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Abstract

Let o be the ring of integers in a finite extension field of Qp, let k be its residue
field. Let G be a split reductive group over Qp, let H(G, I0) be its pro-p-Iwahori
Hecke o-algebra. In [3] we introduced a general principle how to assign to a certain
additionally chosen datum (C(•), ϕ, τ) an exact functor M 7→ D(Θ∗VM ) from finite
length H(G, I0)-modules to (φr, Γ)-modules. In the present paper we concretely
work out such data (C(•), ϕ, τ) for the classical matrix groups. We show that the cor-
responding functor identifies the set of (quasi) supersingular H(G, I0)⊗o k-modules
with the set of (φr, Γ)-modules satisfying a certain symmetry condition.
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1 Introduction

Let o be the ring of integers in a finite extension field of Qp, let k be its residue field.

Let G be a split reductive group over Qp, let T be a maximal split torus in G, let
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I0 be a pro-p-Iwahori subgroup fixing a chamber C in the T -stable apartment of the

semi simple Bruhat Tits building of G. Let H(G, I0) be the pro-p-Iwahori Hecke o-

algebra. Let Modfin(H(G, I0)) denote the category of H(G, I0)-modules of finite o-length.

From a certain additional datum (C(•), ϕ, τ) we constructed in [3] an exact functor M 7→
D(Θ∗VM) from Modfin(H(G, I0)) to the category of étale (φr, Γ)-modules (with r ∈ N
depending on ϕ). For G = GL2(Qp), when precomposed with the functor of taking I0-

invariants, this yields the functor from smooth o-torsion representations of GL2(Qp) (or

at least from those generated by their I0-invariants) to étale (φ, Γ)-modules which plays

a crucial role in Colmez’ construction of a p-adic local Langlands correspondence for

GL2(Qp). In [3] we studied in detail the functor M 7→ D(Θ∗VM) when G = GLd+1(Qp)

for d ≥ 1. The purpose of the present paper is to explain how the general construction of

[3] can be installed concretely for other G’s.

Recall that C(•) = (C = C(0), C(1), C(2), . . .) is a minimal gallery, starting at C, in the

T -stable apartment, that ϕ ∈ N(T ) is ’period’ of C(•) and that τ is a homomorphism

from Z×
p to T , compatible with ϕ in a suitable sense. The above r ∈ N is just the length

of ϕ. It turns out that τ must be a co minuscule fundamental coweight (at least if the

underlying root system is simple). Conversely, any co minuscule fundamental coweight τ

can be included into a datum (C(•), ϕ, τ), in such a way that some power of τ is a power

of ϕ.

While for G = GLd+1(Qp) we gave explicit choices of (C(•), ϕ, τ) with r = 1 in [3]

(in fact there are essentially just two such choices), we did not discuss the existence of

(C(•), ϕ, τ) for other G’s. This discussion is the main contribution of the present paper.

More specifically, we work out ’priviledged’ choices (C(•), ϕ, τ) for the classical matrix

groups (of type B, C, D, and also A again), as well as for G of type E6, E7. We mostly

consider G with connected center Z. Our choices of (C(•), ϕ, τ) are such that ϕ ∈ N(T )

projects modulo ZT0 (where T0 denotes the maximal bounded subgroup of T ) to the affine

Weyl group (viewed as a subgroup of N(T )/ZT0). In particular, up to modifications by

elements of Z these ϕ can also be included into data (C(•), ϕ, τ) for the other G’s with the

same underlying root system, not necessarily with connected center. We indicate these

modifications along the way.

Notice that the ϕ ∈ N(T ) considered in [3] for G = GLd+1(Qp) does not project to the

affine Weyl group, only its (d + 1)-st power, as considered here, has this property. But

since the discussion is essentially the same, our treatment of the case A here is very brief.

As an application, in either case we work out the behaviour of the functor M 7→
D(Θ∗VM) on those H(G, I0)k = H(G, I0)⊗ok-modules which we call ’quasi supersingular’.

Roughly speaking, these are induced from characters of the pro-p-Iwahori Hecke algebra of

the corresponding simply connected group. At least conjecturally (i.e. extrapolating one
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of the main results from [6] from G = GLd+1 to arbitrary G’s), the set of quasi supersingu-

lar H(G, I0)k-modules contains the set of all irreducible supersingular H(G, I0)k-modules

(and the very few quasi supersingular H(G, I0)k-modules which are not irreducible super-

singular are easily identified). We show that our functor induces a bijection between the

set of (isomorphism classes of) quasi supersingular H(G, I0)k-modules and the set of (iso-

morphism classes of) certain ’symmetric’ étale (φr, Γ)-modules over kE = k((t)). These

are defined as direct sums of one dimensional étale (φr, Γ)-modules which satisfy certain

symmetry conditions (depending on the root system underlying G). Their kE -dimension

is the k-dimension of the corresponding quasi supersingular H(G, I0)k-module.

Of course, the potential interest in étale (φr, Γ)-modules lies in their relation with

GalQp-representations. For any r ∈ N there is an exact functor from the category of

étale (φr, Γ)-modules to the category of étale (φ, Γ)-modules (it multiplies the rank by

the factor r), and by means of Fontaine’s functor, the latter one is equivalent with the

category of GalQp-representations.

In [3] we also explained that a datum (C(•), ϕ) alone, i.e. without a τ as above, can be

used to define an exact functor M 7→ D(Θ∗VM) from Modfin(H(G, I0)) to the category of

étale (φr, Γ0)-modules, where Γ0 denotes the maximal pro-p-subgroup of Γ ∼= Z×
p . Such

data (C(•), ϕ) are not tied to co minuscule coweights and exist in abundance. One may

ask for such (C(•), ϕ) with small length r of ϕ. Without further discussing them we give

such (C(•), ϕ) with r equal to the semisimple rank of G, for G of type C, B and D.

The outline is as follows. In section 2 we explain the functor from étale (φr, Γ)-modules

to étale (φ, Γ)-modules, and we introduce the ’symmetric’ étale (φr, Γ)-modules mentioned

above, for each of the root systems C, B, D and A. In section 3, Lemma 3.1, we discuss

the relation between the data (C(•), ϕ, τ) and co minuscule fundamental coweights. Our

discussions of classical matrix groups G in section 4 are just concrete incarnations of

Lemma 3.1, although in neither of these cases there is a need to make formal reference

to Lemma 3.1. On the other hand, in our discussion of the cases E6 and E7 in section 5

we do invoke Lemma 3.1. We tried to synchronize our discussions of the various matrix

groups. As a consequence, arguments repeat themselves, and we do not write them

out again and again. In subsection 5.3 we consider the groups G with underlying root

systems G2, F4 or E8. As these do not admit (co)minuscule (co)weights, there are no data

(C(•), ϕ, τ) available as needed for a functor producing (φr, Γ)-modules. We thus discuss

the question if for a suitable choice of (C(•), ϕ) the étale (φr, Γ0)-modules in the image of

the corresponding functor in fact extend to (φr, Γ)-modules. In the appendix we record

calculations relevant for the cases E6 and E7, carried out with the help of the computer

algebra system sage.

Acknowledgments: I would like to thank Laurent Berger for a helpful discussion related
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to this work.

2 (φr, Γ)-modules

We often regard elements of F×
p as elements of Z×

p by means of the Teichmüller lifting. In

SL2(Zp) we define the subgroups

Γ =

(
Z×

p 0

0 1

)
, Γ0 =

(
1 + pZp 0

0 1

)
, N0 =

(
1 Zp

0 1

)
and the elements

φ =

(
p 0

0 1

)
, ν =

(
1 1

0 1

)
, h(x) =

(
x 0

0 x−1

)
, γ(x) =

(
x 0

0 1

)
where x ∈ Z×

p .

Let O+
E = o[[N0]] denote the completed group ring of N0 over o. Let OE denote the p-

adic completion of the localization of O+
E with respect to the complement of πKO+

E , where

πK ∈ o is a uniformizer. In the completed group ring k+
E = k[[N0]] we put t = [ν]− 1. Let

kE = Frac(k+
E ) = O+

E ⊗o k. For definitions and notational conventions concerning étale φr

and étale (φr, Γ)-modules we refer to [3].

Let r ∈ N. Let D = (D, φr
D) be an étale φr-module over OE . For 0 ≤ i ≤ r − 1 let

D(i) = D be a copy of D. For 1 ≤ i ≤ r − 1 define φ
eD : D(i) → D(i−1) to be the identity

map on D, and define φ
eD : D(0) → D(r−1) to be the structure map φr

D on D. Together

we obtain a Zp-linear endomorphism φ
eD on

D̃ =
r−1⊕
i=0

D(i).

Define an OE -action on D̃ by the formula

x · ((di)0≤i≤r−1) = (φi
OE

(x)di)0≤i≤r−1.(1)

Lemma 2.1. The endomorphism φ
eD of D̃ is semilinear with respect to the OE-action

(1), hence it defines on D̃ the structure of an étale φ-module over OE .

Proof:

φ
eD(x · ((di)i)) = φ

eD((φi
OE

(x)di)i)

= ((φi
OE

(x)di+1)0≤i≤r−2, (φ
r
D(x · d0))r−1)

= ((φi
OE

(x)di+1)0≤i≤r−2, (φ
r
OE

(x)φr
D(d0))r−1)

= φOE (x)((di+1)0≤i≤r−2, (φ
r
D(d0))r−1)

= φOE (x)φ
eD((di)i).
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Let Γ′ be an open subgroup of Γ, let D be an étale (φr, Γ′)-module over OE . Define

an action of Γ′ on D̃ by

γ · ((di)0≤i≤r−1) = (γ · di)0≤i≤r−1.

Lemma 2.2. The Γ′-action on D̃ commutes with φ
eD and is semilinear with respect to

the OE-action (1), hence we obtain on D̃ the structure of an étale (φ, Γ′)-module over

OE . We thus obtain an exact functor from the category of étale (φr, Γ′)-modules to the

category of étale (φ, Γ′)-modules over OE .

Proof: This is immediate from the respective properties of the Γ′-action on D. ¤

Lemma 2.3. (a) Let D be a one-dimensional étale (φr, Γ)-module over kE . There exists

a basis element g for D, uniquely determined integers 0 ≤ s(D) ≤ p− 2 and 1 ≤ n(D) ≤
pr − 1 and a uniquely determined scalar ξ(D) ∈ k× such that

φrg = ξ(D)tn(D)+1−pr

g

γ(x)g − xs(D)g ∈ t · k+
E · g

for all x ∈ Z×
p . Thus, one may define 0 ≤ ki(D) ≤ p − 1 by n(D) =

∑r−1
i=0 ki(D)pi. One

has n ≡ 0 modulo (p − 1).

(b) For any given integers 0 ≤ s ≤ p − 2 and 1 ≤ n ≤ pr − 1 with n ≡ 0 modulo

(p − 1) and any scalar ξ ∈ k× there is a uniquely determined (up to isomorphism) one-

dimensional étale (φr, Γ)-module D over kE with s = s(D) and n = n(D) and ξ = ξ(D).

Proof: (a) Begin with an arbitrary basis element g0 for D; then φrg0 = Fg0 for some

unit F ∈ k((t)) = kE . After multiplying g0 with a suitable power of t we may assume

F = ξtm(1 + tn0F0) for some 0 ≥ m ≥ 2 − pr, some ξ ∈ k×, some n0 > 0, and some

F0 ∈ k[[t]] (use tp
r
φr = φrt). For g1 = (1 + tn0F0)g0 we then get φrg1 = ξtm(1 + tn1F1)g1

for some n1 > n0 > 0 and some F1 ∈ k[[t]]. We may continue in this way; by completeness

we get g = g∞ ∈ D such that φrg = ξtmg. It is clear that ξ(D) = ξ and n(D) = pr−1+m

are well defined. Next, to see that there is some s(D) as required we only need to see

that γ(x)g = Fxg for some unit Fx ∈ k[[t]]. But this follows from the fact that γ(x)p−1 is

topologically nilpotent (and acts by an automorphism on D). It follows from Lemma 6.3

in [3] that n(D) ≡ 0 modulo p − 1.

(b) Put D = k[[t]] = k+
E and D∗ = Homct

k (k+
E , k) and define ℓ0 ∈ D∗ by ℓ0(

∑
i≥0 ait

i) =

a0. Endow D∗ with an action of k+
E by putting (α · ℓ)(x) = ℓ(α ·x) for α ∈ k+

E , ℓ ∈ D∗ and
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x ∈ D. We claim that this action uniquely extends to an action by k+
E [φr, Γ] satisfying

tnφrℓ0 = ξ−1ℓ0(2)

γ(x)ℓ0 = x−sℓ0 for all x ∈ Z×
p .(3)

Indeed, as tp
r
φr = φrt, formula (2) defines a unique extension to k+

E [φr]. Next, ℓ0 then

generates D∗ as a k+
E [φr]-module, and this shows that an extension to k+

E [φr, Γ] satisfying

formula (3) must be unique. To see that it does indeed exist, we check the compatibility

of formulae (2) and (3):

γ(x)tnφrℓ0
(i)
= xntnγ(x)φrℓ0 = xn−stnφrℓ0 = ξ−1xn−sℓ0

(ii)
= γ(x)ξ−1ℓ0.

Here (i) follows from γ(x)tnγ(x)−1−xntn ∈ tn+1k+
E (see [3], proof of Lemma 6.3), whereas

(ii) follows from our hypothesis n ≡ 0 modulo (p−1). Now passing to the dual D ∼= (D∗)∗

of D∗ yields a non degenerate (ψr, Γ)-module over k+
E with an associated étale (φr, Γ)-

module D over kE with s = s(D) and n = n(D) and ξ = ξ(D); this is explained in [3]

Lemma 6.4. This dualization argument also proves the uniqueness of D. ¤

Definition: We say that an étale (φr, Γ)-module D over kE is C-symmetric if it admits

a direct sum decomposition D = D1⊕D2 with one-dimensional étale (φr, Γ)-modules D1,

D2 satisfying the following conditions (1), (2C) and (3C):

(1) ki(D1) = kr−1−i(D2) for all 0 ≤ i ≤ r − 1

(2C) ξ(D1) = ξ(D2)

(3C) s(D2) − s(D1) ≡
∑r−1

i=0 iki(D1) modulo (p − 1)

Definition: We say that an étale (φr, Γ)-module D over kE is B-symmetric if r is odd

and if D admits a direct sum decomposition D = D1 ⊕ D2 with one-dimensional étale

(φr, Γ)-modules D1, D2 satisfying the following conditions (1), (2B) and (3B):

(1) ki(D1) = kr−1−i(D2) for all 0 ≤ i ≤ r − 1

(2B) For both D = D1 and D = D2 we have ξ(D) =
∏r−1

i=0 (ki(D)!)−1 and ki(D) =

kr−1−i(D) for all 1 ≤ i ≤ r+1
2

(3B) s(D2) − s(D1) ≡ k0(D1) − kr−1(D1) modulo (p − 1)

Lemma 2.4. The conjunction of the conditions (1), (2C) and (3C) (resp. (1), (2B) and

(3B)) is symmetric in D1 and D2.

Proof: That each one of the conditions (1), (2C) and (2B) is symmetric even indi-

vidually is obvious. Now n(D) ≡ 0 modulo p− 1 implies
∑r−1

i=0 ki(D1) ≡ 0 modulo p − 1.

Therefore s(D2) − s(D1) ≡
∑r−1

i=0 iki(D1) and ki(D1) = kr−1−i(D2) for all i (condition

(1)) together imply s(D1) − s(D2) ≡
∑r−1

i=0 iki(D2). Thus condition (3C) is symmetric,
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assuming condition (1). Similarly, condition (3B) is symmetric, assuming condition (1). ¤

Definition: (i) Let S̃C(r) denote the set of triples (n, s, ξ) with integers 1 ≤ n ≤ pr−1

and 0 ≤ s ≤ p− 2 and scalars ξ ∈ k× such that n ≡ 0 modulo (p− 1). Let SC(r) denote

the quotient of S̃C(r) by the involution

(
r−1∑
i=0

kip
i, s, ξ) 7→ (

r−1∑
i=0

kr−i−1p
i, s +

r−1∑
i=0

iki, ξ).

(Here and in the following, in the second component we mean the representative modulo

p − 1 belonging to [0, p − 2].)

(ii) Let r be odd and let S̃B(r) denote the set of pairs (n, s) with integers 1 ≤ n =∑r−1
i=0 kip

i ≤ pr − 1 and 0 ≤ s ≤ p − 2 such that n ≡ 0 modulo (p − 1) and such that

ki = kr−1−i for all 1 ≤ i ≤ r+1
2

. Let SB(r) denote the quotient of S̃B(r) by the involution

(
r−1∑
i=0

kip
i, s) 7→ (

r−1∑
i=0

kr−i−1p
i, s + k0 − kr−1).

Lemma 2.5. (i) Sending D = D1 ⊕ D2 to (n(D1), s(D1), ξ(D1)) induces a bijection

between the set of isomorphism classes of C-symmetric étale (φr, Γ)-modules and SC(r).

(ii) Sending D = D1 ⊕ D2 to (n(D1), s(D1)) induces a bijection between the set of

isomorphism classes of B-symmetric étale (φr, Γ)-modules and SB(r).

Proof: This follows from Lemma 2.3. ¤

Definition: Let r be even. Let S̃D(r) denote the set of triples (n, s, ξ) with integers

1 ≤ n =
∑r−1

i=0 kip
i ≤ pr − 1 and 0 ≤ s ≤ p − 2 and scalars ξ ∈ k× such that n ≡ 0

modulo (p − 1) and such that ki = ki+ r
2

for all 1 ≤ i ≤ r
2
− 2. We consider the following

permutations ι0 and ι1 of S̃D(r). The value of ι0 at (
∑r−1

i=0 kip
i, s, ξ) is

(k r
2

+

r
2
−2∑

i=1

kip
i + kr−1p

r
2
−1 + k0p

r
2 +

r−2∑
i= r

2
+1

kip
i + k r

2
−1p

r−1, s +

r
2
−1∑

i=0

ki, ξ).

The value of ι1 at (
∑r−1

i=0 kip
i, s, ξ) is

(
r−1∑
i=1

kr−i−1p
i, s +

r − 2

4
(k r

2
+ k0) +

r
2
−1∑

i=2

(i − 1)k r
2
−i, ξ)

if r is odd, whereas if r is even the value is

(k r
2
−1+

r
2
−2∑

i=1

kr−i−1p
i+k r

2
p

r
2
−1+kr−1p

r
2 +

r−2∑
i= r

2
+1

kr−i−1p
i+k0p

r−1, s+(
r

4
−1)k r

2
+

r

4
k0+

r
2
−1∑

i=2

(i−1)k r
2
−ip

i, ξ).
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It is straightforward to check that ι20 = id and ι0ι1 = ι1ι0, and moreover that ι21 = id if r is

odd, but ι21 = ι0 if r is even. In either case, the subgroup ⟨ι0, ι1⟩ of Aut(S̃D(r)) generated

by ι0 and ι1 is commutative and contains 4 elements. We let SD(r) denote the quotient

of S̃D(r) by the action of ⟨ι0, ι1⟩.

Definition: Let r be even. We say that an étale (φr, Γ)-module D over kE is D-

symmetric if it admits a direct sum decomposition D = D11 ⊕D12 ⊕D21 ⊕D22 with one-

dimensional étale (φr, Γ)-modules D11, D12, D21, D22 satisfying the following conditions:

(1) For all 1 ≤ i ≤ r
2
− 2 and all 1 ≤ s, t ≤ 2 we have ki(Dst) = k r

2
+i(Dst)

(2) For all 1 ≤ i ≤ r
2
− 2 we have ki(D11) = ki(D12) and ki(D21) = ki(D22)

(3)

k0(D11) = k r
2
(D12), k r

2
(D11) = k0(D12), k r

2
−1(D11) = kr−1(D12), kr−1(D11) = k r

2
−1(D12)

(4)

ki(D11) = kr−i−1(D21) and ki(D12) = kr−i−1(D22)

if i ∈ [0, r − 1] and r
2

is odd, or if i ∈ [1, r
2
− 2] ∪ [ r

2
+ 1, r − 2] and r

2
is even. Moreover, if

r
2

is even then

k0(D11) = kr−1(D21), k r
2
−1(D11) = k0(D21), k r

2
(D11) = k r

2
−1(D21), kr−1(D11) = k r

2
(D21)

(5) ξ(D11) = ξ(D12) = ξ(D21) = ξ(D22)

(6) Modulo (p − 1) we have

s(D12) − s(D11) ≡
r
2
−1∑

i=0

ki(D11)

s(D22) − s(D21) ≡

{ ∑ r
2
−1

i=0 ki(D11) : r
2

is odd

k r
2
(D11) − k0(D11) +

∑ r
2
−1

i=0 ki(D11) : r
2

is even

s(D21) − s(D11) ≡

{
r−2
4

(k r
2
(D11) + k0(D11)) +

∑ r
2
−1

i=2 (i − 1)k r
2
−i(D11) : r

2
is odd

( r
4
− 1)k r

2
(D11) + r

4
k0(D11) +

∑ r
2
−1

i=2 (i − 1)k r
2
−i(D11) : r

2
is even

Lemma 2.6. Sending D = D11 ⊕ D12 ⊕ D21 ⊕ D22 to (n(D11), s(D11), ξ(D11)) induces

a bijection between the set of isomorphism classes of D-symmetric étale (φr, Γ)-modules

and SD(r).

Proof: Again we use Lemma 2.3. For a one-dimensional étale (φr, Γ)-module D over

kE put α(D) = (n(D), s(D), ξ(D)); this is an element of S̃D(r). If D = D11⊕D12⊕D21⊕
D22 is D-symmetric as above, then it is straighforward to check ι0(α(D11)) = α(D12),

ι0(α(D21)) = α(D22), ι1(α(D11)) = α(D21) and ι0(α(D12)) = α(D22). It follows that the
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above map is well defined and bijective. ¤

Definition: We say that an étale (φr, Γ)-module D over kE is A-symmetric if D admits

a direct sum decomposition D = ⊕r−1
i=0Di with one-dimensional étale (φr, Γ)-modules Di

satisfying the following conditions for all i, j (where we understand the sub index in k?

as the unique representative in [0, r − 1] modulo r):

ki(Dj) = ki−j(D0), ξ(Dj) = ξ(D0), s(D0)− s(Dj) ≡
j∑

i=1

k−i(D0) modulo (p− 1)

3 Semiinfinite chamber galleries and functor D

3.1 Power multiplicative elements in the extended affine Weyl

group

Let G be the group of Qp-rational points of a Qp-split connected reductive group over Qp.

Fix a maximal Qp-split torus T in G, let N(T ) be its normalizer in G. Let Φ denote the

set of roots of T . For α ∈ Φ let Nα be the corresponding root subgroup in G. Choose a

positive system Φ+ in Φ, let ∆ ⊂ Φ+ be the set of simple roots. Let N =
∏

α∈Φ+ Nα.

Let X denote the semi simple Bruhat-Tits building of G, let A denote its apartment

corresponding to T . Our notational and terminological convention is that the facets of

A or X are closed in X (i.e. contain all their faces (the lower dimensional facets at their

boundary)). A chamber is a facet of codimension 0. For a chamber D in A let ID be the

Iwahori subgroup in G fixing D.

Fix a special vertex x0 in A, let K be the corresponding hyperspecial maximal com-

pact open subgroup in G. Let T0 = T ∩ K and N0 = N ∩ K. We have the isomorphism

T/T0
∼= X∗(T ) sending ξ ∈ X∗(T ) to the class of ξ(p) ∈ T . Let I ⊂ K be the Iwahori

subgroup determined by Φ+. [If red : K → K denotes the reduction map onto the reduc-

tive (over Fp) quotient K of K, then I = red−1(red(T0N0)).] Let C ⊂ A be the chamber

fixed by I.

We are interested in semiinfinite chamber galleries

C(0), C(1), C(2), C(3), . . .(4)

in A such that C = C(0) (and thus I = IC(0)) and such that, setting

N
(i)
0 = IC(i) ∩ N =

∏
α∈Φ+

IC(i) ∩ Nα,
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we have N0 = N
(0)
0 and

N
(0)
0 ⊃ N

(1)
0 ⊃ N

(2)
0 ⊃ N

(3)
0 ⊃ . . . with [N

(i)
0 : N

(i+1)
0 ] = p for all i ≥ 0.(5)

In this situation there is a unique sequence α(0), α(1), α(2), α(3), . . . in Φ+ such that, setting

e[i, α] = |{0 ≤ j ≤ i − 1 |α = α(j)}|

for i ≥ 0 and α ∈ Φ+, we have

N
(i)
0 =

∏
α∈Φ+

(N0 ∩ Nα)pe[i,α]

.

Geometrically, C(i+1) and C(i) share a common facet of codimension 1 contained in a wall

which belongs to the translation class of walls corresponding to α(i).

Suppose that the center Z of G is connected. Then G/Z is a semisimple group of

adjoint type with maximal torus Ť = T/Z. Let Ť0 = T0/(T0 ∩ Z) ⊂ Ť . The extended

affine Weyl group Ŵ = N(Ť )/Ť0 can be identified with the semidirect product between the

finite Weyl group W = N(Ť )/Ť = N(T )/T and X∗(Ť ). We identify A = X∗(Ť )⊗R such

that x0 ∈ A corresponds to the origin in the R-vector space X∗(Ť ) ⊗ R. We then regard

Ŵ as acting on A through affine transformations. We regard ∆ ⊂ X∗(T ) as a subset of

X∗(Ť ). We usually enumerate the elements of ∆ as α1, . . . , αd, and we enumerate the

corresponding simple reflection sα ∈ W for α ∈ ∆ as s1, . . . , sd with si = sαi
. Assume that

the root system Φ is irreducible and let α0 ∈ Φ be the negative of the highest root. Let

sα0 be the corresponding reflection in the finite Weyl group W ; define the affine reflection

s0 = tα∨
0
◦ sα0 ∈ Ŵ , where tα∨

0
denotes the translation by the coroot α∨

0 ∈ A of α0. The

affine Weyl group Waff is the subgroup of Ŵ generated by s0, s1, . . . , sd; in fact it is a

Coxeter group with these Coxeter generators. The corresponding length function ℓ on

Waff extends to Ŵ .

Let X∗(Ť )+ denote the set of dominant coweights. [Let T+ = {t ∈ T | tN0t
−1 ⊂ N0},

then X∗(Ť )+ is the image of T+ under the map T+ ⊂ T → T/T0
∼= X∗(T ) → X∗(Ť ).]

The monoid X∗(Ť )+ is free and has a unique basis ∇, the set of fundamental coweights.

The cone (vector chamber) in A with origin in x0 which is spanned by all the −ξ for

ξ ∈ ∇ contains C, and C is precisely the ’top’ chamber of this cone. The reflections

s0, s1, . . . , sd are precisely the reflections in the affine hyperplanes (walls) of A which

contain a codimension-1-face of C.

Let us say that w ∈ Ŵ is power multiplicative if we have ℓ(wm) = m · ℓ(w) for all

m ≥ 0. Of course, any element in the image of T → N(Ť ) → Ŵ = N(Ť )/Ť0 is power

multiplicative.
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Suppose we are given a fundamental coweight τ ∈ ∇ and some non trivial element

ϕ ∈ Ŵ satisfying the following conditions:

(a) ϕ is power multiplicative,

(b) τ is co minuscule, i.e. we have ⟨α, τ⟩ ∈ {0, 1} for all α ∈ Φ+,

(c) viewing τ via the embedding X∗(Ť ) ⊂ Ŵ as an element of Ŵ , we have

ϕN ∩ τN ̸= ∅.(6)

Lemma 3.1. Let ϕ and τ be as above. Write ϕ = ϕ′v with ϕ′ ∈ Waff and v ∈ Ŵ with

vC = C. Choose a reduced expresssion

ϕ′ = sβ(1) · · · sβ(r)

of ϕ′ with some function β : {1, . . . , r} → {0, . . . , d} (with r = ℓ(ϕ) = ℓ(ϕ′)) and put

C(ar+b) = ϕasβ(1) · · · sβ(b)C

for a, b ∈ Z≥0 with 0 ≤ b < r. Lift τ ∈ ∇ ⊂ X∗(Ť ) to some element of X∗(T ) and denote

again by τ the corresponding homomorphism Z×
p → T0. Then we have:

(i) The sequence

C = C(0), C(1), C(2), . . .

satisfies hypothesis (5). In particular we may define α(j) ∈ Φ+ for all j ≥ 0.

(ii) For any j ≥ 0 we have α(j) ◦ τ = idZ×
p
.

(iii) For any lifting ϕ ∈ N(T ) of ϕ ∈ Ŵ we have τ(a)ϕ = ϕτ(a) in N(T ), for all

a ∈ Z×
p .

Proof: (i) As τ is co minuscule, it is in particular a dominant coweight. Therefore

it follows from hypothesis (6) that also some power of ϕ is a dominant coweight. As ϕ is

power multiplicative, this implies statement (i).

(ii) As ϕ is power multiplicative, hypothesis (6) implies that for any m ∈ N for which

ϕm belongs to X∗(T ) we have

{α(j) | j ≥ 0} = {α ∈ Φ+ | ⟨α, ϕm⟩ ≠ 0} = {α ∈ Φ+ | ⟨α, τ⟩ ̸= 0}

and as τ is co minuscule this is the set

{α ∈ Φ+ | ⟨α, τ⟩ = 1} = {α ∈ Φ+ | ⟨α ◦ τ⟩ = idZ×
p
}.

(iii) By hypothesis (6) we have τm = ϕn for some m,n ∈ N. We deduce τm =

ϕτmϕ−1 = (ϕτϕ−1)m and hence also τ = ϕτϕ−1 as τ and ϕτϕ−1 belong to the free abelian

group X∗(T ). Thus τϕ = ϕτ in Ŵ which implies claim (iii). ¤
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Remark: For a given co minuscule fundamental coweight τ ∈ ∇ some positive power

τm of τ belongs to X∗(Ť ), and so ϕ = τm satisfies the assumptions of Lemma 3.1. However,

for our purposes it is of interest to find ϕ (as in Lemma 3.1, possibly also required to project

to Waff) of small length; the minimal positive power of τ belonging to X∗(Ť ) is usually

not optimal in this sense.

3.2 Functor D

By I0 we denote the pro-p-Iwahori subgroup contained in I. We often read T = T0/T0∩I0

as a subgroup of T0 by means of the Teichmüller character. Conversely, we read characters

of T also as characters of T0 (and do not introduce another name for these inflations).

Let indG
I0
1o denote the o-module of o-valued compactly supported functions f on G

such that f(ig) = f(g) for all g ∈ G, all i ∈ I0. It is a G-representation by means of

(g′f)(g) = f(gg′) for g, g′ ∈ G. Let

H(G, I0) = Endo[G](indG
I0
1o)

op

denote the corresponding pro-p-Iwahori Hecke algebra with coefficients in o. For a subset

H of G let χH denote the characteristic function of H. For g ∈ G let Tg ∈ H(G, I0) denote

the Hecke operator corresponding to the double coset I0gI0. It sends f : G → o to

Tg(f) : G −→ o, h 7→
∑

x∈I0\G

χI0gI0(hx−1)f(x).

Let Modfin(H(G, I0)) denote the category of H(G, I0)-modules which as o-modules are

of finite length. We write H(G, I0)k = H(G, I0) ⊗o k. Given liftings ṡ ∈ N(T ) of all

s ∈ S = {si | 0 ≤ i ≤ d} we let H(G, I0)aff,k denote the k-subalgebra of H(G, I0)k gener-

ated by the Tṡ for all s ∈ S and the Tt for t ∈ T .

Suppose we are given a reduced expression

ϕ = ϵṡβ(1) · · · ṡβ(r)(7)

(some function β : {1, . . . , r = ℓ(ϕ)} → {0, . . . , d}, some ϵ ∈ Z) of a power multiplicative

element ϕ ∈ N(T ), some power of which maps to a dominant coweight in N(T )/ZT0. Put

C(ar+b) = ϕasβ(1) · · · sβ(b)C

for a, b ∈ Z≥0 with 0 ≤ b < r. Then, by power multiplicativity of ϕ, the sequence (4) thus

defined satisfies property (5). Therefore we may use it to place ourselves into the setting

(and notations) of [3], as follows.
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We define the half tree Y whose edges are the N0-orbits of the C(i) ∩C(i+1) and whose

vertices are the N0-orbits of the C(i). We choose an isomorphism Θ : Y ∼= X+ with the

⌊N0, φ, Γ⌋-equivariant half sub tree X+ of the Bruhat Tits tree of GL2(Qp), satisfying the

requirements of Theorem 3.1 of loc.cit.. It sends the edge C(i) ∩ C(i+1) (resp. the vertex

C(i)) of Y to the edge ei+1 (resp. the vertex vi) of X+. The half tree X+ is obtained from

X+ by removing the ’loose’ edge e0.

To an H(G, I0)-module M we associate the G-equivariant (partial) coefficient system

VX
M on X. Briefly, its value at the chamber C is VX

M(C) = M . The transition maps

VX
M(D) → VX

M(F ) for chambers (codimension-0-facets) D and codimension-1-facets F

with D ⊂ F are injective, and VX
M(F ) for any such F is the sum of the images of the

VX
M(D) → VX

M(F ) for all D with D ⊂ F .

The pushforward Θ∗VM of the restriction of VX
M to Y carries a natural ⌊N0, φ

r, Γ0⌋-
action. Taking global sections, dualizing and tensoring with OE leads to the exact functor

M 7→ D(Θ∗VM)(8)

from Modfin(H(G, I0)) to the category of (φr, Γ0)-modules over OE , where r = ℓ(Φ). If

in addition we are given a homomorphism τ : Z×
p → T0 satisfying the conclusions of

Lemma 3.1 (with respect to ϕ), then this functor in fact takes values in the category of

(φr, Γ)-modules over OE .

For 0 ≤ i ≤ r − 1 we put

yi = ṡβ(1) · · · ṡβ(i+1)ṡ
−1
β(i) · · · ṡ

−1
β(1).

Lemma 3.2. (a) For any 0 ≤ i ≤ r−1 we have yi = yi−1 · · · y0ṡβ(i+1)y0 · · · yi−1. We have

ϕ = ϵyr−1 · · · y0.

(b) For any 0 ≤ i ≤ r−1 we have: yi is the affine reflection in the wall passing through

C(i) ∩ C(i+1).

Proof: To see (b) observe that yi indeed is a reflection, and that it sends C(i) to

C(i+1). ¤

Notations: Let us introduce some more notations which will be employed uniformly

in all the separate cases to be discussed.

For α ∈ Φ we denote by α∨ the associated coroot. For any α ∈ Φ there is a corre-

sponding homomorphism of algebraic groups ια : SL2(Qp) → G as described in [5], Ch.II,

section 1.3. The element ια(ν) belongs to I ∩Nα and generates it as a topological group.

For x ∈ F×
p ⊂ Z×

p (via the Teichmüller character) we have α∨(x) = ια(h(x)) ∈ T .

For a character λ : T → k× let Sλ be the subset of S consisting of all si such that

λ(α∨
i (x)) = 1 for all x ∈ F×

p . Given λ and a subset J of Sλ there is a uniquely determined

13



character

χλ,J : H(G, I0)aff,k −→ k

which sends Tt to λ(t−1) for t ∈ T , which sends Tṡ to 0 for s ∈ S − J and which sends

Tṡ to −1 for s ∈ J (see [7] Proposition 2). Moreover, for 0 ≤ i ≤ d we define a number

0 ≤ ki = ki(λ,J ) ≤ p − 1 such that

λ(α∨
i (x)) = xki for all x ∈ F×

p ,(9)

as follows. If λ◦α∨
i is not the constant character 1 then ki is already uniquely determined

by formula (9). Next notice that λ ◦ α∨
i = 1 is equivalent with si ∈ Sλ. If λ ◦ α∨

i = 1 and

si ∈ J we put ki = p − 1, if λ ◦ α∨
i = 1 and si /∈ J we put ki = 0.

4 Classical matrix groups

For m ∈ N let Em ∈ GLm denote the identity matrix and let E∗
d denotes the standard

antidiagonal element in GLd (i.e. the permutation matrix of maximal length). Let

Ŝm =

(
Em

−Em

)
, Sm =

(
Em

Em

)
.

4.1 Affine root system C̃d

Assume d ≥ 2. Here Waff is the Coxeter group with Coxeter generators s0, s1, . . . , sd (thus

s2
i = 1 for all i) and relations

(s0s1)
4 = (sd−1sd)

4 = 1 and (si−1si)
3 = 1 for 2 ≤ i ≤ d − 1(10)

and moreover (sisj)
2 = 1 for all other pairs i ̸= j. In the extended affine Weyl group Ŵ

we find (cf. [4]) an element u of length 0 with

u2 = 1 and usiu = sd−i for 0 ≤ i ≤ d.(11)

(Ŵ is the semidirect product of its two-element subgroup WΩ = {1, u} with Waff .) Con-

sider the general symplectic group

G = GSp2d(Qp) = {A ∈ GL2d(Qp) | T AŜdA = κ(A)Ŝd for some κ(A) ∈ Q×
p }.

Let T denote the maximal torus consisting of all diagonal matrices in G. For 1 ≤ i ≤ d

let

ei : T ∩ SL2d(Qp) −→ Q×
p , A = diag(x1, . . . , x2d) 7→ xi.
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For 1 ≤ i, j ≤ d and ϵ1, ϵ2 ∈ {±1} we thus obtain characters (using additive notation as

usual) ϵ1ei + ϵ2ej : T ∩ SL2d(Qp) −→ Q×
p . We extend these latter ones to T by setting

ϵ1ei + ϵ2ej : T −→ Q×
p , A = diag(x1, . . . , x2d) 7→ xϵ1

i xϵ2
j κ(A)

−ϵ1−ϵ2
2 .

For i = j and ϵ = ϵ1 = ϵ2 we simply write ϵ2ei. Then Φ = {±ei ± ej | i ̸= j} ∪ {±2ei} is

the root system of G with respect to T . It is of type Cd.

For α ∈ Φ let N0
α be the subgroup of the corresponding root subgroup Nα of G all of

which elements belong to GL2d(Zp).

We choose the positive system Φ+ = {ei±ej | i < j}∪{2ei | 1 ≤ i ≤ d} with correspond-

ing set of simple roots ∆ = {α1 = e1 − e2, α2 = e2 − e3, . . . , αd−1 = ed−1 − ed, αd = 2ed}.
The negative of the highest root is α0 = −2e1. For 0 ≤ i ≤ d let si = sαi

be the reflection

corresponding to αi.

Remark: For 0 ≤ i ≤ d we have the following explicit formula for α∨
i = (αi)

∨:

α∨
i (x) =


diag(x−1, Ed−1, x, Ed−1) : i = 0

diag(Ei−1, x, x−1, Ed−i−1, Ei−1, x
−1, x, Ed−i−1) : 1 ≤ i ≤ d − 1

diag(Ed−1, x, Ed−1, x
−1) : i = d

(12)

Let I0 denote the pro-p-Iwahori subgroup generated by the N0
α for all α ∈ Φ+, by the

(N0
α)p for all α ∈ Φ− = Φ − Φ+, and by the maximal pro-p-subgroup of T0. Let I denote

the Iwahori subgroup of G containing I0. Let N0 be the subgroup of G generated by all

N0
α for α ∈ Φ+.

For 1 ≤ i ≤ d − 1 define the block diagonal matrix

ṡi = diag(Ei−1, Ŝ1, Ed−i−1, Ei−1, Ŝ1, Ed−i−1)

and furthermore

ṡd =


Ed−1

1

Ed−1

−1

 , ṡ0 =


−p−1

Ed−1

p

Ed−1

 .

Then ṡ0, ṡ1, . . . , ṡd−1, ṡd belong to G (in fact even to the symplectic group Sp2d(Qp)) and

normalize T . Their images s0, s1, . . . , sd−1, sd in N(T )/ZT0 are Coxeter generators of

Waff ⊂ N(T )/ZT0 = Ŵ satisfying the relations (10). Put

u̇ =

(
E∗

d

pE∗
d

)
.
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Then u̇ belongs to N(T ) and normalizes I and I0. The image u of u̇ in N(T )/ZT0 satisfies

the formulae (11). In N(T ) we consider the element

ϕ = (p · id)ṡdṡd−1 · · · ṡ1ṡ0.

We may rewrite this as ϕ = (p · id)ṡβ(1) · · · ṡβ(d+1) where we put β(i) = d + 1 − i for

1 ≤ i ≤ d + 1. For a, b ∈ Z≥0 with 0 ≤ b < d + 1 we put

C(a(d+1)+b) = ϕasd · · · sd−b+1C = ϕasβ(1) · · · sβ(b)C.

Define the homomorphism

τ : Z×
p −→ T0, x 7→ diag(xEd, Ed).

Lemma 4.1. We have ϕd ∈ T and ϕdN0ϕ
−d ⊂ N0. The sequence C = C(0), C(1), C(2), . . .

satisfies hypothesis (5). In particular we may define α(j) ∈ Φ+ for all j ≥ 0.

(b) For all j ≥ 0 we have α(j) ◦ τ = idZ×
p
.

(c) We have τ(a)ϕ = ϕτ(a) for all a ∈ Z×
p .

Proof: (a) A matrix computation shows ϕd = diag(pd+1Ed, p
d−1Ed) ∈ T . Using this

we find

ϕdN0ϕ
−d =

∏
α∈Φ+

ϕd(N0 ∩ Nα)ϕ−d =
∏

α∈Φ+

(N0 ∩ Nα)pmα
,

mα =


2 : α = ei + ej with 1 ≤ i < j ≤ d

2 : α = 2ei with 1 ≤ i ≤ d

0 : all other α ∈ Φ+

In particular we find ϕdN0ϕ
−d ⊂ N0 and [N0 : ϕdN0ϕ

−d] = pd(d+1). This implies that the

length of ϕm ∈ Ŵ is at least (d + 1)m, for all m ≥ 0. On the other hand this length is

at most (d + 1)m because the image of ϕ in Ŵ is a product of d + 1 Coxeter generators.

Thus ϕm has length (d + 1)m and ϕ is power multiplicative. We also see from this that

[N0 : ϕdN0ϕ
−d] = [N0 : (N0 ∩ ϕdN0ϕ

−d)] = [I0 : (I0 ∩ ϕdI0ϕ
−d)]

(because [I0 : (I0 ∩ ϕdI0ϕ
−d)] is the length of ϕd, as ϕ is power multiplicative). We get

I0 = N0 · (I0 ∩ ϕdI0ϕ
−d) and that hypothesis (5) holds true.

(b) As ϕd ∈ T we have {α(j) | j ≥ 0} = {α ∈ Φ+ |mα ̸= 0}. This implies (b).

(c) Another matrix computation. ¤

As explained in subsection 3.2 we now obtain a functor M 7→ D(Θ∗VM) from Modfin(H(G, I0))

to the category of (φd+1, Γ)-modules over OE . As in explained in [3], to compute it we
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need to understand the intermediate objects H0(X+, Θ∗VM), acted on by ⌊N0, φ
d+1, Γ⌋.

Let H(G, I0)
′
aff,k denote the k-sub algebra of H(G, I0)k generated by H(G, I0)aff,k to-

gether with Tp·id = Tu̇2 and T−1
p·id = Tp−1·id.

Suppose we are given a character λ : T → k×, a subset J ⊂ Sλ and some b ∈ k×.

Define the numbers 0 ≤ ki = ki(λ,J ) ≤ p− 1 as in subsection 3.2. The character χλ,J of

H(G, I0)aff,k extends uniquely to a character

χλ,J ,b : H(G, I0)
′
aff,k −→ k

which sends Tp·id to b (see the proof of [7] Proposition 3). Define the H(G, I0)k-module

M = M [λ,J , b] = H(G, I0)k ⊗H(G,I0)′aff,k
k.e

where k.e denotes the one dimensional k-vector space on the basis element e, endowed

with the action of H(G, I0)
′
aff,k by the character χλ,J ,b. As a k-vector space, M has di-

mension 2, a k-basis is e, f where we write e = 1 ⊗ e and f = Tu̇ ⊗ e.

Definition: We call an H(G, I0)k-module quasi supersingular if it is isomorphic with

M [λ,J , b] for some λ,J , b such that ki > 0 for at least one i.

For 0 ≤ j ≤ d put j̃ = d − j. Letting β̃ = (̃.) ◦ β we then have

u̇ϕu̇−1 = (p · id)ṡ
eβ(1) · · · ṡeβ(d+1).

Put ne =
∑d

i=0 kd−ip
i =

∑d
i=0 kβ(i+1)p

i and nf =
∑d

i=0 kip
i =

∑d
i=0 k

eβ(i+1)p
i. Put ϱ =∏d

i=0(ki!) =
∏d

i=0(kβ(i+1)!) =
∏d

i=0(keβ(i+1)!). Let 0 ≤ se, sf ≤ p−2 be such that λ(τ(x)) =

x−se and λ(u̇τ(x)u̇−1) = x−sf for all x ∈ F×
p .

Lemma 4.2. The assigment M [λ,J , b] 7→ (ne, se, bϱ
−1) induces a bijection between the

set of isomorphism classes of quasi supersingular H(G, I0)k-modules and SC(d + 1).

Proof: We have
∏d

i=0 α∨
i (x) = 1 for all x ∈ F×

p (as can be seen e.g. from formula

(12)). This implies

d∑
i=0

ki ≡ ne ≡ nf ≡ 0 mod (p − 1).(13)

One can deduce from [7] Proposition 3 that for two sets of data λ,J , b and λ′,J ′, b′ the

H(G, I0)k-modules M [λ,J , b] and M [λ′,J ′, b′] are isomorphic if and only if b = b′ and

the pair (λ,J ) is conjugate with the pair (λ′,J ′) by means of a power of u̇, i.e. by means

of u̇0 = 1 or u̇1 = u̇. Conjugating (λ,J ) by u̇ has the effect of substituting kd−i with
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ki, for any i. The datum of the character λ is equivalent with the datum of se together

with all the ki taken modulo (p − 1) since the images of τ and all α∨
i together generate

T . Knowing the set J is then equivalent with knowing the numbers ki themselves (not

just modulo (p − 1)). Thus, our mapping is well defined and bijective. ¤

Let 0 ≤ j ≤ d and recall the homomorphism ιαj
: SL2(Qp) → G. Let tj = ιαj

([ν])−1 ∈
k[[ιαj

N0]] ⊂ k[[N0]]. Let Fj denote the codimension-1-face of C contained in the (affine)

reflection hyperplane (in A ⊂ X) for sj.

Lemma 4.3. In VX
M(Fj) we have t

kj

j ṡje = kj!e and t
kd−j

j ṡjf = kd−j!f for all 0 ≤ j ≤ d.

Proof: This reduces to a computation in VX
M(Fj), viewed as an SL2(Fp)-representation.

Namely, the analog of Lemma 8.2 of [3] holds verbatim in the present context as well

(compare with Proposition 5.1 of [3]); the computation thus follows from Lemma 2.5

in [3]. (Compare with the proof of Proposition 8.4 of [3].) Notice that as the Hecke

operator Tt for t ∈ T acts on k.e through λ(t−1), it acts on k.f = k.Tu̇e through

λ(u̇t−1u̇−1) (the same computation as in formula (18) below), and that formula (9) implies

λ(u̇α∨
j (x)u̇−1) = xkd−j . ¤

Lemma 4.4. In H0(X+, Θ∗VM) we have

tneφd+1e = ϱb−1e,(14)

tnf φd+1f = ϱb−1f,(15)

γ(x)e = x−see,(16)

γ(x)f = x−sf f(17)

for x ∈ F×
p . The action of Γ0 on H0(X+, Θ∗VM) is trivial on the subspace M .

Proof: We use the notations and the statements of Lemma 3.2, observing β(i+1) =

d − i. For 0 ≤ i ≤ d we have yi−1 · · · y0Fd−i = C(i) ∩ C(i+1) and yi−1 · · · y0C = C(i). Thus

yi−1 · · · y0 defines an isomorphism

VX
M(Fd−i) ∼= VX

M(C(i) ∩ C(i+1)) = Θ∗VM(vi),

restricting to an isomorphism VX
M(C) ∼= VX

M(C(i)) = Θ∗VM(ei). Under this isomorphism,

the action of td−i, resp. of ṡd−i, on VX
M(Fd−i) becomes the action of [ν]p

i − 1, resp. of

yi, on Θ∗VM(vi). Now as we are in characteristic p we have tp
i
= ([ν] − 1)pi

= [ν]p
i − 1.

Applying this to the element e, resp. f , of VX
M(C) ⊂ VX

M(Fd−i), Lemma 4.3 tells us

(tp
i

)kd−iyi · · · y0e = kd−i!yi−1 · · · y0e resp. (tp
i

)kiyi · · · y0f = ki!yi−1 · · · y0f.
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We compose these formulae for all 0 ≤ i ≤ d and finally recall that the central element

p · id acts on M through the Hecke operator Tp−1·id, i.e. by b−1. We get formulae (15) and

(14).

Next recall that the action of γ(x) on H0(X+, Θ∗VM) is given by that of τ(x) ∈ T , i.e.

by the Hecke operator Tτ(x)−1 . We thus compute

γ(x)e = Tτ(x)−1e = λ(τ(x))e,

γ(x)f = Tτ(x)−1Tu̇e = Tu̇τ(x)−1e = Tu̇Tu̇τ(x)−1u̇−1e = Tu̇λ(u̇τ(x)u̇−1)e = λ(u̇τ(x)u̇−1)f

(18)

and obtain formulae (16) and (17). ¤

Corollary 4.5. The étale (φd+1, Γ)-module D(Θ∗VM) over kE associated with H0(X+, Θ∗VM)

admits a kE-basis ge, gf such that

φd+1ge = bϱ−1tne+1−pd+1

ge

φd+1gf = bϱ−1tnf+1−pd+1

gf

γ(x)ge − xsege ∈ t · k+
E · ge

γ(x)gf − xsf gf ∈ t · k+
E · gf .

Proof: This follows from Lemma 4.4 as explained in [3] Lemma 6.4. ¤

Corollary 4.6. The functor M 7→ D(Θ∗VM) induces a bijection between

(a) the set of isomorphism classes of quasi supersingular H(G, I0)k-modules, and

(b) the set of isomorphism classes of C-symmetric étale (φd+1, Γ)-modules over kE .

Proof: For x ∈ F×
p we have

τ(x) · u̇τ−1(x)u̇−1 = diag(xEd, x
−1Ed) = (

d∑
i=0

(i + 1)α∨
i )(x)

in T . Applying λ and observing
∑d

i=0 ki ≡ 0 modulo (p − 1) we get

xsf−se = λ((
d∑

i=0

(i + 1)α∨
i )(x)) = x

Pd
i=0 iki

and hence sf − se ≡
∑d

i=0 iki modulo (p − 1). Together with Corollary (4.5) we see that

D(Θ∗VM) is a C-symmetric étale (φd+1, Γ)-module over kE . Now we conclude with Lem-

mata 2.5 and 4.2. ¤
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Remark: Consider the subgroup G′ = Sp2d(Qp) of G. If we replace the above τ by

τ : Z×
p −→ T0, x 7→ diag(xEd, x

−1Ed) and if we replace the above ϕ by ϕ = ṡdṡd−1 · · · ṡ1ṡ0

then everything in fact happens inside G′. We then have α(j) ◦ τ = id2
Z×

p
for all j ≥ 0.

Let Modfin
0 H(G′, G′ ∩ I0) denote the category of finite-o-length H(G′, G′ ∩ I0)-modules

on which τ(−1) (i.e. Tτ(−1) = Tτ(−1)−1) acts trivially. For M ∈ Modfin
0 H(G′, G′ ∩ I0)

we obtain an action of ⌊N0, φ
d+1, Γ2⌋ on H0(X+, Θ∗VM), where Γ2 = {γ2 | γ ∈ Γ} ⊂ Γ.

Correspondingly, following [3] (as a slight variation from what we explained in subsection

3.2), we obtain a functor from Modfin
0 H(G′, G′ ∩ I0) to the category of (φd+1, Γ2)-modules

over OE .

Remark: In the case d = 2 one may also work with ϕ = (p · id)ṡ2ṡ1ṡ2u̇. Its square is

the square of the ϕ = (p · id)ṡ2ṡ1ṡ0 used above.

Remark: We discuss a choice of (C(•), ϕ) with ℓ(ϕ) = d (but leading only to (φd, Γ0)-

modules, not to (φd, Γ)-modules). In N(T ) we consider the element ϕ = ṡ1ṡ2 · · · ṡd−1ṡdu̇.

For a, b ∈ Z≥0 with 0 ≤ b < d put C(ad+b) = ϕas1 · · · sbC. A matrix computation shows

ϕ2 = diag(p2, pEd−1, 1, pEd−1). Using this we find

ϕ2N0ϕ
−2 =

∏
α∈Φ+

ϕ2(N0 ∩ Nα)ϕ−2 =
∏

α∈Φ+

(N0 ∩ Nα)pmα
,

mα =


2 : α = ei + ej with i < j < d

1 : α = ei + ed with i < d

1 : α = ei − ed with i < d

0 : all other α ∈ Φ+

In particular we find ϕ2N0ϕ
−2 ⊂ N0 and [N0 : ϕ2N0ϕ

−2] = p2d. This implies that the

length of ϕm ∈ Ŵ is at least dm, for all m ≥ 0. On the other hand this length is at most

dm because ϕ is a product of d simple reflections and of an element of length 0. Thus ϕm

has length dm. Therefore the sequence C = C(0), C(1), C(2), . . . satisfies hypothesis (5).

4.2 Affine root system B̃d

Assume d ≥ 3. Here Waff is the Coxeter group with Coxeter generators s0, s1, . . . , sd (thus

s2
i = 1 for all i) and relations

(sdsd−1)
4 = 1 and (s2s0)

3 = (si−1si)
3 = 1 for 2 ≤ i ≤ d − 1(19)

and moreover (sisj)
2 = 1 for all other pairs i ̸= j. In the extended affine Weyl group Ŵ

we find (cf. [4]) an element u of length 0 with

u2 = 1 and us0u = s1 and usiu = si for 2 ≤ i ≤ d.(20)
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(Ŵ is the semidirect product of its two-element subgroup WΩ = {1, u} with Waff .) Let

Õd =

(
Sd 0

0 1

)
∈ GL2d+1(Qp)

and consider the special orthogonal group

G = SO2d+1(Qp) = {A ∈ SL2d+1(Qp) | T AÕdA = Õd}.

Let T denote the maximal torus consisting of all diagonal matrices in G. For 1 ≤ i ≤ d

let

ei : T −→ Q×
p , diag(x1, . . . , xd, x

−1
1 , . . . , x−1

d , 1) 7→ xi.

Then (in additive notation) Φ = {±ei ± ej | i ̸= j} ∪ {±ei} is the root system of G with

respect to T . It is of type Bd. For α ∈ Φ let N0
α be the subgroup of the corresponding

root subgroup Nα of G all of which elements belong to SL2d+1(Zp).

We choose the positive system Φ+ = {ei±ej | i < j}∪{ei | 1 ≤ i ≤ d} with correspond-

ing set of simple roots ∆ = {α1 = e1 − e2, α2 = e2 − e3, . . . , αd−1 = ed−1 − ed, αd = ed}.
The negative of the highest root is α0 = −e1 − e2. For 0 ≤ i ≤ d let si = sαi

be the

reflection corresponding to αi.

Remark: For roots α ∈ Φ of the form α = ±ei ± ej the homomorphism ια :

SL2 → SO2d+1 is injective. For roots α ∈ Φ of the form α = ±ei the homomorphism

ια : SL2 → SO2d+1 induces an embedding PSL2 → SO2d+1.

Remark: For 0 ≤ i ≤ d we have the following explicit formula for α∨
i = (αi)

∨:

α∨
i (x) =


diag(x−1, x−1, Ed−2, x, x, Ed−2, 1) : i = 0

diag(Ei−1, x, x−1, Ed−i−1, Ei−1, x
−1, x, Ed−i−1, 1) : 1 ≤ i ≤ d − 1

diag(Ed−1, x
2, Ed−1, x

−2, 1) : i = d

(21)

Let I0 denote the pro-p-Iwahori subgroup generated by the N0
α for all α ∈ Φ+, by the

(N0
α)p for all α ∈ Φ− = Φ − Φ+, and by the maximal pro-p-subgroup of T0. Let I denote

the Iwahori subgroup of G containing I0. Let N0 be the subgroup of G generated by all

N0
α for α ∈ Φ+.

For 1 ≤ i ≤ d − 1 define the block diagonal matrix

ṡi = diag(Ei−1, S1, Ed−i−1, Ei−1, S1, Ed−i−1, 1)

and furthermore

ṡd =


Ed−1

1

Ed−1

1

−1

 .
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Define

u̇ =


p−1

Ed−1

p

Ed−1

−1


and ṡ0 = u̇ṡ1u̇. Then ṡ0, ṡ1, . . . , ṡd−1, ṡd belong to G and normalize T . Their images

s0, s1, . . . , sd−1, sd in N(T )/T0 are Coxeter generators of Waff ⊂ N(T )/T0 satisfying the

relations (19). The element u̇ of N(T ) normalizes I and I0. The image u of u̇ in N(T )/T0 =

Ŵ satisfies the formulae (20). In N(T ) we consider the element

ϕ = ṡ1ṡ2 · · · ṡd−1ṡdṡd−1 · · · ṡ2ṡ0.(22)

We may rewrite this as ϕ = ṡβ(1) · · · ṡβ(2d−1) where we put β(i) = i for 1 ≤ i ≤ d and

β(i) = 2d − i for d ≤ i ≤ 2d − 2 and β(2d − 1) = 0. We put

C(a(2d−1)+b) = ϕasβ(1) · · · sβ(b)C

for a, b ∈ Z≥0 with 0 ≤ b < 2d − 1. Define the homomorphism

τ : Z×
p −→ T0, x 7→ diag(x, Ed−1, x

−1, Ed−1, 1).

Lemma 4.7. We have ϕ2 ∈ T and ϕ2N0ϕ
−2 ⊂ N0. The sequence C = C(0), C(1), C(2), . . .

satisfies hypothesis (5). In particular we may define α(j) ∈ Φ+ for all j ≥ 0.

(b) For any j ≥ 0 we have α(j) ◦ τ = idZ×
p
.

(c) We have τ(a)ϕ = ϕτ(a) for all a ∈ Z×
p .

Proof: (a) A matrix computation shows ϕ2 = diag(p2, Ed−1, p
−2, Ed−1, 1). Using this

we find

ϕ2N0ϕ
−2 =

∏
α∈Φ+

ϕ2(N0 ∩ Nα)ϕ−2 =
∏

α∈Φ+

(N0 ∩ Nα)pmα
,

mα =


2 : α = e1 − ei with 1 < i

2 : α = e1 + ei with 1 < i

2 : α = e1

0 : all other α ∈ Φ+

In particular we find ϕ2N0ϕ
−2 ⊂ N0 and [N0 : ϕ2N0ϕ

−2] = p2(2d−1). This implies that the

length of ϕm ∈ Ŵ is at least (2d− 1)m, for all m ≥ 0. On the other hand this length is at

most (2d − 1)m because the image of ϕ in Ŵ is a product of 2d − 1 Coxeter generators.

Thus ϕm has length (2d − 1)m. We obtain that hypothesis (5) holds true, by the same

reasoning as in Lemma 4.1.
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(b) As ϕ2 ∈ T we have {α(j) | j ≥ 0} = {α ∈ Φ+ |mα ̸= 0}. This implies (b).

(c) Another matrix computation. ¤

As explained in subsection 3.2 we now obtain a functor from Modfin(H(G, I0)) to the

category of (φ2d−1, Γ)-modules over OE .

Suppose we are given a character λ : T → k× and a subset J ⊂ Sλ. Define the

numbers 0 ≤ ki = ki(λ,J ) ≤ p − 1 as in subsection 3.2. Define the H(G, I0)k-module

M = M [λ,J ] = H(G, I0)k ⊗H(G,I0)aff,k
k.e

where k.e denotes the one dimensional k-vector space on the basis element e, endowed

with the action of H(G, I0)aff,k by the character χλ,J . As a k-vector space, M has dimen-

sion 2, a k-basis is e, f where we write e = 1 ⊗ e and f = Tu̇ ⊗ e.

Definition: We call an H(G, I0)k-module quasi supersingular if it is isomorphic with

M [λ,J ] for some λ,J such that ki > 0 for at least one i.

For 2 ≤ j ≤ d we put j̃ = j, furthermore we put 0̃ = 1 and 1̃ = 0. Letting β̃ = (̃.) ◦ β

we then have

u̇ϕu̇−1 = ṡ
eβ(1) · · · ṡeβ(2d−1).

Put ne =
∑2d−2

i=0 kβ(i+1)p
i and nf =

∑2d−2
i=0 k

eβi+1p
i. Put ϱ = k0!k1!kd!

∏d−1
i=2 (ki!)

2 =∏2d−2
i=0 (kβ(i+1)!) =

∏2d−2
i=0 (k

eβ(i+1)!). Let 0 ≤ se, sf ≤ p− 2 be such that λ(τ(x)) = x−se and

λ(u̇τ(x)u̇−1) = x−sf for all x ∈ F×
p .

Lemma 4.8. The assigment M [λ,J ] 7→ (ne, se) induces a bijection between the set of

isomorphism classes of quasi supersingular H(G, I0)k-modules and SB(2d − 1).

Proof: We have α∨
0 (x)α∨

1 (x)α∨
d (x)

∏d−1
i=2 (α∨

i )2(x) = 1 for all x ∈ F×
p (as can be seen

e.g. from formula (21)). This implies

k0 + k1 + kd + 2
d−1∑
i=2

ki ≡ ne ≡ nf ≡ 0 mod (p − 1).(23)

We further proceed exactly as in the proof of Lemma 4.2. ¤
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Lemma 4.9. In H0(X+, Θ∗VM) we have

tneφ2d−1e = ϱe,(24)

tnf φ2d−1f = ϱf,(25)

γ(x)e = x−see,(26)

γ(x)f = x−sf f(27)

for x ∈ F×
p . The action of Γ0 on H0(X+, Θ∗VM) is trivial on the subspace M .

Proof: As in Lemma 4.4. ¤

Corollary 4.10. The étale (φ2d−1, Γ)-module over kE associated with H0(X+, Θ∗VM) ad-

mits a kE-basis ge, gf such that

φ2d−1ge = ϱ−1tne+1−p2d−1

ge

φ2d−1gf = ϱ−1tnf+1−p2d−1

gf

γ(x)ge − xsege ∈ t · k+
E · ge

γ(x)gf − xsf gf ∈ t · k+
E · gf .

Proof: This follows from Lemma 4.9 as explained in [3] Lemma 6.4. ¤

Corollary 4.11. The functor M 7→ D(Θ∗VM) induces a bijection between

(a) the set of isomorphism classes of quasi supersingular H(G, I0)k-modules, and

(b) the set of isomorphism classes of B-symmetric étale (φ2d−1, Γ)-modules D over kE .

Proof: For x ∈ F×
p we compute

τ(x) · u̇τ−1(x)u̇−1 = diag(x2, Ed−1, x
−2, Ed−1, 1) = (α∨

1 − α∨
0 )(x)

in T . Application of λ gives xsf−se = xk1−k0 and hence sf − se ≡ k1 − k0 = kβ(1) − kβ(2d−1)

modulo (p− 1). The required symmetry in the p-adic digits of ne, nf is due to the corre-

sponding symmetry of the function β. Thus, D(Θ∗VM) is a B-symmetric étale (φ2d−1, Γ)-

module. Now we conclude with Lemmata 4.8 and 2.5. ¤

Remark: We discuss a choice of (C(•), ϕ) with ℓ(ϕ) = d (but leading only to (φd, Γ0)-

modules, not to (φd, Γ)-modules). In N(T ) consider the element ϕ = ṡd · · · ṡ1u̇. For

a, b ∈ Z≥0 with 0 ≤ b < d we put C(ad+b) = ϕasd · · · sd−b+1C. A matrix computation

shows ϕd = diag(pEd, p
−1Ed, 1). Using this we find

ϕdN0ϕ
−d =

∏
α∈Φ+

ϕd(N0 ∩ Nα)ϕ−d =
∏

α∈Φ+

(N0 ∩ Nα)pmα
,
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mα =


2 : α = ei + ej with i < j

1 : α = ei

0 : all other α ∈ Φ+

In particular we find ϕdN0ϕ
−d ⊂ N0 and [N0 : ϕdN0ϕ

−d] = pd2
. This implies that the

length of ϕm ∈ Ŵ is at least dm, for all m ≥ 0. On the other hand this length is at most

dm because ϕ is a product of d simple reflections and of an element of length 0. Thus

ϕm has length dm. Therefore the sequence C = C(0), C(1), C(2), . . . satisfies hypothesis (5).

Remark: SO2d+1
∼= PGSpin2d+1 is semisimple, of adjoint type. Like SO2d+1 also

GSpin2d+1 has connected center; its derived group is isomorphic with Spin2d+1, the simply

connected double covering of SO2d+1. Using the concrete description of GSpin2d+1 given

e.g. in [1], section 2, it is straightforward to extend our constructions from SO2d+1 to

GSpin2d+1. (Like in our treatment of the group GSp2d, the non trivial center of GSpin2d+1

allows us to twist our ϕ by a suitable central element — in this way, the action of the

center on an Hk-module defines a twist of the φ2d−1-action on the corresponding (φ2d−1, Γ)-

module.)

4.3 Affine root system D̃d

Assume d ≥ 4. Here Waff is the Coxeter group with Coxeter generators s0, s1, . . . , sd (thus

s2
i = 1 for all i) and relations

(sd−2sd)
3 = (s2s0)

3 = (si−1si)
3 = 1 for 2 ≤ i ≤ d − 1(28)

and moreover (sisj)
2 = 1 for all other pairs i ̸= j. In the extended affine Weyl group Ŵ

we find (cf. [4]) an element u of length 0 with

u2 = 1 and us0u = s1, us1u = s0, usd−1u = sd, usdu = sd−1

usiu = si for 2 ≤ i ≤ d − 2.(29)

(Ŵ is the semidirect product of a four-element subgroup WΩ with Waff , in such a way

that u is an element of order 2 in WΩ.) Consider the general orthogonal group

GO2d(Qp) = {A ∈ GL2d(Qp) | T ASdA = κ(A)Sd for some κ(A) ∈ Q×
p }.

It contains the special orthogonal group

SO2d(Qp) = {A ∈ SL2d(Qp) | T ASdA = Sd}.

Let G = GSO2d(Qp) be the connected component of GO2d(Qp). It has connected center

and is of index 2 in GO2d(Qp). Explicitly, G is the subgroup generated by SO2d(Qp) and

by all diag(xEd, Ed) with x ∈ Q×
p .
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Let T be the maximal torus consisting of all diagonal matrices in G. For 1 ≤ i ≤ d let

ei : T ∩ SL2d(Qp) −→ Q×
p , A = diag(x1, . . . , x2d) 7→ xi.

For 1 ≤ i, j ≤ d and ϵ1, ϵ2 ∈ {±1} we thus obtain characters (using additive notation as

usual) ϵ1ei + ϵ2ej : T ∩ SL2d(Qp) −→ Q×
p . We extend these latter ones to T by setting

ϵ1ei + ϵ2ej : T −→ Q×
p , A = diag(x1, . . . , x2d) 7→ xϵ1

i xϵ2
j κ(A)

−ϵ1−ϵ2
2 .

Then Φ = {±ei ± ej | i ̸= j} is the root system of G with respect to T . It is of type Dd.

For α ∈ Φ let N0
α be the subgroup of the corresponding root subgroup Nα of G all of

which elements belong to SL2d(Zp).

Choose the positive system Φ+ = {ei ± ej | i < j} with corresponding set of simple

roots ∆ = {α1 = e1 − e2, α2 = e2 − e3, . . . , αd−1 = ed−1 − ed, αd = ed−1 + ed}. The

negative of the highest root is α0 = −e1 − e2. For 0 ≤ i ≤ d let si = sαi
be the reflection

corresponding to αi.

Remark: For 0 ≤ i ≤ d we have the following explicit formula for α∨
i = (αi)

∨:

α∨
i (x) =


diag(x−1, x−1, Ed−2, x, x, Ed−2) : i = 0

diag(Ei−1, x, x−1, Ed−i−1, Ei−1, x
−1, x, Ed−i−1) : 1 ≤ i ≤ d − 1

diag(Ed−2, x, x, Ed−2, x
−1, x−1) : i = d

(30)

Let I0 denote the pro-p-Iwahori subgroup generated by the N0
α for all α ∈ Φ+, by the

(N0
α)p for all α ∈ Φ− = Φ − Φ+, and by the maximal pro-p-subgroup of T0. Let I denote

the Iwahori subgroup of G containing I0. Let N0 be the subgroup of G generated by all

N0
α for α ∈ Φ+.

For 1 ≤ i ≤ d − 1 define the block diagonal matrix

ṡi = diag(Ei−1, S1, Ed−i−1, Ei−1, S1, Ed−i−1) = diag(Ei−1, S1, Ed−2, S1, Ed−i−1).

Put

u̇ =



p−1

Ed−2

1

p

Ed−2

1


and ṡ0 = u̇ṡ1u̇ and ṡd = u̇ṡd−1u̇. Then ṡ0, ṡ1, . . . , ṡd−1, ṡd belong to G and normal-

ize T . Their images s0, s1, . . . , sd−1, sd in N(T )/ZT0 are Coxeter generators of Waff ⊂
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N(T )/ZT0 = Ŵ satisfying the relations (28). The element u̇ of N(T ) normalizes I and

I0. The image u of u̇ in N(T )/ZT0 satisfies the formulae (29).

In N(T ) we consider the element

ϕ = (p · id)ṡd−1ṡd−2 · · · ṡ2ṡ1ṡdṡd−2ṡd−3 · · · ṡ3ṡ2ṡ0 if d is even,

ϕ = (p2 · id)ṡd−1ṡd−2 · · · ṡ2ṡ1ṡdṡd−2ṡd−3 · · · ṡ3ṡ2ṡ0 if d is odd.

We may rewrite this as ϕ = (p·id)ṡβ(1) · · · ṡβ(2d−2) if d is even, resp. ϕ = (p2·id)ṡβ(1) · · · ṡβ(2d−2)

if d is odd, where β(i) = d − i for 1 ≤ i ≤ d − 1, β(d) = d, β(i) = 2d − 1 − i for

d + 1 ≤ i ≤ 2d − 3 and β(2d − 2) = 0. We put

C(a(2d−2)+b) = ϕasβ(1) · · · sβ(b)C

for a, b ∈ Z≥0 with 0 ≤ b < 2d − 2. Define the homomorphism

τ : Z×
p −→ T0, x 7→ diag(xEd−1, Ed, x).

Lemma 4.12. We have ϕd ∈ T and ϕdN0ϕ
−d ⊂ N0. The sequence C = C(0), C(1), C(2), . . .

satisfies hypothesis (5). In particular we may define α(j) ∈ Φ+ for all j ≥ 0.

(b) For any j ≥ 0 we have α(j) ◦ τ = idZ×
p
.

(c) We have τ(a)ϕ = ϕτ(a) for all a ∈ Z×
p .

Proof: (a) A matrix computation shows ϕd = diag(p2d+2Ed−1, p
2d−2Ed, p

2d+2) if d is

even, and ϕd = diag(p4d+4Ed−1, p
4d−4Ed, p

4d+4) if d is odd. Using this we find

ϕdN0ϕ
−d =

∏
α∈Φ+

ϕd(N0 ∩ Nα)ϕ−d =
∏

α∈Φ+

(N0 ∩ Nα)pmα
,

mα =


4 : α = ei + ej with 1 ≤ i < j < d

4 : α = ei − ed with 1 ≤ i < d

0 : all other α ∈ Φ+

In particular we find ϕdN0ϕ
−d ⊂ N0 and [N0 : ϕdN0ϕ

−d] = p2d(d−1). This implies that the

length of ϕm ∈ Ŵ is at least 2(d − 1)m, for all m ≥ 0. On the other hand this length is

at most 2(d− 1)m because the image of ϕ in Ŵ is a product of 2d− 2 Coxeter generators

and of an element of length 0. Thus ϕm has length 2(d− 1)m. We obtain that hypothesis

(5) holds true, by the same reasoning as in Lemma 4.1.

(b) As ϕd ∈ T we have {α(j) | j ≥ 0} = {α ∈ Φ+ |mα ̸= 0}. This implies (b).

(c) Another matrix computation. ¤

27



As explained in subsection 3.2 we now obtain a functor from Modfin(H(G, I0)) to the

category of (φ2d−2, Γ)-modules over OE . Consider the elements

ω̇ =

(
E∗

d

pE∗
d

)
, ρ̇ =


E∗

d−1

p

pE∗
d−1

1


of GO2d(Qp). They normalize T and satisfy

ω̇u̇ = u̇ω̇,

ω̇ṡiω̇
−1 = ṡd−i for 0 ≤ i ≤ d,

ρ̇2 = p · u̇,

ρ̇ṡiρ̇
−1 = ṡd−i for 2 ≤ i ≤ d − 2,

ρ̇ṡd−1ρ̇
−1 = ṡ1, ρ̇ṡdρ̇

−1 = ṡ0, ρ̇ṡ0ρ̇
−1 = ṡd−1, ρ̇ṡ1ρ̇

−1 = ṡd.

The element ω̇ belongs to G if and only if d is even. The element ρ̇ belongs to G if

and only if d is odd.

Let H(G, I0)
′
aff,k denote the k-sub algebra of H(G, I0)k generated by H(G, I0)aff,k to-

gether with Tp·id = Tω̇2 and T−1
p·id = Tp−1·id if d is even, resp. Tp2·id = Tρ̇4 and T−1

p2·id = Tp−2·id

if d is odd.

Suppose we are given a character λ : T → k×, a subset J ⊂ Sλ and some b ∈ k×.

Define the numbers 0 ≤ ki = ki(λ,J ) ≤ p− 1 as in subsection 3.2. The character χλ,J of

H(G, I0)aff,k extends uniquely to a character

χλ,J ,b : H(G, I0)
′
aff,k −→ k

which sends Tp·id to b if d is even, resp. which sends Tp2·id to b if d odd (see the proof of

[7] Proposition 3). We define the H(G, I0)k-module

M = M [λ,J , b] = H(G, I0)k ⊗H(G,I0)′aff,k
k.e

where k.e denotes the one dimensional k-vector space on the basis element e, endowed with

the action of H(G, I0)
′
aff,k by the character χλ,J ,b. As a k-vector space, M has dimension

4. A k-basis is e0, e1, f0, f1 where we write

e0 = 1 ⊗ e, f0 = Tu̇ ⊗ e, e1 = Tω̇ ⊗ e, f1 = Tu̇ω̇ ⊗ e if d is even,

e0 = 1 ⊗ e, f0 = Tu̇ ⊗ e, e1 = Tρ̇ ⊗ e, f1 = Tu̇ρ̇ ⊗ e if d is odd.
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Definition: We call an H(G, I0)k-module quasi supersingular if it is isomorphic with

M [λ,J , b] for some λ,J , b such that ki > 0 for at least one i.

For 2 ≤ j ≤ d − 2 let j̃ = j, and furthermore let d̃ − 1 = d and d̃ = d − 1 and 1̃ = 0

and 0̃ = 1. Letting β̃ = (̃.) ◦ β we then have

u̇ϕu̇−1 = (pn · id)ṡ
eβ(1) · · · ṡeβ(2d−2)

with n = 1 if d is even, but n = 2 if d is odd. If d is odd we consider in addition the

following two maps γ and δ from [1, 2d−2] to [0, d]. We put γ(1) = 1, γ(d−1) = d, γ(d) = 0

and γ(2d − 2) = d − 1. We put δ(1) = 0, δ(d − 1) = d − 1, δ(d) = 1 and δ(2d − 2) = d.

We put γ(i) = δ(i) = β(2d− 2− i) for all i ∈ [1, . . . , d− 2] ∪ [d + 1, . . . , 2d− 3]. We then

have

ϱ̇ϕϱ̇−1 = (p2 · id)ṡγ(1) · · · ṡγ(2d−2), ϱ̇−1ϕϱ̇ = (p2 · id)ṡδ(1) · · · ṡδ(2d−2).

Put

ne0 =
2d−3∑
i=0

kβ(i+1)p
i, nf0 =

2d−3∑
i=0

k
eβ(i+1)p

i for any parity of d,

ne1 =
2d−3∑
i=0

kβ(2d−2−i)p
i, nf1 =

2d−3∑
i=0

k
eβ(2d−2−i)p

i if d is even,

ne1 =
2d−3∑
i=0

kγ(i+1)p
i, nf1 =

2d−3∑
i=0

kδ(i+1)p
i if d is odd.

Let 0 ≤ se0 , sf0 , se1 , sf1 ≤ p − 2 be such that for all x ∈ F×
p we have

λ(τ(x)) = x−se0 , λ(u̇τ(x)u̇−1) = x−sf0 for any parity of d,

λ(ω̇τ(x)ω̇−1) = x−se1 , λ(ω̇u̇τ(x)u̇−1ω̇−1) = x−sf1 if d is even,

λ(ρ̇τ(x)ρ̇−1) = x−se1 , λ(ρ̇u̇τ(x)u̇−1ρ̇−1) = x−sf1 if d is odd.

Put ϱ = k0!k1!kd−1!kd!
∏d−2

i=2 (ki!)
2 =

∏2d−3
i=0 (kβ(i+1)!) =

∏2d−3
i=0 (k

eβ(i+1)!).

Lemma 4.13. The assigment M [λ,J , b] 7→ (ne0 , se0 , bϱ
−1) induces a bijection between

the set of isomorphism classes of quasi supersingular H(G, I0)k-modules and SD(2d− 2).

Proof: We have α∨
0 (x)α∨

1 (x)α∨
d−1(x)α∨

d (x)
∏d−2

i=2 (α∨
i )2(x) = 1 for all x ∈ F×

p (as can

be seen e.g. from formula (30)). This implies

k0 + k1 + kd−1 + kd + 2
d−2∑
i=2

ki ≡ ne0 ≡ nf0 ≡ ne1 ≡ nf1 ≡ 0 mod (p − 1).(31)
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It follows from [7] Proposition 3 that M [λ,J , b] and M [λ′,J ′, b′] are isomorphic if and

only if b = b′ and the pair (λ,J ) is conjugate with the pair (λ′,J ′) by means of u̇nω̇m

for some n,m ∈ {0, 1} (if d is even), resp. by means of u̇nρ̇m for some n,m ∈ {0, 1} (if

d is odd). Under the map M [λ,J , b] 7→ (ne0 , se0 , bϱ
−1), conjugation by u̇ corresponds to

the permutation ι0 of S̃D(2d− 2), while conjugation by ω̇, resp. by ρ̇, corresponds to the

permutation ι1 of S̃D(2d− 2). We may thus proceed as in the proof of Lemma 4.2 to see

that our mapping is well defined and bijective. ¤

Lemma 4.14. In H0(X+, Θ∗VM) we have

tnej φ2d−2ej = ϱb−1ej,

tnfj φ2d−2fj = ϱb−1fj,

γ(x)ej = x−sej ej,

γ(x)fj = x−sfj fj

for x ∈ F×
p and j = 0, 1. The action of Γ0 on H0(X+, Θ∗VM) is trivial on the subspace M .

Proof: As in Lemma 4.4. ¤

Corollary 4.15. The étale (φ2d−2, Γ)-module over kE associated with H0(X+, Θ∗VM) ad-

mits a kE-basis ge0, gf0, ge1, gf1 such that for both j = 0 and j = 1 we have

φ2d−2gej
= bϱ−1tnej +1−p2d−2

gej

φ2d−2gfj
= bϱ−1tnfj

+1−p2d−2

gfj

γ(x)(gej
) − xsej gej

∈ t · k+
E · gej

γ(x)(gfj
) − xsfj gfj

∈ t · k+
E · gfj

Proof: This follows from Lemma 4.14 as explained in [3] Lemma 6.4. ¤

Corollary 4.16. The functor M 7→ D(Θ∗VM) induces a bijection between

(a) the set of isomorphism classes of quasi supersingular H(G, I0)k-modules, and

(b) the set of isomorphism classes of D-symmetric étale (φ2d−2, Γ)-modules over kE .

Proof: We let D11 = ⟨ge0⟩, D12 = ⟨gf0⟩, D21 = ⟨ge1⟩, D22 = ⟨gf1⟩. Then ki(D11) =

kβ(i+1) and ki(D12) = k
eβ(i+1); moreover ki(D21) = kβ(2d−d−i) and ki(D22) = k

eβ(2d−d−i) if d

is even, but ki(D21) = kγ(i+1) and ki(D22) = kδ(i+1) if d is odd.
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For the condition on sf0 − se0 = s(D12) − s(D11) we compute

τ(x) · u̇τ−1(x)u̇−1 = diag(x,Ed−2, x
−1, x−1, Ed−2, x) = (

d−1∑
i=1

α∨
i )(x),

hence application of λ gives xsf0
−se0 = x

Pd−1
i=1 ki and hence sf0−se0 ≡

∑d−1
i=1 ki =

∑d−2
i=0 ki(D11)

modulo (p− 1). The condition on sf1 − se1 = s(D22)− s(D21) in case d is even is exactly

verified like the one for sf0 − se0 because ω̇τ(x)ω̇−1 · ω̇u̇τ−1(x)u̇−1ω̇−1 = τ(x) · u̇τ−1(x)u̇−1.

In case d is odd the computation is

ρ̇τ(x)ρ̇−1 · ρ̇u̇τ−1(x)u̇−1ρ̇−1 = diag(x,Ed−2, x, x−1, Ed−2, x
−1) = (α∨

d +
d−2∑
i=1

α∨
i )(x),

hence sf1 − se1 ≡ kd +
∑d−2

i=1 ki = s(D12) − s(D11) + kd − kd−1 = kd−1(D11) − k0(D11) +∑d−2
i=0 ki(D11) modulo (p − 1).

To see the condition on se1 − se0 = s(D21) − s(D11) in case d is even we compute

τ(x) · ω̇τ−1(x)ω̇−1 = diag(1, xEd−2, 1, 1, x
−1Ed−2, 1)(32)

= (
d − 2

2
α∨

d−1 +
d − 2

2
α∨

d +
d−2∑
i=2

(i − 1)α∨
i )(x),

hence application of λ gives xse1−se0 = x
d−2
2

kd−1+ d−2
2

kd+
Pd−2

i=2 (i−1)ki and hence se1 − se0 ≡
d−2
2

kd−1 + d−2
2

kd +
∑d−2

i=2 (i − 1)ki = d−2
2

(kd−1(D11) + k0(D11)) +
∑d−2

i=2 (i − 1)kd−i−1(D11)

modulo (p − 1). If however d is odd we compute

τ(x) · ρ̇τ−1(x)ρ̇−1 = diag(1, xEd−2, x
−1, 1, x−1Ed−2, x)

= (
d − 1

2
α∨

d−1 +
d − 3

2
α∨

d +
d−2∑
i=2

(i − 1)α∨
i )(x),

hence application of λ gives xse1−se0 = x
d−1
2

kd−1+ d−3
2

kd+
Pd−2

i=2 (i−1)ki and hence se1 − se0 ≡
d−1
2

kd−1 + d−3
2

kd +
∑d−2

i=2 (i − 1)ki = d−3
2

k r
2
(D11) + d−1

2
k0(D11) +

∑d−2
i=2 (i − 1)kd−i−1(D11)

modulo (p − 1). Now we conclude with Lemmata 4.13 and 2.6. ¤

Remark: Consider the subgroup G′ = SO2d(Qp) of G. If we replace the above

τ by τ : Z×
p −→ T0, x 7→ diag(xEd−1, x

−1Ed, x), and if we replace the above ϕ by

ϕ = ṡd−1ṡd−2 · · · ṡ2ṡ1ṡdṡd−2ṡd−3 · · · ṡ3ṡ2ṡ0, then everything in fact happens inside G′, and

there is no dichotomy between d even or odd. We then have α(j) ◦ τ = id2
Z×

p
for all j ≥ 0.

Let Modfin
0 H(G′, G′ ∩ I0) denote the category of finite-o-length H(G′, G′ ∩ I0)-modules on

which τ(−1) (i.e. Tτ(−1) = Tτ(−1)−1) acts trivially. For M ∈ Modfin
0 H(G′, G′∩I0) we obtain
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an action of ⌊N0, φ
2d−2, Γ2⌋ on H0(X+, Θ∗VM), where Γ2 = {γ2 | γ ∈ Γ} ⊂ Γ. Correspond-

ingly, we obtain a functor from Modfin
0 H(G′, G′∩I0) to the category of (φ2d−2, Γ2)-modules

over OE .

Remark: Instead of the element ϕ ∈ N(T ) used above we might also work with the

element ṡd−1 · · · ṡ2ṡ1u̇ of length d−1 (or products of this with elements of pZ · id), keeping

the same C(•). This results in a functor from H(G, I0)-modules to (φd−1, Γ)-modules. Up

to a factor in pZ · id, the square of ṡd−1 · · · ṡ2ṡ1u̇ is the element ϕ used above.

Remark: For the affine root system of type Dd there are three co minuscule fun-

damental coweights (cf. [2] chapter 8, par 7.3]). We leave it to the reader to work out

(C(•), ϕ) correspondigng to the two other co minuscule fundamental coweights. (These

ϕ’s will be longer.)

Remark: We discuss a choice of (C(•), ϕ) with ℓ(ϕ) = d (but leading only to (φd, Γ0)-

modules, not to (φd, Γ)-modules). In N(T ) we consider ϕ = ṡd · · · ṡ1u̇. For a, b ∈ Z≥0

with 0 ≤ b < d we put C(ad+b) = ϕasd · · · sd−b+1C. A matrix computation shows ϕd−1 =

diag(pEd−1, 1, p
−1Ed−1, 1). Using this we find

ϕd−1N0ϕ
1−d =

∏
α∈Φ+

ϕd−1(N0 ∩ Nα)ϕ1−d =
∏

α∈Φ+

(N0 ∩ Nα)pmα
,

mα =


2 : α = ei + ej with i < j < d

1 : α = ei + ed

1 : α = ei − ed

0 : all other α ∈ Φ+

In particular we find ϕd−1N0ϕ
1−d ⊂ N0 and [N0 : ϕd−1N0ϕ

1−d] = pd(d−1). This implies that

the length of ϕm ∈ Ŵ is at least dm, for all m ≥ 0. On the other hand this length is at

most dm because ϕ is a product of d simple reflections and of an element of length 0. Thus

ϕm has length dm. Therefore the sequence C = C(0), C(1), C(2), . . . satisfies hypothesis (5).

4.4 Affine root system Ãd

Assume d ≥ 1 and consider G = GLd+1(Qp). Let

u̇ =

(
Ed

p

)
.

For 1 ≤ i ≤ d let

ṡi = diag(Ei−1, S1, Ed−i)
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and let ṡ0 = u̇ṡ1u̇
−1. Let T be the maximal torus consisting of diagonal matrices. Let

Φ+ be such that N =
∏

α∈Φ+ Nα is the subgroup of upper triangular unipotent matrices.

Let I0 be the subgroup consisting of elements in GLd+1(Zp) which are upper triangular

modulo p. We put

ϕ = (p · id)ṡd · · · ṡ0 = (p · id)ṡβ(1) · · · ṡβ(d+1)

where β(i) = d + 1 − i for 1 ≤ i ≤ d + 1. For a, b ∈ Z≥0 with 0 ≤ b < d + 1 we put

C(a(d+1)+b) = ϕasd · · · sd−b+1C = ϕasβ(1) · · · sβ(b)C.

We define the homomorphism

τ : Z×
p −→ T0, x 7→ diag(Ed, x

−1).

The sequence C = C(0), C(1), C(2), . . . satisfies hypothesis (5). The corresponding α(j) ∈
Φ+ for j ≥ 0 satisfy α(j) ◦ τ = idZ×

p
, and we have τ(a)ϕ = ϕτ(a) for all a ∈ Z×

p . We thus

obtain a functor from Modfin(H(G, I0)) to the category of (φd+1, Γ)-modules over OE .

Let H(G, I0)
′
aff,k denote the k-sub algebra of H(G, I0)k generated by H(G, I0)aff,k to-

gether with Tp·id = Tu̇d+1 and T−1
p·id = Tp−1·id.

Suppose we are given a character λ : T → k×, a subset J ⊂ Sλ and some b ∈ k×.

Define the numbers 0 ≤ ki = ki(λ,J ) ≤ p− 1 as in subsection 3.2. The character χλ,J of

H(G, I0)aff,k extends uniquely to a character

χλ,J ,b : H(G, I0)
′
aff,k −→ k

which sends Tp·id to b (see the proof of [7] Proposition 3). Define the H(G, I0)k-module

M = M [λ,J , b] = H(G, I0)k ⊗H(G,I0)′aff,k
k.e

where k.e denotes the one dimensional k-vector space on the basis element e, endowed

with the action of H(G, I0)
′
aff,k by the character χλ,J ,b. As a k-vector space, M has di-

mension d + 1, a k-basis is {ei}0≤i≤d where we write ei = Tu̇−i ⊗ e.

Definition: We call an H(G, I0)k-module quasi supersingular if it is isomorphic with

M [λ,J , b] for some λ,J , b such that ki > 0 for at least one i.

For 0 ≤ j ≤ d put nej
=

∑d
i=0 kj−ip

i (reading j− i as its representative modulo (d+1)

in [0, d]) and let sej
be such that λ(u̇−jτ(x)u̇j) = x−sej . Put ϱ = λ(−id)

∏d
i=0(ki!).

Theorem 4.17. The étale (φd+1, Γ)-module D(Θ∗VM) over kE associated with H0(X+, Θ∗VM)

admits a kE-basis {gej
}0≤j≤d such that for all j we have

φd+1gej
= bϱ−1tnej +1−pd+1

gej
,

γ(x)gej
− xsej gej

∈ t · k+
E · gej

.

33



The functor M 7→ D(Θ∗VM) induces a bijection between

(a) the set of isomorphism classes of quasi supersingular H(G, I0)k-modules, and

(b) the set of isomorphism classes of A-symmetric étale (φd+1, Γ)-modules over kE .

Proof: For the formulae describing D(Θ∗VM) one may proceed exactly as in the

proof of Corollary 4.5. (The only tiny additional point to be observed is that the ṡi (in

keeping with our choice in [3]) do not ly in the images of the ιαi
; this is accounted for

by the sign factor λ(−id) in the definition of ϱ.) Alternatively, as our ϕ is the (d + 1)-st

power of the ϕ considered in section 8 of [3], the computations of loc. cit. may be carried

over.

To see that D(Θ∗VM) is A-symmetric put Dj = ⟨gej
⟩ for 0 ≤ j ≤ d and compare the

above formulae with those defining A-symmetry; e.g. we find se0 − sej
≡

∑j
i=1 ki modulo

(p − 1). The bijectivity statement is then verified as before. ¤

Remark: Application of the functor of Lemma 2.2 to any one of the direct summands

Dj of an A-symmetric étale (φd+1, Γ)-module over kE (i.e. of D(Θ∗VM)) yields an étale

(φ, Γ)-module isomorphic with the one assigned to M in [3].

Remark: Consider the subgroup G′ = SLd+1(Qp) of G. If we replace the above τ by

τ : Z×
p −→ T0, x 7→ diag(xEd, x

−d) and if we replace the above ϕ by ϕ = ṡdṡd−1 · · · ṡ1ṡ0

then everything in fact happens inside G′. We then have α(j) ◦ τ = idd+1

Z×
p

for all j ≥ 0.

Let Modfin
0 H(G′, G′ ∩ I0) denote the category of finite-o-length H(G′, G′ ∩ I0)-modules on

which the xEd+1 (i.e. the Tx−1Ed+1
) for all x ∈ Z×

p with xd+1 = 1 act trivially. (Notice

that τ(x) = xEd+1 for such x.) For M ∈ Modfin
0 H(G′, G′ ∩ I0) we obtain an action of

⌊N0, φ
d+1, Γd+1⌋ on H0(X+, Θ∗VM), where Γd+1 = {γd+1 | γ ∈ Γ} ⊂ Γ. Correspondingly,

we obtain a functor from Modfin
0 H(G′, G′ ∩ I0) to the category of (φd+1, Γd+1)-modules

over OE .

Remark: As all the fundamental coweights τ of T are co minuscule, each of them

admits ϕ’s for which the pair (ϕ, τ) satisfies the properties asked for in Lemma 3.1. For

example, let 1 ≤ g ≤ d. For ϕ = ṡg · ṡg+1 · · · ṡd · u̇ as well as for ϕ = ṡg · ṡg−1 · · · ṡ1 · u̇−1

there is a unique minimal gallery from C to ϕ(C) which admits a ϕ-periodic continuation

to a gallery (4), giving rise to a functor from Modfin(H(G, I0)) to the category of (φr, Γ)-

modules over OE , where r = ℓ(ϕ).
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5 Exceptional groups

Let G be the group of Qp-rational points of a Qp-split connected reductive group over Qp

with connected center Z. Fix a maximal Qp-split torus T and define Φ, N(T ), W , Ŵ and

Waff as before.

5.1 Affine root system Ẽ6

Assume that the root system Φ is of type E6. Following [2] (for the indexing) we then

have Coxeter generators s1, . . . , s6 of W and s0, . . . , s6 of Waff (thus s2
i = 1 for all i) such

that

(s1s3)
3 = (s3s4)

3 = (s4s5)
3 = (s5s6)

3 = (s4s2)
3 = (s2s0)

3 = 1

and moreover (sisj)
2 = 1 for all other pairs i ̸= j. In the extended affine Weyl group Ŵ

we find (cf. [4]) an element u of length 0 with

u3 = 1 and us4u
−1 = s4,

us3u
−1 = s5, us5u

−1 = s2, us2u
−1 = s3,(33)

us1u
−1 = s6, us6u

−1 = s0, us0u
−1 = s1.

(Then Ŵ is the semidirect product of the three-element subgroup WΩ = {1, u, u2} with

Waff .) Let e1, . . . , e8 denote the standard basis of R8. We use the standard inner product

⟨., .⟩ on R8 to view both the root system Φ as well as its dual Φ∨ as living inside R8.

We choose a positive system Φ+ in Φ such that, as in [2], the simple roots are α1 =

α∨
1 = 1

2
(e1 + e8 − e2 − e3 − e4 − e5 − e6 − e7), α2 = α∨

2 = e2 + e1, α3 = α∨
3 = e2 − e1,

α4 = α∨
4 = e3 − e2, α5 = α∨

5 = e4 − e3, α6 = α∨
6 = e5 − e4 while the negative of the highest

root is α0 = α∨
0 = 1

2
(e6 + e7 − e1 − e2 − e3 − e4 − e5 − e8). The set of positive roots is

Φ+ = {ej ± ei | 1 ≤ i < j ≤ 5} ∪ {1

2
(−e6 − e7 + e8 +

5∑
i=1

(−1)νiei) |
5∑

i=1

νi even}.

We lift u and the si to elements u̇ and ṡi in N(T ). We then put

ϕ = ṡ2ṡ4ṡ3ṡ1u̇
−1 ∈ N(T ).

We define ∇ as in section 3.2.

Proposition 5.1. There is a τ ∈ ∇ such that the pair (ϕ, τ) satisfies the hypotheses of

Lemma 3.1. More precisely, ϕ is power multiplicative, and for the co minuscule funda-

mental (co)weight τ = ω1 = 2
3
(e8 − e7 − e6) ∈ ∇ we have ϕ12 = τ 3 in Waff .
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Proof: (Here the symbol ω1 in fact designates the translation by ω1, therefore we

write ω3
1 = τ 3 (rather than 3ω1) for the three fold iterate of this translation.) Consider the

set of affine root hyperplanes crossed by a minimal gallery from C to ω3
1C. Assigning to

each of these affine root hyperplanes its corresponding positive root in Φ+, each element

of the subset

Φ(ω1) = {1

2
(−e6 − e7 + e8 +

5∑
i=1

(−1)νiei) |
5∑

i=1

νi even}

of Φ+ is hit exactly three times, whereas no other element of Φ+ is hit. In this way, the set

Φ(ω1) characterizes ω3
1 as an element of Waff . In particular, the length of ω3

1 is 3 ·16 = 48.

It is now enough to verify that ϕ12 satisfies this characterization of ω3
1.

Alternatively, one may want to use a computer to verify ϕ12 = ω3
1. See the appendix

for how this can be done. ¤

As explained in subsection 3.2 we now obtain a functor from Modfin(H(G, I0)) to the

category of (φ4, Γ)-modules over OE .

Similarly, we may replace ϕ by its third power ϕ3 which (in contrast to ϕ) is an ele-

ment of Waff (modulo T0). It yields a functor from Modfin(H(G, I0)) to the category of

(φ12, Γ)-modules over OE . As in our treatment of the cases C, B, D and A, this functor

identifies the set of quasi supersingular H(G, I0)k-modules bijectively with a set of certain

E-symmetric étale (φ12, Γ)-modules over kE of dimension 3. We leave the details to the

reader.

Remarks: (a) Dual to the above choice of ϕ is the choice

ϕ = ṡ2ṡ4ṡ5ṡ6u̇ ∈ N(T ).(34)

For this choice, Proposition 5.1 holds true verbatim the same way, but now with the co

minuscule fundamental (co)weight τ = ω6 = 1
3
(3e5 + e8 − e7 − e6) with its corresponding

subset (again containing 16 elements)

Φ(ω6) = {1

2
(e5 − e6 − e7 + e8 +

4∑
i=1

(−1)νiei) |
4∑

i=1

νi even} ∪ {e5 ± ei | 1 ≤ i < 5}

of Φ+. Again see the appendix.

(b) In either case, the multiplicities of the si in ϕ3 ∈ Waff are the coefficients of the

α∨
i in

α∨
0 + α∨

1 + α∨
6 + 2α∨

2 + 2α∨
3 + 2α∨

5 + 3α∨
4 = 0.
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5.2 Affine root system Ẽ7

Assume that the root system Φ is of type E7. Following [2] we then have Coxeter gener-

ators s1, . . . , s7 of W and s0, . . . , s7 of Waff (thus s2
i = 1 for all i) such that

(s0s1)
3 = (s1s3)

3 = (s3s4)
3 = (s4s5)

3 = (s5s6)
3 = (s6s7)

3 = (s4s2)
3 = 1

and moreover (sisj)
2 = 1 for all other pairs i ̸= j. In the extended affine Weyl group Ŵ

we find (cf. [4]) an element u of length 0 with

u2 = 1 and us4u = s4, us2u = s2,

us3u = s5, us6u = s1, us7u = s0,

us5u = s3, us1u = s6, us0u = s7.

(Ŵ is the semidirect product of the two-element subgroup WΩ = {1, u} with Waff .) Let

e1, . . . , e8 denote the standard basis of R8. We use the standard inner product ⟨., .⟩
on R8 to view both the root system Φ as well as its dual Φ∨ as living inside R8. We

choose a positive system Φ+ in Φ such that, as in [2], the simple roots are α1 = α∨
1 =

1
2
(e1+e8−e2−e3−e4−e5−e6−e7), α2 = α∨

2 = e2+e1, α3 = α∨
3 = e2−e1, α4 = α∨

4 = e3−e2,

α5 = α∨
5 = e4 − e3, α6 = α∨

6 = e5 − e4, α7 = α∨
7 = e6 − e5 while the negative of the highest

root is α0 = α∨
0 = e7 − e8. The set of positive roots is

Φ+ = {ej ± ei | 1 ≤ i < j ≤ 6} ∪ {e8 − e7} ∪ {1

2
(e8 − e7 +

6∑
i=1

(−1)νiei) |
6∑

i=1

νi odd}.

We lift u and the si to elements u̇ and ṡi in N(T ). We then put

ϕ = ṡ1ṡ3ṡ4ṡ2ṡ5ṡ4ṡ3ṡ1ṡ0u̇ ∈ N(T ).

We define ∇ as in section 3.2.

Proposition 5.2. There is a τ ∈ ∇ such that the pair (ϕ, τ) satisfies the hypotheses of

Lemma 3.1. More precisely, ϕ is power multiplicative, and for the co minuscule funda-

mental (co)weight τ = ω7 = e6 + 1
2
(e8 − e7) ∈ ∇ we have ϕ6 = τ 2 in Waff .

Proof: Exactly the same as for Propostion 5.1. The corresponding subset in Φ+ is

Φ(ω7) = {1

2
(e6 + e8 − e7 +

5∑
i=1

(−1)νiei) |
5∑

i=1

νi odd} ∪ {e8 − e7} ∪ {e6 ± ei | 1 ≤ i < 6}.

It contains exactly 27 elements, thus ℓ(ω7) = 27. For a computer proof of ϕ6 = τ 2 see the

appendix. ¤
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As explained in subsection 3.2 we now obtain a functor from Modfin(H(G, I0)) to the

category of (φ9, Γ)-modules over OE .

Similarly, we may replace ϕ by its square ϕ2 which (in contrast to ϕ) is an element of

Waff (modulo T0). It yields a functor from Modfin(H(G, I0)) to the category of (φ18, Γ)-

modules over OE . Again this functor identifies the set of quasi supersingular H(G, I0)k-

modules bijectively with a set of certain E-symmetric étale (φ18, Γ)-modules over kE of

dimension 2. We leave the details to the reader.

Remark: The multiplicities of the si in ϕ2 ∈ Waff are the coefficients of the α∨
i in

α∨
0 + α∨

7 + 2(α∨
1 + α∨

2 + α∨
6 ) + 3(α∨

3 + α∨
5 ) + 4α∨

4 = 0.

5.3 Affine root systems G̃2, F̃4, Ẽ8

If the underlying root system of G is G2, F4 or E8 then co minuscule coweights do not

exist, and there don’t exist ϕ and τ satisfying the conclusions of Lemma 3.1.

One may nevertheless ask the following question: Is there a reduced expression (7)

of a power multiplicative element ϕ ∈ N(T ), some power of which maps to a dominant

coweight in N(T )/T0 = Ŵ , such that the corresponding functor M 7→ D(Θ∗VM) from

Modfin(H(G, I0)) to (φr, Γ0)-modules has the following property: for any M , the (φr, Γ0)-

module structure on D(Θ∗VM) extends (possibly in several ways) to an (φr, Γ)-module

structure ?

Let us say that such expressions (7) have the extension property. We consider the

question for the supersingular characters M of H(G, I0)k. Suppose we are given a character

λ : T → k× and a subset J ⊂ Sλ, with corresponding numbers 0 ≤ ki = ki(λ,J ) ≤ p− 1,

not all of them equal to 0 and not all of them equal to p − 1. As we are in case G̃2, F̃4

or Ẽ8, we have Waff = Ŵ and hence H(G, I0)aff,k = H(G, I0)k, as follows e.g. from [7]

Corollary 3. Let us write M = M [λ,J ] for the one-dimensional H(G, I0)k-module on the

basis element e given by χλ,J .

Notice that the group N(T )/T0 = Waff = Ŵ is canonically independent on the chosen

prime number p. Consider the unique equation

d∑
i=0

miα
∨
i = 0(35)

with minimally chosen positive coefficients mi ∈ N.

Lemma 5.3. Given an expression (7), in order that the (φr, Γ0)-module structure on

D(Θ∗VM [λ,J ]) extends to a (φr, Γ)-module structure for any choice of (λ,J ) and for in-

finitely many primes p, a necessary condition is that r be a multiple of
∑d

i=0 mi and that

sj for each 0 ≤ j ≤ d shows up in (7) exactly with multiplicity mjr/(
∑d

i=0 mi).
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Proof: (Sketch) Put n =
∑r−1

i=0 kβ(i+1)p
i. As in the proof of Lemma 4.4 we see that

tnφre = ϱe(36)

in H0(X+, Θ∗VM), for some ϱ ∈ k×. Notice that formula (36) completely characterizes the

action of Γ0 and of φr on H0(X+, Θ∗VM) since we know that the action of Γ0 respects the

subspace M and acts trivially on it, and M generates H0(X+, Θ∗VM) as a k+
E [φr]-module.

We need to investigate if there is a homomorphism ϵ : F×
p −→ F×

p such that the action

of ⌊N0, φ
r, Γ0⌋ on H0(X+, Θ∗VM) extends to an action by ⌊N0, φ

r, Γ⌋ in such a way that

for all x ∈ F×
p the action of γ(x) ∈ Γ satisfies

γ(x) · e = ϵ(x)e.(37)

The formula (37) provides a well defined action of Γ on k.e = M , with trivial restriction

to Γ0. An extension from k.e = M to all of H0(X+, Θ∗VM), if it exists, is necessarily

uniquely determined, since e generates H0(X+, Θ∗VM) as a k+
E [φr] = k+

E [ϕ]-module. More

precisely, in order to extend it to all of H0(X+, Θ∗VM) one must use the relations, in

k+
E [ϕ, Γ], between γ(x) and t and φr = ϕ. Namely, given m ≥ 0 and c ≥ 0, if γ(x)tmϕc =∑

m′ βm′tm
′
ϕcγm′ in k+

E [ϕ, Γ] with certain βm′ ∈ k and γm′ ∈ Γ, then one must put

γ(x) · (tmϕce) =
∑
m′

βm′tm
′
ϕc(γm′ · e)

and extend by linearity. In order to check if this yields a well defined action of Γ one must

in particular check if this definition is compatible with formula (36). Thus one must do

the following computation:

γ(x) · tnϕe = xntnγ(x) · ϕe = xntnϕγ(x) · e = xntnϕϵ(x)e = xnγ(x) · ϱe.

Here the first equality follows from the fact that tn+1 annihilates ϕe (which it does because

of formula (36)) together with the following

Sublemma: (see [3]) For all k ≥ 0 we have γ(x) · tkγ(x)−1 − xktk ∈ tk+1k+
E .

Thus, in order that the desired Γ-action on H0(X+, Θ∗VM) exists we need to have

xn = 1 for all x ∈ F×
p . Now

xn = x
Pr−1

i=0 kβ(i+1)p
i

= x
Pr−1

i=0 kβ(i+1) = λ(
r−1∏
i=0

α∨
β(i+1)(x)).

Thus, since λ is arbitrary we need that
∏r−1

i=0 α∨
β(i+1) = 1 in Hom(F×

p , T ). In order that

this be true for infinitely many primes p we exactly get our stated condition. ¤
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Remark: This discussion also shows that we have no problems with extending the

(φr, Γ0)-action to a (φr, Γ)-action for trivial λ. In particular, this applies to the cate-

gory of modules over the Iwahori Hecke algebra H(G, I)k (which is a direct summand of

H(G, I0)k).

(a) Affine root system G̃2

Claim: No expression (7) has the extension property for infinitely many p.

We have the Coxeter generators s1, s2 of W and s0, s1, s2 of Waff = Ŵ (thus s2
0 = s2

1 =

s2
2 = 1) such that

(s1s2)
6 = (s0s2)

3 = 1

and moreover (s0s1)
2 = 1. The equation (35) reads

α∨
0 + α∨

1 + 2α∨
2 = 0.(38)

In view of Lemma 5.3 we conclude from formula (38) that we would need to find a

power multiplicative reduced expression of length r ∈ 4N in which the factors s0, s1, s2

appear with multiplicities in exact proportions 1 : 1 : 2. But it is easy to see that such

expressions do not exist.

(b) Affine root system F̃4

Claim: No expression (7) has the extension property for infinitely many p.

We have Coxeter generators s1, . . . , s4 of W and s0, . . . , s4 of Waff = Ŵ (thus s2
i = 1

for all i) such that

(s2s3)
4 = (s0s1)

3 = (s1s2)
3 = (s3s4)

3 = 1

and moreover (sisj)
2 = 1 for all other i ̸= j. The equation (35) reads

α∨
0 + α∨

4 + 2(α∨
1 + α∨

3 ) + 3α∨
2 = 0.(39)

Thus, in view of Lemma 5.3 we would need to find a power multiplicative reduced

expression of length r ∈ 9Z in which the factors s0, s1, s2, s3, s4 appear with multiplici-

ties in exact proportions 1 : 2 : 3 : 2 : 1. Such an expression does not exist. (By power

multiplicativity we may assume that the desired expression represents a translation. As

such it can be written as a linear combinaton with Z≥0-coefficients of the fundamental

weights. Inspecting the list of all reduced expressions for the translations by the funda-

mental weights — this list can easily be produced using sage — the claim can be verified

without much pain.)

(c) Affine root system Ẽ8
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Extrapolating from the cases G̃2 and F̃4 one might expect that again the answer is

negative. We have the Coxeter generator s1, . . . , s8 of W and s0, . . . , s8 of Waff = Ŵ (thus

s2
i = 1 for all i) such that

(s1s3)
3 = (s3s4)

3 = (s4s5)
3 = (s5s6)

3 = (s6s7)
3 = (s7s8)

3 = (s8s0)
3 = (s4s2)

3 = 1

and moreover (sisj)
2 = 1 for all other pairs i ̸= j. The equation (35) reads

α∨
0 + 2(α∨

1 + α∨
8 ) + 3(α∨

2 + α∨
7 ) + 4(α∨

3 + α∨
6 ) + 5α∨

5 + 6α∨
4 = 0.(40)

¿From here one might try to proceed as in the case of F̃4; but unfortunately, this time

the combinatorics seem to become too involved to be tractable by hand.

6 Appendix

Verification of the statement ϕ12 = ω3
1 in the proof of Proposition 5.1.

In the computer algebra system sage, the input

R=RootSystem([”E”,6,1]).weight lattice()

Lambda=R.fundamental weights()

omega1=Lambda[1]-Lambda[0]

R.reduced word of translation(3*omega1)

prompts the output

[0, 2, 4, 3, 5, 4, 2, 0, 6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 2, 0, 6, 5, 4, 2,

3, 1, 4, 3, 5, 4, 2, 0, 6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 2, 6, 5, 4, 3, 1].(41)

By definition of the function reduced word of translation this means s∗i1 · · · s
∗
i48

= ω3
1, with

the string [i1, . . . , i48] as given by (41). Here s∗i = si for 1 ≤ i ≤ 6, but s∗0 denotes the affine

reflection in the outer face of Bourbaki’s fundamental alcove A. Since we deviate from

these conventions in that our s0 is the affine reflection in the outer face of the negative

C = −A of A, we must modify the above string (41) as follows. First, writing s∗∗i = s∗0s
∗
i s

∗
0

for 0 ≤ i ≤ 6, conjugating the factors in the previous word by s∗0 and commuting some of

its factors where allowed, the above says s∗∗j1 · · · s
∗∗
j48

= ω3
1 where the string [j1, . . . , j48] is

given by

[2, 4, 5, 6, 3, 4, 2, 0, 5, 4, 3, 1, 2, 4, 5, 6, 3, 4, 2, 0, 5, 4, 3, 1,

2, 4, 5, 6, 3, 4, 2, 0, 5, 4, 3, 1, 2, 4, 5, 6, 3, 4, 2, 0, 5, 4, 3, 1].(42)

The s∗∗i are precisely the reflections in the codimension 1 faces of s∗0A. But s∗0A is a trans-

late of C, and under this translation, the reflection s∗∗0 = s∗0 corresponds to s0, whereas
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for 1 ≤ i ≤ 6 the reflection s∗∗i corresponds to w0siw0, where w0 is the longest element of

W . We have w0siw0 = si for i ∈ {0, 2, 4}, but w0s3w0 = s5 and w0s1w0 = s6. Thus, we

obtain sk1 · · · sk48 = ω3
1 where the string [k1, . . . , k48] is obtained from the string (42) by

keeping its entry values 0, 2 and 4, while exchanging the entry values 3 with 5 and 1 with

6. Using formulae (33) one checks that sk1 · · · sk48 = ϕ12. ¤

Verification of the statement ϕ12 = ω3
1 for ϕ given by (34).

The argument is the same as in Proposition 5.1. The string returned by sage to

R=RootSystem([”E”,6,1]).weight lattice(), Lambda=R.fundamental weights(),

omega6=Lambda[6]-Lambda[0], R.reduced word of translation(3*omega6)

reads

[0, 2, 4, 3, 1, 5, 4, 2, 0, 3, 4, 2, 5, 4, 3, 1, 6, 5, 4, 2, 0, 3, 4, 2,

5, 4, 3, 1, 6, 5, 4, 2, 0, 3, 4, 2, 5, 4, 3, 1, 6, 5, 4, 2, 3, 4, 5, 6].

Verification of the statement ϕ6 = τ 2 in the proof of Proposition 5.2.

The string returned by sage to

R=RootSystem([”E”,7,1]).weight lattice(), Lambda=R.fundamental weights(),

omega7=Lambda[7]-Lambda[0], R.reduced word of translation(2*omega7)

reads

[0, 1, 3, 4, 2, 5, 4, 3, 1, 0, 6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 2, 6, 5, 4, 3, 1, 0,(43)

7, 6, 5, 4, 2, 3, 1, 4, 3, 5, 4, 2, 6, 5, 4, 3, 1, 7, 6, 5, 4, 2, 3, 4, 5, 6, 7].

Now proceed as in Proposition 5.1. ¤
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