Differentialgeometrie I
WiSe 2021-22

Problem Set 5: Solution to Problem 1

Problem 1

Suppose M is a 3 -manifold and $\alpha \in \Omega^{1}(M)$ is nowhere zero, so for every $p \in M$, there is a well-defined 2-dimensional subspace $\xi_{p}:=\operatorname{ker} \alpha_{p} \subset T_{p} M$. The set $\xi:=\bigcup_{p \in M} \xi_{p} \subset T M$ in this situation is called a smooth 2 -plane field in M. We say that ξ is integrable if its defining 1 -form α satisfies the condition $\alpha \wedge d \alpha \equiv 0$.
(a) Show that the integrability condition depends only on ξ and not on α, i.e. for any $\beta \in \Omega^{1}(M)$ that is also nowhere zero and satisfies ker $\beta_{p}=\xi_{p}$ for all $p \in M, \alpha \wedge d \alpha \equiv 0$ if and only if $\beta \wedge d \beta \equiv 0$.
Hint: If ker $\alpha_{p}=\operatorname{ker} \beta_{p}$, how are the two cotangent vectors $\alpha_{p}, \beta_{p} \in T_{p}^{*} M$ related?
Suppose $\alpha, \beta \in \Omega^{1}(M)$ are both nowhere zero and satisfy $\operatorname{ker} \alpha_{p}=\operatorname{ker} \beta_{p}=\xi_{p}$ for all $p \in M$. Here is a basic fact from linear algebra: if two nontrivial linear functionals α_{p}, β_{p} : $T_{p} M \rightarrow \mathbb{R}$ have the same kernel, then one is a multiple of the other. It follows that there exists a nowhere-zero funtion $f: M \rightarrow \mathbb{R}$ such that $\beta=f \alpha$ everywhere. Since α and β are both smooth, f will also be smooth. Now use the Leibniz rule to compute:

$$
\beta \wedge d \beta=f \alpha \wedge d(f \alpha)=f \alpha \wedge(d f \wedge \alpha+f d \alpha)=f^{2} \alpha \wedge d \alpha,
$$

where the first term in parentheses has disappeared because $\alpha \wedge(d f \wedge \alpha)=-\alpha \wedge(\alpha \wedge d f)=$ $-(\alpha \wedge \alpha) \wedge d f=0$, since the wedge product of a 1 -form with itself is always 0 . Since $f \neq 0$ everywhere, we now see that $\beta \wedge d \beta$ can vanish if and only if $\alpha \wedge d \alpha$ vanishes.
(b) Prove that the following conditions are each equivalent to integrability:
(i) $(d \alpha)_{p} \xi_{p} \in \Lambda^{2} \xi_{p}^{*}$ vanishes for every $p \in M$.

Hint: Evaluate $(\alpha \wedge d \alpha)_{p}$ on a basis of $T_{p} M$ that includes two vectors in ξ_{p}.
Since $\operatorname{dim} M=3, \alpha \wedge d \alpha \in \Omega^{3}(M)$ is a top-dimensional form, thus $(\alpha \wedge d \alpha)_{p} \in \Lambda^{3} T_{p}^{*} M$ vanishes at a point $p \in M$ if and only if $(\alpha \wedge d \alpha)\left(X_{1}, X_{2}, X_{3}\right)=0$ for some basis $X_{1}, X_{2}, X_{3} \in T_{p} M$. For this we can choose any basis we like, so let us choose one so that X_{2}, X_{3} form a basis of the 2-dimensional subspace $\xi_{p} \subset T_{p} M$ and $X_{1} \notin \xi_{p}$, which means $\alpha\left(X_{2}\right)=\alpha\left(X_{3}\right)=0$ but $\alpha\left(X_{1}\right) \neq 0$. Using Equation (9.4) from the notes,

$$
\begin{aligned}
(\alpha \wedge d \alpha)\left(X_{1}, X_{2}, X_{3}\right) & =\frac{3!}{1!2!} \frac{1}{3!} \sum_{\sigma \in S_{3}}(-1)^{|\sigma|}(\alpha \otimes d \alpha)\left(X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}\right) \\
& =\frac{1}{2} \sum_{\sigma \in S_{3}}(-1)^{|\sigma|} \alpha\left(X_{\sigma(1)}\right) \cdot d \alpha\left(X_{\sigma(2)}, X_{\sigma(3)}\right),
\end{aligned}
$$

but in this expression, permutations that satisfy $\sigma(1) \neq 1$ will contribute nothing because $\alpha\left(X_{2}\right)=\alpha\left(X_{3}\right)=0$, so there are only two nontrivial terms in the sum, and since $d \alpha$ is antiysymmetric,

$$
\begin{aligned}
(\alpha \wedge d \alpha)\left(X_{1}, X_{2}, X_{3}\right) & =\frac{1}{2}\left[\alpha\left(X_{1}\right) \cdot d \alpha\left(X_{2}, X_{3}\right)-\alpha\left(X_{1}\right) \cdot d \alpha\left(X_{3}, X_{2}\right)\right] \\
& =\alpha\left(X_{1}\right) \cdot d \alpha\left(X_{2}, X_{3}\right) .
\end{aligned}
$$

We already know $\alpha\left(X_{1}\right) \neq 0$, so this expression vanishes if and only if $d \alpha\left(X_{2}, X_{3}\right)=$ 0 . Now recall that X_{2}, X_{3} is a basis of ξ_{p}, and observe that the restriction of $(d \alpha)_{p} \in$ $\Lambda^{2} T_{p}^{*} M$ to a bilinear form on $\xi_{p} \subset T_{p} M$ is a top-dimensional alternating form on ξ_{p}, i.e. an element of $\Lambda^{2} \xi_{p}^{*}$, which therefore vanishes if and only if it evaluates to zero on the basis X_{2}, X_{3}, thus $(\alpha \wedge d \alpha)_{p}=0$ is now equivalent to the condition $\left.(d \alpha)_{p}\right|_{\xi_{p}}=0 \in \Lambda^{2} \xi_{p}^{*}$.
(ii) For every pair of vector fields $X, Y \in \mathfrak{X}(M)$ with $X(p), Y(p) \in \xi_{p}$ for all $p \in M$, $[X, Y] \in \mathfrak{X}(M)$ also satisfies $[X, Y](p) \in \xi_{p}$ for all $p \in M$.
Hint: Use our original definition of the exterior derivative, via C^{∞}-linearity.
Using the $k=1$ case of Proposition 8.6 in the notes, any 1 -form α and vector fields X, Y satisfy

$$
\begin{equation*}
d \alpha(X, Y)=\mathcal{L}_{X}(\alpha(Y))-\mathcal{L}_{Y}(\alpha(X))-\alpha([X, Y]) . \tag{1}
\end{equation*}
$$

If X and Y both take values in ξ everywhere, then the first two terms on the right hand side vanish, leaving only $\alpha([X, Y])$, which vanishes precisely at the points where [X, Y] has its values in ξ. If that is true everywhere, it follows that $d \alpha(X, Y)$ vanishes everywhere, and if this is assumed to be true for every pair of vector fields valued in ξ, then it means $\left.(d \alpha)\right|_{\xi} \equiv 0$, since one can always choose X and Y to form a basis of ξ_{p} at any given point p. This means that the condition of part (b)(i) is satisfied, and ξ is therefore integrable. Conversely, if the condition $\left.d \alpha\right|_{\xi} \equiv 0$ is satisfied, then the left hand side of (II) vanishes for all $X, Y \in \mathfrak{X}(M)$ with values in ξ, thus forcing $\alpha([X, Y])$ to vanish, which means $[X, Y]$ takes values in ξ everywhere.
(c) Using Cartesian coordinates (x, y, z) on $M:=\mathbb{R}^{3}$, suppose $\alpha=f(x) d y+g(x) d z$ for smooth functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Under what conditions on f and g is ξ integrable? Show that if these conditions hold, then for every point $p \in \mathbb{R}^{3}$ there exists a 2 dimensional submanifold $\Sigma \subset \mathbb{R}^{3}$ such that $p \in \Sigma$ and $T_{q} \Sigma=\xi_{q}$ for all $q \in \Sigma$.

We can regard f and g as functions on \mathbb{R}^{3} whose partial derivatives in the y and z directions vanish everywhere, thus $d f=f^{\prime}(x) d x$ and $d g=g^{\prime}(x) d x$. We then compute $d \alpha=d(f d y+g d z)=d f \wedge d y+d g \wedge d z=f^{\prime} d x \wedge d y+g^{\prime} d x \wedge d z$, thus

$$
\begin{aligned}
\alpha \wedge d \alpha & =(f d y+g d z) \wedge\left(f^{\prime} d x \wedge d y+g^{\prime} d x \wedge d z\right) \\
& =f f^{\prime} d y \wedge d x \wedge d y+f g^{\prime} d y \wedge d x \wedge d z+g f^{\prime} d z \wedge d x \wedge d y+g g^{\prime} d z \wedge d x \wedge d z \\
& =\left(-f g^{\prime}+g f^{\prime}\right) d x \wedge d y \wedge d z
\end{aligned}
$$

where we have eliminated the two terms that contained wedge products of $d y$ or $d z$ with themselves, and used permutations to rewrite $d y \wedge d x \wedge d z=-d x \wedge d y \wedge d z$ and $d z \wedge$ $d x \wedge d y=d x \wedge d y \wedge d z$. This shows that $\alpha \wedge d \alpha$ vanishes if and only if the function $f(x) g^{\prime}(x)-g(x) f^{\prime}(x)$ vanishes. I like to imagine $x \mapsto(f(x), g(x))$ as a path in \mathbb{R}^{2} and $f g^{\prime}-g f^{\prime}$ as the determinant of a 2-by-2 matrix: its vanishing then tells us that for all x, the vectors $(f(x), g(x))$ and $\left(f^{\prime}(x), g^{\prime}(x)\right)$ in \mathbb{R}^{2} are linearly dependent, which means that the path $(f(x), g(x))$ is confined to a single line through the origin. It cannot ever touch the origin, since that would cause α to vanish somewhere, so the conclusion is that there exists a constant nonzero vector $(a, b) \in \mathbb{R}^{2}$ and a nowhere-zero smooth function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that $(f(x), g(x))=\varphi(x) \cdot(a, b) \in \mathbb{R}^{2}$, and α can thus be written in the form

$$
\alpha=\varphi(x)(a d y+b d z) .
$$

Recalling part (a), observe that the function $\varphi(x)$ does not affect the kernel of α at any point, so if we just want to understand the 2 -plane field ξ, we are now free to ignore φ and write

$$
\xi_{p}=\operatorname{ker}(a d y+b d z) \quad \text { for all } p \in \mathbb{R}^{3} .
$$

The difference between this situation and the picture below is that since a and b are constant, the 2-plane field we are considering here does not "twist": in fact there are two constant nonzero vector fields

$$
V(x, y, z):=b \frac{\partial}{\partial y}-a \frac{\partial}{\partial z} \quad \text { and } \quad Z(x, y, z):=\frac{\partial}{\partial x}
$$

on \mathbb{R}^{3} whose span at every point $p=(x, y, z) \in \mathbb{R}^{3}$ is ξ_{p}. The flows of these vector fields are easy to compute, and they commute with each other; if you now start at any given point $p \in \mathbb{R}^{3}$ and follow the flows of both V and Z, you obtain a surface (more specifically a plane) whose tangent space at each point is identical to ξ at that point. In other words, the surface I'm describing is the image of

$$
\mathbb{R}^{2} \hookrightarrow \mathbb{R}^{3}:(s, t) \mapsto \varphi_{V}^{s} \circ \varphi_{Z}^{t}(p),
$$

and more precisely, if $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$, this surface is

$$
\Sigma=\left\{\left(x_{0}+s, y_{0}+b t, z_{0}-a t\right) \mid s, t \in \mathbb{R}\right\} \subset \mathbb{R}^{3} .
$$

Remark: The result of part (c) is a special case of the Frobenius integrability theorem, which we will prove later in this course. In case you're curious, the following picture gives an example of what $\xi \subset T \mathbb{R}^{3}$ might look like if it is not integrable. Can you picture a 2-dimensional submanifold that is everywhere tangent to ξ ? (I didn't think so.)

