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How are the following related?

Problem 1 (dynamics):

If H(q1, p1, . . . , qn, pn) is a time-independent

Hamiltonian and H−1(c) is convex, does

q̇j =
∂H

∂pj
, ṗj = −

∂H

∂qj

have a periodic orbit in H−1(c)?

Problem 2 (topology):

Is a given closed manifold M the boundary of

any compact manifold W?

How unique is W?

Problem 3 (complex geometry / PDE):

Given a Riemann surface Σ and complex man-

ifold W , what is the space of holomorphic

maps Σ → W?

(Finite dimensional? Smooth? Compact?)

Problem 4 (mathematical physics):

How trivial is my TQFT?
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Theorem (Rabinowitz-Weinstein ’78).

Every star-shaped hypersurface in R2n ad-

mits a periodic orbit.

Definition.A symplectic structure on a 2n-

dimensional manifold W is a system of lo-

cal coordinate systems (q1, p1, . . . , qn, pn) in

which Hamilton’s equations are invariant.

It carries a natural volume form:

dp1 dq1 . . . dpn dqn.

∂W is convex if it is transverse to a vector

field Y that dilates the symplectic structure.
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M := ∂W convex ; contact structure

ξ ⊂ TM,

a field of tangent hyperplanes that are

“locally twisted” (maximally nonintegrable),

and transverse to the Reeb (i.e. Hamilto-

nian) vector field.

Example: T3 := S1 × S1 × S1

= boundary of T2 × D = D∗T2 ⊂ T ∗T2.
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Some hard problems in contact topology

1. Classification of contact structures:

given ξ1, ξ2 on M , is there a diffeomor-

phism ϕ : M → M mapping ξ1 to ξ2?

2. Weinstein conjecture:

Every Reeb vector field on every closed

contact manifold has a periodic orbit?

3. Partial orders: say (M−, ξ−) ≺ (M+, ξ+)

if there is a (symplectic, exact or Stein)

cobordism between them.

(M+, ξ+)

(M−, ξ−)

-dimensional

When is (M−, ξ−) ≺ (M+, ξ+)?

When is ∅ ≺ (M, ξ)? (Is it fillable?)
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Overtwisted vs. tight

Theorem (Eliashberg ’89).
If ξ1 and ξ2 are both overtwisted, then
(M, ξ1)

∼= (M, ξ2) ⇔ ξ1 and ξ2 are homotopic.

“Overtwisted contact structures are flexible.”

1]×

Theorem (Gromov ’85 and Eliashberg ’89).
ξ overtwisted ⇒ (M, ξ) not fillable.

Non-overtwisted contact structures are called
“tight”.

They are not fully understood.
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Conjecture.

Suppose (M, ξ)
contact surgery
−−−−−−−−−−−→ (M ′, ξ′).

Then (M, ξ) tight ⇒ (M ′, ξ′) tight.

Surgery ; handle attaching cobordism:

4-dimensional
2-handle

D× D

[0,1]×M

M

M ′

∂(([0,1]×M) ∪ (D× D)) = −M ⊔M ′
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Recent results: ∃ “degrees of tightness”.

Theorem (Latschev-W. 2010).

There exists a numerical contact invariant

AT(M, ξ) ∈ N ∪ {0,∞} such that:

• (M−, ξ−) ≺ (M+, ξ+) ⇒

AT(M−, ξ−) ≤ AT(M+, ξ+)

• AT(M, ξ) = 0 ⇔

(M, ξ) is algebraically overtwisted

• (M, ξ) fillable ⇒ AT(M, ξ) = ∞

• ∀k, ∃(Mk, ξk) with AT(Mk, ξk) = k.

Corollary:

(Mk, ξk)
contact surgery
−−−−−−−−−−−→ (Mℓ, ξℓ) ⇒ ℓ ≥ k.

!

S1×

S1×

(M1, ξ1)

(M2, ξ2)
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Symplectic Field Theory

(Eliashberg-Givental-Hofer ’00 + Cieliebak-Latschev ’09)

(M, ξ) with Reeb vector field ;

P := {periodic Reeb orbits on M}.

A := graded commutative algebra with unit

and generators {qγ}γ∈P.

W := {formal power series F(qγ, pγ, ~)} with,

[pγ, qγ′] = δγ,γ′~.

F ∈ W, substitute pγ := ~
∂

∂qγ
; operator

DF : A[[~]] → A[[~]]

“Theorem”: There exists H ∈ W with

H2 = 0 such that DH(1) = 0 and

HSFT
∗ (M, ξ) := H∗(A[[~]], DH) :=

kerDH

imDH

is a contact invariant.

Symplectic cobordism (M−, ξ−) ≺ (M+, ξ+)

; natural map

HSFT
∗ (M+, ξ+) → HSFT

∗ (M−, ξ−)

preserving elements of R[[~]].
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Example

If no periodic orbits, then HSFT
∗ (M, ξ) = R[[~]].

Definition (Latschev-W.).

We say (M, ξ) has algebraic k-torsion if

[~k] = 0 ∈ HSFT
∗ (M, ξ).

AT(M, ξ) := sup
{

k
∣

∣

∣ [~k−1] 6= 0 ∈ HSFT
∗ (M, ξ)

}

Example

Overtwisted ⇒

all “interesting” contact invariants vanish:

HSFT
∗ (M, ξ) = {0} ⇒ [1] = 0 ⇒ AT(M, ξ) = 0.

Theorem.Algebraic k-torsion ⇒ not fillable.

!

S1× [~] = 0 ∈ HSFT
∗ (M, ξ)

[~] 6= 0 ∈ HSFT
∗ (∅)

1
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A beautiful idea (Witten ’82 + Floer ’88):

(X, g) Riemannian manifold, f : X → R generic

Morse function. Then singular homology

H∗(X;Z) ∼= H∗

(

Z
#Crit(f), df

)

,

where df counts rigid gradient flow lines,

ẋ(t) +∇f(x(t)) = 0.

index 0

index 1
index 1

index 2

SFT of (M, ξ = kerα):

“∞-dimensional Morse theory” for the

contact action functional

Φ : C∞(S1,M) → R : x 7→
∫

S1
x∗α,

with Crit(Φ) = {periodic Reeb orbits}.
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Gradient flow:

Consider 1-parameter families of loops

{us ∈ C∞(S1,M)}s∈R with

∂sus +∇Φ(us) = 0.

; cylinders u : R×S1 → R×M satisfying the

nonlinear Cauchy-Riemann equation

∂su+ J(u) ∂tu = 0

for an almost complex structure J on R×M .

For a symplectic cobordism W and Riemann

surface Σ, consider J-holomorphic curves

u : Σ \ {z1, . . . , zn} → W

approaching Reeb orbits at the punctures.

AT
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The Cauchy-Riemann equation is elliptic:

‖u‖W1,p ≤ ‖u‖Lp + ‖∂su+ i ∂tu‖Lp

⇒ Spaces of holomorphic curves are (often)

• smooth finite-dimensional manifolds,

• compact up to bubbling / breaking.

AT

W

R×M−

R×M−

R×M−

R×M+
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Definition of H

Γ± := (γ±1 , . . . , γ±k±
) lists of Reeb orbits

Mg(Γ+,Γ−) := { rigid J-holomorphic curves

in R×M with genus g, ends at Γ±}
/

parametrization

H :=
∑

g,Γ+,Γ−

#
(

Mg(Γ
+,Γ−)/R

)

~
g−1qΓ

−
pΓ

+

[0

R×M

R×M

Γ+

Γ−

Γ0

SFT compactness theorem:

Mg(Γ+,Γ−) = {J-holomorphic buildings}

H2 counts the boundary of a 1-dimensional

space ⇒ H2 = 0.
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Example

Suppose R×M has exactly one rigid J-holomorphic

curve, with genus 0, no negative ends, and

positive ends at orbits γ1, . . . , γk.

R×M

· · ·

· · ·

γ1 γ2 γk

Then

H = ~
−1pγ1 . . . pγk.

Substituting pγi = ~
∂

∂qγi
gives

DH
(

qγ1 . . . qγk
)

= ~
k−1

⇒ [~k−1] = 0 ∈ HSFT
∗ (M, ξ)

⇒ AT(M, ξ) ≤ k − 1.
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Why (M2, ξ2) ≺ (M1, ξ1) is not true:

!

S1×

S1×

(M1, ξ1)

(M2, ξ2)

D D
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Some open questions and partial answers

1. What geometric conditions correspond to

AT(M, ξ) = k?

• Overtwistedness, Giroux torsion, planar torsion:
C. Wendl, A hierarchy of local filling obstructions for
contact 3-manifolds, Preprint 2010, arXiv:1009.2746.

2. Interesting examples beyond dimension 3?

• Higher-dimensional overtwisted disks:
K. Niederkrüger, The plastikstufe—a generalization of
the overtwisted disk to higher dimensions, Algebr. Geom.
Topol. 6 (2006), 2473-2508.
F. Bourgeois, K. Niederkrüger, PS-overtwisted contact
manifolds are algebraically overtwisted, in preparation.

• Higher-dimensional Giroux torsion:
P. Massot, K. Niederkrüger and C. Wendl, Weak and
strong fillability of higher dimensional contact mani-
folds, to appear in Invent. Math., Preprint 2011,
arXiv:1111.6008.

3. Can contact structures with AT(M, ξ) ≥
k be classified???

• Overtwisted contact structures are flexible:
Y. Eliashberg, Classification of overtwisted contact struc-
tures on 3-manifolds, Invent. Math. 98 (1989), 623-
637.

• Coarse classification—finitely many have AT(M, ξ) ≥ 2:
V. Colin, E. Giroux and K. Honda, Finitude homo-
topique et isotopique des structures de contact ten-
dues, Publ. Math. Inst. Hautes Études Sci. 109 (2009),
no. 1, 245-293.
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