 2% + y*> — 22, there
is a unit normal vector field of the form v = g -V f for some function g : H — (0, 0).
Try to convince yourself without any calculations that the curves o and § are tangent
to the principal directions. Then consider the following: if you know ~(t) € H satisfies
%u(*y(t)) = Ay(t) for some \ € R, what happens if you take the inner product of both
sides with 4(t)? Write v = g - V f and use this observation to compute the two principal
curvatures at (r,0, z). You will need to write down the function g for this, but you should
not need to differentiate it.

Final remark: It’s also possible there’s an easier way to do this that I haven’t thought of.

Problem 5

In Problem 5 on the take-home midterm, we established that the geodesic curves on the
Poincaré half-plane (H, h), defined as H := {(z,y) € R? | y > 0} with h := y%(dx2 + dy?),
are the vertical lines and the semicircles that meet the x-axis orthogonally.

(a) Write down the Riemannian volume form on (H, k), and show that any region of the
form [a,b] x [¢,0) < H for —w0 < a < b < o and ¢ > 0 has finite area, while regions
of the form [a,b] x (0, c] < H have infinite area.

(b) By drawing pictures, show that the sum of the angles in a geodesic triangle in (H, h)
can be arbitrarily small. (By “geodesic triangle” we mean a compact region in H
bounded by three geodesic segments.)

(c) Pretend for the moment that you don’t know (H, h) is isometric to the hyperbolic
plane, and compute its Gaussian curvature.
Note: Since (H, h) is not given as a submanifold of R?, one should define Kg : H — R
in this case as the unique function satisfying R(X,Y)Z = —K¢g dvol(X,Y)JZ.

Problem 6

Suppose m : E — M is a complex line bundle with a bundle metric { , ), so it has
structure group U(1). Since U(1) is abelian, we showed in lecture that any metric connec-
tion V on £ — M gives rise to a globally-defined imaginary-valued curvature 2-form
F e O?(M,u(1)) = Q?(M,iR), which matches dA, on U, = M for any U(1)-compatible
local trivialization @4 : Ely, — Uy x C with connection 1-form A, € QI(M u(1)). Show
that if V is a second metric connection on E — M with curvature 2-form F € Q2(M, u(1)),
then F — F is exact. The cohomology class ¢; (E) =[5 F| € H3; (M) is thus indepen-
dent of the choice of connection; it is known as the first Chem class of E.

Hint: The two connections differ by a bililinear bundle map B : TM @ E — E satisfy-
ing B(X,v) = Vxv — Vxv. Reinterpret this as an End(FE)-valued 1-form, and then as a
complex-valued 1-form, using the fact that fibers of ¥ are 1-dimensional.



