Differentialgeometrie I
WiSe 2021-22

## Problem Set 7

To be discussed: 7-8.12.2021

## Problem 1

Prove: For each $k \geqslant 0$, a $k$-form $\omega \in \Omega^{k}(M)$ is closed if and only for every compact oriented $(k+1)$-dimensional submanifold $L \subset M$ with boundary, $\int_{\partial L} \omega=0$.

## Problem 2

Prove: On $S^{1}$, a 1-form $\lambda \in \Omega^{1}\left(S^{1}\right)$ is exact if and only if $\int_{S^{1}} \lambda=0$.
Hint: Try to construct a primitive $f: S^{1} \rightarrow \mathbb{R}$ by integrating $\lambda$ along paths.

## Problem 3

Suppose $\mathcal{O}$ is an open subset of either $\mathbb{H}^{n}$ or $\mathbb{R}^{n}$. We call $\mathcal{O}$ a star-shaped domain if for every $p \in \mathcal{O}$, it also contains the points $t p \in \mathbb{R}^{n}$ for all $t \in[0,1]$. It follows that $h(t, p):=t p$ defines a smooth homotopy $h:[0,1] \times \mathcal{O} \rightarrow \mathcal{O}$ between the identity and the constant map whose value is the origin, making $\mathcal{O}$ smoothly contractible. Use this homotopy to produce an explicit formula for a linear operator $P: \Omega^{k}(\mathcal{O}) \rightarrow \Omega^{k-1}(\mathcal{O})$ for each $k \geqslant 1$ satisfying

$$
\omega=P(d \omega)+d(P \omega)
$$

for all $\omega \in \Omega^{k}(\mathcal{O})$. In particular, whenever $\omega$ is a closed $k$-form, $P \omega$ is a primitive of $\omega$. Hint: Start with the chain homotopy that we constructed in lecture for proving the homotopy invariance of de Rham cohomology. As a sanity check, the answer to this problem can be found at the end of Lecture 13 in the notes, but try to find it yourself first.

## Problem 4

Show that the wedge product descends to an associative and graded-commutative product $\cup: H_{\mathrm{dR}}^{k}(M) \times H_{\mathrm{dR}}^{\ell}(M) \rightarrow H_{\mathrm{dR}}^{k+\ell}(M)$, defined by

$$
[\alpha] \cup[\beta]:=[\alpha \wedge \beta]
$$

This is called the cup product on de Rham cohomology.
Remark: There is similarly a cup product on singular cohomology, to which this one is isomorphic via de Rham's theorem. But this one is easier to define, and is thus often used in practice as a surrogate for the singular cup product.

## Problem 5

For this exercise, identify the $n$-torus $\mathbb{T}^{n}$ with the quotient $\mathbb{R}^{n} / \mathbb{Z}^{n}$ (recall from Problem Set $2 \# 1$ that there is a natural diffeomorphism). For any sufficiently small open set $\widetilde{\mathcal{U}} \subset \mathbb{R}^{n}$, the usual Cartesian coordinates $x^{1}, \ldots, x^{n}: \widetilde{\mathcal{U}} \rightarrow \mathbb{R}$ can be used to define a smooth chart $(\mathcal{U}, x)$ on $\mathbb{T}^{n}$ where

$$
\mathcal{U}:=\left\{[p] \in \mathbb{T}^{n} \mid p \in \tilde{\mathcal{U}}\right\}, \quad x([p]):=\left(x^{1}(p), \ldots, x^{n}(p)\right) \text { for } p \in \tilde{\mathcal{U}}
$$

(a) Show that the coordinate differentials $d x^{1}, \ldots, d x^{n} \in \Omega^{1}(\mathcal{U})$ arising from the chart $(\mathcal{U}, x)$ described above are independent of the choice of the set $\widetilde{\mathcal{U}} \subset \mathbb{R}^{n}$, i.e. the definitions of the coordinate differentials obtained from two different choices $\tilde{\mathcal{U}}_{1}, \tilde{\mathcal{U}}_{2} \subset$ $\mathbb{R}^{n}$ coincide on the region $\mathcal{U}_{1} \cap \mathcal{U}_{2} \subset \mathbb{T}^{n}$ where they overlap.
(b) As a consequence of part (a), the 1-forms $d x^{1}, \ldots, d x^{n} \in \Omega^{1}\left(\mathbb{T}^{n}\right)$ are well-defined on the entire torus, and they are obviously locally exact and therefore closed, but they might not actually be exact since none of the coordinates $x^{1}, \ldots, x^{n}$ admit smooth definitions globally on $\mathbb{T}^{n}$. Show in fact that for any constant vector $\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{R}^{n} \backslash\{0\}$, the 1-form

$$
\lambda:=a_{i} d x^{i} \in \Omega^{1}\left(\mathbb{T}^{n}\right)
$$

is closed but not exact.
Hint: You only need to find one smooth map $\gamma: S^{1} \rightarrow \mathbb{T}^{n}$ such that $\int_{S^{1}} \gamma^{*} \lambda \neq 0$.
(c) One can similarly produce closed $k$-forms $\omega \in \Omega^{k}\left(\mathbb{T}^{n}\right)$ for any $k \leqslant n$ by choosing constants $a_{i_{1} \ldots i_{k}} \in \mathbb{R}$ and writing

$$
\begin{equation*}
\omega=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \Omega^{k}\left(\mathbb{T}^{n}\right) . \tag{1}
\end{equation*}
$$

Show that for every nontrivial $k$-form of this type, one can find a cohomology class $[\alpha] \in H_{\mathrm{dR}}^{n-k}\left(\mathbb{T}^{n}\right)$ such that the cup product $[\omega] \cup[\alpha] \in H_{\mathrm{dR}}^{n}\left(\mathbb{T}^{n}\right)$ defined in Problem 4 is nontrivial, and deduce from this that $\omega$ is not exact.
Hint: Can you choose $\alpha \in \Omega^{n-k}\left(\mathbb{T}^{n}\right)$ so that $\omega \wedge \alpha$ is a volume form?
Remark: One can show that all cohomology classes in $H_{d R}^{k}\left(\mathbb{T}^{n}\right)$ are representable by $k$ forms with constant coefficients as in (11), thus $\operatorname{dim} H_{\mathrm{dR}}^{k}\left(\mathbb{T}^{n}\right)=\binom{n}{k}$.

## Problem 6

For $V$ an $n$-dimensional vector space, the main goal of this exercise is to show that for every $v \in V$, the operator $\iota_{v}: \Lambda^{*} V^{*} \rightarrow \Lambda^{*} V^{*}$ defined by $\iota_{v} \omega:=\omega(v, \cdot, \ldots, \cdot)$ satisfies the graded Leibniz rule

$$
\begin{equation*}
\iota_{v}(\alpha \wedge \beta)=\left(\iota_{v} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\iota_{v} \beta\right) \tag{2}
\end{equation*}
$$

for all $\alpha \in \Lambda^{k} V^{*}$ and $\beta \in \Lambda^{\ell} V^{*}$. The statement is trivial if $v=0$, so assume otherwise, in which case we may as well assume $v$ is the first element $e_{1}$ of a basis $e_{1}, \ldots, e_{n} \in V$, whose dual basis we can denote by $e_{*}^{1}, \ldots, e_{*}^{n} \in V^{*}=\Lambda^{1} V^{*}$.
(a) Prove that (2) holds whenever $\alpha$ and $\beta$ are both products of the form $\alpha=e_{*}^{i_{1}} \wedge \ldots \wedge e_{*}^{i_{k}}$ and $\beta=e_{*}^{j_{1}} \wedge \ldots \wedge e_{*}^{j_{\ell}}$ with $i_{1}<\ldots<i_{k}$ and $j_{1}<\ldots<j_{\ell}$.
Hint: Consider separately a short list of cases depending on whether each of $i_{1}$ and $j_{1}$ are 1 and whether the sets $\left\{i_{1}, \ldots, i_{k}\right\}$ and $\left\{j_{1}, \ldots, j_{\ell}\right\}$ are disjoint.
(b) Deduce via linearity that (2) holds always.
(c) Using (2), prove that for any manifold $M$ and vector field $X \in \mathfrak{X}(M)$, the operator $P_{X}:=d \circ \iota_{X}+\iota_{X} \circ d: \Omega^{*}(M) \rightarrow \Omega^{*}(M)$ satisfies the Leibniz rule

$$
P_{X}(\alpha \wedge \beta)=P_{X} \alpha \wedge \beta+\alpha \wedge P_{X} \beta
$$

This is one of the main steps in a proof of Cartan's formula $\mathcal{L}_{X} \omega=P_{X} \omega$.

## Problem 7

Prove that for any closed symplectic manifold $(M, \omega), H_{\mathrm{dR}}^{2}(M)$ is nontrivial.
Hint: What can you say about the $n$-fold cup product of $[\omega] \in H_{\mathrm{dR}}^{2}(M)$ with itself?

