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Problem Set 5: Solution to Problem 1

Problem 1

Suppose M is a 3-manifold and α P Ω1pMq is nowhere zero, so for every p P M , there is
a well-defined 2-dimensional subspace ξp :“ kerαp Ă TpM . The set ξ :“

Ť

pPM ξp Ă TM

in this situation is called a smooth 2-plane field in M . We say that ξ is integrable if its
defining 1-form α satisfies the condition α ^ dα ” 0.

(a) Show that the integrability condition depends only on ξ and not on α, i.e. for any
β P Ω1pMq that is also nowhere zero and satisfies ker βp “ ξp for all p P M , α^dα ” 0
if and only if β ^ dβ ” 0.
Hint: If kerαp “ ker βp, how are the two cotangent vectors αp, βp P T ˚

p M related?

Suppose α, β P Ω1pMq are both nowhere zero and satisfy kerαp “ ker βp “ ξp for all
p P M . Here is a basic fact from linear algebra: if two nontrivial linear functionals αp, βp :
TpM Ñ R have the same kernel, then one is a multiple of the other. It follows that there
exists a nowhere-zero funtion f : M Ñ R such that β “ fα everywhere. Since α and β are
both smooth, f will also be smooth. Now use the Leibniz rule to compute:

β ^ dβ “ fα ^ dpfαq “ fα ^ pdf ^ α ` f dαq “ f2 α ^ dα,

where the first term in parentheses has disappeared because α^pdf^αq “ ´α^pα^dfq “
´pα^αq ^df “ 0, since the wedge product of a 1-form with itself is always 0. Since f ‰ 0
everywhere, we now see that β ^ dβ can vanish if and only if α ^ dα vanishes.

(b) Prove that the following conditions are each equivalent to integrability:

(i) pdαqp|ξp P Λ2ξ˚
p vanishes for every p P M .

Hint: Evaluate pα ^ dαqp on a basis of TpM that includes two vectors in ξp.

Since dimM “ 3, α^dα P Ω3pMq is a top-dimensional form, thus pα^dαqp P Λ3T ˚
p M

vanishes at a point p P M if and only if pα ^ dαqpX1,X2,X3q “ 0 for some basis
X1,X2,X3 P TpM . For this we can choose any basis we like, so let us choose one
so that X2,X3 form a basis of the 2-dimensional subspace ξp Ă TpM and X1 R ξp,
which means αpX2q “ αpX3q “ 0 but αpX1q ‰ 0. Using Equation (9.4) from the
notes,

pα ^ dαqpX1,X2,X3q “
3!

1!2!

1

3!

ÿ

σPS3

p´1q|σ|pα b dαqpXσp1q ,Xσp2q,Xσp3qq

“
1

2

ÿ

σPS3

p´1q|σ|αpXσp1qq ¨ dαpXσp2q ,Xσp3qq,

but in this expression, permutations that satisfy σp1q ‰ 1 will contribute nothing
because αpX2q “ αpX3q “ 0, so there are only two nontrivial terms in the sum, and
since dα is antiysymmetric,

pα ^ dαqpX1,X2,X3q “
1

2
rαpX1q ¨ dαpX2,X3q ´ αpX1q ¨ dαpX3,X2qs

“ αpX1q ¨ dαpX2,X3q.
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We already know αpX1q ‰ 0, so this expression vanishes if and only if dαpX2,X3q “
0. Now recall that X2,X3 is a basis of ξp, and observe that the restriction of pdαqp P
Λ2T ˚

p M to a bilinear form on ξp Ă TpM is a top-dimensional alternating form
on ξp, i.e. an element of Λ2ξ˚

p , which therefore vanishes if and only if it evaluates
to zero on the basis X2,X3, thus pα ^ dαqp “ 0 is now equivalent to the condition
pdαqp|ξp “ 0 P Λ2ξ˚

p .

(ii) For every pair of vector fields X,Y P XpMq with Xppq, Y ppq P ξp for all p P M ,
rX,Y s P XpMq also satisfies rX,Y sppq P ξp for all p P M .
Hint: Use our original definition of the exterior derivative, via C8-linearity.

Using the k “ 1 case of Proposition 8.6 in the notes, any 1-form α and vector fields
X,Y satisfy

dαpX,Y q “ LX pαpY qq ´ LY pαpXqq ´ αprX,Y sq. (1)

If X and Y both take values in ξ everywhere, then the first two terms on the right
hand side vanish, leaving only αprX,Y sq, which vanishes precisely at the points where
rX,Y s has its values in ξ. If that is true everywhere, it follows that dαpX,Y q vanishes
everywhere, and if this is assumed to be true for every pair of vector fields valued
in ξ, then it means pdαq|ξ ” 0, since one can always choose X and Y to form a basis
of ξp at any given point p. This means that the condition of part (b)(i) is satisfied,
and ξ is therefore integrable. Conversely, if the condition dα|ξ ” 0 is satisfied, then
the left hand side of (1) vanishes for all X,Y P XpMq with values in ξ, thus forcing
αprX,Y sq to vanish, which means rX,Y s takes values in ξ everywhere.

(c) Using Cartesian coordinates px, y, zq on M :“ R
3, suppose α “ fpxq dy ` gpxq dz for

smooth functions f, g : R Ñ R. Under what conditions on f and g is ξ integrable?
Show that if these conditions hold, then for every point p P R

3 there exists a 2-
dimensional submanifold Σ Ă R

3 such that p P Σ and TqΣ “ ξq for all q P Σ.

We can regard f and g as functions on R
3 whose partial derivatives in the y and z

directions vanish everywhere, thus df “ f 1pxq dx and dg “ g1pxq dx. We then compute
dα “ dpf dy ` g dzq “ df ^ dy ` dg ^ dz “ f 1 dx ^ dy ` g1 dx ^ dz, thus

α ^ dα “ pf dy ` g dzq ^
`

f 1 dx ^ dy ` g1 dx ^ dz
˘

“ ff 1 dy ^ dx ^ dy ` fg1 dy ^ dx ^ dz ` gf 1 dz ^ dx ^ dy ` gg1 dz ^ dx ^ dz

“ p´fg1 ` gf 1q dx ^ dy ^ dz,

where we have eliminated the two terms that contained wedge products of dy or dz with
themselves, and used permutations to rewrite dy ^ dx ^ dz “ ´dx ^ dy ^ dz and dz ^
dx ^ dy “ dx ^ dy ^ dz. This shows that α ^ dα vanishes if and only if the function
fpxqg1pxq ´ gpxqf 1pxq vanishes. I like to imagine x ÞÑ pfpxq, gpxqq as a path in R

2 and
fg1 ´ gf 1 as the determinant of a 2-by-2 matrix: its vanishing then tells us that for all x,
the vectors pfpxq, gpxqq and pf 1pxq, g1pxqq in R

2 are linearly dependent, which means that
the path pfpxq, gpxqq is confined to a single line through the origin. It cannot ever touch
the origin, since that would cause α to vanish somewhere, so the conclusion is that there
exists a constant nonzero vector pa, bq P R

2 and a nowhere-zero smooth function ϕ : R Ñ R

such that pfpxq, gpxqq “ ϕpxq ¨ pa, bq P R
2, and α can thus be written in the form

α “ ϕpxq pa dy ` b dzq .
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Recalling part (a), observe that the function ϕpxq does not affect the kernel of α at any
point, so if we just want to understand the 2-plane field ξ, we are now free to ignore ϕ

and write
ξp “ ker pa dy ` b dzq for all p P R

3.

The difference between this situation and the picture below is that since a and b are
constant, the 2-plane field we are considering here does not “twist”: in fact there are two
constant nonzero vector fields

V px, y, zq :“ b
B

By
´ a

B

Bz
and Zpx, y, zq :“

B

Bx

on R
3 whose span at every point p “ px, y, zq P R

3 is ξp. The flows of these vector fields
are easy to compute, and they commute with each other; if you now start at any given
point p P R

3 and follow the flows of both V and Z, you obtain a surface (more specifically
a plane) whose tangent space at each point is identical to ξ at that point. In other words,
the surface I’m describing is the image of

R
2

ãÑ R
3 : ps, tq ÞÑ ϕs

V ˝ ϕt
Zppq,

and more precisely, if p “ px0, y0, z0q P R
3, this surface is

Σ “
 

px0 ` s, y0 ` bt, z0 ´ atq
ˇ

ˇ s, t P R
(

Ă R
3.

Remark: The result of part (c) is a special case of the Frobenius integrability theorem,
which we will prove later in this course. In case you’re curious, the following picture gives
an example of what ξ Ă TR3 might look like if it is not integrable. Can you picture a
2-dimensional submanifold that is everywhere tangent to ξ? (I didn’t think so.)

x

y

z
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