# On Contact Topology, Symplectic Field Theory and the PDE That Unites Them



# Chris Wendl

## University College London

Slides available at:

http://www.homepages.ucl.ac.uk/~ucahcwe/publications.html#talks

#### How are the following related?

Problem 1 (dynamics):

If  $H(q_1, p_1, \ldots, q_n, p_n)$  is a time-independent Hamiltonian and  $H^{-1}(c)$  is convex, does

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$

have a periodic orbit in  $H^{-1}(c)$ ?

Problem 2 (topology):
Is a given closed manifold M the boundary of any compact manifold W?
How unique is W?

**Problem 3** (complex geometry / PDE): Given a Riemann surface  $\Sigma$  and complex manifold W, what is the space of holomorphic maps  $\Sigma \rightarrow W$ ? (Finite dimensional? Smooth? Compact?)

**Problem 4** (mathematical physics): *How trivial is my TQFT?*  **Theorem** (Rabinowitz-Weinstein '78). Every star-shaped hypersurface in  $\mathbb{R}^{2n}$  admits a periodic orbit.



**Definition.** A symplectic structure on a 2ndimensional manifold W is a system of local coordinate systems  $(q_1, p_1, \ldots, q_n, p_n)$  in which Hamilton's equations are invariant. It carries a natural volume form:

 $dp_1 dq_1 \dots dp_n dq_n$ .

 $\partial W$  is **convex** if it is transverse to a vector field Y that *dilates* the symplectic structure.

#### $M := \partial W$ convex $\rightsquigarrow$ contact structure

## $\xi \subset TM,$

a field of tangent hyperplanes that are "locally twisted" (*maximally nonintegrable*),



and transverse to the **Reeb** (i.e. Hamiltonian) vector field.

**Example:**  $T^3 := S^1 \times S^1 \times S^1$ 



= boundary of  $T^2 \times \mathbb{D} = D^*T^2 \subset T^*T^2$ .

## Some hard problems in contact topology

- 1. Classification of contact structures: given  $\xi_1, \xi_2$  on M, is there a diffeomorphism  $\varphi : M \to M$  mapping  $\xi_1$  to  $\xi_2$ ?
- Weinstein conjecture: Every Reeb vector field on every closed contact manifold has a periodic orbit?
- 3. Partial orders: say  $(M_-, \xi_-) \prec (M_+, \xi_+)$ if there is a (symplectic, exact or Stein) cobordism between them.



When is  $(M_-, \xi_-) \prec (M_+, \xi_+)$ ? When is  $\emptyset \prec (M, \xi)$ ? (Is it *fillable*?)

## Overtwisted vs. tight

**Theorem** (Eliashberg '89). If  $\xi_1$  and  $\xi_2$  are both overtwisted, then  $(M, \xi_1) \cong (M, \xi_2) \Leftrightarrow \xi_1$  and  $\xi_2$  are homotopic.

"Overtwisted contact structures are flexible."



**Theorem** (Gromov '85 and Eliashberg '89).  $\xi \text{ overtwisted} \Rightarrow (M, \xi) \text{ not fillable.}$ 

Non-overtwisted contact structures are called **"tight"**.

They are not fully understood.

Conjecture. Suppose  $(M,\xi) \xrightarrow{contact surgery} (M',\xi')$ . Then  $(M,\xi)$  tight  $\Rightarrow (M',\xi')$  tight.

Surgery  $\rightsquigarrow$  handle attaching cobordism:



 $\partial(([0,1] \times M) \cup (\mathbb{D} \times \mathbb{D})) = -M \sqcup M'$ 

6

**Recent results**:  $\exists$  "degrees of tightness".

Theorem (Latschev-W. 2010). There exists a numerical contact invariant  $AT(M,\xi) \in \mathbb{N} \cup \{0,\infty\}$  such that:

- $(M_-,\xi_-) \prec (M_+,\xi_+) \Rightarrow$  $\mathsf{AT}(M_{-},\xi_{-}) \leq \mathsf{AT}(M_{+},\xi_{+})$
- $AT(M,\xi) = 0 \Leftrightarrow$  $(M,\xi)$  is algebraically overtwisted
- $(M,\xi)$  fillable  $\Rightarrow AT(M,\xi) = \infty$
- $\forall k, \exists (M_k, \xi_k) \text{ with } \mathsf{AT}(M_k, \xi_k) = k.$

**Corollary**:  $(M_k, \xi_k) \xrightarrow{\text{contact surgery}} (M_\ell, \xi_\ell) \Rightarrow \ell \ge k.$ 



#### Symplectic Field Theory

(Eliashberg-Givental-Hofer '00 + Cieliebak-Latschev '09)

 $(M,\xi)$  with Reeb vector field  $\rightsquigarrow$  $\mathcal{P} := \{ \text{periodic Reeb orbits on } M \}.$ 

 $\mathcal{A} :=$  graded commutative algebra with unit and generators  $\{q_{\gamma}\}_{\gamma \in \mathcal{P}}$ .

 $\mathcal{W} := \{ \text{formal power series } F(q_{\gamma}, p_{\gamma}, \hbar) \} \text{ with,} \\ [p_{\gamma}, q_{\gamma'}] = \delta_{\gamma, \gamma'} \hbar. \\ F \in \mathcal{W}, \text{ substitute } p_{\gamma} := \hbar \frac{\partial}{\partial q_{\gamma}} \rightsquigarrow \text{ operator} \\ D_F : \mathcal{A}[[\hbar]] \to \mathcal{A}[[\hbar]] \\ \text{"Theorem": There exists } \mathcal{H} \in \mathcal{W} \text{ with} \\ \mathcal{H}^2 = 0 \text{ such that } D_{\mathcal{H}}(1) = 0 \text{ and} \\ H_*^{\mathsf{SFT}}(M, \xi) := H_*(\mathcal{A}[[\hbar]], D_{\mathcal{H}}) := \frac{\ker D_{\mathcal{H}}}{\operatorname{im } D_{\mathcal{H}}}$ 

#### is a contact invariant.

Symplectic cobordism  $(M_-, \xi_-) \prec (M_+, \xi_+)$  $\rightsquigarrow$  natural map

$$H_*^{\mathsf{SFT}}(M_+,\xi_+) \to H_*^{\mathsf{SFT}}(M_-,\xi_-)$$

preserving elements of  $\mathbb{R}[[\hbar]]$ .

## Example

If no periodic orbits, then  $H_*^{\mathsf{SFT}}(M,\xi) = \mathbb{R}[[\hbar]].$ 

**Definition** (Latschev-W.). We say  $(M,\xi)$  has **algebraic** *k*-torsion if  $[\hbar^k] = 0 \in H^{SFT}_*(M,\xi).$ 

 $\mathsf{AT}(M,\xi) := \sup\left\{k \mid [\hbar^{k-1}] \neq 0 \in H^{\mathsf{SFT}}_*(M,\xi)\right\}$ 

## Example

Overtwisted  $\Rightarrow$ 

all "interesting" contact invariants vanish:

 $H_*^{\mathsf{SFT}}(M,\xi) = \{0\} \Rightarrow [1] = 0 \Rightarrow \mathsf{AT}(M,\xi) = 0.$ 

**Theorem.** Algebraic k-torsion  $\Rightarrow$  not fillable.



## A beautiful idea (Witten '82 + Floer '88):

(X,g) Riemannian manifold,  $f : X \to \mathbb{R}$  generic Morse function. Then singular homology

$$H_*(X;\mathbb{Z}) \cong H_*\left(\mathbb{Z}^{\#\operatorname{Crit}(f)}, d_f\right),$$

where  $d_f$  counts rigid gradient flow lines,

$$\dot{x}(t) + \nabla f(x(t)) = 0.$$



SFT of  $(M, \xi = \ker \alpha)$ : " $\infty$ -dimensional Morse theory" for the contact action functional

$$\Phi: C^{\infty}(S^1, M) \to R: x \mapsto \int_{S^1} x^* \alpha,$$

with  $Crit(\Phi) = \{periodic \text{ Reeb orbits}\}.$ 

#### Gradient flow:

Consider 1-parameter families of loops  $\{u_s \in C^{\infty}(S^1, M)\}_{s \in \mathbb{R}}$  with

 $\partial_s u_s + \nabla \Phi(u_s) = 0.$ 

 $\rightsquigarrow$  cylinders  $u : \mathbb{R} \times S^1 \to \mathbb{R} \times M$  satisfying the nonlinear Cauchy-Riemann equation

$$\partial_s u + J(u) \,\partial_t u = 0$$

for an almost complex structure J on  $\mathbb{R} \times M$ .

For a symplectic cobordism W and Riemann surface  $\Sigma$ , consider *J*-holomorphic curves

$$u: \Sigma \setminus \{z_1, \ldots, z_n\} \to W$$

approaching Reeb orbits at the punctures.



The Cauchy-Riemann equation is **elliptic**:  $\|u\|_{W^{1,p}} \leq \|u\|_{L^{p}} + \|\partial_{s}u + i \partial_{t}u\|_{L^{p}}$  $\Rightarrow \text{ Spaces of holomorphic curves are (often)}$ 

- smooth finite-dimensional manifolds,
- compact up to *bubbling / breaking*.



## Definition of ${\mathcal H}$

 $\Gamma^\pm := (\gamma_1^\pm, \dots, \gamma_{k_\pm}^\pm)$  lists of Reeb orbits

 $\mathcal{M}_g(\Gamma^+, \Gamma^-) := \{ \text{ rigid } J\text{-holomorphic curves}$ in  $\mathbb{R} \times M$  with genus g, ends at  $\Gamma^{\pm} \} / parametrization$ 

$$\mathcal{H} := \sum_{g, \Gamma^+, \Gamma^-} \# \left( \mathcal{M}_g(\Gamma^+, \Gamma^-) / \mathbb{R} \right) \hbar^{g-1} q^{\Gamma^-} p^{\Gamma^+}$$



SFT compactness theorem:  $\overline{\mathcal{M}}_{g}(\Gamma^{+}, \Gamma^{-}) = \{J\text{-holomorphic buildings}\}$ 

 $\mathcal{H}^2$  counts the boundary of a 1-dimensional space  $\Rightarrow \mathcal{H}^2 = 0$ .

#### Example

Suppose  $\mathbb{R} \times M$  has exactly one rigid *J*-holomorphic curve, with genus 0, no negative ends, and positive ends at orbits  $\gamma_1, \ldots, \gamma_k$ .



Then

$$\mathcal{H} = \hbar^{-1} p_{\gamma_1} \dots p_{\gamma_k}.$$

Substituting  $p_{\gamma_i} = \hbar \frac{\partial}{\partial q_{\gamma_i}}$  gives

$$D_{\mathcal{H}}(q_{\gamma_1} \dots q_{\gamma_k}) = \hbar^{k-1}$$
$$\Rightarrow [\hbar^{k-1}] = 0 \in H_*^{\mathsf{SFT}}(M, \xi)$$

 $\Rightarrow \mathsf{AT}(M,\xi) \leq k-1.$ 

Why  $(M_2, \xi_2) \prec (M_1, \xi_1)$  is not true:



## Some open questions and partial answers

- 1. What geometric conditions correspond to  $AT(M,\xi) = k?$ 
  - Overtwistedness, Giroux torsion, planar torsion:
     C. Wendl, A hierarchy of local filling obstructions for contact 3-manifolds, Preprint 2010, arXiv:1009.2746.

#### 2. Interesting examples beyond dimension 3?

- Higher-dimensional overtwisted disks:
   K. Niederkrüger, *The plastikstufe—a generalization of the overtwisted disk to higher dimensions*, Algebr. Geom. Topol. 6 (2006), 2473-2508.
   F. Bourgeois, K. Niederkrüger, *PS-overtwisted contact manifolds are algebraically overtwisted*, in preparation.
- Higher-dimensional Giroux torsion:

P. Massot, K. Niederkrüger and C. Wendl, *Weak and strong fillability of higher dimensional contact mani-folds*, to appear in Invent. Math., Preprint 2011, arXiv:1111.6008.

- 3. Can contact structures with  $AT(M,\xi) \ge k$  be classified???
  - Overtwisted contact structures are flexible: Y. Eliashberg, *Classification of overtwisted contact structures on 3-manifolds*, Invent. Math. **98** (1989), 623-637.
  - Coarse classification—finitely many have AT(M, ξ) ≥ 2:
     V. Colin, E. Giroux and K. Honda, *Finitude homotopique et isotopique des structures de contact tendues*, Publ. Math. Inst. Hautes Études Sci. **109** (2009), no. 1, 245-293.

## Main reference

 Janko Latschev and Chris Wendl, Algebraic torsion in contact manifolds, Geom. Funct. Anal. 21 (2011), no. 5, 1144-1195, with an appendix by Michael Hutchings.

#### Acknowledgment

Contact structure illustrations by Patrick Massot: http://www.math.u-psud.fr/~pmassot/



These slides are available at:

http://www.homepages.ucl.ac.uk/~ucahcwe/publications.html#talks