From pro- p Iwahori-Hecke modules to (φ, Γ)-modules II

by Elmar Grosse-Klönne
Abstract
Let \mathfrak{o} be the ring of integers in a finite extension field of \mathbb{Q}_{p}, let k be its residue field. Let G be a split reductive group over \mathbb{Q}_{p}, let $\mathcal{H}\left(G, I_{0}\right)$ be its pro- p-Iwahori Hecke \mathfrak{o}-algebra. In [3] we introduced a general principle how to assign to a certain additionally chosen datum $\left(C^{(\bullet)}, \phi, \tau\right)$ an exact functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ from finite length $\mathcal{H}\left(G, I_{0}\right)$-modules to $\left(\varphi^{r}, \Gamma\right)$-modules. In the present paper we concretely work out such data $\left(C^{(\bullet)}, \phi, \tau\right)$ for the classical matrix groups. We show that the corresponding functor identifies the set of (quasi) supersingular $\mathcal{H}\left(G, I_{0}\right) \otimes_{\mathfrak{0}} k$-modules with the set of $\left(\varphi^{r}, \Gamma\right)$-modules satisfying a certain symmetry condition.

Contents

1 Introduction 1
$2\left(\varphi^{r}, \Gamma\right)$-modules $\quad 4$
3 Semiinfinite chamber galleries and functor $\mathrm{D} \quad 9$
3.1 Power multiplicative elements in the extended affine Weyl group 9
3.2 Functor D . 12
4 Classical matrix groups 14
4.1 Affine root system \tilde{C}_{d}. 14
4.2 Affine root system \tilde{B}_{d}. 20
4.3 Affine root system \tilde{D}_{d}. 25
4.4 Affine root system \tilde{A}_{d}. 32
5 Exceptional groups 35
5.1 Affine root system \tilde{E}_{6}. 35
5.2 Affine root system \tilde{E}_{7}. 37

6 Appendix 41

1 Introduction

Let \mathfrak{o} be the ring of integers in a finite extension field of \mathbb{Q}_{p}, let k be its residue field. Let G be a split reductive group over \mathbb{Q}_{p}, let T be a maximal split torus in G, let
I_{0} be a pro- p-Iwahori subgroup fixing a chamber C in the T-stable apartment of the semi simple Bruhat Tits building of G. Let $\mathcal{H}\left(G, I_{0}\right)$ be the pro-p-Iwahori Hecke oalgebra. Let $\operatorname{Mod}^{\mathrm{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ denote the category of $\mathcal{H}\left(G, I_{0}\right)$-modules of finite \mathfrak{o}-length. From a certain additional datum $\left(C^{(\bullet)}, \phi, \tau\right)$ we constructed in [3] an exact functor $M \mapsto$ $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ from $\operatorname{Mod}^{\text {fin }}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of étale (φ^{r}, Γ)-modules (with $r \in \mathbb{N}$ depending on ϕ). For $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, when precomposed with the functor of taking $I_{0^{-}}$ invariants, this yields the functor from smooth \mathfrak{o}-torsion representations of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ (or at least from those generated by their I_{0}-invariants) to étale (φ, Γ)-modules which plays a crucial role in Colmez' construction of a p-adic local Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$. In [3] we studied in detail the functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ when $G=\mathrm{GL}_{d+1}\left(\mathbb{Q}_{p}\right)$ for $d \geq 1$. The purpose of the present paper is to explain how the general construction of [3] can be installed concretely for other G 's.

Recall that $C^{(\bullet)}=\left(C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots\right)$ is a minimal gallery, starting at C, in the T-stable apartment, that $\phi \in N(T)$ is 'period' of $C^{(\bullet)}$ and that τ is a homomorphism from \mathbb{Z}_{p}^{\times}to T, compatible with ϕ in a suitable sense. The above $r \in \mathbb{N}$ is just the length of ϕ. It turns out that τ must be a co minuscule fundamental coweight (at least if the underlying root system is simple). Conversely, any co minuscule fundamental coweight τ can be included into a datum $\left(C^{(\bullet)}, \phi, \tau\right)$, in such a way that some power of τ is a power of ϕ.

While for $G=\mathrm{GL}_{d+1}\left(\mathbb{Q}_{p}\right)$ we gave explicit choices of $\left(C^{(\bullet)}, \phi, \tau\right)$ with $r=1$ in [3] (in fact there are essentially just two such choices), we did not discuss the existence of $\left(C^{\bullet \bullet}, \phi, \tau\right)$ for other G^{\prime} 's. This discussion is the main contribution of the present paper. More specifically, we work out 'priviledged' choices $\left(C^{(\bullet)}, \phi, \tau\right)$ for the classical matrix groups (of type B, C, D, and also A again), as well as for G of type E_{6}, E_{7}. We mostly consider G with connected center Z. Our choices of $\left(C^{(\bullet)}, \phi, \tau\right)$ are such that $\phi \in N(T)$ projects modulo $Z T_{0}$ (where T_{0} denotes the maximal bounded subgroup of T) to the affine Weyl group (viewed as a subgroup of $N(T) / Z T_{0}$). In particular, up to modifications by elements of Z these ϕ can also be included into data $\left(C^{(\bullet)}, \phi, \tau\right)$ for the other G^{\prime} 's with the same underlying root system, not necessarily with connected center. We indicate these modifications along the way.

Notice that the $\phi \in N(T)$ considered in [3] for $G=\mathrm{GL}_{d+1}\left(\mathbb{Q}_{p}\right)$ does not project to the affine Weyl group, only its $(d+1)$-st power, as considered here, has this property. But since the discussion is essentially the same, our treatment of the case A here is very brief.

As an application, in either case we work out the behaviour of the functor $M \mapsto$ $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ on those $\mathcal{H}\left(G, I_{0}\right)_{k}=\mathcal{H}\left(G, I_{0}\right) \otimes_{\mathfrak{0}} k$-modules which we call 'quasi supersingular'. Roughly speaking, these are induced from characters of the pro- p-Iwahori Hecke algebra of the corresponding simply connected group. At least conjecturally (i.e. extrapolating one
of the main results from [6] from $G=\mathrm{GL}_{d+1}$ to arbitrary G 's), the set of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules contains the set of all irreducible supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules (and the very few quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules which are not irreducible supersingular are easily identified). We show that our functor induces a bijection between the set of (isomorphism classes of) quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules and the set of (isomorphism classes of) certain 'symmetric' étale (φ^{r}, Γ)-modules over $k_{\mathcal{E}}=k((t))$. These are defined as direct sums of one dimensional étale (φ^{r}, Γ)-modules which satisfy certain symmetry conditions (depending on the root system underlying G). Their $k_{\mathcal{E}}$-dimension is the k-dimension of the corresponding quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-module.

Of course, the potential interest in étale $\left(\varphi^{r}, \Gamma\right)$-modules lies in their relation with $\mathrm{Gal}_{\mathbb{Q}_{p}}$-representations. For any $r \in \mathbb{N}$ there is an exact functor from the category of étale $\left(\varphi^{r}, \Gamma\right)$-modules to the category of étale (φ, Γ)-modules (it multiplies the rank by the factor r), and by means of Fontaine's functor, the latter one is equivalent with the category of $\mathrm{Gal}_{\mathbb{Q}_{p}}$-representations.

In [3] we also explained that a datum $\left(C^{(\bullet)}, \phi\right)$ alone, i.e. without a τ as above, can be used to define an exact functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ from $\operatorname{Mod}^{\text {fin }}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of étale (φ^{r}, Γ_{0})-modules, where Γ_{0} denotes the maximal pro- p-subgroup of $\Gamma \cong \mathbb{Z}_{p}^{\times}$. Such data $\left(C^{(\bullet)}, \phi\right)$ are not tied to co minuscule coweights and exist in abundance. One may ask for such $\left(C^{(\bullet)}, \phi\right)$ with small length r of ϕ. Without further discussing them we give such $\left(C^{(\bullet)}, \phi\right)$ with r equal to the semisimple rank of G, for G of type C, B and D.

The outline is as follows. In section 2 we explain the functor from étale (φ^{r}, Γ)-modules to étale (φ, Γ)-modules, and we introduce the 'symmetric' étale (φ^{r}, Γ)-modules mentioned above, for each of the root systems C, B, D and A. In section 3, Lemma 3.1, we discuss the relation between the data $\left(C^{(\bullet)}, \phi, \tau\right)$ and co minuscule fundamental coweights. Our discussions of classical matrix groups G in section 4 are just concrete incarnations of Lemma 3.1, although in neither of these cases there is a need to make formal reference to Lemma 3.1. On the other hand, in our discussion of the cases E_{6} and E_{7} in section 5 we do invoke Lemma 3.1. We tried to synchronize our discussions of the various matrix groups. As a consequence, arguments repeat themselves, and we do not write them out again and again. In subsection 5.3 we consider the groups G with underlying root systems G_{2}, F_{4} or E_{8}. As these do not admit (co)minuscule (co)weights, there are no data $\left(C^{(\bullet)}, \phi, \tau\right)$ available as needed for a functor producing $\left(\varphi^{r}, \Gamma\right)$-modules. We thus discuss the question if for a suitable choice of $\left(C^{(\bullet)}, \phi\right)$ the étale $\left(\varphi^{r}, \Gamma_{0}\right)$-modules in the image of the corresponding functor in fact extend to $\left(\varphi^{r}, \Gamma\right)$-modules. In the appendix we record calculations relevant for the cases E_{6} and E_{7}, carried out with the help of the computer algebra system sage.

Acknowledgments: I would like to thank Laurent Berger for a helpful discussion related
to this work.

$2\left(\varphi^{r}, \Gamma\right)$-modules

We often regard elements of \mathbb{F}_{p}^{\times}as elements of \mathbb{Z}_{p}^{\times}by means of the Teichmüller lifting. In $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$ we define the subgroups

$$
\Gamma=\left(\begin{array}{cc}
\mathbb{Z}_{p}^{\times} & 0 \\
0 & 1
\end{array}\right), \quad \Gamma_{0}=\left(\begin{array}{cc}
1+p \mathbb{Z}_{p} & 0 \\
0 & 1
\end{array}\right), \quad \mathfrak{N}_{0}=\left(\begin{array}{cc}
1 & \mathbb{Z}_{p} \\
0 & 1
\end{array}\right)
$$

and the elements

$$
\varphi=\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right), \quad \nu=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), \quad h(x)=\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right), \quad \gamma(x)=\left(\begin{array}{cc}
x & 0 \\
0 & 1
\end{array}\right)
$$

where $x \in \mathbb{Z}_{p}^{\times}$.
Let $\mathcal{O}_{\mathcal{E}}^{+}=\mathfrak{o}\left[\left[\mathfrak{N}_{0}\right]\right]$ denote the completed group ring of \mathfrak{N}_{0} over \mathfrak{o}. Let $\mathcal{O}_{\mathcal{E}}$ denote the p adic completion of the localization of $\mathcal{O}_{\mathcal{E}}^{+}$with respect to the complement of $\pi_{K} \mathcal{O}_{\mathcal{E}}^{+}$, where $\pi_{K} \in \mathfrak{o}$ is a uniformizer. In the completed group ring $k_{\mathcal{E}}^{+}=k\left[\left[\mathfrak{N}_{0}\right]\right]$ we put $t=[\nu]-1$. Let $k_{\mathcal{E}}=\operatorname{Frac}\left(k_{\mathcal{E}}^{+}\right)=\mathcal{O}_{\mathcal{E}}^{+} \otimes_{\mathfrak{0}} k$. For definitions and notational conventions concerning étale φ^{r} and étale $\left(\varphi^{r}, \Gamma\right)$-modules we refer to [3].

Let $r \in \mathbb{N}$. Let $\mathbf{D}=\left(\mathbf{D}, \varphi_{\mathbf{D}}^{r}\right)$ be an étale φ^{r}-module over $\mathcal{O}_{\mathcal{E}}$. For $0 \leq i \leq r-1$ let $\mathbf{D}^{(i)}=\mathbf{D}$ be a copy of \mathbf{D}. For $1 \leq i \leq r-1$ define $\varphi_{\tilde{\mathbf{D}}}: \mathbf{D}^{(i)} \rightarrow \mathbf{D}^{(i-1)}$ to be the identity map on \mathbf{D}, and define $\varphi_{\tilde{\mathbf{D}}}: \mathbf{D}^{(0)} \rightarrow \mathbf{D}^{(r-1)}$ to be the structure map $\varphi_{\mathbf{D}}^{r}$ on \mathbf{D}. Together we obtain a \mathbb{Z}_{p}-linear endomorphism $\varphi_{\widetilde{\mathbf{D}}}$ on

$$
\widetilde{\mathbf{D}}=\bigoplus_{i=0}^{r-1} \mathbf{D}^{(i)}
$$

Define an $\mathcal{O}_{\mathcal{E}}$-action on $\widetilde{\mathbf{D}}$ by the formula

$$
\begin{equation*}
x \cdot\left(\left(d_{i}\right)_{0 \leq i \leq r-1}\right)=\left(\varphi_{\mathcal{O}_{\mathcal{E}}}^{i}(x) d_{i}\right)_{0 \leq i \leq r-1} . \tag{1}
\end{equation*}
$$

Lemma 2.1. The endomorphism $\varphi_{\widetilde{\mathbf{D}}}$ of $\widetilde{\mathbf{D}}$ is semilinear with respect to the $\mathcal{O}_{\mathcal{E}}$-action (1), hence it defines on $\widetilde{\mathbf{D}}$ the structure of an étale φ-module over $\mathcal{O}_{\mathcal{E}}$.

Proof:

$$
\begin{aligned}
\varphi_{\widetilde{\mathbf{D}}}\left(x \cdot\left(\left(d_{i}\right)_{i}\right)\right) & =\varphi_{\widetilde{\mathbf{D}}}\left(\left(\varphi_{\mathcal{O}_{\mathcal{E}}}^{i}(x) d_{i}\right)_{i}\right) \\
& =\left(\left(\varphi_{\mathcal{O}_{\mathcal{E}}}^{i}(x) d_{i+1}\right)_{0 \leq i \leq r-2},\left(\varphi_{\mathbf{D}}^{r}\left(x \cdot d_{0}\right)\right)_{r-1}\right) \\
& =\left(\left(\varphi_{\mathcal{O}_{\mathcal{E}}}^{i}(x) d_{i+1}\right)_{0 \leq i \leq r-2},\left(\varphi_{\mathcal{O}_{\mathcal{E}}}^{r}(x) \varphi_{\mathbf{D}}^{r}\left(d_{0}\right)\right)_{r-1}\right) \\
& =\varphi_{\mathcal{O}_{\mathcal{E}}}(x)\left(\left(d_{i+1}\right)_{0 \leq i \leq r-2},\left(\varphi_{\mathbf{D}}^{r}\left(d_{0}\right)\right)_{r-1}\right) \\
& =\varphi_{\mathcal{O}_{\mathcal{E}}}(x) \varphi_{\widetilde{\mathbf{D}}}\left(\left(d_{i}\right)_{i}\right) .
\end{aligned}
$$

Let Γ^{\prime} be an open subgroup of Γ, let \mathbf{D} be an étale $\left(\varphi^{r}, \Gamma^{\prime}\right)$-module over $\mathcal{O}_{\mathcal{E}}$. Define an action of Γ^{\prime} on $\widetilde{\mathbf{D}}$ by

$$
\gamma \cdot\left(\left(d_{i}\right)_{0 \leq i \leq r-1}\right)=\left(\gamma \cdot d_{i}\right)_{0 \leq i \leq r-1}
$$

Lemma 2.2. The Γ^{\prime}-action on $\widetilde{\mathbf{D}}$ commutes with $\varphi_{\tilde{\mathbf{D}}}$ and is semilinear with respect to the $\mathcal{O}_{\mathcal{E}}$-action (1), hence we obtain on $\widetilde{\mathbf{D}}$ the structure of an étale $\left(\varphi, \Gamma^{\prime}\right)$-module over $\mathcal{O}_{\mathcal{E}}$. We thus obtain an exact functor from the category of étale $\left(\varphi^{r}, \Gamma^{\prime}\right)$-modules to the category of étale $\left(\varphi, \Gamma^{\prime}\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Proof: This is immediate from the respective properties of the Γ^{\prime}-action on \mathbf{D}.

Lemma 2.3. (a) Let \mathbf{D} be a one-dimensional étale $\left(\varphi^{r}, \Gamma\right)$-module over $k_{\mathcal{E}}$. There exists a basis element g for \mathbf{D}, uniquely determined integers $0 \leq s(\mathbf{D}) \leq p-2$ and $1 \leq n(\mathbf{D}) \leq$ $p^{r}-1$ and a uniquely determined scalar $\xi(\mathbf{D}) \in k^{\times}$such that

$$
\begin{aligned}
\varphi^{r} g & =\xi(\mathbf{D}) t^{n(\mathbf{D})+1-p^{r}} g & \\
\gamma(x) g & -x^{s(\mathbf{D})} g & \in t \cdot k_{\mathcal{E}}^{+} \cdot g
\end{aligned}
$$

for all $x \in \mathbb{Z}_{p}^{\times}$. Thus, one may define $0 \leq k_{i}(\mathbf{D}) \leq p-1$ by $n(\mathbf{D})=\sum_{i=0}^{r-1} k_{i}(\mathbf{D}) p^{i}$. One has $n \equiv 0$ modulo ($p-1$).
(b) For any given integers $0 \leq s \leq p-2$ and $1 \leq n \leq p^{r}-1$ with $n \equiv 0$ modulo ($p-1$) and any scalar $\xi \in k^{\times}$there is a uniquely determined (up to isomorphism) onedimensional étale $\left(\varphi^{r}, \Gamma\right)$-module \mathbf{D} over $k_{\mathcal{E}}$ with $s=s(\mathbf{D})$ and $n=n(\mathbf{D})$ and $\xi=\xi(\mathbf{D})$.

Proof: (a) Begin with an arbitrary basis element g_{0} for \mathbf{D}; then $\varphi^{r} g_{0}=F g_{0}$ for some unit $F \in k((t))=k_{\mathcal{E}}$. After multiplying g_{0} with a suitable power of t we may assume $F=\xi t^{m}\left(1+t^{n_{0}} F_{0}\right)$ for some $0 \geq m \geq 2-p^{r}$, some $\xi \in k^{\times}$, some $n_{0}>0$, and some $F_{0} \in k[[t]]$ (use $t^{p^{r}} \varphi^{r}=\varphi^{r} t$). For $g_{1}=\left(1+t^{n_{0}} F_{0}\right) g_{0}$ we then get $\varphi^{r} g_{1}=\xi t^{m}\left(1+t^{n_{1}} F_{1}\right) g_{1}$ for some $n_{1}>n_{0}>0$ and some $F_{1} \in k[[t]]$. We may continue in this way; by completeness we get $g=g_{\infty} \in \mathbf{D}$ such that $\varphi^{r} g=\xi t^{m} g$. It is clear that $\xi(\mathbf{D})=\xi$ and $n(\mathbf{D})=p^{r}-1+m$ are well defined. Next, to see that there is some $s(\mathbf{D})$ as required we only need to see that $\gamma(x) g=F_{x} g$ for some unit $F_{x} \in k[[t]]$. But this follows from the fact that $\gamma(x)^{p-1}$ is topologically nilpotent (and acts by an automorphism on \mathbf{D}). It follows from Lemma 6.3 in [3] that $n(\mathbf{D}) \equiv 0$ modulo $p-1$.
(b) Put $D=k[[t]]=k_{\mathcal{E}}^{+}$and $D^{*}=\operatorname{Hom}_{k}^{\text {ct }}\left(k_{\mathcal{E}}^{+}, k\right)$ and define $\ell_{0} \in D^{*}$ by $\ell_{0}\left(\sum_{i \geq 0} a_{i} t^{i}\right)=$ a_{0}. Endow D^{*} with an action of $k_{\mathcal{E}}^{+}$by putting $(\alpha \cdot \ell)(x)=\ell(\alpha \cdot x)$ for $\alpha \in k_{\mathcal{E}}^{+}, \ell \in D^{*}$ and
$x \in D$. We claim that this action uniquely extends to an action by $k_{\mathcal{E}}^{+}\left[\varphi^{r}, \Gamma\right]$ satisfying

$$
\begin{align*}
t^{n} \varphi^{r} \ell_{0} & =\xi^{-1} \ell_{0} \tag{2}\\
\gamma(x) \ell_{0} & =x^{-s} \ell_{0} \quad \text { for all } x \in \mathbb{Z}_{p}^{\times} . \tag{3}
\end{align*}
$$

Indeed, as $t^{p^{r}} \varphi^{r}=\varphi^{r} t$, formula (2) defines a unique extension to $k_{\mathcal{E}}^{+}\left[\varphi^{r}\right]$. Next, ℓ_{0} then generates D^{*} as a $k_{\mathcal{E}}^{+}\left[\varphi^{r}\right]$-module, and this shows that an extension to $k_{\mathcal{E}}^{+}\left[\varphi^{r}, \Gamma\right]$ satisfying formula (3) must be unique. To see that it does indeed exist, we check the compatibility of formulae (2) and (3):

$$
\gamma(x) t^{n} \varphi^{r} \ell_{0} \stackrel{(i)}{=} x^{n} t^{n} \gamma(x) \varphi^{r} \ell_{0}=x^{n-s} t^{n} \varphi^{r} \ell_{0}=\xi^{-1} x^{n-s} \ell_{0} \stackrel{(i i)}{=} \gamma(x) \xi^{-1} \ell_{0}
$$

Here (i) follows from $\gamma(x) t^{n} \gamma(x)^{-1}-x^{n} t^{n} \in t^{n+1} k_{\mathcal{E}}^{+}$(see [3], proof of Lemma 6.3), whereas (ii) follows from our hypothesis $n \equiv 0$ modulo $(p-1)$. Now passing to the dual $D \cong\left(D^{*}\right)^{*}$ of D^{*} yields a non degenerate $\left(\psi^{r}, \Gamma\right)$-module over $k_{\mathcal{E}}^{+}$with an associated étale (φ^{r}, Γ)module \mathbf{D} over $k_{\mathcal{E}}$ with $s=s(\mathbf{D})$ and $n=n(\mathbf{D})$ and $\xi=\xi(\mathbf{D})$; this is explained in [3] Lemma 6.4. This dualization argument also proves the uniqueness of \mathbf{D}.

Definition: We say that an étale $\left(\varphi^{r}, \Gamma\right)$-module \mathbf{D} over $k_{\mathcal{E}}$ is C-symmetric if it admits a direct sum decomposition $\mathbf{D}=\mathbf{D}_{1} \oplus \mathbf{D}_{2}$ with one-dimensional étale $\left(\varphi^{r}, \Gamma\right)$-modules \mathbf{D}_{1}, \mathbf{D}_{2} satisfying the following conditions (1), (2C) and (3C):
(1) $k_{i}\left(\mathbf{D}_{1}\right)=k_{r-1-i}\left(\mathbf{D}_{2}\right)$ for all $0 \leq i \leq r-1$
(2C) $\xi\left(\mathbf{D}_{1}\right)=\xi\left(\mathbf{D}_{2}\right)$
(3C) $s\left(\mathbf{D}_{2}\right)-s\left(\mathbf{D}_{1}\right) \equiv \sum_{i=0}^{r-1} i k_{i}\left(\mathbf{D}_{1}\right)$ modulo $(p-1)$

Definition: We say that an étale (φ^{r}, Γ)-module \mathbf{D} over $k_{\mathcal{E}}$ is B-symmetric if r is odd and if \mathbf{D} admits a direct sum decomposition $\mathbf{D}=\mathbf{D}_{1} \oplus \mathbf{D}_{2}$ with one-dimensional étale (φ^{r}, Γ)-modules $\mathbf{D}_{1}, \mathbf{D}_{2}$ satisfying the following conditions (1), (2B) and (3B):
(1) $k_{i}\left(\mathbf{D}_{1}\right)=k_{r-1-i}\left(\mathbf{D}_{2}\right)$ for all $0 \leq i \leq r-1$
(2B) For both $\mathbf{D}=\mathbf{D}_{1}$ and $\mathbf{D}=\mathbf{D}_{2}$ we have $\xi(\mathbf{D})=\prod_{i=0}^{r-1}\left(k_{i}(\mathbf{D})!\right)^{-1}$ and $k_{i}(\mathbf{D})=$ $k_{r-1-i}(\mathbf{D})$ for all $1 \leq i \leq \frac{r+1}{2}$
(3B) $s\left(\mathbf{D}_{2}\right)-s\left(\mathbf{D}_{1}\right) \equiv k_{0}\left(\mathbf{D}_{1}\right)-k_{r-1}\left(\mathbf{D}_{1}\right)$ modulo $(p-1)$
Lemma 2.4. The conjunction of the conditions (1), (2C) and (3C) (resp. (1), (2B) and $(3 B)$) is symmetric in \mathbf{D}_{1} and \mathbf{D}_{2}.

Proof: That each one of the conditions (1), (2C) and (2B) is symmetric even individually is obvious. Now $n(\mathbf{D}) \equiv 0$ modulo $p-1$ implies $\sum_{i=0}^{r-1} k_{i}\left(\mathbf{D}_{1}\right) \equiv 0$ modulo $p-1$. Therefore $s\left(\mathbf{D}_{2}\right)-s\left(\mathbf{D}_{1}\right) \equiv \sum_{i=0}^{r-1} i k_{i}\left(\mathbf{D}_{1}\right)$ and $k_{i}\left(\mathbf{D}_{1}\right)=k_{r-1-i}\left(\mathbf{D}_{2}\right)$ for all i (condition (1)) together imply $s\left(\mathbf{D}_{1}\right)-s\left(\mathbf{D}_{2}\right) \equiv \sum_{i=0}^{r-1} i k_{i}\left(\mathbf{D}_{2}\right)$. Thus condition (3C) is symmetric,
assuming condition (1). Similarly, condition (3B) is symmetric, assuming condition (1).
Definition: (i) Let $\widetilde{\mathfrak{S}}_{C}(r)$ denote the set of triples (n, s, ξ) with integers $1 \leq n \leq p^{r}-1$ and $0 \leq s \leq p-2$ and scalars $\xi \in k^{\times}$such that $n \equiv 0$ modulo $(p-1)$. Let $\mathfrak{S}_{C}(r)$ denote the quotient of $\widetilde{\mathfrak{S}}_{C}(r)$ by the involution

$$
\left(\sum_{i=0}^{r-1} k_{i} p^{i}, s, \xi\right) \mapsto\left(\sum_{i=0}^{r-1} k_{r-i-1} p^{i}, s+\sum_{i=0}^{r-1} i k_{i}, \xi\right) .
$$

(Here and in the following, in the second component we mean the representative modulo $p-1$ belonging to $[0, p-2]$.)
(ii) Let r be odd and let $\widetilde{\mathfrak{S}}_{B}(r)$ denote the set of pairs (n, s) with integers $1 \leq n=$ $\sum_{i=0}^{r-1} k_{i} p^{i} \leq p^{r}-1$ and $0 \leq s \leq p-2$ such that $n \equiv 0$ modulo $(p-1)$ and such that $k_{i}=k_{r-1-i}$ for all $1 \leq i \leq \frac{r+1}{2}$. Let $\mathfrak{S}_{B}(r)$ denote the quotient of $\widetilde{\mathfrak{S}}_{B}(r)$ by the involution

$$
\left(\sum_{i=0}^{r-1} k_{i} p^{i}, s\right) \mapsto\left(\sum_{i=0}^{r-1} k_{r-i-1} p^{i}, s+k_{0}-k_{r-1}\right) .
$$

Lemma 2.5. (i) Sending $\mathbf{D}=\mathbf{D}_{1} \oplus \mathbf{D}_{2}$ to $\left(n\left(\mathbf{D}_{1}\right), s\left(\mathbf{D}_{1}\right), \xi\left(\mathbf{D}_{1}\right)\right)$ induces a bijection between the set of isomorphism classes of C-symmetric étale $\left(\varphi^{r}, \Gamma\right)$-modules and $\mathfrak{S}_{C}(r)$.
(ii) Sending $\mathbf{D}=\mathbf{D}_{1} \oplus \mathbf{D}_{2}$ to $\left(n\left(\mathbf{D}_{1}\right), s\left(\mathbf{D}_{1}\right)\right)$ induces a bijection between the set of isomorphism classes of B-symmetric étale $\left(\varphi^{r}, \Gamma\right)$-modules and $\mathfrak{S}_{B}(r)$.

Proof: This follows from Lemma 2.3.

Definition: Let r be even. Let $\widetilde{\mathfrak{S}}_{D}(r)$ denote the set of triples (n, s, ξ) with integers $1 \leq n=\sum_{i=0}^{r-1} k_{i} p^{i} \leq p^{r}-1$ and $0 \leq s \leq p-2$ and scalars $\xi \in k^{\times}$such that $n \equiv 0$ modulo $(p-1)$ and such that $k_{i}=k_{i+\frac{r}{2}}$ for all $1 \leq i \leq \frac{r}{2}-2$. We consider the following permutations ι_{0} and ι_{1} of $\widetilde{\mathfrak{S}}_{D}(r)$. The value of ι_{0} at $\left(\sum_{i=0}^{r-1} k_{i} p^{i}, s, \xi\right)$ is

$$
\left(k_{\frac{r}{2}}+\sum_{i=1}^{\frac{r}{2}-2} k_{i} p^{i}+k_{r-1} p^{\frac{r}{2}-1}+k_{0} p^{\frac{r}{2}}+\sum_{i=\frac{r}{2}+1}^{r-2} k_{i} p^{i}+k_{\frac{r}{2}-1} p^{r-1}, s+\sum_{i=0}^{\frac{r}{2}-1} k_{i}, \xi\right) .
$$

The value of ι_{1} at $\left(\sum_{i=0}^{r-1} k_{i} p^{i}, s, \xi\right)$ is

$$
\left(\sum_{i=1}^{r-1} k_{r-i-1} p^{i}, s+\frac{r-2}{4}\left(k_{\frac{r}{2}}+k_{0}\right)+\sum_{i=2}^{\frac{r}{2}-1}(i-1) k_{\frac{r}{2}-i}, \xi\right)
$$

if r is odd, whereas if r is even the value is
$\left(k_{\frac{r}{2}-1}+\sum_{i=1}^{\frac{r}{2}-2} k_{r-i-1} p^{i}+k_{\frac{r}{2}} p^{\frac{r}{2}-1}+k_{r-1} p^{\frac{r}{2}}+\sum_{i=\frac{r}{2}+1}^{r-2} k_{r-i-1} p^{i}+k_{0} p^{r-1}, s+\left(\frac{r}{4}-1\right) k_{\frac{r}{2}}+\frac{r}{4} k_{0}+\sum_{i=2}^{\frac{r}{2}-1}(i-1) k_{\frac{r}{2}-i} p^{i}, \xi\right)$.

It is straightforward to check that $\iota_{0}^{2}=\mathrm{id}$ and $\iota_{0} \iota_{1}=\iota_{1} \iota_{0}$, and moreover that $\iota_{1}^{2}=\mathrm{id}$ if r is odd, but $\iota_{1}^{2}=\iota_{0}$ if r is even. In either case, the subgroup $\left\langle\iota_{0}, \iota_{1}\right\rangle$ of $\operatorname{Aut}\left(\widetilde{\mathfrak{S}}_{D}(r)\right)$ generated by ι_{0} and ι_{1} is commutative and contains 4 elements. We let $\mathfrak{S}_{D}(r)$ denote the quotient of $\widetilde{\mathfrak{S}}_{D}(r)$ by the action of $\left\langle\iota_{0}, \iota_{1}\right\rangle$.

Definition: Let r be even. We say that an étale $\left(\varphi^{r}, \Gamma\right)$-module \mathbf{D} over $k_{\mathcal{E}}$ is D symmetric if it admits a direct sum decomposition $\mathbf{D}=\mathbf{D}_{11} \oplus \mathbf{D}_{12} \oplus \mathbf{D}_{21} \oplus \mathbf{D}_{22}$ with onedimensional étale (φ^{r}, Γ)-modules $\mathbf{D}_{11}, \mathbf{D}_{12}, \mathbf{D}_{21}, \mathbf{D}_{22}$ satisfying the following conditions:
(1) For all $1 \leq i \leq \frac{r}{2}-2$ and all $1 \leq s, t \leq 2$ we have $k_{i}\left(\mathbf{D}_{s t}\right)=k_{\frac{r}{2}+i}\left(\mathbf{D}_{s t}\right)$
(2) For all $1 \leq i \leq \frac{r}{2}-2$ we have $k_{i}\left(\mathbf{D}_{11}\right)=k_{i}\left(\mathbf{D}_{12}\right)$ and $k_{i}\left(\mathbf{D}_{21}\right)=k_{i}\left(\mathbf{D}_{22}\right)$
$k_{0}\left(\mathbf{D}_{11}\right)=k_{\frac{r}{2}}\left(\mathbf{D}_{12}\right), \quad k_{\frac{r}{2}}\left(\mathbf{D}_{11}\right)=k_{0}\left(\mathbf{D}_{12}\right), \quad k_{\frac{r}{2}-1}\left(\mathbf{D}_{11}\right)=k_{r-1}\left(\mathbf{D}_{12}\right), \quad k_{r-1}\left(\mathbf{D}_{11}\right)=k_{\frac{r}{2}-1}\left(\mathbf{D}_{12}\right)$

$$
\begin{equation*}
k_{i}\left(\mathbf{D}_{11}\right)=k_{r-i-1}\left(\mathbf{D}_{21}\right) \quad \text { and } \quad k_{i}\left(\mathbf{D}_{12}\right)=k_{r-i-1}\left(\mathbf{D}_{22}\right) \tag{4}
\end{equation*}
$$

if $i \in[0, r-1]$ and $\frac{r}{2}$ is odd, or if $i \in\left[1, \frac{r}{2}-2\right] \cup\left[\frac{r}{2}+1, r-2\right]$ and $\frac{r}{2}$ is even. Moreover, if $\frac{r}{2}$ is even then
$k_{0}\left(\mathbf{D}_{11}\right)=k_{r-1}\left(\mathbf{D}_{21}\right), \quad k_{\frac{r}{2}-1}\left(\mathbf{D}_{11}\right)=k_{0}\left(\mathbf{D}_{21}\right), \quad k_{\frac{r}{2}}\left(\mathbf{D}_{11}\right)=k_{\frac{r}{2}-1}\left(\mathbf{D}_{21}\right), \quad k_{r-1}\left(\mathbf{D}_{11}\right)=k_{\frac{r}{2}}\left(\mathbf{D}_{21}\right)$
(5) $\xi\left(\mathbf{D}_{11}\right)=\xi\left(\mathbf{D}_{12}\right)=\xi\left(\mathbf{D}_{21}\right)=\xi\left(\mathbf{D}_{22}\right)$
(6) Modulo $(p-1)$ we have

$$
\begin{gathered}
s\left(\mathbf{D}_{12}\right)-s\left(\mathbf{D}_{11}\right) \equiv \sum_{i=0}^{\frac{r}{2}-1} k_{i}\left(\mathbf{D}_{11}\right) \\
s\left(\mathbf{D}_{22}\right)-s\left(\mathbf{D}_{21}\right) \equiv \begin{cases}\sum_{i=0}^{\frac{r}{2}-1} k_{i}\left(\mathbf{D}_{11}\right) \\
k_{2}\left(\mathbf{D}_{11}\right)-k_{0}\left(\mathbf{D}_{11}\right)+\sum_{i=0}^{\frac{r}{2}-1} k_{i}\left(\mathbf{D}_{11}\right) & : \\
\hline & \frac{r}{2} \text { is odd }\end{cases} \\
s\left(\mathbf{D}_{21}\right)-s\left(\mathbf{D}_{11}\right) \equiv \begin{cases}\frac{r-2}{4}\left(k_{\frac{r}{2}}\left(\mathbf{D}_{11}\right)+k_{0}\left(\mathbf{D}_{11}\right)\right)+\sum_{i=2}^{\frac{r}{2}-1}(i-1) k_{\frac{r}{2}-i}\left(\mathbf{D}_{11}\right) & : \\
\frac{r}{2} \text { is odd } \\
\left(\frac{r}{4}-1\right) k_{\frac{r}{2}}\left(\mathbf{D}_{11}\right)+\frac{r}{4} k_{0}\left(\mathbf{D}_{11}\right)+\sum_{i=2}^{\frac{r}{2}-1}(i-1) k_{\frac{r}{2}-i}\left(\mathbf{D}_{11}\right) & : \\
\frac{r}{2} \text { is even }\end{cases}
\end{gathered}
$$

Lemma 2.6. Sending $\mathbf{D}=\mathbf{D}_{11} \oplus \mathbf{D}_{12} \oplus \mathbf{D}_{21} \oplus \mathbf{D}_{22}$ to $\left(n\left(\mathbf{D}_{11}\right), s\left(\mathbf{D}_{11}\right), \xi\left(\mathbf{D}_{11}\right)\right)$ induces a bijection between the set of isomorphism classes of D-symmetric étale $\left(\varphi^{r}, \Gamma\right)$-modules and $\mathfrak{S}_{D}(r)$.

Proof: Again we use Lemma 2.3. For a one-dimensional étale (φ^{r}, Γ)-module \mathbf{D} over $k_{\mathcal{E}}$ put $\alpha(\mathbf{D})=(n(\mathbf{D}), s(\mathbf{D}), \xi(\mathbf{D}))$; this is an element of $\widetilde{\mathfrak{S}}_{D}(r)$. If $\mathbf{D}=\mathbf{D}_{11} \oplus \mathbf{D}_{12} \oplus \mathbf{D}_{21} \oplus$ \mathbf{D}_{22} is D-symmetric as above, then it is straighforward to check $\iota_{0}\left(\alpha\left(\mathbf{D}_{11}\right)\right)=\alpha\left(\mathbf{D}_{12}\right)$, $\iota_{0}\left(\alpha\left(\mathbf{D}_{21}\right)\right)=\alpha\left(\mathbf{D}_{22}\right), \iota_{1}\left(\alpha\left(\mathbf{D}_{11}\right)\right)=\alpha\left(\mathbf{D}_{21}\right)$ and $\iota_{0}\left(\alpha\left(\mathbf{D}_{12}\right)\right)=\alpha\left(\mathbf{D}_{22}\right)$. It follows that the
above map is well defined and bijective.

Definition: We say that an étale $\left(\varphi^{r}, \Gamma\right)$-module \mathbf{D} over $k_{\mathcal{E}}$ is A-symmetric if \mathbf{D} admits a direct sum decomposition $\mathbf{D}=\oplus_{i=0}^{r-1} \mathbf{D}_{i}$ with one-dimensional étale $\left(\varphi^{r}, \Gamma\right)$-modules \mathbf{D}_{i} satisfying the following conditions for all i, j (where we understand the sub index in $k_{\text {? }}$ as the unique representative in $[0, r-1]$ modulo r):
$k_{i}\left(\mathbf{D}_{j}\right)=k_{i-j}\left(\mathbf{D}_{0}\right), \quad \xi\left(\mathbf{D}_{j}\right)=\xi\left(\mathbf{D}_{0}\right), \quad s\left(\mathbf{D}_{0}\right)-s\left(\mathbf{D}_{j}\right) \equiv \sum_{i=1}^{j} k_{-i}\left(\mathbf{D}_{0}\right)$ modulo $(p-1)$

3 Semiinfinite chamber galleries and functor D

3.1 Power multiplicative elements in the extended affine Weyl group

Let G be the group of \mathbb{Q}_{p}-rational points of a \mathbb{Q}_{p}-split connected reductive group over \mathbb{Q}_{p}. Fix a maximal \mathbb{Q}_{p}-split torus T in G, let $N(T)$ be its normalizer in G. Let Φ denote the set of roots of T. For $\alpha \in \Phi$ let N_{α} be the corresponding root subgroup in G. Choose a positive system Φ^{+}in Φ, let $\Delta \subset \Phi^{+}$be the set of simple roots. Let $N=\prod_{\alpha \in \Phi^{+}} N_{\alpha}$.

Let X denote the semi simple Bruhat-Tits building of G, let A denote its apartment corresponding to T. Our notational and terminological convention is that the facets of A or X are closed in X (i.e. contain all their faces (the lower dimensional facets at their boundary)). A chamber is a facet of codimension 0 . For a chamber D in A let I_{D} be the Iwahori subgroup in G fixing D.

Fix a special vertex x_{0} in A, let K be the corresponding hyperspecial maximal compact open subgroup in G. Let $T_{0}=T \cap K$ and $N_{0}=N \cap K$. We have the isomorphism $T / T_{0} \cong X_{*}(T)$ sending $\xi \in X_{*}(T)$ to the class of $\xi(p) \in T$. Let $I \subset K$ be the Iwahori subgroup determined by Φ^{+}. [If red : $K \rightarrow \bar{K}$ denotes the reduction map onto the reductive $\left(\right.$ over $\left.\mathbb{F}_{p}\right)$ quotient \bar{K} of K, then $I=\operatorname{red}^{-1}\left(\operatorname{red}\left(T_{0} N_{0}\right)\right)$.] Let $C \subset A$ be the chamber fixed by I.

We are interested in semiinfinite chamber galleries

$$
\begin{equation*}
C^{(0)}, C^{(1)}, C^{(2)}, C^{(3)}, \ldots \tag{4}
\end{equation*}
$$

in A such that $C=C^{(0)}$ (and thus $I=I_{C^{(0)}}$) and such that, setting

$$
N_{0}^{(i)}=I_{C^{(i)}} \cap N=\prod_{\alpha \in \Phi^{+}} I_{C^{(i)}} \cap N_{\alpha},
$$

we have $N_{0}=N_{0}^{(0)}$ and

$$
\begin{equation*}
N_{0}^{(0)} \supset N_{0}^{(1)} \supset N_{0}^{(2)} \supset N_{0}^{(3)} \supset \ldots \quad \text { with }\left[N_{0}^{(i)}: N_{0}^{(i+1)}\right]=p \text { for all } i \geq 0 \tag{5}
\end{equation*}
$$

In this situation there is a unique sequence $\alpha^{(0)}, \alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}, \ldots$ in Φ^{+}such that, setting

$$
e[i, \alpha]=\left|\left\{0 \leq j \leq i-1 \mid \alpha=\alpha^{(j)}\right\}\right|
$$

for $i \geq 0$ and $\alpha \in \Phi^{+}$, we have

$$
N_{0}^{(i)}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{e[i, \alpha]}}
$$

Geometrically, $C^{(i+1)}$ and $C^{(i)}$ share a common facet of codimension 1 contained in a wall which belongs to the translation class of walls corresponding to $\alpha^{(i)}$.

Suppose that the center Z of G is connected. Then G / Z is a semisimple group of adjoint type with maximal torus $\check{T}=T / Z$. Let $\check{T}_{0}=T_{0} /\left(T_{0} \cap Z\right) \subset \check{T}$. The extended affine Weyl group $\widehat{W}=N(\check{T}) / \check{T}_{0}$ can be identified with the semidirect product between the finite Weyl group $W=N(\check{T}) / \check{T}=N(T) / T$ and $X_{*}(\check{T})$. We identify $A=X_{*}(\check{T}) \otimes \mathbb{R}$ such that $x_{0} \in A$ corresponds to the origin in the \mathbb{R}-vector space $X_{*}(\check{T}) \otimes \mathbb{R}$. We then regard \widehat{W} as acting on A through affine transformations. We regard $\Delta \subset X^{*}(T)$ as a subset of $X^{*}(\check{T})$. We usually enumerate the elements of Δ as $\alpha_{1}, \ldots, \alpha_{d}$, and we enumerate the corresponding simple reflection $s_{\alpha} \in W$ for $\alpha \in \Delta$ as s_{1}, \ldots, s_{d} with $s_{i}=s_{\alpha_{i}}$. Assume that the root system Φ is irreducible and let $\alpha_{0} \in \Phi$ be the negative of the highest root. Let $s_{\alpha_{0}}$ be the corresponding reflection in the finite Weyl group W; define the affine reflection $s_{0}=t_{\alpha_{0}^{\vee}} \circ s_{\alpha_{0}} \in \widehat{W}$, where $t_{\alpha_{0}^{\vee}}$ denotes the translation by the coroot $\alpha_{0}^{\vee} \in A$ of α_{0}. The affine Weyl group $W_{\text {aff }}$ is the subgroup of \widehat{W} generated by $s_{0}, s_{1}, \ldots, s_{d}$; in fact it is a Coxeter group with these Coxeter generators. The corresponding length function ℓ on $W_{\text {aff }}$ extends to \widehat{W}.

Let $X_{*}(\check{T})_{+}$denote the set of dominant coweights. [Let $T_{+}=\left\{t \in T \mid t N_{0} t^{-1} \subset N_{0}\right\}$, then $X_{*}(\check{T})_{+}$is the image of T_{+}under the map $T_{+} \subset T \rightarrow T / T_{0} \cong X_{*}(T) \rightarrow X_{*}(\check{T})$.] The monoid $X_{*}(\check{T})_{+}$is free and has a unique basis ∇, the set of fundamental coweights. The cone (vector chamber) in A with origin in x_{0} which is spanned by all the $-\xi$ for $\xi \in \nabla$ contains C, and C is precisely the 'top' chamber of this cone. The reflections $s_{0}, s_{1}, \ldots, s_{d}$ are precisely the reflections in the affine hyperplanes (walls) of A which contain a codimension-1-face of C.

Let us say that $w \in \widehat{W}$ is power multiplicative if we have $\ell\left(w^{m}\right)=m \cdot \ell(w)$ for all $m \geq 0$. Of course, any element in the image of $T \rightarrow N(\check{T}) \rightarrow \widehat{W}=N(\check{T}) / \check{T}_{0}$ is power multiplicative.

Suppose we are given a fundamental coweight $\tau \in \nabla$ and some non trivial element $\phi \in \widehat{W}$ satisfying the following conditions:
(a) ϕ is power multiplicative,
(b) τ is co minuscule, i.e. we have $\langle\alpha, \tau\rangle \in\{0,1\}$ for all $\alpha \in \Phi^{+}$,
(c) viewing τ via the embedding $X_{*}(\check{T}) \subset \widehat{W}$ as an element of \widehat{W}, we have

$$
\begin{equation*}
\phi^{\mathbb{N}} \cap \tau^{\mathbb{N}} \neq \emptyset . \tag{6}
\end{equation*}
$$

Lemma 3.1. Let ϕ and τ be as above. Write $\phi=\phi^{\prime} v$ with $\phi^{\prime} \in W_{\text {aff }}$ and $v \in \widehat{W}$ with $v C=C$. Choose a reduced expresssion

$$
\phi^{\prime}=s_{\beta(1)} \cdots s_{\beta(r)}
$$

of ϕ^{\prime} with some function $\beta:\{1, \ldots, r\} \rightarrow\{0, \ldots, d\}$ (with $r=\ell(\phi)=\ell\left(\phi^{\prime}\right)$) and put

$$
C^{(a r+b)}=\phi^{a} s_{\beta(1)} \cdots s_{\beta(b)} C
$$

for $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<r$. Lift $\tau \in \nabla \subset X_{*}(\check{T})$ to some element of $X_{*}(T)$ and denote again by τ the corresponding homomorphism $\mathbb{Z}_{p}^{\times} \rightarrow T_{0}$. Then we have:
(i) The sequence

$$
C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots
$$

satisfies hypothesis (5). In particular we may define $\alpha^{(j)} \in \Phi^{+}$for all $j \geq 0$.
(ii) For any $j \geq 0$ we have $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{\hat{p}}^{\times}}$.
(iii) For any lifting $\phi \in N(T)$ of $\phi \in \overparen{W}$ we have $\tau(a) \phi=\phi \tau(a)$ in $N(T)$, for all $a \in \mathbb{Z}_{p}^{\times}$.

Proof: (i) As τ is co minuscule, it is in particular a dominant coweight. Therefore it follows from hypothesis (6) that also some power of ϕ is a dominant coweight. As ϕ is power multiplicative, this implies statement (i).
(ii) As ϕ is power multiplicative, hypothesis (6) implies that for any $m \in \mathbb{N}$ for which ϕ^{m} belongs to $X_{*}(T)$ we have

$$
\left\{\alpha^{(j)} \mid j \geq 0\right\}=\left\{\alpha \in \Phi^{+} \mid\left\langle\alpha, \phi^{m}\right\rangle \neq 0\right\}=\left\{\alpha \in \Phi^{+} \mid\langle\alpha, \tau\rangle \neq 0\right\}
$$

and as τ is co minuscule this is the set

$$
\left\{\alpha \in \Phi^{+} \mid\langle\alpha, \tau\rangle=1\right\}=\left\{\alpha \in \Phi^{+} \mid\langle\alpha \circ \tau\rangle=\operatorname{id}_{\mathbb{Z}_{p}^{\times}}\right\} .
$$

(iii) By hypothesis (6) we have $\tau^{m}=\phi^{n}$ for some $m, n \in \mathbb{N}$. We deduce $\tau^{m}=$ $\phi \tau^{m} \phi^{-1}=\left(\phi \tau \phi^{-1}\right)^{m}$ and hence also $\tau=\phi \tau \phi^{-1}$ as τ and $\phi \tau \phi^{-1}$ belong to the free abelian group $X_{*}(T)$. Thus $\tau \phi=\phi \tau$ in \widehat{W} which implies claim (iii).

Remark: For a given co minuscule fundamental coweight $\tau \in \nabla$ some positive power τ^{m} of τ belongs to $X_{*}(\check{T})$, and so $\phi=\tau^{m}$ satisfies the assumptions of Lemma 3.1. However, for our purposes it is of interest to find ϕ (as in Lemma 3.1, possibly also required to project to $W_{\text {aff }}$) of small length; the minimal positive power of τ belonging to $X_{*}(\check{T})$ is usually not optimal in this sense.

3.2 Functor D

By I_{0} we denote the pro- p-Iwahori subgroup contained in I. We often read $\bar{T}=T_{0} / T_{0} \cap I_{0}$ as a subgroup of T_{0} by means of the Teichmüller character. Conversely, we read characters of \bar{T} also as characters of T_{0} (and do not introduce another name for these inflations).

Let $\operatorname{ind}_{I_{0}}^{G} \mathbf{1}_{\mathfrak{o}}$ denote the \mathfrak{o}-module of \mathfrak{o}-valued compactly supported functions f on G such that $f(i g)=f(g)$ for all $g \in G$, all $i \in I_{0}$. It is a G-representation by means of $\left(g^{\prime} f\right)(g)=f\left(g g^{\prime}\right)$ for $g, g^{\prime} \in G$. Let

$$
\mathcal{H}\left(G, I_{0}\right)=\operatorname{End}_{\mathfrak{o}[G]}\left(\operatorname{ind}_{I_{0}}^{G} \mathbf{1}_{\mathfrak{o}}\right)^{\mathrm{op}}
$$

denote the corresponding pro- p-Iwahori Hecke algebra with coefficients in \mathfrak{o}. For a subset H of G let χ_{H} denote the characteristic function of H. For $g \in G$ let $T_{g} \in \mathcal{H}\left(G, I_{0}\right)$ denote the Hecke operator corresponding to the double coset $I_{0} g I_{0}$. It sends $f: G \rightarrow \mathfrak{o}$ to

$$
T_{g}(f): G \longrightarrow \mathfrak{o}, \quad h \mapsto \sum_{x \in I_{0} \backslash G} \chi_{I_{0} g I_{0}}\left(h x^{-1}\right) f(x) .
$$

Let $\operatorname{Mod}^{\operatorname{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ denote the category of $\mathcal{H}\left(G, I_{0}\right)$-modules which as \mathfrak{o}-modules are of finite length. We write $\mathcal{H}\left(G, I_{0}\right)_{k}=\mathcal{H}\left(G, I_{0}\right) \otimes_{\mathfrak{o}} k$. Given liftings $\dot{s} \in N(T)$ of all $s \in S=\left\{s_{i} \mid 0 \leq i \leq d\right\}$ we let $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ denote the k-subalgebra of $\mathcal{H}\left(G, I_{0}\right)_{k}$ generated by the $T_{\dot{s}}$ for all $s \in S$ and the T_{t} for $t \in \bar{T}$.

Suppose we are given a reduced expression

$$
\begin{equation*}
\phi=\epsilon \dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(r)} \tag{7}
\end{equation*}
$$

(some function $\beta:\{1, \ldots, r=\ell(\phi)\} \rightarrow\{0, \ldots, d\}$, some $\epsilon \in Z$) of a power multiplicative element $\phi \in N(T)$, some power of which maps to a dominant coweight in $N(T) / Z T_{0}$. Put

$$
C^{(a r+b)}=\phi^{a} s_{\beta(1)} \cdots s_{\beta(b)} C
$$

for $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<r$. Then, by power multiplicativity of ϕ, the sequence (4) thus defined satisfies property (5). Therefore we may use it to place ourselves into the setting (and notations) of [3], as follows.

We define the half tree Y whose edges are the N_{0}-orbits of the $C^{(i)} \cap C^{(i+1)}$ and whose vertices are the N_{0}-orbits of the $C^{(i)}$. We choose an isomorphism $\Theta: Y \cong \mathfrak{X}_{+}$with the $\left\lfloor\mathfrak{N}_{0}, \varphi, \Gamma\right\rfloor$-equivariant half sub tree \mathfrak{X}_{+}of the Bruhat Tits tree of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, satisfying the requirements of Theorem 3.1 of loc.cit.. It sends the edge $C^{(i)} \cap C^{(i+1)}$ (resp. the vertex $\left.C^{(i)}\right)$ of Y to the edge \mathfrak{e}_{i+1} (resp. the vertex \mathfrak{v}_{i}) of \mathfrak{X}_{+}. The half tree $\overline{\mathfrak{X}}_{+}$is obtained from \mathfrak{X}_{+}by removing the 'loose' edge \mathfrak{e}_{0}.

To an $\mathcal{H}\left(G, I_{0}\right)$-module M we associate the G-equivariant (partial) coefficient system \mathcal{V}_{M}^{X} on X. Briefly, its value at the chamber C is $\mathcal{V}_{M}^{X}(C)=M$. The transition maps $\mathcal{V}_{M}^{X}(D) \rightarrow \mathcal{V}_{M}^{X}(F)$ for chambers (codimension-0-facets) D and codimension-1-facets F with $D \subset F$ are injective, and $\mathcal{V}_{M}^{X}(F)$ for any such F is the sum of the images of the $\mathcal{V}_{M}^{X}(D) \rightarrow \mathcal{V}_{M}^{X}(F)$ for all D with $D \subset F$.

The pushforward $\Theta_{*} \mathcal{V}_{M}$ of the restriction of \mathcal{V}_{M}^{X} to Y carries a natural $\left\lfloor\mathfrak{N}_{0}, \varphi^{r}, \Gamma_{0}\right\rfloor$ action. Taking global sections, dualizing and tensoring with $\mathcal{O}_{\mathcal{E}}$ leads to the exact functor

$$
\begin{equation*}
M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right) \tag{8}
\end{equation*}
$$

from $\operatorname{Mod}^{\text {fin }}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{r}, \Gamma_{0}\right)$-modules over $\mathcal{O}_{\mathcal{E}}$, where $r=\ell(\Phi)$. If in addition we are given a homomorphism $\tau: \mathbb{Z}_{p}^{\times} \rightarrow T_{0}$ satisfying the conclusions of Lemma 3.1 (with respect to ϕ), then this functor in fact takes values in the category of (φ^{r}, Γ)-modules over $\mathcal{O}_{\mathcal{E}}$.

For $0 \leq i \leq r-1$ we put

$$
y_{i}=\dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(i+1)} \dot{s}_{\beta(i)}^{-1} \cdots \dot{s}_{\beta(1)}^{-1}
$$

Lemma 3.2. (a) For any $0 \leq i \leq r-1$ we have $y_{i}=y_{i-1} \cdots y_{0} \dot{s}_{\beta(i+1)} y_{0} \cdots y_{i-1}$. We have $\phi=\epsilon y_{r-1} \cdots y_{0}$.
(b) For any $0 \leq i \leq r-1$ we have: y_{i} is the affine reflection in the wall passing through $C^{(i)} \cap C^{(i+1)}$.

Proof: To see (b) observe that y_{i} indeed is a reflection, and that it sends $C^{(i)}$ to $C^{(i+1)}$.

Notations: Let us introduce some more notations which will be employed uniformly in all the separate cases to be discussed.

For $\alpha \in \Phi$ we denote by α^{\vee} the associated coroot. For any $\alpha \in \Phi$ there is a corresponding homomorphism of algebraic groups $\iota_{\alpha}: \mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right) \rightarrow G$ as described in [5], Ch.II, section 1.3. The element $\iota_{\alpha}(\nu)$ belongs to $I \cap N_{\alpha}$ and generates it as a topological group. For $x \in \mathbb{F}_{p}^{\times} \subset \mathbb{Z}_{p}^{\times}$(via the Teichmüller character) we have $\alpha^{\vee}(x)=\iota_{\alpha}(h(x)) \in T$.

For a character $\lambda: \bar{T} \rightarrow k^{\times}$let S_{λ} be the subset of S consisting of all s_{i} such that $\lambda\left(\alpha_{i}^{\vee}(x)\right)=1$ for all $x \in \mathbb{F}_{p}^{\times}$. Given λ and a subset \mathcal{J} of S_{λ} there is a uniquely determined
character

$$
\chi_{\lambda, \mathcal{J}}: \mathcal{H}\left(G, I_{0}\right)_{\mathrm{aff}, k} \longrightarrow k
$$

which sends T_{t} to $\lambda\left(t^{-1}\right)$ for $t \in \bar{T}$, which sends $T_{\dot{s}}$ to 0 for $s \in S-\mathcal{J}$ and which sends $T_{\dot{s}}$ to -1 for $s \in \mathcal{J}$ (see [7] Proposition 2). Moreover, for $0 \leq i \leq d$ we define a number $0 \leq k_{i}=k_{i}(\lambda, \mathcal{J}) \leq p-1$ such that

$$
\begin{equation*}
\lambda\left(\alpha_{i}^{\vee}(x)\right)=x^{k_{i}} \quad \text { for all } x \in \mathbb{F}_{p}^{\times}, \tag{9}
\end{equation*}
$$

as follows. If $\lambda \circ \alpha_{i}^{\vee}$ is not the constant character $\mathbf{1}$ then k_{i} is already uniquely determined by formula (9). Next notice that $\lambda \circ \alpha_{i}^{\vee}=\mathbf{1}$ is equivalent with $s_{i} \in S_{\lambda}$. If $\lambda \circ \alpha_{i}^{\vee}=\mathbf{1}$ and $s_{i} \in \mathcal{J}$ we put $k_{i}=p-1$, if $\lambda \circ \alpha_{i}^{\vee}=\mathbf{1}$ and $s_{i} \notin \mathcal{J}$ we put $k_{i}=0$.

4 Classical matrix groups

For $m \in \mathbb{N}$ let $E_{m} \in \mathrm{GL}_{m}$ denote the identity matrix and let E_{d}^{*} denotes the standard antidiagonal element in GL_{d} (i.e. the permutation matrix of maximal length). Let

$$
\widehat{S}_{m}=\left(\begin{array}{cc}
& E_{m} \\
-E_{m} &
\end{array}\right), \quad S_{m}=\left(\begin{array}{cc}
& E_{m} \\
E_{m} &
\end{array}\right) .
$$

4.1 Affine root system \tilde{C}_{d}

Assume $d \geq 2$. Here $W_{\text {aff }}$ is the Coxeter group with Coxeter generators $s_{0}, s_{1}, \ldots, s_{d}$ (thus $s_{i}^{2}=1$ for all i) and relations

$$
\begin{equation*}
\left(s_{0} s_{1}\right)^{4}=\left(s_{d-1} s_{d}\right)^{4}=1 \quad \text { and } \quad\left(s_{i-1} s_{i}\right)^{3}=1 \quad \text { for } 2 \leq i \leq d-1 \tag{10}
\end{equation*}
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other pairs $i \neq j$. In the extended affine Weyl group \widehat{W} we find (cf. [4]) an element u of length 0 with

$$
\begin{equation*}
u^{2}=1 \quad \text { and } \quad u s_{i} u=s_{d-i} \quad \text { for } 0 \leq i \leq d \tag{11}
\end{equation*}
$$

(\widehat{W} is the semidirect product of its two-element subgroup $W_{\Omega}=\{1, u\}$ with $W_{\text {aff }}$.) Consider the general symplectic group

$$
G=\mathrm{GSp}_{2 d}\left(\mathbb{Q}_{p}\right)=\left\{\left.A \in \mathrm{GL}_{2 d}\left(\mathbb{Q}_{p}\right)\right|^{T} A \widehat{S}_{d} A=\kappa(A) \widehat{S}_{d} \text { for some } \kappa(A) \in \mathbb{Q}_{p}^{\times}\right\}
$$

Let T denote the maximal torus consisting of all diagonal matrices in G. For $1 \leq i \leq d$ let

$$
e_{i}: T \cap \mathrm{SL}_{2 d}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}^{\times}, \quad A=\operatorname{diag}\left(x_{1}, \ldots, x_{2 d}\right) \mapsto x_{i} .
$$

For $1 \leq i, j \leq d$ and $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$ we thus obtain characters (using additive notation as usual) $\epsilon_{1} e_{i}+\epsilon_{2} e_{j}: T \cap \mathrm{SL}_{2 d}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}^{\times}$. We extend these latter ones to T by setting

$$
\epsilon_{1} e_{i}+\epsilon_{2} e_{j}: T \longrightarrow \mathbb{Q}_{p}^{\times}, \quad A=\operatorname{diag}\left(x_{1}, \ldots, x_{2 d}\right) \mapsto x_{i}^{\epsilon_{1}} x_{j}^{\epsilon_{2}} \kappa(A)^{\frac{-\epsilon_{1}-\epsilon_{2}}{2}} .
$$

For $i=j$ and $\epsilon=\epsilon_{1}=\epsilon_{2}$ we simply write $\epsilon 2 e_{i}$. Then $\Phi=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j\right\} \cup\left\{ \pm 2 e_{i}\right\}$ is the root system of G with respect to T. It is of type C_{d}.

For $\alpha \in \Phi$ let N_{α}^{0} be the subgroup of the corresponding root subgroup N_{α} of G all of which elements belong to $\mathrm{GL}_{2 d}\left(\mathbb{Z}_{p}\right)$.

We choose the positive system $\Phi^{+}=\left\{e_{i} \pm e_{j} \mid i<j\right\} \cup\left\{2 e_{i} \mid 1 \leq i \leq d\right\}$ with corresponding set of simple roots $\Delta=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \ldots, \alpha_{d-1}=e_{d-1}-e_{d}, \alpha_{d}=2 e_{d}\right\}$. The negative of the highest root is $\alpha_{0}=-2 e_{1}$. For $0 \leq i \leq d$ let $s_{i}=s_{\alpha_{i}}$ be the reflection corresponding to α_{i}.

Remark: For $0 \leq i \leq d$ we have the following explicit formula for $\alpha_{i}^{\vee}=\left(\alpha_{i}\right)^{\vee}$:

$$
\alpha_{i}^{\vee}(x)=\left\{\begin{array}{lll}
\operatorname{diag}\left(x^{-1}, E_{d-1}, x, E_{d-1}\right) & : & i=0 \tag{12}\\
\operatorname{diag}\left(E_{i-1}, x, x^{-1}, E_{d-i-1}, E_{i-1}, x^{-1}, x, E_{d-i-1}\right) & : & 1 \leq i \leq d-1 \\
\operatorname{diag}\left(E_{d-1}, x, E_{d-1}, x^{-1}\right) & : & i=d
\end{array}\right.
$$

Let I_{0} denote the pro- p-Iwahori subgroup generated by the N_{α}^{0} for all $\alpha \in \Phi^{+}$, by the $\left(N_{\alpha}^{0}\right)^{p}$ for all $\alpha \in \Phi^{-}=\Phi-\Phi^{+}$, and by the maximal pro- p-subgroup of T_{0}. Let I denote the Iwahori subgroup of G containing I_{0}. Let N_{0} be the subgroup of G generated by all N_{α}^{0} for $\alpha \in \Phi^{+}$.

For $1 \leq i \leq d-1$ define the block diagonal matrix

$$
\dot{s}_{i}=\operatorname{diag}\left(E_{i-1}, \widehat{S}_{1}, E_{d-i-1}, E_{i-1}, \widehat{S}_{1}, E_{d-i-1}\right)
$$

and furthermore

$$
\dot{s}_{d}=\left(\begin{array}{cccc}
E_{d-1} & & & \\
& & & 1 \\
& & E_{d-1} & \\
& -1 & &
\end{array}\right), \quad \dot{s}_{0}=\left(\right)
$$

Then $\dot{s}_{0}, \dot{s}_{1}, \ldots, \dot{s}_{d-1}, \dot{s}_{d}$ belong to G (in fact even to the symplectic group $\mathrm{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)$) and normalize T. Their images $s_{0}, s_{1}, \ldots, s_{d-1}, s_{d}$ in $N(T) / Z T_{0}$ are Coxeter generators of $W_{\text {aff }} \subset N(T) / Z T_{0}=\widehat{W}$ satisfying the relations (10). Put

$$
\dot{u}=\left(\begin{array}{ll}
& E_{d}^{*} \\
p E_{d}^{*} &
\end{array}\right) .
$$

Then \dot{u} belongs to $N(T)$ and normalizes I and I_{0}. The image u of \dot{u} in $N(T) / Z T_{0}$ satisfies the formulae (11). In $N(T)$ we consider the element

$$
\phi=(p \cdot \mathrm{id}) \dot{s}_{d} \dot{s}_{d-1} \cdots \dot{s}_{1} \dot{s}_{0}
$$

We may rewrite this as $\phi=(p \cdot \mathrm{id}) \dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(d+1)}$ where we put $\beta(i)=d+1-i$ for $1 \leq i \leq d+1$. For $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<d+1$ we put

$$
C^{(a(d+1)+b)}=\phi^{a} s_{d} \cdots s_{d-b+1} C=\phi^{a} s_{\beta(1)} \cdots s_{\beta(b)} C .
$$

Define the homomorphism

$$
\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, \quad x \mapsto \operatorname{diag}\left(x E_{d}, E_{d}\right) .
$$

Lemma 4.1. We have $\phi^{d} \in T$ and $\phi^{d} N_{0} \phi^{-d} \subset N_{0}$. The sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5). In particular we may define $\alpha^{(j)} \in \Phi^{+}$for all $j \geq 0$.
(b) For all $j \geq 0$ we have $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{p}^{\times}}$.
(c) We have $\tau(a) \phi=\phi \tau(a)$ for all $a \in \mathbb{Z}_{p}^{\times}$.

Proof: (a) A matrix computation shows $\phi^{d}=\operatorname{diag}\left(p^{d+1} E_{d}, p^{d-1} E_{d}\right) \in T$. Using this we find

$$
\begin{gathered}
\phi^{d} N_{0} \phi^{-d}=\prod_{\alpha \in \Phi^{+}} \phi^{d}\left(N_{0} \cap N_{\alpha}\right) \phi^{-d}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{m_{\alpha}}}, \\
m_{\alpha}=\left\{\begin{array}{lll}
2 & : & \alpha=e_{i}+e_{j} \text { with } 1 \leq i<j \leq d \\
2 & : & \alpha=2 e_{i} \text { with } 1 \leq i \leq d \\
0 & : & \text { all other } \alpha \in \Phi^{+}
\end{array}\right.
\end{gathered}
$$

In particular we find $\phi^{d} N_{0} \phi^{-d} \subset N_{0}$ and $\left[N_{0}: \phi^{d} N_{0} \phi^{-d}\right]=p^{d(d+1)}$. This implies that the length of $\phi^{m} \in \widehat{W}$ is at least $(d+1) m$, for all $m \geq 0$. On the other hand this length is at most $(d+1) m$ because the image of ϕ in \widehat{W} is a product of $d+1$ Coxeter generators. Thus ϕ^{m} has length $(d+1) m$ and ϕ is power multiplicative. We also see from this that

$$
\left[N_{0}: \phi^{d} N_{0} \phi^{-d}\right]=\left[N_{0}:\left(N_{0} \cap \phi^{d} N_{0} \phi^{-d}\right)\right]=\left[I_{0}:\left(I_{0} \cap \phi^{d} I_{0} \phi^{-d}\right)\right]
$$

(because [$I_{0}:\left(I_{0} \cap \phi^{d} I_{0} \phi^{-d}\right)$] is the length of ϕ^{d}, as ϕ is power multiplicative). We get $I_{0}=N_{0} \cdot\left(I_{0} \cap \phi^{d} I_{0} \phi^{-d}\right)$ and that hypothesis (5) holds true.
(b) As $\phi^{d} \in T$ we have $\left\{\alpha^{(j)} \mid j \geq 0\right\}=\left\{\alpha \in \Phi^{+} \mid m_{\alpha} \neq 0\right\}$. This implies (b).
(c) Another matrix computation.

As explained in subsection 3.2 we now obtain a functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ from $\operatorname{Mod}^{\mathrm{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{d+1}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$. As in explained in [3], to compute it we
need to understand the intermediate objects $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$, acted on by $\left\lfloor\mathfrak{N}_{0}, \varphi^{d+1}, \Gamma\right\rfloor$.

Let $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}$ denote the k-sub algebra of $\mathcal{H}\left(G, I_{0}\right)_{k}$ generated by $\mathcal{H}\left(G, I_{0}\right)_{\text {aff, } k}$ together with $T_{p \text { id }}=T_{\dot{u}^{2}}$ and $T_{p \text {.id }}^{-1}=T_{p^{-1 . \mathrm{id}}}$.

Suppose we are given a character $\lambda: \bar{T} \rightarrow k^{\times}$, a subset $\mathcal{J} \subset S_{\lambda}$ and some $b \in k^{\times}$. Define the numbers $0 \leq k_{i}=k_{i}(\lambda, \mathcal{J}) \leq p-1$ as in subsection 3.2. The character $\chi_{\lambda, \mathcal{J}}$ of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ extends uniquely to a character

$$
\chi_{\lambda, \mathcal{J}, b}: \mathcal{H}\left(G, I_{0}\right)_{\mathrm{aff}, k}^{\prime} \longrightarrow k
$$

which sends $T_{p \text { id }}$ to b (see the proof of [7] Proposition 3). Define the $\mathcal{H}\left(G, I_{0}\right)_{k}$-module

$$
M=M[\lambda, \mathcal{J}, b]=\mathcal{H}\left(G, I_{0}\right)_{k} \otimes_{\mathcal{H}\left(G, I_{0}\right)_{\mathrm{aff}, k}^{\prime}} \text { k.e }
$$

where $k . e$ denotes the one dimensional k-vector space on the basis element e, endowed with the action of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}$ by the character $\chi_{\lambda, \mathcal{J}, b}$. As a k-vector space, M has dimension 2, a k-basis is e, f where we write $e=1 \otimes e$ and $f=T_{\dot{u}} \otimes e$.

Definition: We call an $\mathcal{H}\left(G, I_{0}\right)_{k}$-module quasi supersingular if it is isomorphic with $M[\lambda, \mathcal{J}, b]$ for some λ, \mathcal{J}, b such that $k_{i}>0$ for at least one i.

For $0 \leq j \leq d$ put $\widetilde{j}=d-j$. Letting $\widetilde{\beta}=\widetilde{(.)} \circ \beta$ we then have

$$
\dot{u} \phi \dot{u}^{-1}=(p \cdot \mathrm{id}) \dot{s}_{\widetilde{\beta}(1)} \cdots \dot{s}_{\widetilde{\beta}(d+1)} .
$$

Put $n_{e}=\sum_{i=0}^{d} k_{d-i} p^{i}=\sum_{i=0}^{d} k_{\beta(i+1)} p^{i}$ and $n_{f}=\sum_{i=0}^{d} k_{i} p^{i}=\sum_{i=0}^{d} k_{\widetilde{\beta}(i+1)} p^{i}$. Put $\varrho=$ $\prod_{i=0}^{d}\left(k_{i}!\right)=\prod_{i=0}^{d}\left(k_{\beta(i+1)}!\right)=\prod_{i=0}^{d}\left(k_{\widetilde{\beta}(i+1)}!\right)$. Let $0 \leq s_{e}, s_{f} \leq p-2$ be such that $\lambda(\tau(x))=$ $x^{-s_{e}}$ and $\lambda\left(\dot{u} \tau(x) \dot{u}^{-1}\right)=x^{-s_{f}}$ for all $x \in \mathbb{F}_{p}^{\times}$.

Lemma 4.2. The assigment $M[\lambda, \mathcal{J}, b] \mapsto\left(n_{e}, s_{e}, b \varrho^{-1}\right)$ induces a bijection between the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules and $\mathfrak{S}_{C}(d+1)$.

Proof: We have $\prod_{i=0}^{d} \alpha_{i}^{\vee}(x)=1$ for all $x \in \mathbb{F}_{p}^{\times}$(as can be seen e.g. from formula (12)). This implies

$$
\begin{equation*}
\sum_{i=0}^{d} k_{i} \equiv n_{e} \equiv n_{f} \equiv 0 \quad \bmod (p-1) \tag{13}
\end{equation*}
$$

One can deduce from [7] Proposition 3 that for two sets of data λ, \mathcal{J}, b and $\lambda^{\prime}, \mathcal{J}^{\prime}, b^{\prime}$ the $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules $M[\lambda, \mathcal{J}, b]$ and $M\left[\lambda^{\prime}, \mathcal{J}^{\prime}, b^{\prime}\right]$ are isomorphic if and only if $b=b^{\prime}$ and the pair (λ, \mathcal{J}) is conjugate with the pair $\left(\lambda^{\prime}, \mathcal{J}^{\prime}\right)$ by means of a power of \dot{u}, i.e. by means of $\dot{u}^{0}=1$ or $\dot{u}^{1}=\dot{u}$. Conjugating (λ, \mathcal{J}) by \dot{u} has the effect of substituting k_{d-i} with
k_{i}, for any i. The datum of the character λ is equivalent with the datum of s_{e} together with all the k_{i} taken modulo ($p-1$) since the images of τ and all α_{i}^{\vee} together generate \bar{T}. Knowing the set \mathcal{J} is then equivalent with knowing the numbers k_{i} themselves (not just modulo $(p-1)$). Thus, our mapping is well defined and bijective.

Let $0 \leq j \leq d$ and recall the homomorphism $\iota_{\alpha_{j}}: \mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right) \rightarrow G$. Let $t_{j}=\iota_{\alpha_{j}}([\nu])-1 \in$ $k\left[\left[\iota_{\alpha_{j}} \mathfrak{N}_{0}\right]\right] \subset k\left[\left[N_{0}\right]\right]$. Let F_{j} denote the codimension-1-face of C contained in the (affine) reflection hyperplane (in $A \subset X$) for s_{j}.

Lemma 4.3. In $\mathcal{V}_{M}^{X}\left(F_{j}\right)$ we have $t_{j}^{k_{j}} \dot{s}_{j} e=k_{j}$!e and $t_{j}^{k_{d-j}} \dot{s}_{j} f=k_{d-j}$!f for all $0 \leq j \leq d$.
Proof: This reduces to a computation in $\mathcal{V}_{M}^{X}\left(F_{j}\right)$, viewed as an $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$-representation. Namely, the analog of Lemma 8.2 of [3] holds verbatim in the present context as well (compare with Proposition 5.1 of [3]); the computation thus follows from Lemma 2.5 in [3]. (Compare with the proof of Proposition 8.4 of [3].) Notice that as the Hecke operator T_{t} for $t \in \bar{T}$ acts on $k . e$ through $\lambda\left(t^{-1}\right)$, it acts on $k . f=k . T_{\dot{u}} e$ through $\lambda\left(\dot{u} t^{-1} \dot{u}^{-1}\right)$ (the same computation as in formula (18) below), and that formula (9) implies $\lambda\left(\dot{u} \alpha_{j}^{\vee}(x) \dot{u}^{-1}\right)=x^{k_{d-j}}$.

Lemma 4.4. In $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ we have

$$
\begin{gather*}
t^{n_{e}} \varphi^{d+1} e \varrho b^{-1} e \tag{14}\\
t^{n_{f}} \varphi^{d+1} f=\varrho b^{-1} f, \tag{15}\\
\gamma(x) e=x^{-s_{e}} e \tag{16}\\
\gamma(x) f=x^{-s_{f}} f \tag{17}
\end{gather*}
$$

for $x \in \mathbb{F}_{p}^{\times}$. The action of Γ_{0} on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ is trivial on the subspace M.
Proof: We use the notations and the statements of Lemma 3.2, observing $\beta(i+1)=$ $d-i$. For $0 \leq i \leq d$ we have $y_{i-1} \cdots y_{0} F_{d-i}=C^{(i)} \cap C^{(i+1)}$ and $y_{i-1} \cdots y_{0} C=C^{(i)}$. Thus $y_{i-1} \cdots y_{0}$ defines an isomorphism

$$
\mathcal{V}_{M}^{X}\left(F_{d-i}\right) \cong \mathcal{V}_{M}^{X}\left(C^{(i)} \cap C^{(i+1)}\right)=\Theta_{*} \mathcal{V}_{M}\left(\mathfrak{v}_{i}\right),
$$

restricting to an isomorphism $\mathcal{V}_{M}^{X}(C) \cong \mathcal{V}_{M}^{X}\left(C^{(i)}\right)=\Theta_{*} \mathcal{V}_{M}\left(\mathfrak{e}_{i}\right)$. Under this isomorphism, the action of t_{d-i}, resp. of \dot{s}_{d-i}, on $\mathcal{V}_{M}^{X}\left(F_{d-i}\right)$ becomes the action of $[\nu]^{p^{i}}-1$, resp. of y_{i}, on $\Theta_{*} \mathcal{V}_{M}\left(\mathfrak{v}_{i}\right)$. Now as we are in characteristic p we have $t^{p^{i}}=([\nu]-1)^{p^{i}}=[\nu]^{p^{i}}-1$. Applying this to the element e, resp. f, of $\mathcal{V}_{M}^{X}(C) \subset \mathcal{V}_{M}^{X}\left(F_{d-i}\right)$, Lemma 4.3 tells us

$$
\left(t^{p^{i}}\right)^{k_{d-i}} y_{i} \cdots y_{0} e=k_{d-i}!y_{i-1} \cdots y_{0} e \quad \text { resp. } \quad\left(t^{p^{i}}\right)^{k_{i}} y_{i} \cdots y_{0} f=k_{i}!y_{i-1} \cdots y_{0} f
$$

We compose these formulae for all $0 \leq i \leq d$ and finally recall that the central element p - id acts on M through the Hecke operator $T_{p^{-1} \text {.id }}$, i.e. by b^{-1}. We get formulae (15) and (14).

Next recall that the action of $\gamma(x)$ on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ is given by that of $\tau(x) \in T$, i.e. by the Hecke operator $T_{\tau(x)^{-1}}$. We thus compute

$$
\gamma(x) e=T_{\tau(x)^{-1}} e=\lambda(\tau(x)) e,
$$

$$
\begin{equation*}
\gamma(x) f=T_{\tau(x)^{-1}} T_{\dot{u}} e=T_{\dot{u} \tau(x)^{-1}} e=T_{\dot{u}} T_{\dot{u} \tau(x)^{-1} \dot{u}^{-1}} e=T_{\dot{u}} \lambda\left(\dot{u} \tau(x) \dot{u}^{-1}\right) e=\lambda\left(\dot{u} \tau(x) \dot{u}^{-1}\right) f \tag{18}
\end{equation*}
$$

and obtain formulae (16) and (17).

Corollary 4.5. The étale $\left(\varphi^{d+1}, \Gamma\right)$-module $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ over $k_{\mathcal{E}}$ associated with $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ admits a $k_{\mathcal{E}}$-basis g_{e}, g_{f} such that

$$
\begin{aligned}
& \varphi^{d+1} g_{e}=b \varrho^{-1} t^{n_{e}+1-p^{d+1}} g_{e} \\
& \varphi^{d+1} g_{f}=b \varrho^{-1} t^{n_{f}+1-p^{d+1}} g_{f} \\
& \gamma(x) g_{e}-x^{s_{e}} g_{e} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{e} \\
& \gamma(x) g_{f}-x^{s_{f}} g_{f} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{f} .
\end{aligned}
$$

Proof: This follows from Lemma 4.4 as explained in [3] Lemma 6.4.

Corollary 4.6. The functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ induces a bijection between
(a) the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules, and
(b) the set of isomorphism classes of C-symmetric étale $\left(\varphi^{d+1}, \Gamma\right)$-modules over $k_{\mathcal{E}}$.

Proof: For $x \in \mathbb{F}_{p}^{\times}$we have

$$
\tau(x) \cdot \dot{u} \tau^{-1}(x) \dot{u}^{-1}=\operatorname{diag}\left(x E_{d}, x^{-1} E_{d}\right)=\left(\sum_{i=0}^{d}(i+1) \alpha_{i}^{\vee}\right)(x)
$$

in \bar{T}. Applying λ and observing $\sum_{i=0}^{d} k_{i} \equiv 0$ modulo $(p-1)$ we get

$$
x^{s_{f}-s_{e}}=\lambda\left(\left(\sum_{i=0}^{d}(i+1) \alpha_{i}^{\vee}\right)(x)\right)=x^{\sum_{i=0}^{d} i k_{i}}
$$

and hence $s_{f}-s_{e} \equiv \sum_{i=0}^{d} i k_{i}$ modulo ($p-1$). Together with Corollary (4.5) we see that $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ is a C-symmetric étale $\left(\varphi^{d+1}, \Gamma\right)$-module over $k_{\mathcal{E}}$. Now we conclude with Lemmata 2.5 and 4.2.

Remark: Consider the subgroup $G^{\prime}=\operatorname{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)$ of G. If we replace the above τ by $\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, x \mapsto \operatorname{diag}\left(x E_{d}, x^{-1} E_{d}\right)$ and if we replace the above ϕ by $\phi=\dot{s}_{d} \dot{s}_{d-1} \cdots \dot{s}_{1} \dot{s}_{0}$ then everything in fact happens inside G^{\prime}. We then have $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{p}^{\times}}^{2}$ for all $j \geq 0$. Let $\operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ denote the category of finite- \mathfrak{o}-length $\mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$-modules on which $\tau(-1)$ (i.e. $\left.T_{\tau(-1)}=T_{\tau(-1)^{-1}}\right)$ acts trivially. For $M \in \operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ we obtain an action of $\left\lfloor\mathfrak{N}_{0}, \varphi^{d+1}, \Gamma^{2}\right\rfloor$ on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$, where $\Gamma^{2}=\left\{\gamma^{2} \mid \gamma \in \Gamma\right\} \subset \Gamma$. Correspondingly, following [3] (as a slight variation from what we explained in subsection 3.2), we obtain a functor from $\operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ to the category of $\left(\varphi^{d+1}, \Gamma^{2}\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Remark: In the case $d=2$ one may also work with $\phi=(p \cdot \mathrm{id}) \dot{s}_{2} \dot{s}_{1} \dot{s}_{2} \dot{u}$. Its square is the square of the $\phi=(p \cdot \mathrm{id}) \dot{s}_{2} \dot{s}_{1} \dot{s}_{0}$ used above.

Remark: We discuss a choice of $\left(C^{(\bullet)}, \phi\right)$ with $\ell(\phi)=d$ (but leading only to $\left(\varphi^{d}, \Gamma_{0}\right)$ modules, not to $\left(\varphi^{d}, \Gamma\right)$-modules). In $N(T)$ we consider the element $\phi=\dot{s}_{1} \dot{s}_{2} \cdots \dot{s}_{d-1} \dot{s}_{d} \dot{u}$. For $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<d$ put $C^{(a d+b)}=\phi^{a} s_{1} \cdots s_{b} C$. A matrix computation shows $\phi^{2}=\operatorname{diag}\left(p^{2}, p E_{d-1}, 1, p E_{d-1}\right)$. Using this we find

$$
\begin{aligned}
\phi^{2} N_{0} \phi^{-2} & =\prod_{\alpha \in \Phi^{+}} \phi^{2}\left(N_{0} \cap N_{\alpha}\right) \phi^{-2}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{m_{\alpha}}}, \\
m_{\alpha} & =\left\{\begin{array}{lll}
2 & : & \alpha=e_{i}+e_{j} \text { with } i<j<d \\
1 & : & \alpha=e_{i}+e_{d} \text { with } i<d \\
1 & : & \alpha=e_{i}-e_{d} \text { with } i<d \\
0 & : & \text { all other } \alpha \in \Phi^{+}
\end{array}\right.
\end{aligned}
$$

In particular we find $\phi^{2} N_{0} \phi^{-2} \subset N_{0}$ and $\left[N_{0}: \phi^{2} N_{0} \phi^{-2}\right]=p^{2 d}$. This implies that the length of $\phi^{m} \in \widehat{W}$ is at least $d m$, for all $m \geq 0$. On the other hand this length is at most $d m$ because ϕ is a product of d simple reflections and of an element of length 0 . Thus ϕ^{m} has length $d m$. Therefore the sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5).

4.2 Affine root system \tilde{B}_{d}

Assume $d \geq 3$. Here $W_{\text {aff }}$ is the Coxeter group with Coxeter generators $s_{0}, s_{1}, \ldots, s_{d}$ (thus $s_{i}^{2}=1$ for all i) and relations

$$
\begin{equation*}
\left(s_{d} s_{d-1}\right)^{4}=1 \quad \text { and } \quad\left(s_{2} s_{0}\right)^{3}=\left(s_{i-1} s_{i}\right)^{3}=1 \quad \text { for } 2 \leq i \leq d-1 \tag{19}
\end{equation*}
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other pairs $i \neq j$. In the extended affine Weyl group \widehat{W} we find (cf. [4]) an element u of length 0 with

$$
\begin{equation*}
u^{2}=1 \quad \text { and } \quad u s_{0} u=s_{1} \quad \text { and } \quad u s_{i} u=s_{i} \quad \text { for } 2 \leq i \leq d \tag{20}
\end{equation*}
$$

(\widehat{W} is the semidirect product of its two-element subgroup $W_{\Omega}=\{1, u\}$ with $W_{\text {aff }}$.) Let

$$
\widetilde{O}_{d}=\left(\begin{array}{cc}
S_{d} & 0 \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{2 d+1}\left(\mathbb{Q}_{p}\right)
$$

and consider the special orthogonal group

$$
G=\mathrm{SO}_{2 d+1}\left(\mathbb{Q}_{p}\right)=\left\{\left.A \in \mathrm{SL}_{2 d+1}\left(\mathbb{Q}_{p}\right)\right|^{T} A \widetilde{O}_{d} A=\widetilde{O}_{d}\right\} .
$$

Let T denote the maximal torus consisting of all diagonal matrices in G. For $1 \leq i \leq d$ let

$$
e_{i}: T \longrightarrow \mathbb{Q}_{p}^{\times}, \quad \operatorname{diag}\left(x_{1}, \ldots, x_{d}, x_{1}^{-1}, \ldots, x_{d}^{-1}, 1\right) \mapsto x_{i} .
$$

Then (in additive notation) $\Phi=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j\right\} \cup\left\{ \pm e_{i}\right\}$ is the root system of G with respect to T. It is of type B_{d}. For $\alpha \in \Phi$ let N_{α}^{0} be the subgroup of the corresponding root subgroup N_{α} of G all of which elements belong to $\mathrm{SL}_{2 d+1}\left(\mathbb{Z}_{p}\right)$.

We choose the positive system $\Phi^{+}=\left\{e_{i} \pm e_{j} \mid i<j\right\} \cup\left\{e_{i} \mid 1 \leq i \leq d\right\}$ with corresponding set of simple roots $\Delta=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \ldots, \alpha_{d-1}=e_{d-1}-e_{d}, \alpha_{d}=e_{d}\right\}$. The negative of the highest root is $\alpha_{0}=-e_{1}-e_{2}$. For $0 \leq i \leq d$ let $s_{i}=s_{\alpha_{i}}$ be the reflection corresponding to α_{i}.

Remark: For roots $\alpha \in \Phi$ of the form $\alpha= \pm e_{i} \pm e_{j}$ the homomorphism ι_{α} : $\mathrm{SL}_{2} \rightarrow \mathrm{SO}_{2 d+1}$ is injective. For roots $\alpha \in \Phi$ of the form $\alpha= \pm e_{i}$ the homomorphism $\iota_{\alpha}: \mathrm{SL}_{2} \rightarrow \mathrm{SO}_{2 d+1}$ induces an embedding $\mathrm{PSL}_{2} \rightarrow \mathrm{SO}_{2 d+1}$.

Remark: For $0 \leq i \leq d$ we have the following explicit formula for $\alpha_{i}^{\vee}=\left(\alpha_{i}\right)^{\vee}$:

$$
\alpha_{i}^{\vee}(x)=\left\{\begin{array}{lll}
\operatorname{diag}\left(x^{-1}, x^{-1}, E_{d-2}, x, x, E_{d-2}, 1\right) & : & i=0 \tag{21}\\
\operatorname{diag}\left(E_{i-1}, x, x^{-1}, E_{d-i-1}, E_{i-1}, x^{-1}, x, E_{d-i-1}, 1\right) & : & 1 \leq i \leq d-1 \\
\operatorname{diag}\left(E_{d-1}, x^{2}, E_{d-1}, x^{-2}, 1\right) & : & i=d
\end{array}\right.
$$

Let I_{0} denote the pro- p-Iwahori subgroup generated by the N_{α}^{0} for all $\alpha \in \Phi^{+}$, by the $\left(N_{\alpha}^{0}\right)^{p}$ for all $\alpha \in \Phi^{-}=\Phi-\Phi^{+}$, and by the maximal pro- p-subgroup of T_{0}. Let I denote the Iwahori subgroup of G containing I_{0}. Let N_{0} be the subgroup of G generated by all N_{α}^{0} for $\alpha \in \Phi^{+}$.

For $1 \leq i \leq d-1$ define the block diagonal matrix

$$
\dot{s}_{i}=\operatorname{diag}\left(E_{i-1}, S_{1}, E_{d-i-1}, E_{i-1}, S_{1}, E_{d-i-1}, 1\right)
$$

and furthermore

$$
\dot{s}_{d}=\left(\begin{array}{lllll}
E_{d-1} & & & & \\
& & & 1 & \\
& & E_{d-1} & & \\
& 1 & & & \\
& & & & -1
\end{array}\right) .
$$

Define

$$
\dot{u}=\left(\right)
$$

and $\dot{s}_{0}=\dot{u} \dot{s}_{1} \dot{u}$. Then $\dot{s}_{0}, \dot{s}_{1}, \ldots, \dot{s}_{d-1}, \dot{s}_{d}$ belong to G and normalize T. Their images $s_{0}, s_{1}, \ldots, s_{d-1}, s_{d}$ in $N(T) / T_{0}$ are Coxeter generators of $W_{\text {aff }} \subset N(T) / T_{0}$ satisfying the relations (19). The element \dot{u} of $N(T)$ normalizes I and I_{0}. The image u of \dot{u} in $N(T) / T_{0}=$ \widehat{W} satisfies the formulae (20). In $N(T)$ we consider the element

$$
\begin{equation*}
\phi=\dot{s}_{1} \dot{s}_{2} \cdots \dot{s}_{d-1} \dot{s}_{d} \dot{s}_{d-1} \cdots \dot{s}_{2} \dot{s}_{0} \tag{22}
\end{equation*}
$$

We may rewrite this as $\phi=\dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(2 d-1)}$ where we put $\beta(i)=i$ for $1 \leq i \leq d$ and $\beta(i)=2 d-i$ for $d \leq i \leq 2 d-2$ and $\beta(2 d-1)=0$. We put

$$
C^{(a(2 d-1)+b)}=\phi^{a} s_{\beta(1)} \cdots s_{\beta(b)} C
$$

for $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<2 d-1$. Define the homomorphism

$$
\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, \quad x \mapsto \operatorname{diag}\left(x, E_{d-1}, x^{-1}, E_{d-1}, 1\right) .
$$

Lemma 4.7. We have $\phi^{2} \in T$ and $\phi^{2} N_{0} \phi^{-2} \subset N_{0}$. The sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5). In particular we may define $\alpha^{(j)} \in \Phi^{+}$for all $j \geq 0$.
(b) For any $j \geq 0$ we have $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{p}^{\times}}$.
(c) We have $\tau(a) \phi=\phi \tau(a)$ for all $a \in \mathbb{Z}_{p}^{\times}$.

Proof: (a) A matrix computation shows $\phi^{2}=\operatorname{diag}\left(p^{2}, E_{d-1}, p^{-2}, E_{d-1}, 1\right)$. Using this we find

$$
\begin{aligned}
\phi^{2} N_{0} \phi^{-2} & =\prod_{\alpha \in \Phi^{+}} \phi^{2}\left(N_{0} \cap N_{\alpha}\right) \phi^{-2}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{m_{\alpha}}}, \\
m_{\alpha} & =\left\{\begin{array}{lll}
2 & : & \alpha=e_{1}-e_{i} \text { with } 1<i \\
2 & : & \alpha=e_{1}+e_{i} \text { with } 1<i \\
2 & : & \alpha=e_{1} \\
0 & : & \text { all other } \alpha \in \Phi^{+}
\end{array}\right.
\end{aligned}
$$

In particular we find $\phi^{2} N_{0} \phi^{-2} \subset N_{0}$ and $\left[N_{0}: \phi^{2} N_{0} \phi^{-2}\right]=p^{2(2 d-1)}$. This implies that the length of $\phi^{m} \in \widehat{W}$ is at least $(2 d-1) m$, for all $m \geq 0$. On the other hand this length is at most $(2 d-1) m$ because the image of ϕ in \widehat{W} is a product of $2 d-1$ Coxeter generators. Thus ϕ^{m} has length $(2 d-1) m$. We obtain that hypothesis (5) holds true, by the same reasoning as in Lemma 4.1.
(b) As $\phi^{2} \in T$ we have $\left\{\alpha^{(j)} \mid j \geq 0\right\}=\left\{\alpha \in \Phi^{+} \mid m_{\alpha} \neq 0\right\}$. This implies (b).
(c) Another matrix computation.

As explained in subsection 3.2 we now obtain a functor from $\operatorname{Mod}^{\text {fin }}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{2 d-1}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Suppose we are given a character $\lambda: \bar{T} \rightarrow k^{\times}$and a subset $\mathcal{J} \subset S_{\lambda}$. Define the numbers $0 \leq k_{i}=k_{i}(\lambda, \mathcal{J}) \leq p-1$ as in subsection 3.2. Define the $\mathcal{H}\left(G, I_{0}\right)_{k}$-module

$$
M=M[\lambda, \mathcal{J}]=\mathcal{H}\left(G, I_{0}\right)_{k} \otimes_{\mathcal{H}\left(G, I_{0}\right)_{\mathrm{aff}, k}} \text { k.e }
$$

where k.e denotes the one dimensional k-vector space on the basis element e, endowed with the action of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ by the character $\chi_{\lambda, \mathcal{J}}$. As a k-vector space, M has dimension 2 , a k-basis is e, f where we write $e=1 \otimes e$ and $f=T_{\dot{u}} \otimes e$.

Definition: We call an $\mathcal{H}\left(G, I_{0}\right)_{k}$-module quasi supersingular if it is isomorphic with $M[\lambda, \mathcal{J}]$ for some λ, \mathcal{J} such that $k_{i}>0$ for at least one i.

For $2 \leq j \leq d$ we put $\widetilde{j}=j$, furthermore we put $\widetilde{0}=1$ and $\widetilde{1}=0$. Letting $\widetilde{\beta}=\widetilde{(.)} \circ \beta$ we then have

$$
\dot{u} \phi \dot{u}^{-1}=\dot{s}_{\widetilde{\beta}(1)} \cdots \dot{s}_{\widetilde{\beta}(2 d-1)} .
$$

Put $n_{e}=\sum_{i=0}^{2 d-2} k_{\beta(i+1)} p^{i}$ and $n_{f}=\sum_{i=0}^{2 d-2} k_{\widetilde{\beta} i+1} p^{i}$. Put $\varrho=k_{0}!k_{1}!k_{d}!\prod_{i=2}^{d-1}\left(k_{i}!\right)^{2}=$ $\prod_{i=0}^{2 d-2}\left(k_{\beta(i+1)}!\right)=\prod_{i=0}^{2 d-2}\left(k_{\widetilde{\beta}(i+1)}!\right)$. Let $0 \leq s_{e}, s_{f} \leq p-2$ be such that $\lambda(\tau(x))=x^{-s_{e}}$ and $\lambda\left(\dot{u} \tau(x) \dot{u}^{-1}\right)=x^{-s_{f}}$ for all $x \in \mathbb{F}_{p}^{\times}$.

Lemma 4.8. The assigment $M[\lambda, \mathcal{J}] \mapsto\left(n_{e}, s_{e}\right)$ induces a bijection between the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules and $\mathfrak{S}_{B}(2 d-1)$.

Proof: We have $\alpha_{0}^{\vee}(x) \alpha_{1}^{\vee}(x) \alpha_{d}^{\vee}(x) \prod_{i=2}^{d-1}\left(\alpha_{i}^{\vee}\right)^{2}(x)=1$ for all $x \in \mathbb{F}_{p}^{\times}$(as can be seen e.g. from formula (21)). This implies

$$
\begin{equation*}
k_{0}+k_{1}+k_{d}+2 \sum_{i=2}^{d-1} k_{i} \equiv n_{e} \equiv n_{f} \equiv 0 \quad \bmod (p-1) . \tag{23}
\end{equation*}
$$

We further proceed exactly as in the proof of Lemma 4.2.

Lemma 4.9. In $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ we have

$$
\begin{gather*}
t^{n_{e}} \varphi^{2 d-1} e=\varrho, \tag{24}\\
t^{n_{f}} \varphi^{2 d-1} f=\varrho f, \tag{25}\\
\gamma(x) e=x^{-s_{e}} e, \tag{26}\\
\gamma(x) f=x^{-s_{f}} f \tag{27}
\end{gather*}
$$

for $x \in \mathbb{F}_{p}^{\times}$. The action of Γ_{0} on $H_{0}\left(\overline{\mathcal{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ is trivial on the subspace M.
Proof: As in Lemma 4.4.

Corollary 4.10. The étale $\left(\varphi^{2 d-1}, \Gamma\right)$-module over $k_{\mathcal{E}}$ associated with $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ admits a $k_{\mathcal{E}}$-basis g_{e}, g_{f} such that

$$
\begin{aligned}
& \varphi^{2 d-1} g_{e}=\varrho^{-1} t^{n_{e}+1-p^{2 d-1}} g_{e} \\
& \varphi^{2 d-1} g_{f}=\varrho^{-1} t^{n_{f}+1-p^{2 d-1}} g_{f} \\
& \gamma(x) g_{e}-x^{s_{e}} g_{e} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{e} \\
& \gamma(x) g_{f}-x^{s_{f}} g_{f} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{f} .
\end{aligned}
$$

Proof: This follows from Lemma 4.9 as explained in [3] Lemma 6.4.

Corollary 4.11. The functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ induces a bijection between
(a) the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules, and
(b) the set of isomorphism classes of B-symmetric étale $\left(\varphi^{2 d-1}, \Gamma\right)$-modules \mathbf{D} over $k_{\mathcal{E}}$.

Proof: For $x \in \mathbb{F}_{p}^{\times}$we compute

$$
\tau(x) \cdot \dot{u} \tau^{-1}(x) \dot{u}^{-1}=\operatorname{diag}\left(x^{2}, E_{d-1}, x^{-2}, E_{d-1}, 1\right)=\left(\alpha_{1}^{\vee}-\alpha_{0}^{\vee}\right)(x)
$$

in \bar{T}. Application of λ gives $x^{s_{f}-s_{e}}=x^{k_{1}-k_{0}}$ and hence $s_{f}-s_{e} \equiv k_{1}-k_{0}=k_{\beta(1)}-k_{\beta(2 d-1)}$ modulo $(p-1)$. The required symmetry in the p-adic digits of n_{e}, n_{f} is due to the corresponding symmetry of the function β. Thus, $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ is a B-symmetric étale $\left(\varphi^{2 d-1}, \Gamma\right)$ module. Now we conclude with Lemmata 4.8 and 2.5.

Remark: We discuss a choice of $\left(C^{(\bullet)}, \phi\right)$ with $\ell(\phi)=d$ (but leading only to $\left(\varphi^{d}, \Gamma_{0}\right)$ modules, not to $\left(\varphi^{d}, \Gamma\right)$-modules). In $N(T)$ consider the element $\phi=\dot{s}_{d} \cdots \dot{s}_{1} \dot{u}$. For $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<d$ we put $C^{(a d+b)}=\phi^{a} s_{d} \cdots s_{d-b+1} C$. A matrix computation shows $\phi^{d}=\operatorname{diag}\left(p E_{d}, p^{-1} E_{d}, 1\right)$. Using this we find

$$
\phi^{d} N_{0} \phi^{-d}=\prod_{\alpha \in \Phi^{+}} \phi^{d}\left(N_{0} \cap N_{\alpha}\right) \phi^{-d}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{m_{\alpha}}},
$$

$$
m_{\alpha}=\left\{\begin{array}{lll}
2 & : & \alpha=e_{i}+e_{j} \text { with } i<j \\
1 & : & \alpha=e_{i} \\
0 & : & \text { all other } \alpha \in \Phi^{+}
\end{array}\right.
$$

In particular we find $\phi^{d} N_{0} \phi^{-d} \subset N_{0}$ and $\left[N_{0}: \phi^{d} N_{0} \phi^{-d}\right]=p^{d^{2}}$. This implies that the length of $\phi^{m} \in \widehat{W}$ is at least $d m$, for all $m \geq 0$. On the other hand this length is at most $d m$ because ϕ is a product of d simple reflections and of an element of length 0 . Thus ϕ^{m} has length $d m$. Therefore the sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5).

Remark: $\mathrm{SO}_{2 d+1} \cong \mathrm{PGSpin}_{2 d+1}$ is semisimple, of adjoint type. Like $\mathrm{SO}_{2 d+1}$ also GSpin ${ }_{2 d+1}$ has connected center; its derived group is isomorphic with $\operatorname{Spin}_{2 d+1}$, the simply connected double covering of $\mathrm{SO}_{2 d+1}$. Using the concrete description of GSpin ${ }_{2 d+1}$ given e.g. in [1], section 2, it is straightforward to extend our constructions from $\mathrm{SO}_{2 d+1}$ to $\operatorname{GSpin}_{2 d+1}$. (Like in our treatment of the group GSp ${ }_{2 d}$, the non trivial center of GSpin ${ }_{2 d+1}$ allows us to twist our ϕ by a suitable central element - in this way, the action of the center on an \mathcal{H}_{k}-module defines a twist of the $\varphi^{2 d-1}$-action on the corresponding $\left(\varphi^{2 d-1}, \Gamma\right)$ module.)

4.3 Affine root system \tilde{D}_{d}

Assume $d \geq 4$. Here $W_{\text {aff }}$ is the Coxeter group with Coxeter generators $s_{0}, s_{1}, \ldots, s_{d}$ (thus $s_{i}^{2}=1$ for all i) and relations

$$
\begin{equation*}
\left(s_{d-2} s_{d}\right)^{3}=\left(s_{2} s_{0}\right)^{3}=\left(s_{i-1} s_{i}\right)^{3}=1 \quad \text { for } 2 \leq i \leq d-1 \tag{28}
\end{equation*}
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other pairs $i \neq j$. In the extended affine Weyl group \widehat{W} we find (cf. [4]) an element u of length 0 with

$$
u^{2}=1 \quad \text { and } \quad u s_{0} u=s_{1}, \quad u s_{1} u=s_{0}, \quad u s_{d-1} u=s_{d}, \quad u s_{d} u=s_{d-1}
$$

$$
\begin{equation*}
u s_{i} u=s_{i} \quad \text { for } 2 \leq i \leq d-2 . \tag{29}
\end{equation*}
$$

(\widehat{W} is the semidirect product of a four-element subgroup W_{Ω} with $W_{\text {aff }}$, in such a way that u is an element of order 2 in W_{Ω}.) Consider the general orthogonal group

$$
\mathrm{GO}_{2 d}\left(\mathbb{Q}_{p}\right)=\left\{\left.A \in \mathrm{GL}_{2 d}\left(\mathbb{Q}_{p}\right)\right|^{T} A S_{d} A=\kappa(A) S_{d} \text { for some } \kappa(A) \in \mathbb{Q}_{p}^{\times}\right\} .
$$

It contains the special orthogonal group

$$
\mathrm{SO}_{2 d}\left(\mathbb{Q}_{p}\right)=\left\{\left.A \in \mathrm{SL}_{2 d}\left(\mathbb{Q}_{p}\right)\right|^{T} A S_{d} A=S_{d}\right\} .
$$

Let $G=\mathrm{GSO}_{2 d}\left(\mathbb{Q}_{p}\right)$ be the connected component of $\mathrm{GO}_{2 d}\left(\mathbb{Q}_{p}\right)$. It has connected center and is of index 2 in $\mathrm{GO}_{2 d}\left(\mathbb{Q}_{p}\right)$. Explicitly, G is the subgroup generated by $\mathrm{SO}_{2 d}\left(\mathbb{Q}_{p}\right)$ and by all $\operatorname{diag}\left(x E_{d}, E_{d}\right)$ with $x \in \mathbb{Q}_{p}^{\times}$.

Let T be the maximal torus consisting of all diagonal matrices in G. For $1 \leq i \leq d$ let

$$
e_{i}: T \cap \mathrm{SL}_{2 d}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}^{\times}, \quad A=\operatorname{diag}\left(x_{1}, \ldots, x_{2 d}\right) \mapsto x_{i} .
$$

For $1 \leq i, j \leq d$ and $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$ we thus obtain characters (using additive notation as usual) $\epsilon_{1} e_{i}+\epsilon_{2} e_{j}: T \cap \mathrm{SL}_{2 d}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}^{\times}$. We extend these latter ones to T by setting

$$
\epsilon_{1} e_{i}+\epsilon_{2} e_{j}: T \longrightarrow \mathbb{Q}_{p}^{\times}, \quad A=\operatorname{diag}\left(x_{1}, \ldots, x_{2 d}\right) \mapsto x_{i}^{\epsilon_{1}} x_{j}^{\epsilon_{2}} \kappa(A)^{\frac{-\epsilon_{1}-\epsilon_{2}}{2}} .
$$

Then $\Phi=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j\right\}$ is the root system of G with respect to T. It is of type D_{d}.
For $\alpha \in \Phi$ let N_{α}^{0} be the subgroup of the corresponding root subgroup N_{α} of G all of which elements belong to $\mathrm{SL}_{2 d}\left(\mathbb{Z}_{p}\right)$.

Choose the positive system $\Phi^{+}=\left\{e_{i} \pm e_{j} \mid i<j\right\}$ with corresponding set of simple roots $\Delta=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \ldots, \alpha_{d-1}=e_{d-1}-e_{d}, \alpha_{d}=e_{d-1}+e_{d}\right\}$. The negative of the highest root is $\alpha_{0}=-e_{1}-e_{2}$. For $0 \leq i \leq d$ let $s_{i}=s_{\alpha_{i}}$ be the reflection corresponding to α_{i}.

Remark: For $0 \leq i \leq d$ we have the following explicit formula for $\alpha_{i}^{\vee}=\left(\alpha_{i}\right)^{\vee}$:

$$
\alpha_{i}^{\vee}(x)=\left\{\begin{array}{lll}
\operatorname{diag}\left(x^{-1}, x^{-1}, E_{d-2}, x, x, E_{d-2}\right) & : & i=0 \tag{30}\\
\operatorname{diag}\left(E_{i-1}, x, x^{-1}, E_{d-i-1}, E_{i-1}, x^{-1}, x, E_{d-i-1}\right) & : & 1 \leq i \leq d-1 \\
\operatorname{diag}\left(E_{d-2}, x, x, E_{d-2}, x^{-1}, x^{-1}\right) & : & i=d
\end{array}\right.
$$

Let I_{0} denote the pro- p-Iwahori subgroup generated by the N_{α}^{0} for all $\alpha \in \Phi^{+}$, by the $\left(N_{\alpha}^{0}\right)^{p}$ for all $\alpha \in \Phi^{-}=\Phi-\Phi^{+}$, and by the maximal pro- p-subgroup of T_{0}. Let I denote the Iwahori subgroup of G containing I_{0}. Let N_{0} be the subgroup of G generated by all N_{α}^{0} for $\alpha \in \Phi^{+}$.

For $1 \leq i \leq d-1$ define the block diagonal matrix

$$
\dot{s}_{i}=\operatorname{diag}\left(E_{i-1}, S_{1}, E_{d-i-1}, E_{i-1}, S_{1}, E_{d-i-1}\right)=\operatorname{diag}\left(E_{i-1}, S_{1}, E_{d-2}, S_{1}, E_{d-i-1}\right)
$$

Put

$$
\dot{u}=\left(\right)
$$

and $\dot{s}_{0}=\dot{u} \dot{s}_{1} \dot{u}$ and $\dot{s}_{d}=\dot{u} \dot{s}_{d-1} \dot{u}$. Then $\dot{s}_{0}, \dot{s}_{1}, \ldots, \dot{s}_{d-1}, \dot{s}_{d}$ belong to G and normalize T. Their images $s_{0}, s_{1}, \ldots, s_{d-1}, s_{d}$ in $N(T) / Z T_{0}$ are Coxeter generators of $W_{\text {aff }} \subset$
$N(T) / Z T_{0}=\widehat{W}$ satisfying the relations (28). The element \dot{u} of $N(T)$ normalizes I and I_{0}. The image u of \dot{u} in $N(T) / Z T_{0}$ satisfies the formulae (29).

In $N(T)$ we consider the element

$$
\begin{array}{lr}
\phi=(p \cdot \mathrm{id}) \dot{s}_{d-1} \dot{s}_{d-2} \cdots \dot{s}_{2} \dot{s}_{1} \dot{s}_{d} \dot{s}_{d-2} \dot{s}_{d-3} \cdots \dot{s}_{3} \dot{s}_{2} \dot{s}_{0} & \text { if } d \text { is even } \\
\phi=\left(p^{2} \cdot \mathrm{id}\right) \dot{s}_{d-1} \dot{s}_{d-2} \cdots \dot{s}_{2} \dot{s}_{1} \dot{s}_{d} \dot{s}_{d-2} \dot{s}_{d-3} \cdots \dot{s}_{3} \dot{s}_{2} \dot{s}_{0} & \text { if } d \text { is odd }
\end{array}
$$

We may rewrite this as $\phi=(p \cdot \mathrm{id}) \dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(2 d-2)}$ if d is even, resp. $\phi=\left(p^{2} \cdot \mathrm{id}\right) \dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(2 d-2)}$ if d is odd, where $\beta(i)=d-i$ for $1 \leq i \leq d-1, \beta(d)=d, \beta(i)=2 d-1-i$ for $d+1 \leq i \leq 2 d-3$ and $\beta(2 d-2)=0$. We put

$$
C^{(a(2 d-2)+b)}=\phi^{a} s_{\beta(1)} \cdots s_{\beta(b)} C
$$

for $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<2 d-2$. Define the homomorphism

$$
\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, \quad x \mapsto \operatorname{diag}\left(x E_{d-1}, E_{d}, x\right) .
$$

Lemma 4.12. We have $\phi^{d} \in T$ and $\phi^{d} N_{0} \phi^{-d} \subset N_{0}$. The sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5). In particular we may define $\alpha^{(j)} \in \Phi^{+}$for all $j \geq 0$.
(b) For any $j \geq 0$ we have $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{p}^{\times}}$.
(c) We have $\tau(a) \phi=\phi \tau(a)$ for all $a \in \mathbb{Z}_{p}^{\times}$.

Proof: (a) A matrix computation shows $\phi^{d}=\operatorname{diag}\left(p^{2 d+2} E_{d-1}, p^{2 d-2} E_{d}, p^{2 d+2}\right)$ if d is even, and $\phi^{d}=\operatorname{diag}\left(p^{4 d+4} E_{d-1}, p^{4 d-4} E_{d}, p^{4 d+4}\right)$ if d is odd. Using this we find

$$
\begin{gathered}
\phi^{d} N_{0} \phi^{-d}=\prod_{\alpha \in \Phi^{+}} \phi^{d}\left(N_{0} \cap N_{\alpha}\right) \phi^{-d}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{m_{\alpha}}}, \\
m_{\alpha}=\left\{\begin{array}{lll}
4 & : & \alpha=e_{i}+e_{j} \text { with } 1 \leq i<j<d \\
4 & : & \alpha=e_{i}-e_{d} \text { with } 1 \leq i<d \\
0 & : & \text { all other } \alpha \in \Phi^{+}
\end{array}\right.
\end{gathered}
$$

In particular we find $\phi^{d} N_{0} \phi^{-d} \subset N_{0}$ and $\left[N_{0}: \phi^{d} N_{0} \phi^{-d}\right]=p^{2 d(d-1)}$. This implies that the length of $\phi^{m} \in \widehat{W}$ is at least $2(d-1) m$, for all $m \geq 0$. On the other hand this length is at most $2(d-1) m$ because the image of ϕ in \widehat{W} is a product of $2 d-2$ Coxeter generators and of an element of length 0 . Thus ϕ^{m} has length $2(d-1) m$. We obtain that hypothesis (5) holds true, by the same reasoning as in Lemma 4.1.
(b) As $\phi^{d} \in T$ we have $\left\{\alpha^{(j)} \mid j \geq 0\right\}=\left\{\alpha \in \Phi^{+} \mid m_{\alpha} \neq 0\right\}$. This implies (b).
(c) Another matrix computation.

As explained in subsection 3.2 we now obtain a functor from $\operatorname{Mod}^{\operatorname{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{2 d-2}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$. Consider the elements

$$
\dot{\omega}=\left(\begin{array}{cc}
& E_{d}^{*} \\
p E_{d}^{*} &
\end{array}\right), \quad \dot{\rho}=\left(\begin{array}{llll}
p & & & E_{d-1}^{*} \\
& p E_{d-1}^{*} & & \\
& & 1
\end{array}\right)
$$

of $\mathrm{GO}_{2 d}\left(\mathbb{Q}_{p}\right)$. They normalize T and satisfy

$$
\begin{gathered}
\dot{\omega} \dot{u}=\dot{u} \dot{\omega}, \\
\dot{\omega} \dot{s}_{i} \dot{\omega}^{-1}=\dot{s}_{d-i} \quad \text { for } 0 \leq i \leq d, \\
\dot{\rho}^{2}=p \cdot \dot{u}, \\
\dot{\rho} \dot{s}_{i} \dot{\rho}^{-1}=\dot{s}_{d-i} \quad \text { for } 2 \leq i \leq d-2, \\
\dot{\rho} \dot{s}_{d-1} \dot{\rho}^{-1}=\dot{s}_{1}, \quad \dot{\rho} \dot{s}_{d} \dot{\rho}^{-1}=\dot{s}_{0}, \quad \dot{\rho} \dot{s}_{0} \dot{\rho}^{-1}=\dot{s}_{d-1}, \quad \dot{\rho} \dot{s}_{1} \dot{\rho}^{-1}=\dot{s}_{d} .
\end{gathered}
$$

The element $\dot{\omega}$ belongs to G if and only if d is even. The element $\dot{\rho}$ belongs to G if and only if d is odd.

Let $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}$ denote the k-sub algebra of $\mathcal{H}\left(G, I_{0}\right)_{k}$ generated by $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ together with $T_{p \text {.id }}=T_{\dot{\omega}^{2}}$ and $T_{p \text {. id }}^{-1}=T_{p^{-1} \text {.id }}$ if d is even, resp. $T_{p^{2} \text {. } \mathrm{id}}=T_{\dot{\rho}^{4}}$ and $T_{p^{2} \text {. } \mathrm{id}}^{-1}=T_{p^{-2 . \text { id }}}$ if d is odd.

Suppose we are given a character $\lambda: \bar{T} \rightarrow k^{\times}$, a subset $\mathcal{J} \subset S_{\lambda}$ and some $b \in k^{\times}$. Define the numbers $0 \leq k_{i}=k_{i}(\lambda, \mathcal{J}) \leq p-1$ as in subsection 3.2. The character $\chi_{\lambda, \mathcal{J}}$ of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ extends uniquely to a character

$$
\chi_{\lambda, \mathcal{J}, b}: \mathcal{H}\left(G, I_{0}\right)_{\mathrm{aff}, k}^{\prime} \longrightarrow k
$$

which sends $T_{p \text {.id }}$ to b if d is even, resp. which sends $T_{p^{2} \text {. id }}$ to b if d odd (see the proof of [7] Proposition 3). We define the $\mathcal{H}\left(G, I_{0}\right)_{k}$-module

$$
M=M[\lambda, \mathcal{J}, b]=\mathcal{H}\left(G, I_{0}\right)_{k} \otimes_{\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}} k . e
$$

where k.e denotes the one dimensional k-vector space on the basis element e, endowed with the action of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}$ by the character $\chi_{\lambda, \mathcal{J}, b}$. As a k-vector space, M has dimension 4. A k-basis is $e_{0}, e_{1}, f_{0}, f_{1}$ where we write

$$
\begin{aligned}
& e_{0}=1 \otimes e, \quad f_{0}=T_{\dot{u}} \otimes e, \quad e_{1}=T_{\dot{\omega}} \otimes e, \quad f_{1}=T_{\dot{u} \dot{\omega}} \otimes e \quad \text { if } d \text { is even, } \\
& e_{0}=1 \otimes e, \quad f_{0}=T_{\dot{u}} \otimes e, \quad e_{1}=T_{\dot{\rho}} \otimes e, \quad f_{1}=T_{\dot{u} \dot{\rho}} \otimes e \quad \text { if } d \text { is odd } .
\end{aligned}
$$

Definition: We call an $\mathcal{H}\left(G, I_{0}\right)_{k}$-module quasi supersingular if it is isomorphic with $M[\lambda, \mathcal{J}, b]$ for some λ, \mathcal{J}, b such that $k_{i}>0$ for at least one i.

For $2 \leq j \leq d-2$ let $\widetilde{j}=j$, and furthermore let $\widetilde{d-1}=d$ and $\widetilde{d}=d-1$ and $\widetilde{1}=0$ and $\widetilde{0}=1$. Letting $\widetilde{\beta}=\widetilde{(.)} \circ \beta$ we then have

$$
\dot{u} \phi \dot{u}^{-1}=\left(p^{n} \cdot \mathrm{id}\right) \dot{s}_{\widetilde{\beta}(1)} \cdots \dot{s}_{\widetilde{\beta}(2 d-2)}
$$

with $n=1$ if d is even, but $n=2$ if d is odd. If d is odd we consider in addition the following two maps γ and δ from $[1,2 d-2]$ to $[0, d]$. We put $\gamma(1)=1, \gamma(d-1)=d, \gamma(d)=0$ and $\gamma(2 d-2)=d-1$. We put $\delta(1)=0, \delta(d-1)=d-1, \delta(d)=1$ and $\delta(2 d-2)=d$. We put $\gamma(i)=\delta(i)=\beta(2 d-2-i)$ for all $i \in[1, \ldots, d-2] \cup[d+1, \ldots, 2 d-3]$. We then have

$$
\dot{\varrho} \phi \dot{\varrho}^{-1}=\left(p^{2} \cdot \mathrm{id}\right) \dot{s}_{\gamma(1)} \cdots \dot{s}_{\gamma(2 d-2)}, \quad \dot{\varrho}^{-1} \phi \dot{\varrho}=\left(p^{2} \cdot \mathrm{id}\right) \dot{s}_{\delta(1)} \cdots \dot{s}_{\delta(2 d-2)} .
$$

Put

$$
\begin{gathered}
n_{e_{0}}=\sum_{i=0}^{2 d-3} k_{\beta(i+1)} p^{i}, \quad n_{f_{0}}=\sum_{i=0}^{2 d-3} k_{\widetilde{\beta}(i+1)} p^{i} \quad \text { for any parity of } d, \\
n_{e_{1}}=\sum_{i=0}^{2 d-3} k_{\beta(2 d-2-i)} p^{i}, \quad n_{f_{1}}=\sum_{i=0}^{2 d-3} k_{\widetilde{\beta}(2 d-2-i)} p^{i} \quad \text { if } d \text { is even }, \\
n_{e_{1}}=\sum_{i=0}^{2 d-3} k_{\gamma(i+1)} p^{i}, \quad n_{f_{1}}=\sum_{i=0}^{2 d-3} k_{\delta(i+1)} p^{i} \quad \text { if } d \text { is odd }
\end{gathered}
$$

Let $0 \leq s_{e_{0}}, s_{f_{0}}, s_{e_{1}}, s_{f_{1}} \leq p-2$ be such that for all $x \in \mathbb{F}_{p}^{\times}$we have

$$
\begin{array}{crrl}
\lambda(\tau(x))=x^{-s_{e_{0}}}, & \lambda\left(\dot{u} \tau(x) \dot{u}^{-1}\right)=x^{-s_{f_{0}}} & \text { for any parity of } d, \\
\lambda\left(\dot{\omega} \tau(x) \dot{\omega}^{-1}\right)=x^{-s_{e_{1}}}, & \lambda\left(\dot{\omega} \dot{u} \tau(x) \dot{u}^{-1} \dot{\omega}^{-1}\right)=x^{-s_{f_{1}}} & \text { if } d \text { is even, } \\
\lambda\left(\dot{\rho} \tau(x) \dot{\rho}^{-1}\right)=x^{-s_{e_{1}}}, & \lambda\left(\dot{\rho} \dot{u} \tau(x) \dot{u}^{-1} \dot{\rho}^{-1}\right)=x^{-s_{f_{1}}} & \text { if } d \text { is odd. }
\end{array}
$$

Put $\varrho=k_{0}!k_{1}!k_{d-1}!k_{d}!\prod_{i=2}^{d-2}\left(k_{i}!\right)^{2}=\prod_{i=0}^{2 d-3}\left(k_{\beta(i+1)}!\right)=\prod_{i=0}^{2 d-3}\left(k_{\widetilde{\beta}(i+1)}!\right)$.

Lemma 4.13. The assigment $M[\lambda, \mathcal{J}, b] \mapsto\left(n_{e_{0}}, s_{e_{0}}, b \varrho^{-1}\right)$ induces a bijection between the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules and $\mathfrak{S}_{D}(2 d-2)$.

Proof: We have $\alpha_{0}^{\vee}(x) \alpha_{1}^{\vee}(x) \alpha_{d-1}^{\vee}(x) \alpha_{d}^{\vee}(x) \prod_{i=2}^{d-2}\left(\alpha_{i}^{\vee}\right)^{2}(x)=1$ for all $x \in \mathbb{F}_{p}^{\times}$(as can be seen e.g. from formula (30)). This implies

$$
\begin{equation*}
k_{0}+k_{1}+k_{d-1}+k_{d}+2 \sum_{i=2}^{d-2} k_{i} \equiv n_{e_{0}} \equiv n_{f_{0}} \equiv n_{e_{1}} \equiv n_{f_{1}} \equiv 0 \quad \bmod (p-1) . \tag{31}
\end{equation*}
$$

It follows from [7] Proposition 3 that $M[\lambda, \mathcal{J}, b]$ and $M\left[\lambda^{\prime}, \mathcal{J}^{\prime}, b^{\prime}\right]$ are isomorphic if and only if $b=b^{\prime}$ and the pair (λ, \mathcal{J}) is conjugate with the pair $\left(\lambda^{\prime}, \mathcal{J}^{\prime}\right)$ by means of $\dot{u}^{n} \dot{\omega}^{m}$ for some $n, m \in\{0,1\}$ (if d is even), resp. by means of $\dot{u}^{n} \dot{\rho}^{m}$ for some $n, m \in\{0,1\}$ (if d is odd). Under the map $M[\lambda, \mathcal{J}, b] \mapsto\left(n_{e_{0}}, s_{e_{0}}, b \varrho^{-1}\right)$, conjugation by \dot{u} corresponds to the permutation ι_{0} of $\widetilde{\mathfrak{S}}_{D}(2 d-2)$, while conjugation by $\dot{\omega}$, resp. by $\dot{\rho}$, corresponds to the permutation ι_{1} of $\widetilde{\mathfrak{S}}_{D}(2 d-2)$. We may thus proceed as in the proof of Lemma 4.2 to see that our mapping is well defined and bijective.

Lemma 4.14. In $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ we have

$$
\begin{aligned}
t^{n_{e_{j}}} \varphi^{2 d-2} e_{j} & =\varrho b^{-1} e_{j}, \\
t^{n_{j}} \varphi^{2 d-2} f_{j} & =\varrho b^{-1} f_{j}, \\
\gamma(x) e_{j} & =x^{-s_{e_{j}}} e_{j}, \\
\gamma(x) f_{j} & =x^{-s_{j}} f_{j}
\end{aligned}
$$

for $x \in \mathbb{F}_{p}^{\times}$and $j=0,1$. The action of Γ_{0} on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ is trivial on the subspace M.
Proof: As in Lemma 4.4.

Corollary 4.15. The étale $\left(\varphi^{2 d-2}, \Gamma\right)$-module over $k_{\mathcal{E}}$ associated with $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ admits a $k_{\mathcal{E}}$-basis $g_{e_{0}}, g_{f_{0}}, g_{e_{1}}, g_{f_{1}}$ such that for both $j=0$ and $j=1$ we have

$$
\begin{aligned}
& \varphi^{2 d-2} g_{e_{j}}=b \varrho^{-1} t^{n_{e_{j}}+1-p^{2 d-2}} g_{e_{j}} \\
& \varphi^{2 d-2} g_{f_{j}}=b \varrho^{-1} t^{n_{f_{j}}+1-p^{2 d-2}} g_{f_{j}} \\
& \gamma(x)\left(g_{e_{j}}\right)-x^{s_{e_{j}}} g_{e_{j}} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{e_{j}} \\
& \gamma(x)\left(g_{f_{j}}\right)-x^{s_{f_{j}}} g_{f_{j}} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{f_{j}}
\end{aligned}
$$

Proof: This follows from Lemma 4.14 as explained in [3] Lemma 6.4.

Corollary 4.16. The functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ induces a bijection between
(a) the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules, and
(b) the set of isomorphism classes of D-symmetric étale $\left(\varphi^{2 d-2}, \Gamma\right)$-modules over $k_{\mathcal{E}}$.

Proof: We let $\mathbf{D}_{11}=\left\langle g_{e_{0}}\right\rangle, \mathbf{D}_{12}=\left\langle g_{f_{0}}\right\rangle, \mathbf{D}_{21}=\left\langle g_{e_{1}}\right\rangle, \mathbf{D}_{22}=\left\langle g_{f_{1}}\right\rangle$. Then $k_{i}\left(\mathbf{D}_{11}\right)=$ $k_{\beta(i+1)}$ and $k_{i}\left(\mathbf{D}_{12}\right)=k_{\widetilde{\beta}(i+1)}$; moreover $k_{i}\left(\mathbf{D}_{21}\right)=k_{\beta(2 d-d-i)}$ and $k_{i}\left(\mathbf{D}_{22}\right)=k_{\widetilde{\beta}(2 d-d-i)}$ if d is even, but $k_{i}\left(\mathbf{D}_{21}\right)=k_{\gamma(i+1)}$ and $k_{i}\left(\mathbf{D}_{22}\right)=k_{\delta(i+1)}$ if d is odd.

For the condition on $s_{f_{0}}-s_{e_{0}}=s\left(\mathbf{D}_{12}\right)-s\left(\mathbf{D}_{11}\right)$ we compute

$$
\tau(x) \cdot \dot{u} \tau^{-1}(x) \dot{u}^{-1}=\operatorname{diag}\left(x, E_{d-2}, x^{-1}, x^{-1}, E_{d-2}, x\right)=\left(\sum_{i=1}^{d-1} \alpha_{i}^{\vee}\right)(x),
$$

hence application of λ gives $x^{s_{f_{0}}-s_{e_{0}}}=x^{\sum_{i=1}^{d-1} k_{i}}$ and hence $s_{f_{0}}-s_{e_{0}} \equiv \sum_{i=1}^{d-1} k_{i}=\sum_{i=0}^{d-2} k_{i}\left(\mathbf{D}_{11}\right)$ modulo $(p-1)$. The condition on $s_{f_{1}}-s_{e_{1}}=s\left(\mathbf{D}_{22}\right)-s\left(\mathbf{D}_{21}\right)$ in case d is even is exactly verified like the one for $s_{f_{0}}-s_{e_{0}}$ because $\dot{\omega} \tau(x) \dot{\omega}^{-1} \cdot \dot{\omega} \dot{u} \tau^{-1}(x) \dot{u}^{-1} \dot{\omega}^{-1}=\tau(x) \cdot \dot{u} \tau^{-1}(x) \dot{u}^{-1}$. In case d is odd the computation is

$$
\dot{\rho} \tau(x) \dot{\rho}^{-1} \cdot \dot{\rho} \dot{u} \tau^{-1}(x) \dot{u}^{-1} \dot{\rho}^{-1}=\operatorname{diag}\left(x, E_{d-2}, x, x^{-1}, E_{d-2}, x^{-1}\right)=\left(\alpha_{d}^{\vee}+\sum_{i=1}^{d-2} \alpha_{i}^{\vee}\right)(x),
$$

hence $s_{f_{1}}-s_{e_{1}} \equiv k_{d}+\sum_{i=1}^{d-2} k_{i}=s\left(\mathbf{D}_{12}\right)-s\left(\mathbf{D}_{11}\right)+k_{d}-k_{d-1}=k_{d-1}\left(\mathbf{D}_{11}\right)-k_{0}\left(\mathbf{D}_{11}\right)+$ $\sum_{i=0}^{d-2} k_{i}\left(\mathbf{D}_{11}\right)$ modulo $(p-1)$.

To see the condition on $s_{e_{1}}-s_{e_{0}}=s\left(\mathbf{D}_{21}\right)-s\left(\mathbf{D}_{11}\right)$ in case d is even we compute

$$
\begin{align*}
\tau(x) \cdot \dot{\omega} \tau^{-1}(x) \dot{\omega}^{-1} & =\operatorname{diag}\left(1, x E_{d-2}, 1,1, x^{-1} E_{d-2}, 1\right) \tag{32}\\
& =\left(\frac{d-2}{2} \alpha_{d-1}^{\vee}+\frac{d-2}{2} \alpha_{d}^{\vee}+\sum_{i=2}^{d-2}(i-1) \alpha_{i}^{\vee}\right)(x),
\end{align*}
$$

hence application of λ gives $x^{s_{e_{1}}-s_{e_{0}}}=x^{\frac{d-2}{2} k_{d-1}+\frac{d-2}{2} k_{d}+\sum_{i=2}^{d-2}(i-1) k_{i}}$ and hence $s_{e_{1}}-s_{e_{0}} \equiv$ $\frac{d-2}{2} k_{d-1}+\frac{d-2}{2} k_{d}+\sum_{i=2}^{d-2}(i-1) k_{i}=\frac{d-2}{2}\left(k_{d-1}\left(\mathbf{D}_{11}\right)+k_{0}\left(\mathbf{D}_{11}\right)\right)+\sum_{i=2}^{d-2}(i-1) k_{d-i-1}\left(\mathbf{D}_{11}\right)$ modulo ($p-1$). If however d is odd we compute

$$
\begin{aligned}
\tau(x) \cdot \dot{\rho} \tau^{-1}(x) \dot{\rho}^{-1} & =\operatorname{diag}\left(1, x E_{d-2}, x^{-1}, 1, x^{-1} E_{d-2}, x\right) \\
& =\left(\frac{d-1}{2} \alpha_{d-1}^{\vee}+\frac{d-3}{2} \alpha_{d}^{\vee}+\sum_{i=2}^{d-2}(i-1) \alpha_{i}^{\vee}\right)(x),
\end{aligned}
$$

hence application of λ gives $x^{s_{e_{1}}-s_{e_{0}}}=x^{\frac{d-1}{2} k_{d-1}+\frac{d-3}{2} k_{d}+\sum_{i=2}^{d-2}(i-1) k_{i}}$ and hence $s_{e_{1}}-s_{e_{0}} \equiv$ $\frac{d-1}{2} k_{d-1}+\frac{d-3}{2} k_{d}+\sum_{i=2}^{d-2}(i-1) k_{i}=\frac{d-3}{2} k_{\frac{r}{2}}\left(\mathbf{D}_{11}\right)+\frac{d-1}{2} k_{0}\left(\mathbf{D}_{11}\right)+\sum_{i=2}^{d-2}(i-1) k_{d-i-1}\left(\mathbf{D}_{11}\right)$ modulo $(p-1)$. Now we conclude with Lemmata 4.13 and 2.6.

Remark: Consider the subgroup $G^{\prime}=\mathrm{SO}_{2 d}\left(\mathbb{Q}_{p}\right)$ of G. If we replace the above τ by $\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, x \mapsto \operatorname{diag}\left(x E_{d-1}, x^{-1} E_{d}, x\right)$, and if we replace the above ϕ by $\phi=\dot{s}_{d-1} \dot{s}_{d-2} \cdots \dot{s}_{2} \dot{s}_{1} \dot{s}_{d} \dot{s}_{d-2} \dot{s}_{d-3} \cdots \dot{s}_{3} \dot{s}_{2} \dot{s}_{0}$, then everything in fact happens inside G^{\prime}, and there is no dichotomy between d even or odd. We then have $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{p}^{\times}}^{2}$ for all $j \geq 0$. Let $\operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ denote the category of finite-o-length $\mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$-modules on which $\tau(-1)$ (i.e. $\left.T_{\tau(-1)}=T_{\tau(-1)^{-1}}\right)$ acts trivially. For $M \in \operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ we obtain
an action of $\left\lfloor\mathfrak{N}_{0}, \varphi^{2 d-2}, \Gamma^{2}\right\rfloor$ on $H_{0}\left(\overline{\mathcal{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$, where $\Gamma^{2}=\left\{\gamma^{2} \mid \gamma \in \Gamma\right\} \subset \Gamma$. Correspondingly, we obtain a functor from $\operatorname{Mod}_{0}^{\mathrm{fin}} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ to the category of $\left(\varphi^{2 d-2}, \Gamma^{2}\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Remark: Instead of the element $\phi \in N(T)$ used above we might also work with the element $\dot{s}_{d-1} \cdots \dot{s}_{2} \dot{s}_{1} \dot{u}$ of length $d-1$ (or products of this with elements of $p^{\mathbb{Z}} \cdot \mathrm{id}$), keeping the same $C^{(\bullet)}$. This results in a functor from $\mathcal{H}\left(G, I_{0}\right)$-modules to $\left(\varphi^{d-1}, \Gamma\right)$-modules. Up to a factor in $p^{\mathbb{Z}} \cdot \mathrm{id}$, the square of $\dot{s}_{d-1} \cdots \dot{s}_{2} \dot{s}_{1} \dot{u}$ is the element ϕ used above.

Remark: For the affine root system of type D_{d} there are three co minuscule fundamental coweights (cf. [2] chapter 8, par 7.3]). We leave it to the reader to work out $\left.\left(C^{\bullet}\right), \phi\right)$ correspondigng to the two other co minuscule fundamental coweights. (These ϕ 's will be longer.)

Remark: We discuss a choice of $\left(C^{(\bullet)}, \phi\right)$ with $\ell(\phi)=d$ (but leading only to $\left(\varphi^{d}, \Gamma_{0}\right)$ modules, not to (φ^{d}, Γ)-modules). In $N(T)$ we consider $\phi=\dot{s}_{d} \cdots \dot{s}_{1} \dot{u}$. For $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<d$ we put $C^{(a d+b)}=\phi^{a} s_{d} \cdots s_{d-b+1} C$. A matrix computation shows $\phi^{d-1}=$ $\operatorname{diag}\left(p E_{d-1}, 1, p^{-1} E_{d-1}, 1\right)$. Using this we find

$$
\begin{aligned}
\phi^{d-1} N_{0} \phi^{1-d} & =\prod_{\alpha \in \Phi^{+}} \phi^{d-1}\left(N_{0} \cap N_{\alpha}\right) \phi^{1-d}=\prod_{\alpha \in \Phi^{+}}\left(N_{0} \cap N_{\alpha}\right)^{p^{m_{\alpha}}}, \\
m_{\alpha}= & \left\{\begin{array}{ccc}
2 & : & \alpha=e_{i}+e_{j} \text { with } i<j<d \\
1 & : & \alpha=e_{i}+e_{d} \\
1 & : & \alpha=e_{i}-e_{d} \\
0 & : & \text { all other } \alpha \in \Phi^{+}
\end{array}\right.
\end{aligned}
$$

In particular we find $\phi^{d-1} N_{0} \phi^{1-d} \subset N_{0}$ and $\left[N_{0}: \phi^{d-1} N_{0} \phi^{1-d}\right]=p^{d(d-1)}$. This implies that the length of $\phi^{m} \in \widehat{W}$ is at least $d m$, for all $m \geq 0$. On the other hand this length is at most $d m$ because ϕ is a product of d simple reflections and of an element of length 0 . Thus ϕ^{m} has length $d m$. Therefore the sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5).

4.4 Affine root system \tilde{A}_{d}

Assume $d \geq 1$ and consider $G=\mathrm{GL}_{d+1}\left(\mathbb{Q}_{p}\right)$. Let

$$
\dot{u}=\left(\begin{array}{ll}
& E_{d} \\
p &
\end{array}\right) .
$$

For $1 \leq i \leq d$ let

$$
\dot{s}_{i}=\operatorname{diag}\left(E_{i-1}, S_{1}, E_{d-i}\right)
$$

and let $\dot{s}_{0}=\dot{u} \dot{s}_{1} \dot{u}^{-1}$. Let T be the maximal torus consisting of diagonal matrices. Let Φ^{+}be such that $N=\prod_{\alpha \in \Phi^{+}} N_{\alpha}$ is the subgroup of upper triangular unipotent matrices. Let I_{0} be the subgroup consisting of elements in $\mathrm{GL}_{d+1}\left(\mathbb{Z}_{p}\right)$ which are upper triangular modulo p. We put

$$
\phi=(p \cdot \mathrm{id}) \dot{s}_{d} \cdots \dot{s}_{0}=(p \cdot \mathrm{id}) \dot{s}_{\beta(1)} \cdots \dot{s}_{\beta(d+1)}
$$

where $\beta(i)=d+1-i$ for $1 \leq i \leq d+1$. For $a, b \in \mathbb{Z}_{\geq 0}$ with $0 \leq b<d+1$ we put

$$
C^{(a(d+1)+b)}=\phi^{a} s_{d} \cdots s_{d-b+1} C=\phi^{a} s_{\beta(1)} \cdots s_{\beta(b)} C
$$

We define the homomorphism

$$
\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, \quad x \mapsto \operatorname{diag}\left(E_{d}, x^{-1}\right)
$$

The sequence $C=C^{(0)}, C^{(1)}, C^{(2)}, \ldots$ satisfies hypothesis (5). The corresponding $\alpha^{(j)} \in$ Φ^{+}for $j \geq 0$ satisfy $\alpha^{(j)} \circ \tau=\mathrm{id}_{\mathbb{Z}_{p}^{\times}}$, and we have $\tau(a) \phi=\phi \tau(a)$ for all $a \in \mathbb{Z}_{p}^{\times}$. We thus obtain a functor from $\operatorname{Mod}^{\operatorname{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{d+1}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Let $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}$ denote the k-sub algebra of $\mathcal{H}\left(G, I_{0}\right)_{k}$ generated by $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ together with $T_{p \text {.id }}=T_{\dot{u}^{d+1}}$ and $T_{p \text {.id }}^{-1}=T_{p^{-1 . \text { id }}}$.

Suppose we are given a character $\lambda: \bar{T} \rightarrow k^{\times}$, a subset $\mathcal{J} \subset S_{\lambda}$ and some $b \in k^{\times}$. Define the numbers $0 \leq k_{i}=k_{i}(\lambda, \mathcal{J}) \leq p-1$ as in subsection 3.2. The character $\chi_{\lambda, \mathcal{J}}$ of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}$ extends uniquely to a character

$$
\chi_{\lambda, \mathcal{J}, b}: \mathcal{H}\left(G, I_{0}\right)_{\mathrm{aff}, k}^{\prime} \longrightarrow k
$$

which sends $T_{p \text {.id }}$ to b (see the proof of [7] Proposition 3). Define the $\mathcal{H}\left(G, I_{0}\right)_{k}$-module

$$
M=M[\lambda, \mathcal{J}, b]=\mathcal{H}\left(G, I_{0}\right)_{k} \otimes_{\mathcal{H}\left(G, I_{0}\right)_{\text {aff }, k}^{\prime}} \text { k.e }
$$

where k.e denotes the one dimensional k-vector space on the basis element e, endowed with the action of $\mathcal{H}\left(G, I_{0}\right)_{\text {aff, }, k}^{\prime}$ by the character $\chi_{\lambda, \mathcal{J}, b}$. As a k-vector space, M has dimension $d+1$, a k-basis is $\left\{e_{i}\right\}_{0 \leq i \leq d}$ where we write $e_{i}=T_{\dot{u}^{-i}} \otimes e$.

Definition: We call an $\mathcal{H}\left(G, I_{0}\right)_{k}$-module quasi supersingular if it is isomorphic with $M[\lambda, \mathcal{J}, b]$ for some λ, \mathcal{J}, b such that $k_{i}>0$ for at least one i.

For $0 \leq j \leq d$ put $n_{e_{j}}=\sum_{i=0}^{d} k_{j-i} p^{i}$ (reading $j-i$ as its representative modulo ($d+1$) in $[0, d])$ and let $s_{e_{j}}$ be such that $\lambda\left(\dot{u}^{-j} \tau(x) \dot{u}^{j}\right)=x^{-s_{e_{j}}}$. Put $\varrho=\lambda(-\mathrm{id}) \prod_{i=0}^{d}\left(k_{i}!\right)$.
Theorem 4.17. The étale $\left(\varphi^{d+1}, \Gamma\right)$-module $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ over $k_{\mathcal{E}}$ associated with $H_{0}\left(\overline{\mathcal{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ admits a $k_{\mathcal{E}}$-basis $\left\{g_{e_{j}}\right\}_{0 \leq j \leq d}$ such that for all j we have

$$
\begin{aligned}
& \varphi^{d+1} g_{e_{j}}=b \varrho^{-1} t^{n_{e_{j}}+1-p^{d+1}} g_{e_{j}}, \\
& \gamma(x) g_{e_{j}}-x^{s_{e_{j}}} g_{e_{j}} \in t \cdot k_{\mathcal{E}}^{+} \cdot g_{e_{j}} .
\end{aligned}
$$

The functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ induces a bijection between

(a) the set of isomorphism classes of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules, and
(b) the set of isomorphism classes of A-symmetric étale $\left(\varphi^{d+1}, \Gamma\right)$-modules over $k_{\mathcal{E}}$.

Proof: For the formulae describing $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ one may proceed exactly as in the proof of Corollary 4.5 . (The only tiny additional point to be observed is that the \dot{s}_{i} (in keeping with our choice in [3]) do not ly in the images of the $\iota_{\alpha_{i}}$; this is accounted for by the sign factor $\lambda(-\mathrm{id})$ in the definition of ϱ.) Alternatively, as our ϕ is the $(d+1)$-st power of the ϕ considered in section 8 of [3], the computations of loc. cit. may be carried over.

To see that $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ is A-symmetric put $\mathbf{D}_{j}=\left\langle g_{e_{j}}\right\rangle$ for $0 \leq j \leq d$ and compare the above formulae with those defining A-symmetry; e.g. we find $s_{e_{0}}-s_{e_{j}} \equiv \sum_{i=1}^{j} k_{i}$ modulo ($p-1$). The bijectivity statement is then verified as before.

Remark: Application of the functor of Lemma 2.2 to any one of the direct summands \mathbf{D}_{j} of an A-symmetric étale $\left(\varphi^{d+1}, \Gamma\right)$-module over $k_{\mathcal{E}}$ (i.e. of $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$) yields an étale (φ, Γ)-module isomorphic with the one assigned to M in [3].

Remark: Consider the subgroup $G^{\prime}=\mathrm{SL}_{d+1}\left(\mathbb{Q}_{p}\right)$ of G. If we replace the above τ by $\tau: \mathbb{Z}_{p}^{\times} \longrightarrow T_{0}, x \mapsto \operatorname{diag}\left(x E_{d}, x^{-d}\right)$ and if we replace the above ϕ by $\phi=\dot{s}_{d} \dot{s}_{d-1} \cdots \dot{s}_{1} \dot{s}_{0}$ then everything in fact happens inside G^{\prime}. We then have $\alpha^{(j)} \circ \tau=\operatorname{id}_{\mathbb{Z}_{p}^{\times}}^{d+1}$ for all $j \geq 0$. Let $\operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ denote the category of finite-o-length $\mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$-modules on which the $x E_{d+1}$ (i.e. the $T_{x^{-1} E_{d+1}}$) for all $x \in \mathbb{Z}_{p}^{\times}$with $x^{d+1}=1$ act trivially. (Notice that $\tau(x)=x E_{d+1}$ for such x.) For $M \in \operatorname{Mod}_{0}^{\text {fin }} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ we obtain an action of $\left\lfloor\mathfrak{N}_{0}, \varphi^{d+1}, \Gamma^{d+1}\right\rfloor$ on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$, where $\Gamma^{d+1}=\left\{\gamma^{d+1} \mid \gamma \in \Gamma\right\} \subset \Gamma$. Correspondingly, we obtain a functor from $\operatorname{Mod}_{0}^{\mathrm{fin}} \mathcal{H}\left(G^{\prime}, G^{\prime} \cap I_{0}\right)$ to the category of $\left(\varphi^{d+1}, \Gamma^{d+1}\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Remark: As all the fundamental coweights τ of T are co minuscule, each of them admits ϕ 's for which the pair (ϕ, τ) satisfies the properties asked for in Lemma 3.1. For example, let $1 \leq g \leq d$. For $\phi=\dot{s}_{g} \cdot \dot{s}_{g+1} \cdots \dot{s}_{d} \cdot \dot{u}$ as well as for $\phi=\dot{s}_{g} \cdot \dot{s}_{g-1} \cdots \dot{s}_{1} \cdot \dot{u}^{-1}$ there is a unique minimal gallery from C to $\phi(C)$ which admits a ϕ-periodic continuation to a gallery (4), giving rise to a functor from $\operatorname{Mod}^{\mathrm{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{r}, \Gamma\right)$ modules over $\mathcal{O}_{\mathcal{E}}$, where $r=\ell(\phi)$.

5 Exceptional groups

Let G be the group of \mathbb{Q}_{p}-rational points of a \mathbb{Q}_{p}-split connected reductive group over \mathbb{Q}_{p} with connected center Z. Fix a maximal \mathbb{Q}_{p}-split torus T and define $\Phi, N(T), W, \widehat{W}$ and $W_{\text {aff }}$ as before.

5.1 Affine root system \tilde{E}_{6}

Assume that the root system Φ is of type E_{6}. Following [2] (for the indexing) we then have Coxeter generators s_{1}, \ldots, s_{6} of W and s_{0}, \ldots, s_{6} of $W_{\text {aff }}$ (thus $s_{i}^{2}=1$ for all i) such that

$$
\left(s_{1} s_{3}\right)^{3}=\left(s_{3} s_{4}\right)^{3}=\left(s_{4} s_{5}\right)^{3}=\left(s_{5} s_{6}\right)^{3}=\left(s_{4} s_{2}\right)^{3}=\left(s_{2} s_{0}\right)^{3}=1
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other pairs $i \neq j$. In the extended affine Weyl group \widehat{W} we find (cf. [4]) an element u of length 0 with

$$
\begin{array}{ccc}
u^{3}=1 & \text { and } \quad u s_{4} u^{-1}=s_{4}, \\
u s_{3} u^{-1}=s_{5}, & u s_{5} u^{-1}=s_{2}, & u s_{2} u^{-1}=s_{3}, \tag{33}\\
u s_{1} u^{-1}=s_{6}, & u s_{6} u^{-1}=s_{0}, & u s_{0} u^{-1}=s_{1} .
\end{array}
$$

(Then \widehat{W} is the semidirect product of the three-element subgroup $W_{\Omega}=\left\{1, u, u^{2}\right\}$ with $W_{\text {aff.) }}$ Let e_{1}, \ldots, e_{8} denote the standard basis of \mathbb{R}^{8}. We use the standard inner product $\langle.,$.$\rangle on \mathbb{R}^{8}$ to view both the root system Φ as well as its dual Φ^{\vee} as living inside \mathbb{R}^{8}. We choose a positive system Φ^{+}in Φ such that, as in [2], the simple roots are $\alpha_{1}=$ $\alpha_{1}^{\vee}=\frac{1}{2}\left(e_{1}+e_{8}-e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}\right), \alpha_{2}=\alpha_{2}^{\vee}=e_{2}+e_{1}, \alpha_{3}=\alpha_{3}^{\vee}=e_{2}-e_{1}$, $\alpha_{4}=\alpha_{4}^{\vee}=e_{3}-e_{2}, \alpha_{5}=\alpha_{5}^{\vee}=e_{4}-e_{3}, \alpha_{6}=\alpha_{6}^{\vee}=e_{5}-e_{4}$ while the negative of the highest root is $\alpha_{0}=\alpha_{0}^{\vee}=\frac{1}{2}\left(e_{6}+e_{7}-e_{1}-e_{2}-e_{3}-e_{4}-e_{5}-e_{8}\right)$. The set of positive roots is

$$
\Phi_{+}=\left\{e_{j} \pm e_{i} \mid 1 \leq i<j \leq 5\right\} \cup\left\{\left.\frac{1}{2}\left(-e_{6}-e_{7}+e_{8}+\sum_{i=1}^{5}(-1)^{\nu_{i}} e_{i}\right) \right\rvert\, \sum_{i=1}^{5} \nu_{i} \text { even }\right\}
$$

We lift u and the s_{i} to elements \dot{u} and \dot{s}_{i} in $N(T)$. We then put

$$
\phi=\dot{s}_{2} \dot{s}_{4} \dot{s}_{3} \dot{s}_{1} \dot{u}^{-1} \in N(T) .
$$

We define ∇ as in section 3.2.
Proposition 5.1. There is a $\tau \in \nabla$ such that the pair (ϕ, τ) satisfies the hypotheses of Lemma 3.1. More precisely, ϕ is power multiplicative, and for the co minuscule fundamental (co)weight $\tau=\omega_{1}=\frac{2}{3}\left(e_{8}-e_{7}-e_{6}\right) \in \nabla$ we have $\phi^{12}=\tau^{3}$ in $W_{\text {aff }}$.

Proof: (Here the symbol ω_{1} in fact designates the translation by ω_{1}, therefore we write $\omega_{1}^{3}=\tau^{3}$ (rather than $3 \omega_{1}$) for the three fold iterate of this translation.) Consider the set of affine root hyperplanes crossed by a minimal gallery from C to $\omega_{1}^{3} C$. Assigning to each of these affine root hyperplanes its corresponding positive root in Φ^{+}, each element of the subset

$$
\Phi\left(\omega_{1}\right)=\left\{\left.\frac{1}{2}\left(-e_{6}-e_{7}+e_{8}+\sum_{i=1}^{5}(-1)^{\nu_{i}} e_{i}\right) \right\rvert\, \sum_{i=1}^{5} \nu_{i} \text { even }\right\}
$$

of Φ^{+}is hit exactly three times, whereas no other element of Φ^{+}is hit. In this way, the set $\Phi\left(\omega_{1}\right)$ characterizes ω_{1}^{3} as an element of $W_{\text {aff }}$. In particular, the length of ω_{1}^{3} is $3 \cdot 16=48$. It is now enough to verify that ϕ^{12} satisfies this characterization of ω_{1}^{3}.

Alternatively, one may want to use a computer to verify $\phi^{12}=\omega_{1}^{3}$. See the appendix for how this can be done.

As explained in subsection 3.2 we now obtain a functor from $\operatorname{Mod}^{\mathrm{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{4}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Similarly, we may replace ϕ by its third power ϕ^{3} which (in contrast to ϕ) is an element of $W_{\text {aff }}$ (modulo T_{0}). It yields a functor from $\operatorname{Mod}^{\text {fin }}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{12}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$. As in our treatment of the cases C, B, D and A, this functor identifies the set of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k}$-modules bijectively with a set of certain E-symmetric étale $\left(\varphi^{12}, \Gamma\right)$-modules over $k_{\mathcal{E}}$ of dimension 3. We leave the details to the reader.

Remarks: (a) Dual to the above choice of ϕ is the choice

$$
\begin{equation*}
\phi=\dot{s}_{2} \dot{s}_{4} \dot{s}_{5} \dot{s}_{6} \dot{u} \in N(T) . \tag{34}
\end{equation*}
$$

For this choice, Proposition 5.1 holds true verbatim the same way, but now with the co minuscule fundamental (co)weight $\tau=\omega_{6}=\frac{1}{3}\left(3 e_{5}+e_{8}-e_{7}-e_{6}\right)$ with its corresponding subset (again containing 16 elements)

$$
\Phi\left(\omega_{6}\right)=\left\{\left.\frac{1}{2}\left(e_{5}-e_{6}-e_{7}+e_{8}+\sum_{i=1}^{4}(-1)^{\nu_{i}} e_{i}\right) \right\rvert\, \sum_{i=1}^{4} \nu_{i} \text { even }\right\} \cup\left\{e_{5} \pm e_{i} \mid 1 \leq i<5\right\}
$$

of Φ^{+}. Again see the appendix.
(b) In either case, the multiplicities of the s_{i} in $\phi^{3} \in W_{\text {aff }}$ are the coefficients of the α_{i}^{\vee} in

$$
\alpha_{0}^{\vee}+\alpha_{1}^{\vee}+\alpha_{6}^{\vee}+2 \alpha_{2}^{\vee}+2 \alpha_{3}^{\vee}+2 \alpha_{5}^{\vee}+3 \alpha_{4}^{\vee}=0 .
$$

5.2 Affine root system \tilde{E}_{7}

Assume that the root system Φ is of type E_{7}. Following [2] we then have Coxeter generators s_{1}, \ldots, s_{7} of W and s_{0}, \ldots, s_{7} of $W_{\text {aff }}$ (thus $s_{i}^{2}=1$ for all i) such that

$$
\left(s_{0} s_{1}\right)^{3}=\left(s_{1} s_{3}\right)^{3}=\left(s_{3} s_{4}\right)^{3}=\left(s_{4} s_{5}\right)^{3}=\left(s_{5} s_{6}\right)^{3}=\left(s_{6} s_{7}\right)^{3}=\left(s_{4} s_{2}\right)^{3}=1
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other pairs $i \neq j$. In the extended affine Weyl group \widehat{W} we find (cf. [4]) an element u of length 0 with

$$
\begin{gathered}
u^{2}=1 \quad \text { and } \quad u s_{4} u=s_{4}, \quad u s_{2} u=s_{2}, \\
u s_{3} u=s_{5}, \quad u s_{6} u=s_{1}, \quad u s_{7} u=s_{0}, \\
u s_{5} u=s_{3}, \quad u s_{1} u=s_{6}, \quad u s_{0} u=s_{7} .
\end{gathered}
$$

(\widehat{W} is the semidirect product of the two-element subgroup $W_{\Omega}=\{1, u\}$ with $W_{\text {aff }}$.) Let e_{1}, \ldots, e_{8} denote the standard basis of \mathbb{R}^{8}. We use the standard inner product $\langle.,$. on \mathbb{R}^{8} to view both the root system Φ as well as its dual Φ^{\vee} as living inside \mathbb{R}^{8}. We choose a positive system Φ^{+}in Φ such that, as in [2], the simple roots are $\alpha_{1}=\alpha_{1}^{\vee}=$ $\frac{1}{2}\left(e_{1}+e_{8}-e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}\right), \alpha_{2}=\alpha_{2}^{\vee}=e_{2}+e_{1}, \alpha_{3}=\alpha_{3}^{\vee}=e_{2}-e_{1}, \alpha_{4}=\alpha_{4}^{\vee}=e_{3}-e_{2}$, $\alpha_{5}=\alpha_{5}^{\vee}=e_{4}-e_{3}, \alpha_{6}=\alpha_{6}^{\vee}=e_{5}-e_{4}, \alpha_{7}=\alpha_{7}^{\vee}=e_{6}-e_{5}$ while the negative of the highest root is $\alpha_{0}=\alpha_{0}^{\vee}=e_{7}-e_{8}$. The set of positive roots is

$$
\Phi_{+}=\left\{e_{j} \pm e_{i} \mid 1 \leq i<j \leq 6\right\} \cup\left\{e_{8}-e_{7}\right\} \cup\left\{\left.\frac{1}{2}\left(e_{8}-e_{7}+\sum_{i=1}^{6}(-1)^{\nu_{i}} e_{i}\right) \right\rvert\, \sum_{i=1}^{6} \nu_{i} \text { odd }\right\} .
$$

We lift u and the s_{i} to elements \dot{u} and \dot{s}_{i} in $N(T)$. We then put

$$
\phi=\dot{s}_{1} \dot{s}_{3} \dot{s}_{4} \dot{s}_{2} \dot{s}_{5} \dot{s}_{4} \dot{s}_{3} \dot{s}_{1} \dot{s}_{0} \dot{u} \in N(T) .
$$

We define ∇ as in section 3.2.
Proposition 5.2. There is a $\tau \in \nabla$ such that the pair (ϕ, τ) satisfies the hypotheses of Lemma 3.1. More precisely, ϕ is power multiplicative, and for the co minuscule fundamental (co)weight $\tau=\omega_{7}=e_{6}+\frac{1}{2}\left(e_{8}-e_{7}\right) \in \nabla$ we have $\phi^{6}=\tau^{2}$ in $W_{\text {aff }}$.

Proof: Exactly the same as for Propostion 5.1. The corresponding subset in Φ^{+}is

$$
\Phi\left(\omega_{7}\right)=\left\{\left.\frac{1}{2}\left(e_{6}+e_{8}-e_{7}+\sum_{i=1}^{5}(-1)^{\nu_{i}} e_{i}\right) \right\rvert\, \sum_{i=1}^{5} \nu_{i} \text { odd }\right\} \cup\left\{e_{8}-e_{7}\right\} \cup\left\{e_{6} \pm e_{i} \mid 1 \leq i<6\right\} .
$$

It contains exactly 27 elements, thus $\ell\left(\omega_{7}\right)=27$. For a computer proof of $\phi^{6}=\tau^{2}$ see the appendix.

As explained in subsection 3.2 we now obtain a functor from $\operatorname{Mod}^{\operatorname{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{9}, \Gamma\right)$-modules over $\mathcal{O}_{\mathcal{E}}$.

Similarly, we may replace ϕ by its square ϕ^{2} which (in contrast to ϕ) is an element of $W_{\text {aff }}\left(\right.$ modulo $\left.T_{0}\right)$. It yields a functor from $\operatorname{Mod}^{\text {fin }}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to the category of $\left(\varphi^{18}, \Gamma\right)$ modules over $\mathcal{O}_{\mathcal{E}}$. Again this functor identifies the set of quasi supersingular $\mathcal{H}\left(G, I_{0}\right)_{k^{-}}$ modules bijectively with a set of certain E-symmetric étale $\left(\varphi^{18}, \Gamma\right)$-modules over $k_{\mathcal{E}}$ of dimension 2. We leave the details to the reader.

Remark: The multiplicities of the s_{i} in $\phi^{2} \in W_{\text {aff }}$ are the coefficients of the α_{i}^{\vee} in

$$
\alpha_{0}^{\vee}+\alpha_{7}^{\vee}+2\left(\alpha_{1}^{\vee}+\alpha_{2}^{\vee}+\alpha_{6}^{\vee}\right)+3\left(\alpha_{3}^{\vee}+\alpha_{5}^{\vee}\right)+4 \alpha_{4}^{\vee}=0
$$

5.3 Affine root systems $\tilde{G}_{2}, \tilde{F}_{4}, \tilde{E}_{8}$

If the underlying root system of G is G_{2}, F_{4} or E_{8} then co minuscule coweights do not exist, and there don't exist ϕ and τ satisfying the conclusions of Lemma 3.1.

One may nevertheless ask the following question: Is there a reduced expression (7) of a power multiplicative element $\phi \in N(T)$, some power of which maps to a dominant coweight in $N(T) / T_{0}=\widehat{W}$, such that the corresponding functor $M \mapsto \mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ from $\operatorname{Mod}^{\mathrm{fin}}\left(\mathcal{H}\left(G, I_{0}\right)\right)$ to $\left(\varphi^{r}, \Gamma_{0}\right)$-modules has the following property: for any M, the $\left(\varphi^{r}, \Gamma_{0}\right)$ module structure on $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M}\right)$ extends (possibly in several ways) to an (φ^{r}, Γ)-module structure?

Let us say that such expressions (7) have the extension property. We consider the question for the supersingular characters M of $\mathcal{H}\left(G, I_{0}\right)_{k}$. Suppose we are given a character $\lambda: \bar{T} \rightarrow k^{\times}$and a subset $\mathcal{J} \subset S_{\lambda}$, with corresponding numbers $0 \leq k_{i}=k_{i}(\lambda, \mathcal{J}) \leq p-1$, not all of them equal to 0 and not all of them equal to $p-1$. As we are in case $\tilde{G}_{2}, \tilde{F}_{4}$ or \tilde{E}_{8}, we have $W_{\text {aff }}=\widehat{W}$ and hence $\mathcal{H}\left(G, I_{0}\right)_{\text {aff, }}=\mathcal{H}\left(G, I_{0}\right)_{k}$, as follows e.g. from [7] Corollary 3. Let us write $M=M[\lambda, \mathcal{J}]$ for the one-dimensional $\mathcal{H}\left(G, I_{0}\right)_{k}$-module on the basis element e given by $\chi_{\lambda, \mathcal{J}}$.

Notice that the group $N(T) / T_{0}=W_{\text {aff }}=\widehat{W}$ is canonically independent on the chosen prime number p. Consider the unique equation

$$
\begin{equation*}
\sum_{i=0}^{d} m_{i} \alpha_{i}^{\vee}=0 \tag{35}
\end{equation*}
$$

with minimally chosen positive coefficients $m_{i} \in \mathbb{N}$.
Lemma 5.3. Given an expression (7), in order that the $\left(\varphi^{r}, \Gamma_{0}\right)$-module structure on $\mathbf{D}\left(\Theta_{*} \mathcal{V}_{M[\lambda, \mathcal{J}]}\right)$ extends to a $\left(\varphi^{r}, \Gamma\right)$-module structure for any choice of (λ, \mathcal{J}) and for infinitely many primes p, a necessary condition is that r be a multiple of $\sum_{i=0}^{d} m_{i}$ and that s_{j} for each $0 \leq j \leq d$ shows up in (7) exactly with multiplicity $m_{j} r /\left(\sum_{i=0}^{d} m_{i}\right)$.

Proof: (Sketch) Put $n=\sum_{i=0}^{r-1} k_{\beta(i+1)} p^{i}$. As in the proof of Lemma 4.4 we see that

$$
\begin{equation*}
t^{n} \varphi^{r} e=\varrho e \tag{36}
\end{equation*}
$$

in $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$, for some $\varrho \in k^{\times}$. Notice that formula (36) completely characterizes the action of Γ_{0} and of φ^{r} on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ since we know that the action of Γ_{0} respects the subspace M and acts trivially on it, and M generates $H_{0}\left(\overline{\mathcal{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ as a $k_{\mathcal{E}}^{+}\left[\varphi^{r}\right]$-module.

We need to investigate if there is a homomorphism $\epsilon: \mathbb{F}_{p}^{\times} \longrightarrow \mathbb{F}_{p}^{\times}$such that the action of $\left\lfloor\mathfrak{N}_{0}, \varphi^{r}, \Gamma_{0}\right\rfloor$ on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ extends to an action by $\left\lfloor\mathfrak{N}_{0}, \varphi^{r}, \Gamma\right\rfloor$ in such a way that for all $x \in \mathbb{F}_{p}^{\times}$the action of $\gamma(x) \in \Gamma$ satisfies

$$
\begin{equation*}
\gamma(x) \cdot e=\epsilon(x) e \tag{37}
\end{equation*}
$$

The formula (37) provides a well defined action of Γ on $k . e=M$, with trivial restriction to Γ_{0}. An extension from k.e $=M$ to all of $H_{0}\left(\overline{\mathcal{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$, if it exists, is necessarily uniquely determined, since e generates $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ as a $k_{\mathcal{E}}^{+}\left[\varphi^{r}\right]=k_{\mathcal{E}}^{+}[\phi]$-module. More precisely, in order to extend it to all of $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ one must use the relations, in $k_{\mathcal{E}}^{+}[\phi, \Gamma]$, between $\gamma(x)$ and t and $\varphi^{r}=\phi$. Namely, given $m \geq 0$ and $c \geq 0$, if $\gamma(x) t^{m} \phi^{c}=$ $\sum_{m^{\prime}} \beta_{m^{\prime}} t^{m^{\prime}} \phi^{c} \gamma_{m^{\prime}}$ in $k_{\mathcal{E}}^{+}[\phi, \Gamma]$ with certain $\beta_{m^{\prime}} \in k$ and $\gamma_{m^{\prime}} \in \Gamma$, then one must put

$$
\gamma(x) \cdot\left(t^{m} \phi^{c} e\right)=\sum_{m^{\prime}} \beta_{m^{\prime}} t^{m^{\prime}} \phi^{c}\left(\gamma_{m^{\prime}} \cdot e\right)
$$

and extend by linearity. In order to check if this yields a well defined action of Γ one must in particular check if this definition is compatible with formula (36). Thus one must do the following computation:

$$
\gamma(x) \cdot t^{n} \phi e=x^{n} t^{n} \gamma(x) \cdot \phi e=x^{n} t^{n} \phi \gamma(x) \cdot e=x^{n} t^{n} \phi \epsilon(x) e=x^{n} \gamma(x) \cdot \varrho e .
$$

Here the first equality follows from the fact that t^{n+1} annihilates ϕe (which it does because of formula (36)) together with the following

Sublemma: (see [3]) For all $k \geq 0$ we have $\gamma(x) \cdot t^{k} \gamma(x)^{-1}-x^{k} t^{k} \in t^{k+1} k_{\mathcal{E}}^{+}$.
Thus, in order that the desired Γ-action on $H_{0}\left(\overline{\mathfrak{X}}_{+}, \Theta_{*} \mathcal{V}_{M}\right)$ exists we need to have $x^{n}=1$ for all $x \in \mathbb{F}_{p}^{\times}$. Now

$$
x^{n}=x^{\sum_{i=0}^{r-1} k_{\beta(i+1)} p^{i}}=x^{\sum_{i=0}^{r-1} k_{\beta(i+1)}}=\lambda\left(\prod_{i=0}^{r-1} \alpha_{\beta(i+1)}^{\vee}(x)\right) .
$$

Thus, since λ is arbitrary we need that $\prod_{i=0}^{r-1} \alpha_{\beta(i+1)}^{\vee}=\mathbf{1}$ in $\operatorname{Hom}\left(\mathbb{F}_{p}^{\times}, \bar{T}\right)$. In order that this be true for infinitely many primes p we exactly get our stated condition.

Remark: This discussion also shows that we have no problems with extending the $\left(\varphi^{r}, \Gamma_{0}\right)$-action to a $\left(\varphi^{r}, \Gamma\right)$-action for trivial λ. In particular, this applies to the category of modules over the Iwahori Hecke algebra $\mathcal{H}(G, I)_{k}$ (which is a direct summand of $\left.\mathcal{H}\left(G, I_{0}\right)_{k}\right)$.
(a) Affine root system \tilde{G}_{2}

Claim: No expression (7) has the extension property for infinitely many p.
We have the Coxeter generators s_{1}, s_{2} of W and s_{0}, s_{1}, s_{2} of $W_{\text {aff }}=\widehat{W}$ (thus $s_{0}^{2}=s_{1}^{2}=$ $\left.s_{2}^{2}=1\right)$ such that

$$
\left(s_{1} s_{2}\right)^{6}=\left(s_{0} s_{2}\right)^{3}=1
$$

and moreover $\left(s_{0} s_{1}\right)^{2}=1$. The equation (35) reads

$$
\begin{equation*}
\alpha_{0}^{\vee}+\alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}=0 \tag{38}
\end{equation*}
$$

In view of Lemma 5.3 we conclude from formula (38) that we would need to find a power multiplicative reduced expression of length $r \in 4 \mathbb{N}$ in which the factors s_{0}, s_{1}, s_{2} appear with multiplicities in exact proportions $1: 1: 2$. But it is easy to see that such expressions do not exist.
(b) Affine root system \tilde{F}_{4}

Claim: No expression (7) has the extension property for infinitely many p.
We have Coxeter generators s_{1}, \ldots, s_{4} of W and s_{0}, \ldots, s_{4} of $W_{\text {aff }}=\widehat{W}$ (thus $s_{i}^{2}=1$ for all i) such that

$$
\left(s_{2} s_{3}\right)^{4}=\left(s_{0} s_{1}\right)^{3}=\left(s_{1} s_{2}\right)^{3}=\left(s_{3} s_{4}\right)^{3}=1
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other $i \neq j$. The equation (35) reads

$$
\begin{equation*}
\alpha_{0}^{\vee}+\alpha_{4}^{\vee}+2\left(\alpha_{1}^{\vee}+\alpha_{3}^{\vee}\right)+3 \alpha_{2}^{\vee}=0 \tag{39}
\end{equation*}
$$

Thus, in view of Lemma 5.3 we would need to find a power multiplicative reduced expression of length $r \in 9 \mathbb{Z}$ in which the factors $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ appear with multiplicities in exact proportions $1: 2: 3: 2: 1$. Such an expression does not exist. (By power multiplicativity we may assume that the desired expression represents a translation. As such it can be written as a linear combinaton with $\mathbb{Z}_{\geq 0}$-coefficients of the fundamental weights. Inspecting the list of all reduced expressions for the translations by the fundamental weights - this list can easily be produced using sage - the claim can be verified without much pain.)
(c) Affine root system \tilde{E}_{8}

Extrapolating from the cases \tilde{G}_{2} and \tilde{F}_{4} one might expect that again the answer is negative. We have the Coxeter generator s_{1}, \ldots, s_{8} of W and s_{0}, \ldots, s_{8} of $W_{\text {aff }}=\widehat{W}$ (thus $s_{i}^{2}=1$ for all i) such that

$$
\left(s_{1} s_{3}\right)^{3}=\left(s_{3} s_{4}\right)^{3}=\left(s_{4} s_{5}\right)^{3}=\left(s_{5} s_{6}\right)^{3}=\left(s_{6} s_{7}\right)^{3}=\left(s_{7} s_{8}\right)^{3}=\left(s_{8} s_{0}\right)^{3}=\left(s_{4} s_{2}\right)^{3}=1
$$

and moreover $\left(s_{i} s_{j}\right)^{2}=1$ for all other pairs $i \neq j$. The equation (35) reads

$$
\begin{equation*}
\alpha_{0}^{\vee}+2\left(\alpha_{1}^{\vee}+\alpha_{8}^{\vee}\right)+3\left(\alpha_{2}^{\vee}+\alpha_{7}^{\vee}\right)+4\left(\alpha_{3}^{\vee}+\alpha_{6}^{\vee}\right)+5 \alpha_{5}^{\vee}+6 \alpha_{4}^{\vee}=0 . \tag{40}
\end{equation*}
$$

¿From here one might try to proceed as in the case of \tilde{F}_{4}; but unfortunately, this time the combinatorics seem to become too involved to be tractable by hand.

6 Appendix

Verification of the statement $\phi^{12}=\omega_{1}^{3}$ in the proof of Proposition 5.1.
In the computer algebra system sage, the input
$R=$ RootSystem(["E",6,1]).weight_lattice()
Lambda=R.fundamental_weights()
omega1 = Lambda[1]-Lambda[0]
R.reduced_word_of_translation(3*omega1)
prompts the output

$$
\begin{align*}
& {[0,2,4,3,5,4,2,0,6,5,4,2,3,1,4,3,5,4,2,0,6,5,4,2,} \\
& 3,1,4,3,5,4,2,0,6,5,4,2,3,1,4,3,5,4,2,6,5,4,3,1] . \tag{41}
\end{align*}
$$

By definition of the function reduced_word_of_translation this means $s_{i_{1}}^{*} \cdots s_{i_{48}}^{*}=\omega_{1}^{3}$, with the string $\left[i_{1}, \ldots, i_{48}\right]$ as given by (41). Here $s_{i}^{*}=s_{i}$ for $1 \leq i \leq 6$, but s_{0}^{*} denotes the affine reflection in the outer face of Bourbaki's fundamental alcove A. Since we deviate from these conventions in that our s_{0} is the affine reflection in the outer face of the negative $C=-A$ of A, we must modify the above string (41) as follows. First, writing $s_{i}^{* *}=s_{0}^{*} s_{i}^{*} s_{0}^{*}$ for $0 \leq i \leq 6$, conjugating the factors in the previous word by s_{0}^{*} and commuting some of its factors where allowed, the above says $s_{j_{1}}^{* *} \cdots s_{j_{48}}^{* *}=\omega_{1}^{3}$ where the string $\left[j_{1}, \ldots, j_{48}\right]$ is given by

$$
\begin{align*}
& {[2,4,5,6,3,4,2,0,5,4,3,1,2,4,5,6,3,4,2,0,5,4,3,1,} \\
& 2,4,5,6,3,4,2,0,5,4,3,1,2,4,5,6,3,4,2,0,5,4,3,1] . \tag{42}
\end{align*}
$$

The $s_{i}^{* *}$ are precisely the reflections in the codimension 1 faces of $s_{0}^{*} A$. But $s_{0}^{*} A$ is a translate of C, and under this translation, the reflection $s_{0}^{* *}=s_{0}^{*}$ corresponds to s_{0}, whereas
for $1 \leq i \leq 6$ the reflection $s_{i}^{* *}$ corresponds to $w_{0} s_{i} w_{0}$, where w_{0} is the longest element of W. We have $w_{0} s_{i} w_{0}=s_{i}$ for $i \in\{0,2,4\}$, but $w_{0} s_{3} w_{0}=s_{5}$ and $w_{0} s_{1} w_{0}=s_{6}$. Thus, we obtain $s_{k_{1}} \cdots s_{k_{48}}=\omega_{1}^{3}$ where the string $\left[k_{1}, \ldots, k_{48}\right]$ is obtained from the string (42) by keeping its entry values 0,2 and 4 , while exchanging the entry values 3 with 5 and 1 with 6. Using formulae (33) one checks that $s_{k_{1}} \cdots s_{k_{48}}=\phi^{12}$.

Verification of the statement $\phi^{12}=\omega_{1}^{3}$ for ϕ given by (34). The argument is the same as in Proposition 5.1. The string returned by sage to
$R=$ RootSystem(["E",6,1]).weight_lattice(), Lambda=R.fundamental_weights(), omega6=Lambda[6]-Lambda[0], R.reduced_word_of_translation(3*omega6) reads

$$
\begin{aligned}
& {[0,2,4,3,1,5,4,2,0,3,4,2,5,4,3,1,6,5,4,2,0,3,4,2 \text {, }} \\
& 5,4,3,1,6,5,4,2,0,3,4,2,5,4,3,1,6,5,4,2,3,4,5,6] .
\end{aligned}
$$

Verification of the statement $\phi^{6}=\tau^{2}$ in the proof of Proposition 5.2. The string returned by sage to
$R=$ RootSystem(["E",7,1]).weight_lattice(), Lambda=R.fundamental_weights(), omega7=Lambda[7]-Lambda[0], R.reduced_word_of_translation(2*omega7) reads

$$
\begin{align*}
& {[0,1,3,4,2,5,4,3,1,0,6,5,4,2,3,1,4,3,5,4,2,6,5,4,3,1,0} \tag{43}\\
& 7,6,5,4,2,3,1,4,3,5,4,2,6,5,4,3,1,7,6,5,4,2,3,4,5,6,7] .
\end{align*}
$$

Now proceed as in Proposition 5.1.

References

[1] M. Asgari, Local L-functions for Split Spinor Groups, Canad. J. Math. 54 (4), 673-693 (2002)
[2] N. Bourbaki, Groupes at Algèbres de Lie, ch. 4, 5, 6/ch. 7, 8, 9, Springer (2006).
[3] E. Grosse-Klönne, From pro-p-Iwahori Hecke modules to (Φ, Γ)-modules I, preprint
[4] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. IHES 25 (1965), 5-48.
[5] J. C. Jantzen, Representations of Algebraic Groups, Mathematical Surveys and Monographs 107, 2nd ed., American Mathematical Society (2003)
[6] R. Ollivier, Parabolic induction and Hecke modules in characteristic p for p-adic GL_{n}, Algebra and Number Theory 4, no. 6 (2010), 701-742.
[7] M.F. Vignéras, Pro-p-Iwahori Hecke ring and supersingular $\overline{\mathbb{F}}_{p^{-}}$ representations, Math. Ann. 331 (2005), no. 3, 523-556 and Math. Ann. 333 (2005), no. 3, 699-701.

Humboldt-Universität zu Berlin
Institut für Mathematik
Rudower Chaussee 25
12489 Berlin, Germany
E-mail address: gkloenne@math.hu-berlin.de

