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Abstract

For a local field F and an Artinian local coefficient ring Λ with the same positive

residue characteristic p we define, for any e ∈ N, a category of C(e)(Λ) of GL2(F )-

equivariant coefficient systems on the Bruhat-Tits tree X of PGL2(F ). There is

an obvious functor from GL2(F )-representations over Λ to C(e)(Λ). If F = Qp

then C(1)(Λ) is equivalent to the category of smooth GL2(Qp)-representations over

Λ generated by their invariants under a pro-p-Iwahori subgroup. For general F

and e we show that the subcategory of all objects in C(e)(Λ) with trivial central

character is equivalent to a category of representations of a certain subgroup of

Aut(X) consisting of ’locally algebraic automorphisms of level e’. For e = 1 there

is a functor from this category to that of modules over the (usual) pro-p-Iwahori

Hecke algebra; it is a bijection between irreducible objects.

Finally, we present a parallel of Colmez’ functor V 7→ D(V ): to objects in C(e)(Λ)

(for any F ) we assign certain étale (φ,Γ)-modules over an Iwasawa algebra o[[N̂
(1)
0,1 ]]

which contains the (usually considered) Iwasawa algebra o[[N0]]. This assignment

preserves finite generation.
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1 Introduction

Let F be a local field with residue characteristic p > 0 and uniformizer pF ∈ OF generating

the maximal ideal pF of the ring of integers OF . Let G be the group of F -rational points of

a reductive algebraic group over F . An important tool in the smooth representation theory

of G on vector spaces over the complex numbers C is the localization technique which has

been systematically developed by Schneider and Stuhler in their work [7]. Assigning to a

smooth (admissible, finite length) G-representation on a C-vector space V and a simplex

τ in the Bruhat-Tits building of G the space of invariants of V under a suitable open

subgroup of G fixing τ , one obtains a G-equivariant (homological) coefficient system FV

onX. If this assignment is carried out with appropriate care then V can be recovered from

FV as V = H0(X,FV ), and in this way, the study of smooth (admissible, finite length)

complex G-representations is transformed into the study of coefficient systems on X —

in a sense these coefficient systems are ’smaller’ objects, accessible by the representation
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theory of finite groups. These constructions work well also for smooth G-representations

on vector spaces over fields of positive characteristic different from p.

On the other hand, if we ask for smooth G-representations on vector spaces V over

a field k of characteristic p, then analogous assignments V 7→ FV are much weaker in

general; typically, they do not allow to recover V . There seems to be basically only one

example class of smooth (and possibly supercuspidal/supersingular) G-representations

over k for which the classical (complex) theory carries over to wide extent: this is the

case where G = GL2(Qp) (or G = SL2(Qp), or G = PGL2(Qp)) and where the smooth

G-representations considered are generated by their invariants under a pro-p-Iwahori sub-

group U
(1)
σ of G. Namely, the category of these smooth G-representations is equivalent to

a category of G-equivariant coefficient systems on the Bruhat-Tits tree X of PGL2(Qp)

satisfying a simple and natural axiomatic (i.e. the category C(1)(k) below). See [5] or

Theorem 2.3 below for the precise statement.

The purpose of this paper is to discuss similar concepts for the groups G = GL2(F ) for

general F . As in [7] we fix an index e ≥ 1 (the ’level’) and, for an edge η of the Bruhat-

Tits tree X of PGL2(F ), we consider the open subgroup U
(e)
η of G ’of level e’ which fixes

η. We fix an edge σ of X. For a ring Λ let C(e)(Λ) denote the category of G-equivariant

homological coefficient systems of Λ-modules F on X such that for any vertex x and any

edge η with x ∈ η the transition map F(η) → F(x) is injective, its image is F(x)U
(e)
η

and generates F(x) as a representation of the stabilizer of x in G. There is an obvious

functor V 7→ F (e)
V from the category of G-representation on Λ-modules to the category

C(e); it satisfies F (e)
V (σ) = V U

(e)
σ . If Λ = C then the category of smooth, admissible,

finite length G-representations over C generated by V U
(e)
σ embeds into a full subcategory

of C(e)(C) by means of this functor V 7→ F (e)
V . Therefore it is natural to ask for the

relevance of the category C(e)(Λ) for arbitrary Λ. Is it equivalent to a suitable category

of G-representations ?

Let C
(e)
0 (Λ) denote the subcategory of all F ∈ C(e)(Λ) on which the action of G factors

through PGL2(F ). The basic observation of the present paper is that the PGL2(F )-action

on any F ∈ C
(e)
0 (Λ) and also on its homology H0(X,F) naturally extends to a much larger

group Ĝ(e) containing PGL2(F ) and contained in the automorphism group Aut(X) of the

tree X. Briefly, an element of Aut(X) belongs to Ĝ(e) if and only if for any edge η of

X it acts on the ball of radius e + 1
2
around η like an element of PGL2(F ). We call the

elements of Ĝ(e) locally algebraic automorphisms of X of level e.∗

∗In particular we see that the smooth, admissible, finite length PGL2(F )-representations V over C
generated by V U(e)

σ automatically carry an action by the larger group Ĝ(e). For F ̸= Qp this fails if

C is replaced by k (as follows e.g. from [3]), and from the point of view of the present paper, the

failure of this principle is the reason for, or the manifestation of, the difference between the smooth

PGL2(F )-representation theory over C and over k.
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The subgroups U
(e)
η of G have as natural analogs certain pro-p-subgroups Û

(e)
η of Ĝ(e).

Given a Ĝ(e)-representation V we assign to it the coefficient system F̂ (e)
V ∈ C

(e)
0 (Λ) with

F̂ (e)
V (η) = V Û

(e)
η for edges η. Let R̂

(e)
0 (Λ) denote the category of Ĝ(e)-representations V

over Λ generated by V Û
(e)
σ , and smooth when regarded as representations of Û

(e)
σ . (We

find it convenient not to work with a topology on Ĝ(e); as a consequence, we do not have

available the concept of a smooth Ĝ(e)-representation. Instead, the subgroups Û
(e)
σ (and

their open subgroups) mimick the role which open subgroups play in usual smooth rep-

resentation theory.) Let now o be a complete discrete valuation ring with residue field k,

and assume that Λ is an Artinian local o-algebra with residue field k. Then our first main

theorem is the following (Theorem 3.5):

Theorem: The assignments F 7→ H0(X,F) and V 7→ F̂ (e)
V are an equivalence of

categories between C
(e)
0 (Λ) and R̂

(e)
0 (Λ). For F ∈ C

(e)
0 (Λ) and V ∈ R̂

(e)
0 (Λ) we have

natural isomorphisms

F −→ F̂ (e)
H0(X,F) and H0(X, F̂ (e)

V ) −→ V.

Let HΛ(G,U
(1)
σ ) ∼= Λ[U

(1)
σ \G/U (1)

σ ] denote the pro-p-Iwahori Hecke algebra over Λ.

For a smooth G-representation V over Λ the submodule V U
(1)
σ of U

(1)
σ -invariants of V is

naturally an HΛ(G,U
(1)
σ )-right module. In an early stadium of the investigations of the

smooth representation theory of G over k it was not clear (see e.g. [9]) if, parallel to sim-

ilar results over C, the functor V 7→ V U
(1)
σ was a bijection between isomorphism classes

of smooth (admissible) irreducible G-representations over k with a central character, and

isomorphism classes of simple Hk(G,U
(1)
σ )-right modules (assuming k to be algebraically

closed). For F = Qp this is indeed correct (see Vignéras [9]; this also uses important work

of Breuil). However, work of Breuil and Paskunas [3] then showed that if F ̸= Qp there are

many more smooth irreducible G-representations over k than expected, disproving such

a correspondence if F ̸= Qp. Again we suggest to look at Ĝ(1)-representations instead

of G-representations. We observe that also for any V ∈ R̂
(1)
0 (Λ) the Λ-module V Û

(1)
σ of

Û
(1)
σ -invariants of V is naturally an HΛ(G,U

(1)
σ )-right module (but we do not consider the

Hecke algebra Λ[Û
(1)
σ \Ĝ(1)/Û

(1)
σ ]). We call V ∈ R̂

(1)
0 (Λ) admissible if V Û

(1)
σ is a finitely

generated Λ-module. Our second main theorem then reads (Corollary 4.6):

Theorem: Assume that k is algebraically closed. The functor V 7→ V Û
(1)
σ induces a bi-

jection between the isomorphism classes of admissible irreducible Ĝ(1)-representations and

the isomorphism classes of simple Hk(G,U
(1)
σ )-right modules with trivial central character.
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In this connection let us mention Vignéras’ result [9]: the number of supersingular

simple Hk(G,U
(1)
σ )-right modules with a given action of the scalar matrix pF is exactly

the number of irreducible representations of the Weil group of F of dimension 2 over k

with a given value of the determinant at pF .
†

In the final section we take a look, from the perspective of the present paper, onto

Colmez’ functor from smooth GL2(Qp)-representations on o-torsion modules (where [o :

Zp] <∞) to (φ,Γ)-modules. First, for general F , let N
(e)
0 denote the pro-p-subgroup of G

consisting of unipotent upper triangular matrices with off-diagonal entries in pe−1F OF . In

Ĝ(e) we find (non-abelian) pro-p-subgroups N̂
(e)
0 and N̂

(e)
0,1 which play an analogous role,

but which are much larger than N
(e)
0 (now Ĝ(e) itself disappears from our discussion).

N̂
(e)
0 is a product of copies of N̂

(e)
0,1 , and, if we set Pk =

∏
a∈OF /pkF

pk+e−1
F for k ≥ 0, then

N̂
(e)
0,1 is abstractly the quotient of

(. . . (Pk ⋊ (. . . (P2 ⋊ (P1 ⋊P0)) . . .)) . . .)

by the product of the images of all maps

(diag,−id) :
∏

a∈OF /pkF

pk+e
F −→ Pk+1 ⋊Pk.

The N
(e)
0 -action on any F ∈ C(e)(o) naturally extends to a N̂

(e)
0 -action on F , hence also

to a N̂
(e)
0 -action on H0(X,F).

Take e = 1 for the moment (in the text we consider general e ≥ 1, but see Lemma

5.5). Given an o-torsion object F ∈ C(1)(o) such that F(σ) is a finitely generated o-

module, we faithfully copy Colmez’ constructions, as reconsidered e.g. in [10]: To F we

functorially assign a finitely generated module D(F) over L(N̂ (1)
0,1 ) = o[[N̂

(1)
0,1 ]], endowed

with an additional étale structure (see the text for the precise definition: a morphism

D′(F) → D(F) and compatible semilinear actions by the monoid

(
OF − {0} 0

0 1

)
resp. its inverse monoid, satisfying an étaleness requirement).

Precomposing with V 7→ F (1)
V we obtain a functor which is a variation, available for

arbitrary F , on Colmez’ functor V 7→ D(V ).

However, if F ̸= Qp we are not able to assign finitely generated étale (φ,Γ)-modules

over Fontaine’s ring OE to F ∈ C(1)(o).

†Initiated by Cartier, the structure theory of the full automorphism group Aut(X) ofX (decomposition

theorems similar to those known for PGL2(F )) and its smooth complex representation theory have been

thoroughly developed, see e.g. [4]. It follows from results of [4] that the structure theory of the groups

Ĝ(e) is parallel to that of Aut(X), see Theorem 3.1. Motivated by the present work one might ask for

their representation theory over o.
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2 Coefficient systems

Let F be a non archimedean local field with finite residue class field kF of characteristic

p. Let G = GL2(F ). Let Z be the center of G.

Let X be the Bruhat-Tits tree of PGL2/F . Let X0 denote its set of vertices, let X1

denote its set of edges; throughout, we identify an edge with its two-element set of vertices.

Let d : X0 × X0 → Z≥0 be the counting-edges-on-geodesics distance. By definition, an

automorphism g of X is a permutation g of X0 with d(x, y) = d(gx, gy) for all x, y ∈ X0;

clearly such a g also induces also a permutation g of X1.

We fix σ = {x+, x−} ∈ X1.

For x ∈ X0 let Kx ⊂ G denote the maximal compact subgroup fixing x, let U
(1)
x ⊂ Kx

denote its maximal normal pro-p-subgroup. For e ∈ N let U
(e)
x = ∩yU

(1)
y where y runs

through all y ∈ X0 with d(x, y) ≤ e − 1. For τ = {x1, x2} ∈ X1 let U
(e)
τ ⊂ G be the

subgroup generated by U
(e)
x1 and U

(e)
x2 ; this is again a pro-p-group. For e ≥ 0 we put

Z(e)(x) = {y ∈ X0 | d(x, y) ≤ e} for x ∈ X0.

If e ≥ 1 then Z(e)(x) = (X0)U
(e)
x , the fixed point set of U

(e)
x acting on X0. Next, for e ≥ 0

we put

Z(e)(τ) = Z(e)(x1) ∪ Z(e)(x2) for τ = {x1, x2} ∈ X1.

We have Z(e)(τ) = (X0)U
(e+1)
τ .

Let o be a complete discrete valuation ring field with residue class field k of characteris-

tic p. Let Art(o) denote the category of Artinian local o-algebras with residue class field k.

Definition: Let Λ ∈ Art(o). A homological coefficient system F in Λ-modules on X

is a collection of data as follows:

— a Λ-module F(τ) for each simplex τ

— a Λ-linear map rτx : F(τ) → F(x) for each x ∈ X0 and τ ∈ X1 with x ∈ τ .

We obtain a Λ-linear map ⊕
τ∈X1

F(τ) −→
⊕
x∈X0

F(x)(1)
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sending f ∈ F(τ) to
∑

x∈X0

x∈τ
rτx(f). The cokernel of the map (1) is denoted by H0(X,F),

its kernel is denoted by H1(X,F).

Lemma 2.1. Let F be a homological coefficient system on X for which the transition

maps rτx : F(τ) → F(x) are injective, for all x ∈ τ ∈ X1.

For any y ∈ X0 the natural map F(y) → H0(X,F) is injective. In particular, if

H0(X,F) = 0, then F = 0.

Proof: Suppose that the map (1) sends c = (cτ )τ ∈ ⊕τ∈X1F(τ) to the submodule

F(y) of ⊕x∈X0F(x) (i.e. to an element with zero-component in all F(y′) for all y′ ̸= y).

We claim that c = 0. Otherwise there is some τ ∈ X1 with cτ ̸= 0 and some x ∈ τ such

that d(y, x) is maximal (for all such τ and x). But then x ̸= y and the injectivity of

rτx : F(τ) → F(x) shows cτ = 0, contradiction. □

Let H be a group (or a monoid) acting on X (through automorphisms of X). We say

that the homological coefficient system F is H-equivariant if in addition we are given a

Λ-linear map gτ : F(τ) → F(gτ) for each g ∈ H and each (0- or 1-)simplex τ , subject to

the following conditions:

(a) ghτ ◦ hτ = (gh)τ for each g, h ∈ H and each simplex τ

(b) 1τ = idF(τ) for each simplex τ

(c) rgτgx ◦ gx = gτ ◦ rτx for each g ∈ H and each x ∈ X0 and τ ∈ X1 with x ∈ τ .

It is clear that if F is an H-equivariant homological coefficient system, then H acts

compatibly on the source and on the target of the map (1), hence it acts on H0(X,F) and

on H1(X,F). There is an obvious notion of a morphism F → G between H-equivariant

homological coefficient systems: a collection of maps F(τ) → G(τ) for all simplices τ ,

compatible with the restriction maps and the H-actions.

Definition: For Λ ∈ Art(o) let C(e)(Λ) denote the category of G-equivariant homo-

logical coefficient systems F in Λ-modules on X satisfying the following conditions:

(a) for any (0- or 1-)simplex τ the action of U
(e)
τ on F(τ) is trivial,

(b) for any z ∈ η ∈ X1 the transition map τ ηz : F(η) → F(z) is injective, its image

is F(z)U
(e)
η , and this image F(z)U

(e)
η generates F(z) as a Kz-representation. [Thus, for

z ∈ X0, if S = {η ∈ X1 | z ∈ η}, then F(z) =
∑

η∈S im(τ ηz ).]

Let V be a G-representation on a Λ-module. We define a coefficient system F (e)
V on

X as follows:

F (e)
V (η) = V U

(e)
η and F (e)

V (x) =
∑
y∈X0

{x,y}∈X1

V U
(e)
{x,y} =

∑
y∈X0

{x,y}∈X1

F (e)
V ({x, y})
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for η ∈ X1 and x ∈ X0 (where in the definition of F (e)
V (x) the sum is taken inside V ).

Lemma 2.2. F (e)
V belongs to C(e)(Λ).

Proof: This is obvious. □

For Λ ∈ Art(o) let R(e)(Λ) denote the category of G-representations on Λ-modules

which are generated by their U
(e)
σ -fixed vectors.

Theorem 2.3. Assume that F = Qp. The assignments F 7→ H0(X,F) and V 7→ F (1)
V

are an equivalence of categories between C(1)(Λ) and R(1)(Λ). For F ∈ C(1)(Λ) and V ∈
R(1)(Λ) the natural maps

F −→ F (1)
H0(X,F) and H0(X,F (1)

V ) −→ V(2)

are isomorphisms.

Proof: [5]. □

3 Subgroups of the automorphism group of the tree

Definition: For e ∈ N let Ĝ(e) denote the set of automorphisms g of X with the

property that for all µ ∈ X1 there is a g′ ∈ G such that the restrictions of g and g′ to

Z(e)(µ) (viewed as maps Z(e)(µ) → X0) coincide. Ĝ(e) is easily seen to be a subgroup of

Aut(X); we call it the group of locally algebraic automorphisms of X of level e. We have

the chain of group inclusions

PGL2(F ) ⊂ . . . ⊂ Ĝ(e+1) ⊂ Ĝ(e) ⊂ . . . ⊂ Ĝ(1) ⊂ Aut(X).

The following Theorem 3.1 follows from the work of Choucroun [4]. This theorem (like

the notations we need in order to formulate it) is not needed in the sequel, but of course

it should be stated.

Fix a sequence of vertices . . . , x−2, x−1, x0, x1, x2, . . . forming a geodesic in X. Let B̂
(e)
+

(resp. B̂
(e)
− ) denote the stabilizer in Ĝ(e) of the end of X corresponding to x0, x1, x2, . . .

(resp. to . . . , x−2, x−1, x0). Let N̂
(e)
+ denote the subgroup of B̂

(e)
+ consisting of all g ∈ B̂

(e)
+

with g(xn) = xn for almost all n ≥ 0. Let K̂(e) denote the stabilizer in Ĝ(e) of the vertex

x0. Let Î
(e) denote the stabilizer in Ĝ(e) of the edge {x0, x1}. Let T̂ (e) denote the pointwise

stabilizer in Ĝ(e) of . . . , x−2, x−1, x0, x1, x2, . . ..

Let s ∈ PGL2(F ) ⊂ Ĝ(e) be an element with s(xn) = x−n for all n ∈ Z, let φ ∈
PGL2(F ) ⊂ Ĝ(e) be an element with φ(xn) = xn+1 for all n ∈ Z.
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Theorem 3.1. (a) Cartan decomposition:

Ĝ(e) =
⨿

m∈Z≥0

K̂(e)φmK̂(e).

(b) Iwasawa decomposition:

Ĝ(e) = K̂(e)B̂
(e)
+ .

(c) Bruhat decomposition:

Ĝ(e) = N̂
(e)
+ sB̂

(e)
+

⨿
B̂

(e)
+

and moreover, n1sB̂
(e)
+ ∩ n1sB̂

(e)
+ ̸= ∅ if and only if n1T̂

(e) = n2T̂
(e).

(d) We have

B̂
(e)
+ = φZN̂

(e)
+ .

(e) We have

Î(e) = (Î(e) ∩ B̂(e)
+ ) · (Î(e) ∩ B̂(e)

− ),

T̂ (e) = (Î(e) ∩ B̂(e)
+ ) ∩ (Î(e) ∩ B̂(e)

− ).

Proof: This follows from [4] Theorem 1.5.2 as Ĝ(e) is closed in Aut(X) and contains

the group PGL2(F ) which (in the terminology of [4]) acts weakly two transitive on X.□

Definition: For a 1-simplex η let Û
(e)
η denote the set of automorphisms g of X with

the property that for all µ ∈ X1 there is a g′ ∈ U
(e)
η such that the restrictions of g and

g′ to Z(e)(µ) (viewed as maps Z(e)(µ) → X0) coincide. Notice that this implies: for all

x ∈ X0 there is a g′ ∈ U
(e)
η such that the restrictions of g and g′ to Z(e)(x) coincide.

Clearly Û
(e)
η is a subgroup of Ĝ(e), and the natural map G → Ĝ(e) restricts to a map

U
(e)
η → Û

(e)
η .

Remark: We do not impose any topology on Ĝ(e). However, in the following we

mimick the smooth representation theory of p-adic reductive groups by assigning to the

subgroups Û
(e)
η of Ĝ(e) the role of open subgroups. On the other hand, on these individual

subgroups Û
(e)
η we do consider their pro-p-topology (cf. Lemma 3.2).

Lemma 3.2. Û
(e)
σ is a pro-p-group, for any e ∈ N.

Proof: For anym ≥ 0, restriction induces a group homomorphism Û
(e)
σ → Aut(Z(m)(σ))

to the symmetric group Aut(Z(m)(σ)) on the set Z(m)(σ), and we have

Û (e)
σ = lim←

m
im[Û (e)

σ −→ Aut(Z(m)(σ))].
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Therefore we need to show that all the im[Û
(e)
σ → Aut(Z(m)(σ)] are finite p-groups. We

do this by induction on m. For m < e the map Û
(e)
σ → Aut(Z(m)(σ)) is trivial. Now let

m ≥ e. Let g ∈ Û
(e)
σ and z ∈ Z(m−e)(σ). Then gp

N
(z) = z for some N ≥ 0 by induction

hypothesis. As gp
N ∈ Û

(e)
σ we find some h ∈ U

(e)
σ such that the restrictions of h and gp

N
to

Z(e)(z) coincide. Since gp
N
(z) = z this is an equality h = gp

N
in Aut(Z(e)(z)). Now U

(e)
σ

is a pro-p-group, therefore we find some M ≥ 0 such that hp
M

acts trivially on Z(m)(σ).

Therefore gp
N+M

acts trivially on Z(e)(z). Thus, there is some K ≥ 0 such that gp
K
acts

trivially on Z(e)(z) for any z ∈ Z(m−e)(σ). As

Z(m)(σ) ⊂
∪

z∈Z(m−e)(σ)

Z(e)(z)

we are done. □

Definition: Let C
(e)
0 (Λ) denote the category of all F ∈ C(e)(Λ) for which the G-action

factors through PGL2(F ) = G/Z.

Let F ∈ C
(e)
0 (Λ) and g ∈ Ĝ(e). Given η ∈ X1, choose a g′ ∈ G restricting to g on

Z(e)(η) and define gη : F(η) → F(gη) to be the map g′η : F(η) → F(g′η) = F(gη). This

definition is independent of the choice of g′. Indeed, let also g′′ ∈ G restrict to g on

Z(e)(η). Then g′−1g′′ belongs to the pointwise stabilizer StabG(Z
(e)(η)) of Z(e)(η) in G. If

x is one of the vertices of η, we have

StabG(Z
(e)(η)) ⊂ StabG(Z

(e)(x)) = U (e)
x Z ⊂ U (e)

η Z.

Since U
(e)
η Z acts trivially on F(η) by the definition of C

(e)
0 (Λ), we see that g′−1g′′ acts

trivially on F(η). Therefore g′ and g′′ = g′(g′−1g′′) define the same maps F(η) → F(gη).

Similarly, given x ∈ X0, we choose a g′ ∈ G restricting to g on Z(e)(x) and define

gx : F(x) → F(gx) to be the map g′x : F(x) → F(g′x) = F(gx); again this does not

depend on the choice of g′.

Lemma 3.3. The above definitions make F into a Ĝ(e)-equivariant coefficient system on

X. In particular, Ĝ(e) acts on H0(X,F).

Proof: This is clear. □

Lemma 3.4. Let Λ ∈ Art(o). For any F ∈ C
(e)
0 (Λ) the natural maps

im(rσx?
) = F(x?)

U
(e)
σ −→ H0(X,F)Û

(e)
σ(3)

are bijective, for both ? = + and ? = −.

9



Proof: The injectivity follows from Lemma 2.1. Now we prove surjectivity. Let the

0-chain c = (cv)v∈X0 represent the class [c] in H0(X,F)Û
(e)
σ . Let n(c) ∈ Z≥0 be minimal

with supp(c) ⊂ Z(n(c))(σ). By induction on n(c) we show that [c] lies in the image of the

map (3). If n(c) = 0 the statement is clear: use the injectivity of F(x?) → H0(X,F)

(Lemma 2.1). Now let n(c) > 0.

Claim: We have cz ∈ F(z)
U

(e)

{z−,z} for all z ∈ Z(n(c))(σ), where z− ∈ Z(n(c)−1)(σ) is such

that {z−, z} ∈ X1.

Given the claim, the defining properties of C
(e)
0 (Λ) allow us to pass from c = (cv)v∈X0 to

a homologous 0-chain c′ = (c′v)v∈X0 with n(c′) = n(c)− 1. Then the induction hypothesis

can be applied.

To prove the claim, let g ∈ U
(e)

{z,z−}. We find g′ ∈ U
(e)

z− with gU
(e)
z = g′U

(e)
z . Let

w ∈ Z(n(c)−2)(σ) be such that {w, z−} ∈ X1. (If n(c) = 1 and hence z− ∈ σ, then take w

such that {w, z−} = σ.) Removing {w, z−} from X we are left with two disjoint closed

full subhalftrees of X: the halftree X2 rooted at w, and the half tree X1 rooted at z−.

As g′ fixes {w, z−} pointwise, the action of g′ on X respects X2 and X1. Let ĝ ∈ Aut(X)

be the unique element fixing X2 pointwise and acting on X1 like g′. It then follows by

construction that in fact ĝ belongs to Û
(e)
σ and satisfies the following properties:

(i) For any y ∈ X0 with d(y, z−) < d(y, z) we have ĝ(y) = y, and ĝ acts trivially on

F(y).

(ii) We have g′ = ĝ on F(z), and hence g = ĝ on F(z) (as U
(e)
z acts trivially on F(z)).

As the support of c is contained in the set of all y ∈ X0 mentioned in (i), together

with z, we have

ĝ(c)− c = ĝ(cz)− cz = g(cz)− cz.

On the other hand, the class [c] is Û
(e)
σ -invariant, i.e. ĝ(c) − c maps to the zero element

in H0(X,F). Together, using Lemma 2.1 we see that g(cz) = cz, as desired. □

Definition: We define R̂
(e)
0 (Λ) to be the category of representations of Ĝ(e) on Λ-

modules which are generated by their Û
(e)
σ -fixed vectors and which, when restricted to

Û
(e)
σ , are smooth Û

(e)
σ -representations.

Definition: Given V ∈ R̂
(e)
0 (Λ) we define a coefficient system F̂ (e)

V as follows:

F̂ (e)
V (η) = V Û

(e)
η and F̂ (e)

V (x) =
∑
y∈X0

{x,y}∈X1

V Û
(e)
{x,y} =

∑
y∈X0

{x,y}∈X1

F̂ (e)
V ({x, y})

for η ∈ X1 and x ∈ X0 (where in the definition of F̂ (e)
V (x) the sum is taken inside V ).

The transition map rηx : F̂ (e)
V (η) → F̂ (e)

V (x) for x ∈ η is defined as follows: if x lies in the

SL2(F )-orbit SL2(F )x+ of x+, then r
η
x is the inclusion; if however x ∈ SL2(F )x− then rηx

10



is the negative of the inclusion. (Notice that X0 = SL2(F )x+
⨿

SL2(F )x−.)

The following result is an analogue of Theorem 2.3.

Theorem 3.5. (a) For F ∈ C
(e)
0 (Λ) we have H0(X,F) ∈ R̂

(e)
0 (Λ). For V ∈ R̂

(e)
0 (Λ) we

have F̂ (e)
V ∈ C

(e)
0 (Λ).

(b) These assignments F 7→ H0(X,F) and V 7→ F̂ (e)
V are functorial in a natural way

and form an adjoint pair: for F ∈ C
(e)
0 (Λ) and V ∈ R̂

(e)
0 (Λ) we have a natural isomorphism

Hom
R̂

(e)
0 (Λ)

(H0(X,F), V ) ∼= Hom
C
(e)
0 (Λ)

(F , F̂ (e)
V ).(4)

(c) These functors are an equivalence of categories between C
(e)
0 (Λ) and R̂

(e)
0 (Λ).

(d) For F ∈ C
(e)
0 (Λ) and V ∈ R̂

(e)
0 (Λ) the natural maps

F −→ F̂ (e)
H0(X,F)(5)

H0(X, F̂ (e)
V ) −→ V(6)

are isomorphisms.

Proof: (a) For {x, z} ∈ X1 we first claim that

(U
(e)
{x,z},

∩
y∈X0

{x,y}∈X1

Û
(e)
{x,y}) = Û

(e)
{x,z}.(7)

The containment of the left hand side in Û
(e)
{x,z} is obvious. Conversely, let u ∈ Û

(e)
{x,z}.

Multiplying by an element in U
(e)
{x,z} we may assume that u fixes Z(e)(x) pointwise. But

then it is easy to see that u ∈ Û
(e)
{x,y} for any y ∈ X0 with {x, y} ∈ X1. Now let

V ∈ R̂
(e)
0 (Λ). We claim that

(
∑
y∈X0

{x,y}∈X1

V Û
(e)
{x,y})U

(e)
{x,z} = V Û

(e)
{x,z} .(8)

The containment of V Û
(e)
{x,z} in the left hand side is obvious. The reverse containment

follows from formula (7). Formula (8) says F̂ (e)
V (x)U

(e)
{x,z} = F̂ (e)

V ({x, z}). This shows that

F̂ (e)
V ∈ C

(e)
0 (Λ).

Next, let F ∈ C
(e)
0 (Λ). Since H0(X,F) is generated (as a Ĝ(e)-representation) by

F(σ), it is in particular generated by its Û
(e)
σ -fixed vectors. Moreover, the Û

(e)
σ -action

on H0(X,F) is smooth: Indeed, given an element v of H0(X,F), we pick a 0-cycle

c ∈ C0(X,F) representing v. We find m ≥ e such that c is supported on Z(m−e)(σ).
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Thus c and hence v is fixed by the kernel of Û
(e)
σ → Aut(Z(m)(σ)); this kernel is of finite

index in Û
(e)
σ , hence open in Û

(e)
σ (cf. the proof of Lemma 3.2). We have shown that

H0(X,F) ∈ R̂
(e)
0 (Λ).

For statement (b), the proof is the same as in [5] Lemma 1.2. Statements (a), (b) and

(d) together imply statement (c).

(d) We prove the bijectivity of the map (6). The composite

V Û
(e)
σ = F̂ (e)

V (σ)
rσx+−→ F̂ (e)

V (x+)
Û

(e)
σ −→H0(X, F̂ (e)

V )Û
(e)
σ −→V

is just the inclusion of V Û
(e)
σ into V . The map V Û

(e)
σ → H0(X, F̂ (e)

V )Û
(e)
σ is surjective by

Lemma 3.4, therefore the map H0(X, F̂ (e)
V )Û

(e)
σ → V is injective. If the map (6) was

not injective, then, as (6) is Û
(e)
σ -equivariant, the kernel of (6) would contain a non-zero

Λ[Û
(e)
σ ]-submodule. But then, as Λ is Artinian with residue field k, this kernel would also

contain a non-zero k[Û
(e)
σ ]-submodule. As Û

(e)
σ is a pro-p-group by Lemma 3.2, as it acts

smoothly on H0(X,F) and as char(k) = p, this kernel would therefore have a non-zero

vector invariant under Û
(e)
σ : contradiction to the injectivity of H0(X, F̂ (e)

V )Û
(e)
σ → V . Thus,

the map (6) is injective. Its surjectivity is clear as V is generated by its Û
(e)
σ -invariant

vectors.

Finally, it remains to prove that the map (5) is an isomorphism. Fix F ∈ C
(e)
0 (Λ). For

the course of this proof let us write FH instead of F̂ (e)
H0(X,F). For τ ∈ X1 let xτ,+ ∈ X0

denote the vertex of τ belonging to the orbit SL2(F )x+. As F has injective transition

maps the composition

F(τ)
ττxτ,+−→ F(xτ,+)−→H0(X,F)

is injective, see Lemma 2.1. Clearly the map FH(τ)
ττxτ,+−→ FH(xτ,+)−→H0(X,F) is injec-

tive, too. Using these maps we regard F(τ) and FH(τ) as being contained in H0(X,F).

Our hypotheses on F and the definition of FH show that in this way we may regard F
as a sub coefficient system of FH . Namely, as Û (e) acts trivially on F(τ) for τ ∈ X1, we

have the injective maps

ατ : F(τ) −→ H0(X,F)Û
(e)
τ = FH(τ),

and as F(x) =
∑

τ∈X1

x∈τ
F(τ) the ατ also induce injective maps

αx : F(x) =
∑
τ∈X1

x∈τ

F(τ) −→
∑
τ∈X1

x∈τ

H0(X,F)Û
(e)
τ = FH(x)

for x ∈ X0. This morphism of coefficient systems F → FH induces a map α : H0(X,F) →
H0(X,FH). On the other hand, let β : H0(X,FH) → H0(X,F) be the natural morphism

corresponding to the identity on FH under the isomorphism (4).
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Claim: β ◦ α is the identity on H0(X,F).

As H0(X,F) is generated by the images of the natural maps ιx : F(x) → H0(X,F)

for all x ∈ X0, it is enough to show β ◦ α ◦ ιx = ιx for all x ∈ X0. If

ηx : FH(x) −→ H0(X,FH)

denotes the natural map, then we have α ◦ ιx = ηx ◦ αx by the definition of α. Now by

the definition of β we have that β ◦ ηx is just the inclusion

FH(x) =
∑
τ∈X1

x∈τ

H0(X,F)Û
(e)
τ → H0(X,F)

for all x ∈ X0. It follows that β ◦α◦ιx = β ◦ηx◦αx is the inclusion of F(x) into H0(X,F),

i.e. it is the map ιx, as desired. The claim is proven.

By the bijectivity of the map (6), applied to V = H0(X,F), the map β is an isomor-

phism; hence α is an isomorphism, by the above claim. In particular, H0(X,FH/F) = 0.

But it follows from our hypotheses on F that for all x ∈ η ∈ X1 we have

FH(η) ∩ F(x) = F(η)

inside FH(x), i.e. (FH/F)(η) → (FH/F)(x) is injective, i.e. the quotient system FH/F
has injective transition maps. These two facts together imply FH/F = 0, see Lemma 2.1.

We get FH = F , i.e. the map (6) is an isomorphism. □

4 Modules over the pro-p-Iwahori Hecke algebra

Let Λ ∈ Art(o) and e ∈ N. Let J (e)
Λ = indG

U
(e)
σ
1Λ denote the G-representation on the

Λ-module of compactly supported Λ-valued functions on U
(e)
σ \G. Let

HΛ(G,U
(e)
σ ) = EndG(J (e)

Λ ),

the Hecke algebra of U
(e)
σ ⊂ G, with coefficients in Λ. (For e = 1 this is the pro-p-

Iwahori Hecke algebra over Λ.) It is naturally isomorphic to the Λ-algebra Λ[U
(e)
σ \G/U (e)

σ ]

(in which multiplication is given by convolution). This isomorphism sends the coset

U
(e)
σ gU

(e)
σ , for g ∈ G, to the endomorphism of J (e)

Λ which sends the (compactly supported,

U
(e)
σ -left invariant) function f : G→ Λ to the function

G −→ Λ, h 7→
∑

t∈U(e)
σ \G

χ
U

(e)
σ gU

(e)
σ
(ht−1)f(t)
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(where χ
U

(e)
σ gU

(e)
σ

: G→ Λ denotes the characteristic function of U
(e)
σ gU

(e)
σ ).

For any G-representation V over Λ, the Λ-algebra HΛ(G,U
(e)
σ ) ∼= Λ[U

(e)
σ \G/U (e)

σ ] nat-

urally acts from the right on the Λ-module V U
(e)
σ of U

(e)
σ -invariant vectors in V . The

action of an arbitrary coset U
(e)
σ gU

(e)
σ on v ∈ V U

(e)
σ is given by the following formula: if

the collection {gj}j in G is such that U
(e)
σ gU

(e)
σ =

⨿
j U

(e)
σ gj, then

v · U (e)
σ gU (e)

σ =
∑
j

g−1j v.

Proposition 4.1. For any V ∈ R̂
(e)
0 (Λ) we have a natural right action of HΛ(G,U

(e)
σ ) on

V Û
(e)
σ .

Proof: We may regard V as a G-representation, therefore HΛ(G,U
(e)
σ ) naturally acts

on V U
(e)
σ . We claim that this action preserves the submodule V Û

(e)
σ of V U

(e)
σ .

By Theorem 3.5 we have H0(X,F) ∼= V for F = F̂ (e)
V . Let v ∈ V Û

(e)
σ ∼= H0(X,F)Û

(e)
σ ,

let g ∈ G and h ∈ Û
(e)
σ . We need to show

v · U (e)
σ gU (e)

σ = h(v · U (e)
σ gU (e)

σ ).(9)

First assume gσ = σ. By Lemma 3.4 we may represent v by a 0-cycle c = (cy)y∈X0 ∈
C0(X,F) supported on the vertices of σ. Choose h′ ∈ U

(e)
σ with h|Z(e)(σ) = h′|Z(e)(σ).

As c and hence gc is supported on the vertices of gσ = σ we see h(v · U (e)
σ gU

(e)
σ ) =

h′(v · U (e)
σ gU

(e)
σ ), therefore statement (9) follows from V Û

(e)
σ ⊂ V U

(e)
σ .

Now assume gσ ̸= σ. Let z ∈ σ be the vertex of σ such that, if z′ ∈ σ denotes the

other vertex, then d(z, y) > d(z′, y) for y ∈ gσ. Observing gU
(e)
σ g−1 = U

(e)
gσ we easily see

that

ZKz ∩ gU (e)
σ g−1 ⊂ U (e)

σ .(10)

For any collection {gj}j in gU (e)
σ we deduce from this the equivalence

U (e)
σ gU (e)

σ =
⨿
j

U (e)
σ gj in G ⇔ U (e)

σ g−1z =
⨿
j

{g−1j z} in X0.(11)

Indeed, as X0 ∼= G/ZKz the second statement in formula (11) is equivalent to the state-

ment ZKzgU
(e)
σ =

⨿
j ZKzgj. But using formula (10) this is straightforwardly checked to

be equivalent to the first statement in formula (11).

Choose a collection {gj}j in gU (e)
σ satisfying the equivalent conditions of formula (11).

Moreover, choose hj ∈ U
(e)
σ with h|Z(e)(g−1

j z) = hj|Z(e)(g−1
j z), for any j. We then find

U (e)
σ g−1z = Û (e)

σ g−1z = hÛ (e)
σ g−1z = hU (e)

σ g−1z =
⨿
j

{hg−1j z} =
⨿
j

{hjg−1j z}

14



and hence, in view of the equivalence (11), also

U (e)
σ gU (e)

σ =
⨿
j

U (e)
σ gjh

−1
j .(12)

By Lemma 3.4 we may represent v by a 0-cycle c = (cy)y∈X0 ∈ C0(X,F) supported

on z. Then v · U (e)
σ gU

(e)
σ is represented by the 0-cycle cg = (cgy)y∈X0 with cg

g−1
j z

= g−1j cz

for all j, and with cgy = 0 for all other vertices y. Therefore h(v ·U (e)
σ gU

(e)
σ ) is represented

by the 0-cycle h(cg) = ((hcg)y)y∈X0 with (hcg)hjg
−1
j z = hjg

−1
j cz for all j, and (hcg)y = 0

for all other vertices y. But by formula (12) this is again a representative for v ·U (e)
σ gU

(e)
σ .□

Let W be a ZKx+-representation on a free Λ-module such that U
(1)
x+ acts trivially on

W . We assume that for any z ∈ X0 with {x, z} ∈ X1 the natural map

W −→
⊕

y∈X0−{z}
{x,y}∈X1

W
U

(1)
{x,y}

(13)

is injective. Here W
U

(1)
{x,y}

denotes the module of coinvariants for the action of U
(1)
{x,y} on

W . Consider the compact induction indG
ZKx+

W , the Λ-module of all locally constant

functions f : G → W , with compact support modulo Z, which satisfy f(gk) = k−1f(g)

for all k ∈ ZKx+ . The group G acts by left translation on indG
ZKx+

W . For x ∈ X0 we

choose g ∈ G with x = gx+ and put

G(x) = GW (x) = {f ∈ indG
ZKx+

W | supp(f) ⊂ gZKx+}

(this does not depend on the choice of g, as X0 ∼= G/ZKx+). We have

indG
ZKx+

W =
⊕
x∈X0

G(x).(14)

Suppose that we are given a G-equivariant endomorphism T of indG
ZKx+

W which, as an

endomorphism of ⊕x∈X0G(x) (via the identification (14)), has the following structure: for

any x ∈ X0, the restriction T |G(x) factors as

T |G(x) : G(x)
Tx−→

⊕
y∈X0

{x,y}∈X1

G(y) ι
↪→
⊕
y∈X0

G(y)(15)

where ι is the natural inclusion, and where Tx is the sum of maps

Tx,y : G(x)−→G(x)
U

(1)
{x,y}

tx,y−→ G(y)U
(1)
{x,y} −→ G(y)(16)

for all y ∈ X0 with {x, y} ∈ X1, where the first arrow, resp. the last arrow, is the

canonical projection onto the coinvariants, resp. the canonical inclusion of the invariants,

and where tx,y is an isomorphism of Λ-modules.
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Lemma 4.2. Let λ ∈ Λ. If for b =
∑

x∈X0 bx ∈ ⊕x∈X0G(x) the support of

(T − λ)(b) =
∑
x

T (b)x − λbx ∈ ⊕x∈X0G(x)

is contained in the two vertices of some η ∈ X1, (i.e. T (b)x = λbx for x /∈ η), then b = 0.

Proof: This is parallel to Lemma 2.1. Assume b ̸= 0. Choose x ∈ X0 with bx ̸= 0

such that d(η, x) = min{d(y, x) | y ∈ η} is maximal (for all such x). Then T (b)x′ =

Tx,x′(bx) for all x′ ∈ X0 with {x, x′} ∈ X1 and d(x′, η) = d(x, η) + 1. The definition of

the Tx,x′ and the injectivity of the map (13) implies, by translation, the injectivity of the

map ∑
x′

Tx,x′ : G(x) −→
⊕
x′

G(x′)

where the sums are taken over all x′ ∈ X0 with {x, x′} ∈ X1 and d(x′, η) = d(x, η) + 1.

Therefore T (b)x′ = 0 for all such x′ implies bx = 0: contradiction. □

Proposition 4.3. Let λ ∈ Λ. Assume that Z acts trivially on W .

(a) Ĝ(1) naturally acts on indG
ZKx+

W , and T is Ĝ(1)-equivariant. In particular, Ĝ(1),

and hence its subgroup Û
(1)
σ , act on (indG

ZKx+
W )/(T − λ).

(b) The image of G(x+)U
(1)
σ ⊕ G(x−)U

(1)
σ in (indG

ZKx+
W )/(T − λ) is contained in the

submodule of Û
(1)
σ -invariants, and the natural map

G(x+)U
(1)
σ

⊕
G(x−)U

(1)
σ −→ (

indG
ZKx+

W

(T − λ)
)Û

(1)
σ(17)

is bijective.

Proof: (Here and below we write (indG
ZKx+

W )/(T−λ) instead of (indG
ZKx+

W )/im(T−
λ)).

(a) The action of Ĝ(1) on indG
ZKx+

W is defined in the same way as the action of Ĝ(e)

on F ∈ C
(e)
0 (Λ), cf. Lemma 3.3. The Ĝ(1)-equivariance of T is then immediate from its

local nature.

(b) The injectivity even of G(x+)⊕G(x−) → (indG
ZKx+

W )/(T−λ) follows from Lemma

4.2. The following proof of surjectivity of the map (17) is similar to that of Lemma 3.4. Let

a = {ax}x∈X0 ∈
⊕

x∈X0 G(x) = indG
ZKx+

W be such that its class [a] in (indG
ZKx+

W )/(T−λ)
is Û

(1)
σ -invariant. Let

n(a) = max{d(σ, x) |x ∈ X0, ax ̸= 0}

where we put d(σ, x) = min{d(x+, x), d(x−, x)}.
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Step 1: Let x ∈ X0 with d(σ, x) = n(a)− 1. We claim that for any element x′ of the

set

Ox = {x′ ∈ X0 | {x, x′} ∈ X1, d(σ, x′) = n(a)}

we have ax′ ∈ G(x′)U
(1)

{x,x′} .

To see this, let u ∈ U
(1)
{x,x′}. We find some u′ ∈ U

(1)
x with u ≡ u′ modulo U

(1)
x′ . Next,

we find some û ∈ Û
(1)
σ such that

(i) for all y ∈ X0 with d(y, x) < d(y, x′) we have û(y) = y, and û acts trivially on

G(y), and
(ii) we have u′ = û on G(x′), and hence u = û on G(x′) (as U (1)

x′ acts trivially on G(x′)).
As the support of a is contained in the set consisting of x′ and all y ∈ X0 mentioned

in (i), we have

û(a)− a = û(ax′)− ax′ = u(ax′)− ax′ .

On the other hand, the class [a] is Û
(1)
σ -invariant, i.e. û(a)− a ∈ (T − λ). Together with

Lemma 4.2 we obtain u(ax′) = ax′ , as desired.

Step 2: Let x and Ox be as in step 1. We claim that
∑

x′∈Ox
ax′ lies in the image of

the natural map

G(x) −→
⊕
x′∈Ox

G(x′)
U

(1)

{x,x′}
.(18)

By step 1, we may view ax′ , for any x′ ∈ Ox, by means of the isomorphism tx,x′ :

G(x)
U

(1)

{x,x′}

∼= G(x′)U
(1)

{x,x′} as an element in G(x)
U

(1)

{x,x′}
. Let x′′ ∈ X0 be the unique vertex

with {x, x′′} ∈ X1 and d(σ, x′′) ≤ d(σ, x). Then U
(1)
x′′ acts transitively on the set Ox. Given

an element u of U
(1)
x′′ , we find an element û of Û

(1)
σ whose action on {y ∈ X0 | d(σ, y) ≤ n(a)}

fixes (pointwise) all elements not contained in Ox, and acts on Ox like u. Applying Lemma

4.2 again (and using the Û
(1)
σ -invariance of the class [a]) we therefore see that

∑
x′∈Ox

ax′

is a U
(1)
x′′ -invariant element of the U

(1)
x′′ -representation ⊕x′∈OxG(x)U(1)

{x,x′}
(on which U

(1)
x′′ acts

by permuting the summands transitively). Therefore
∑

x′∈Ox
ax′ lies in the image of the

map (18).

Step 3: By what we saw in Step 2 we may pass to another representative (modulo

(T − λ)) of [a] which has zero contribution at all x′ ∈ Ox. Doing this for all x ∈ X0 with

d(σ, x) = n(a) − 1 we obtain a representative ã of [a] with n(ã) = n(a) − 1. Proceeding

by induction on n(a) we finally see that any Û
(1)
σ -invariant class in (indG

ZKx+
W )/(T − λ)

is represented by some a with n(a) = 0, i.e. by some a ∈ G(x+)⊕G(x−). As in Step 1 we

then see that this representative in fact belongs to G(x+)U
(1)
σ ⊕ G(x−)U

(1)
σ . □
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Assume that k is algebraically closed. Let W be an irreducible k[Kx+ ]-module on

which the center of Kx+ acts trivially. We regard W as a k[ZKx+ ]-module by letting Z

act trivially.

Theorem 4.4. (a) The map (13) is injective, and the Hecke operator T on indG
ZKx+

W

constructed in [2] has the structure described above, i.e. is given by maps (15), (16).

(b) For λ ∈ k the Hk(G,U
(1)
σ )-module (

indGZKx+
W

(T−λ) )Û
(1)
σ has k-dimension 2. If it is

irreducible, then
indGZKx+

W

(T−λ) is an irreducible Ĝ(1)-representation.

Proof: (a) See [2].

(b) Let 0 ̸= V ⊂
indGZKx+

W

(T−λ) be a Ĝ(1)-sub representation. The same argument as

in the proof of Theorem 3.5 shows that the action of Û
(1)
σ on indG

ZKx+
W , and hence on

indGZKx+
W

(T−λ) and on V , is smooth. Therefore, since Û
(1)
σ is a pro-p-group by Lemma 3.2, we

have V Û
(1)
σ ̸= 0. Replacing V by its Ĝ(1)-sub representation generated by V Û

(1)
σ we may

assume that V belongs to R̂
(1)
0 (k), as does

indGZKx+
W

(T−λ) . Proposition 4.1 says thatHk(G,U
(1)
σ )

acts on (
indGZKx+

W

(T−λ) )Û
(1)
σ , respecting V Û

(1)
σ . Therefore we have V Û

(1)
σ = (

indGZKx+
W

(T−λ) )Û
(1)
σ if

(
indGZKx+

W

(T−λ) )Û
(1)
σ is irreducible. This implies V =

indGZKx+
W

(T−λ) as
indGZKx+

W

(T−λ) is generated by

(
indGZKx+

W

(T−λ) )Û
(1)
σ .

By Proposition 4.3 we may identify (
indGZKx+

W

(T−λ) )Û
(1)
σ with G(x+)U

(1)
σ ⊕ G(x−)U

(1)
σ . It is

well known that G(x+)U
(1)
σ = WU

(1)
σ and hence also G(x−)U

(1)
σ is one-dimensional, therefore

(
indGZKx+

W

(T−λ) )Û
(1)
σ is two dimensional. □

Definition: A Ĝ(1)-representation on a k-vector space V is called admissible if V Û
(1)
σ

is a finite dimensional k-vector space.

Proposition 4.5. For any admissible irreducible Ĝ(1)-representation on a k-vector space

V there exists some λ ∈ k and an irreducible k[Kx+ ]-module W on which the center of

Kx+ acts trivially, and a surjective homomorphism of Ĝ(1)-representations

indG
ZKx+

W

(T − λ)
−→ V.(19)

Proof: As V is admissible,
∑

η∈X1

x+∈η
V Û

(1)
η is a finite dimensional k[Kx+ ]-module.

Therefore it admits an irreducible k[Kx+ ]-module-submodule W ; the center of Kx+ acts

trivially. By the definition of F̂ (1)
V we may regard W also as a k[ZKx+ ]-submodule of

18



F̂ (1)
V (x+), and this induces a natural homomorphism of Ĝ(1)-representations indG

ZKx+
W →

⊕x∈X0F̂ (1)
V (x). Consider the composition of Ĝ(1)-representations

γ : indG
ZKx+

W −→ ⊕x∈X0F̂ (1)
V (x) −→ H0(X, F̂ (1)

V ) −→ V

(we know but do not need here that H0(X, F̂ (1)
V ) → V is an isomorphism (Theorem 3.5)).

The ring End(indG
ZKx+

W ) acts (by precomposing) from the right on the finite dimensional

k-vector space

HomG(ind
G
ZKx+

W,V ) = HomZKx+
(W,V ) = HomZKx+

(W,
∑
η∈X1

x+∈η

V Û
(1)
η ).

Consider the action of T ∈ End(indG
ZKx+

W ) (in fact we have k[T ] = End(indG
ZKx+

W ), see

[2]) on the k[T ]-submodule of HomG(ind
G
ZKx+

W,V ) generated by γ. As k is algebraically

closed, this action of T has as a non-zero eigen vector, providing a non-zero G-equivariant

homomorphism (19) for some λ ∈ k. But since γ and T are Ĝ(1)-equivariant, also this

map (19) is Ĝ(1)-equivariant. Its surjectivity follows from the irreducibility of V . □

The simple Hk(G,U
(1)
σ )-right modules have been classified by Marie France Vignéras

in [9]. In particular, in [9] par. 3.2 it has been defined what it means for a simple

Hk(G,U
(1)
σ )-right module to be supersingular. We say that a Hk(G,U

(1)
σ )-right module

has trivial central character if for any g ∈ Z the double coset U
(1)
σ gU

(1)
σ ∈ k[U

(1)
σ \G/U (1)

σ ] ∼=
Hk(G,U

(1)
σ ) acts as the identity. (This definition makes no reference to the center of the

ring Hk(G,U
(1)
σ ); for the (easy) description of that center see however [9].)

Corollary 4.6. The functor V 7→ V Û
(1)
σ from Ĝ(1)-representations to Hk(G,U

(1)
σ )-right

modules induces a bijection between the isomorphism classes of admissible irreducible Ĝ(1)-

representations and the isomorphism classes of simple Hk(G,U
(1)
σ )-right modules with

trivial central character.

Proof: First, in [9] Proposition 4.9 it is shown that the functor V 7→ V U
(1)
σ from G-

representations toHk(G,U
(1)
σ )-right modules induces a bijection between the isomorphism

classes of the irreducible subquotients of principal (series) representations of G, and the

isomorphism classes of simple Hk(G,U
(1)
σ )-right modules which are not supersingular.

Therefore, to see that the non-supersingular simple Hk(G,U
(1)
σ )-right modules with trivial

central character also ly in the image of our functor under discussion, it is enough to see

that the irreducible subquotients of principal (series) representations of G on which the

center Z of G acts trivially are in fact Ĝ(1)-representations. In [2] it is shown that the

irreducible principal (series) representations of G are isomorphic to
indGZKx+

W

(T−λ) for some
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λ ∈ k× and some irreducible k[Kx+ ]-module W . Proposition 4.3 shows that
indGZKx+

W

(T−λ)

is indeed a Ĝ(1)-representation (if Z acts trivially). Moreover, in [2] it is also shown

that the principal (series) representations of G which are not irreducible are necessarily

of length two, and the subquotients are the following: a twist of the one-dimensional

G-representation, and a twist of the Steinberg representation. Clearly the trivial (one-

dimensional) G-representation is a Ĝ(1)-representation, too. But it is also well known

that the Steinberg representation of G is isomorphic to H0(X,F) for some F ∈ C
(1)
0 (k),

hence is a Ĝ(1)-representation. (For example, for x ∈ X0 the Kx-representation F(x) is

the |kF |-dimensional Steinberg representation of the reductive quotient of Kx.)

Next, we claim that any supersingular simple Hk(G,U
(1)
σ )-right moduleM with trivial

central character is of the form V Û
(1)
σ for some admissible irreducible Ĝ(1)-representation

V . Indeed, by [6] Proposition 2.18 (which is a quotation from [9]), the constructions in [6]

Definition 6.2, Lemma 6.3 assign toM =Mγ a coefficient system F = Vγ on X (notations

Mγ and Vγ from loc.cit). It is immediate from these constructions that F ∈ C(1)(k), and

even F ∈ C
(1)
0 (k) if M has trivial central character. Moreover, in that case, Lemma 3.4

and [6] Lemma 6.4 show that M ∼= H0(X,F)Û
(1)
σ as Hk(G,U

(1)
σ )-right modules.

Finally, it remains to show that for any admissible irreducible Ĝ(1)-representation V

the Hk(G,U
(1)
σ )-right module V Û

(1)
σ is simple. We use Proposition 4.5, i.e. we choose a

surjection (19). If λ ̸= 0 then
indGZKx+

W

(T−λ) is a principal (series) representation (by [2]), and

our previous disussion applies. If λ = 0 then the disussion in [6] (in particular Lemma

6.1, Lemma 6.3) shows that the left hand side of the map (17) is a supersingular simple

Hk(G,U
(1)
σ )-right module. By Theorem 4.4 it is isomorphic to V Û

(1)
σ . □

5 A variation of (φ,Γ)-modules

5.1 A functor D

We fix e ∈ N and a uniformizer pF ∈ OF .

Definition: We define the submonoids

P (e)
⋆ = {

(
a b

0 1

)
| a ∈ OF −{0}, b ∈ pe−1F OF} and T⋆ = {

(
a 0

0 1

)
| a ∈ OF −{0}}

and the subgroups

N
(e)
0 = {

(
1 b

0 1

)
| b ∈ pe−1F OF} and N = {

(
1 b

0 1

)
| b ∈ F}
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and

T = {

(
a 0

0 1

)
| a ∈ F×}

of G. We have N
(e)
0 ⋊ T⋆ = P

(e)
⋆ . We write t =

(
pF 0

0 1

)
∈ T⋆. We then have

T =
∪
m∈N

t−mT⋆.

We assume that our fixed central vertices x+ and x− are those with Kx+ = GL2(OF ) and

x− = t−1x+. Recall that σ = {x+, x−}. In the following, the end α0 = t−∞x+ of X will

play a distinguished role. For any x ∈ X0 there is a unique infinite (without backtracking)

path [α0, z] in X starting at z and passing through almost all t−mx+ with m ≥ 0. For

e′ ≥ 0 and x ∈ X0 we define the subset

Z
(e′)
+ (x) = {z ∈ X0 | d(x, z) ≤ e′ and x ∈ [α0, z]}

of X0. We define N̂
(e)
0 to be the subgroup of Aut(X) consisting of all g ∈ Aut(X) with

the property that for all x ∈ X0 there is a g′ ∈ N
(e)
0 such that the restrictions of g and g′

to Z
(e)
+ (x) coincide. For µ ∈ X1 we let xµ+ ∈ X0 be that vertex of µ such that the other

vertex of µ belongs to [α0, x
µ
+]. For example, xσ+ = x+.

For x ∈ X0 we let N
(e)
x be the subgroup of N consisting of all g ∈ N which fix Z

(e−1)
+ (x)

pointwise. For example, N
(e)
x+ = N

(e)
0 .

Lemma 5.1. (a) N̂
(e)
0 is a (non-abelian) pro-p-group.

(b) For any g ∈ N̂
(e)
0 and any µ ∈ X1 there is a g′ ∈ N

(e)
0 such that the restrictions of

g and g′ to the subset Z(e)(µ) of X0 coincide.

(c) For any µ ∈ X1 we have N
(e)

xµ
+
= U

(e)
µ ∩N .

Proof: (a) The same as for Lemma 3.2. Alternatively, one may use (b) to see that

N̂
(e)
0 is a subgroup of Û

(e)
σ and then just quote the result of Lemma 3.2. Or one may just

use the description of N̂
(e)
0 given in Lemma 5.12 below.

(b) Apply the defining condition for N̂
(e)
0 to all z ∈ [α0, x

µ
+] with d(z, x

µ
+) ≤ e.

(c) This is clear. □

We define the subgroup (cf. the proof of Lemma 5.2 below)

N̂ (e) =
∪
m∈N

t−mN̂
(e)
0 tm

of Aut(X). We read T as a subgroup of Aut(X) and define P̂ (e) to be the subgroup of

Aut(X) generated by T and N̂ (e). We define P̂
(e)
⋆ to be the submonoid of P̂ (e) generated

by N̂
(e)
0 and T⋆.
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Lemma 5.2. (a) We have N̂
(e)
0 ⋊ T⋆ = P̂

(e)
⋆ and N̂ (e) ⋊ T = P̂ (e).

(b) For any m ∈ N and s ∈ P̂
(e)
⋆ we have smN̂

(e)
0 s−m ⊂ N̂

(e)
0 . Moreover,∩

m∈N

tmN̂
(e)
0 t−m = 1.

Proof: (a) This follows from N
(e)
0 ⋊ T⋆ = P

(e)
⋆ .

(b) For the first claim it is enough to check smN̂
(e)
0 s−m ⊂ N̂

(e)
0 for s ∈ T⋆. For such s

we have smN
(e)
0 s−m ⊂ N

(e)
0 for all m ∈ N, and the claim follows. The second one follows

from ∩m∈Nt
mN

(e)
0 t−m = 1. □

Remark: TN (resp. N , resp. N
(e)
0 ) is naturally a subgroup of P̂ (e) (resp. of N̂ (e),

resp. of N̂
(e)
0 ), and similarly, P

(e)
⋆ is naturally a submonoid of P̂

(e)
⋆ . One might ask for

retractions in the reverse direction. Let EP denote the set of ends of X except for the

end α0. Let α0 = t∞x+ = t∞x− denote the end of X which together with α0 spans the

T -stable apartment in X. Then P̂ (e) acts on EP and sending n ∈ N to nα0 is a bijection

between N (∼= F ) and EP . For any g ∈ P̂ (e) and α ∈ EP there is a unique gα ∈ TN such

that g and gα coincide on all the vertices on the apartment [α0, α] from α0 to α. This

defines for each α ∈ EP a map

P̂ (e) −→ TN, g 7→ gα(20)

such that for any g ∈ TN ⊂ P̂ (e) we have g = gα. Similarly, the maps (20) are retrac-

tions N̂ (e) → N and P̂
(e)
⋆ → P

(e)
⋆ and N̂

(e)
0 → N

(e)
0 . Beware that they are not group

homomorphisms. Rather, we have

(g · f)α = gf(α) · fα

for f, g ∈ P̂ (e) and α ∈ EP .

We define the subset

X0
+ = P (1)

⋆ .x+, resp. X1
+ = P (1)

⋆ .σ

of X0, resp. of X1. If X+ denotes the maximal connected full closed subcomplex of X

such that x+ belongs to its set of vertices but x− does not, then X0
+ is precisely the set

of vertices of X+, and X
1
+ − {σ} is its set of edges. To clarify: σ = {x+, x−} belongs to

the set which we denote by X1
+, but it is not an edge of the closed subcomplex X+ of X.

For any n ∈ N/N
(1)
0 the subset nX0

+ of X0 is stable under the action of N̂
(e)
0 . Restric-

tion to this subset defines a quotient N̂
(e)
0,n of N̂

(e)
0 contained in the group of permutations

of the set nX0
+.
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Lemma 5.3. The natural homomorphism

N̂
(e)
0 −→

∏
n∈N/N

(1)
0

N̂
(e)
0,n(21)

is bijective. The factors N̂
(e)
0,n are pairwise isomorphic.

Proof: The union ∪
n∈N/N

(1)
0
nX0

+ is disjoint in X0 and stable under N̂
(e)
0 , and the

restriction map from N̂
(e)
0 to the group of permutations of ∪

n∈N/N
(1)
0
nX0

+ is injective, be-

cause any element of N̂
(e)
0 acts trivially on X0 − ∪

z∈N/N
(1)
0
nX0

+. □

Remark: The index of tmN̂
(e)
0 t−m in N̂

(e)
0 is not finite for m ∈ N. Lemma 5.2 says

that, except for this failure, the axiomatic of section 3 in [8] is satisfied. The following

statement might be viewed as a natural replacement of the finiteness axiom in [8]: we

have

[N̂
(e)
0,1 : N̂

(e)
0,1 ∩ tmN̂

(e)
0 t−m] =

m−1∏
j=0

qe+j

for any m ≥ 1, where q = |kF |; here we view the factor N̂
(e)
0,1 of N̂

(e)
0 as a subgroup in N̂

(e)
0 .

Following the lines of [8] one may thus define a corresponding notion of étaleness. How-

ever, although the point in our entire discussion is that one should consider N̂
(e)
0 -actions

instead of just N
(e)
0 -actions, the good notion of étaleness seems to be just the usual one,

as given in formulae (23) and (24) below (i.e. based on the cosets tiN
(1)
0 t−i in N

(1)
0 ).

Let Λ ∈ Art(o). We are interested in NT -equivariant homological coefficient systems

in Λ-modules F on X satisfying the following hypotheses:

(Hyp 1) for any x ∈ η ∈ X1 the transition map τ ηx : F(η) → F(x) is injective.

(Hyp 2) for any µ ∈ X1, if Sµ = {η ∈ X1 |µ ∩ η = {xµ+}}, then

F(xµ+) =
∑
η∈Sµ

im(µη
xµ
+
).(22)

(Hyp 3) for any µ ∈ X1, the image of τµ
xµ
+
: F(µ) → F(xµ+) is F(xµ+)

N
(e)

x
µ
+ .

Before proceeding, we first provide examples for such F .

Lemma 5.4. Let N(kF ), N(kF ) be the unipotent radicals of opposite Borel subgroups in

GL2(kF ), let W be a k[GL2(kF )]-module which is generated by its subspace WN(kF ) of

N(kF )-invariants. Then W is generated by WN(kF ) even as a k[N(kF )]-module.
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Proof: If W is finitely generated, then, by Nakayama’s Lemma, applied to the local

ring k[N(kF )], to show that WN(kF ) generates W as a k[N(kF )]-module it is enough to

show this after reduction modulo the maximal ideal, i.e. it is enough to show that the

composition WN(kF ) → W → WN(kF ) is surjective. If W is an irreducible k[GL2(kF )]-

module this is easily verified. Next suppose that W is a princial series representation, i.e.

parabolically induced from a character of a Borel subgroup. In this case W is isomorphic,

as a k[N(kF )]-module, with a direct sum of the trivial one-dimensional k[N(kF )]-module

and a copy of k[N(kF )]. In particular, WN(kF ) is two dimensional. Similarly we see that

WN(kF ) is two dimensional. The dual ofW is a again a principal series representationW ′,

in particular (W ′)N(kF ) maps surjectively onto the space of N(kF )-invariants of the unique

irreducible quotient of W ′. Dually we obtain that the space of N(kF )-coinvariants of the

unique irreducible subobject of W maps injectively into the space of N(kF )-coinvariants

of W . Thus applying what we said above to the unique irreducible subobject and to the

unique irreducible quotient of W we see that the composition WN(kF ) → W →WN(kF ) is

surjective.

Now suppose we are given a general W . Then, as W is generated by WN(kF ), we see

that W is isomorphic to a quotient of a direct sum of principal series representations of

GL2(kF ). Their property of being generated by their N(kF )-invariants clearly passes to

direct sums and quotients, hence to W . □

Lemma 5.5. Any F ∈ C(1)(k) satisfies hypotheses (Hyp 1), (Hyp 2) and (Hyp 3) (with

e = 1).

Proof: (We do not ask that F ∈ C
(1)
0 (k): the center Z of G may act nontrivially on

F .) The validity of hypotheses (Hyp 1) and (Hyp 3) is clear, only hypothesis (Hyp 2)

requires a proof. The Kxµ
+
-action on F(xµ+) factors through the quotient of Kxµ

+
isomor-

phic to GL2(kF ). Thus, abstractly F(xµ+) is isomorphic to a representation of GL2(kF )

generated by its invariants under the unipotent radical N(kF ) of a Borel subgroup in

GL2(kF ). But then Lemma 5.4 tells us that F(xµ+) is generated by its invariants under

N(kF ) even as a representation of the unipotent radical of an opposite Borel subgroup.

Given the other properties of F ∈ C
(1)
0 (k), this is precisely the meaning of formula (22).□

We now fix an arbitrary F over an arbitrary Λ ∈ Art(o) satisfying the above conditions

(a), (b), (c).

Let g ∈ P̂ (e). Given η ∈ X1, choose a g′ ∈ NT restricting to g on Z
(e)
+ (xη+) and define

g : F(η) → F(gη) to be the map g′η : F(η) → F(g′η) = F(gη). Similarly, given x ∈ X0,

choose a g′ ∈ NT restricting to g on Z
(e)
+ (x) and define g : F(x) → F(gx) to be the map

g′η : F(x) → F(g′x) = F(gx).
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Lemma 5.6. The above action of P̂ (e) on F is well defined and makes F into a P̂ (e)-

equivariant coefficient system on X. In particular, P̂ (e) naturally acts on H0(X,F).

Proof: The same as for Lemma 3.3. □

Since X+ is closed in X we have a natural map H0(X+,F) → H0(X,F). As in Lemma

2.1 this map is seen to be injective. Moreover, as X+ is a P̂
(e)
⋆ -stable subcomplex of X

we have P̂
(e)
⋆ acting also on the submodule H0(X+,F) of H0(X,F). The corresponding

N̂
(e)
0 -action on H0(X+,F) in fact factors through the quotient N̂

(e)
0,1 of N̂

(e)
0 .

Lemma 5.7. The action of N̂
(e)
0,1 on H0(X,F) is smooth.

(b) The natural map F(σ) ∼= F(x+)
N

(e)
0 → H0(X+,F)N̂

(e)
0,1 is bijective.

Proof: (a) The same as for Theorem 3.5 (a).

(b) The same as for Lemma 3.4; notice that (N
(e)
0 , U

(e)
x+ ) = U

(e)
σ . □

We now assume that o is the ring of integers in a finite extension field L of Qp with

residue class field k = kL and uniformizer pL ∈ o. We assume that Λ ∈ Art(o) is a quotient

of o. For a profinite group H we write

L(H) = o[[H]]

for its completed group ring (Iwasawa algebra) over o. For example, the natural maps

N
(e)
0

ι−→ N̂
(e)
0

pr−→ N̂
(e)
0,1

— both ι and pr ◦ ι are injective — induce corresponding morphisms of Iwasawa algebras

L(N (e)
0 ) → L(N̂ (e)

0 ) → L(N̂ (e)
0,1 ). Using Lemma 5.7 we obtain that the Pontrjagin dual

D(F) = Homct
o (H0(X+,F), L/o)

of H0(X+,F) is a module over L(N̂ (e)
0,1 ).

Lemma 5.8. If the k-vector space F(x+)
N

(e)
0 ,pL=0 has dimension n <∞, then the L(N̂ (e)

0,1 )-

module D(F) can be generated by n elements.

Proof: L(N̂ (e)
0,1 ) is a local ring (as N̂

(e)
0,1 is a pro-p-group), its augmentation (left-)ideal

I is maximal, and In → 0. We may therefore apply the topological Nakayama Lemma

(see [1]) to the profinite L(N̂ (e)
0,1 ) (left-)module D(F): it says that D(F) can be generated

over L(N̂ (e)
0,1 ) by n elements (n < ∞) if its reduction modulo I can be generated by n

elements. By duality, this is the case if H0(X+,F)N̂
(e)
0,1 ,pL=0 has dimension ≤ n. Now apply
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Lemma 5.7. □

We also define the L(N̂ (e)
0,1 )-module

D′(F) = Homct
o (
H0(X+,F)

F(σ)
, L/o) ∼= Homct

o (
H0(X,F)

H0(X−,F)
, L/o).

Here we view F(σ) as embedded into H0(X+,F) via F(σ) → F(x+), and H0(X−,F)

is the 0-homology group of F on X−, the full closed subcomplex of X with vertex set

X0
− = X0 −X0

+. (Thus, σ belongs neither to the complex X+ nor to the complex X−.)

Lemma 5.9. (P̂
(e)
⋆ )−1 naturally acts on D(F), and P̂

(e)
⋆ naturally acts on D′(F).

Proof: As the monoid P̂
(e)
⋆ acts on H0(X+,F), the inverse monoid (P̂

(e)
⋆ )−1 acts

on its dual D(F). On the other hand, P̂
(e)
⋆ itself acts on D′(F). Indeed, the group

N̂
(e)
0,1 acts on H0(X+,F), respecting the submodule F(σ), hence it acts on D′(F) =

Homct
o (

H0(X+,F)
F(σ) , L/o). The monoid T−1⋆ acts on H0(X,F), respecting the submodule

H0(X−,F), hence T⋆ acts on D′(F) ∼= Homct
o (

H0(X,F)
H0(X−,F) , L/o). □

Let O(e)
E denote the p-adic completion of the localization of L(N (e)

0 ) with respect to

the complement of pLL(N (e)
0 ).

Definition: An étale ((P̂
(e)
⋆ )−1, P̂

(e)
⋆ )-pair over L(N̂ (e)

0,1 ) is an injective morphism of

L(N̂ (e)
0,1 )-modules ∂ : D′ → D, together with an action of the monoid (P̂

(e)
⋆ )−1 on D and

of the monoid P̂
(e)
⋆ on D′, either of them extending the given action of the group N̂

(e)
0

(through its quotient N̂
(e)
0,1 ). The following properties are required:

(a) For m ∈ N let ψtm denote the endomorphism t−m of D, and let φtm denote the

endomorphism tm of D′. For any m ∈ N we have

ψtm∂φtm = ∂.(23)

(b) The cokernel of ∂ is finite. As O(e)
E is flat over L(N (e)

0 ) (and as ∂ is in particular

L(N (e)
0 )-linear) it follows that ∂ induces an isomorphism

O(e)
E ⊗L(N(e)

0 )
D′

∼=−→ O(e)
E ⊗L(N(e)

0 )
D.

We identify its source and its target into a single object D.

(c) Denote again by φtm and ψtm the endomorphisms of D obtain from those on D

and D′ by base extension O(e)
E ⊗L(N(e)

0 )
(.). Then we have∑

n∈N(1)
0 /tmN

(1)
0 t−m

nφtmψtmn
−1 = idD.(24)
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Theorem 5.10. Suppose that the k-vector space F(x+)
N

(e)
0 ,pL=0 has dimension n < ∞.

Then (D′(F) → D(F)) is an étale ((P̂
(e)
⋆ )−1, P̂

(e)
⋆ )-pair over L(N̂ (e)

0,1 ). Moreover, D(F)

can be generated as an L(N̂ (e)
0,1 )-module by n elements.

Proof: The last statement was shown in Lemma 5.8. We have an exact sequence of

L(N̂ (e)
0,1 )-modules

0 −→ D′(F) −→ D(F) −→ Homct
o (F(σ), L/o).

With F(x+)
N

(e)
0 ,pL=0 also F(σ) and hence the cokernel of D′(F) → D(F) is finite.

Formula (23) is immediately verified already by evaluating elements of D(F) resp.

D′(F) on the level of 0-chains: it simply follows from tX0
+ ⊂ X0

+ (and t−1(tX0
+) = X0

+).

To see formula (24) we observe first that it follows from formula (22) that any element in

H0(X+,F) can be represented by a 0-chain with support in

X0
+ − Z

(m−1)
+ (x+) =

∪
n∈N(1)

0 /tmN
(1)
0 t−m

ntmX0
+.

But evaluating elements of D(F) resp. D′(F) on such 0-chains it is clear that∑
n∈N(1)

0 /tmN
(1)
0 t−m

nφtmψtmn
−1

acts as the identity on O(e)
E ⊗L(N(e)

0 )
D′(F)∼=O(e)

E ⊗L(N(e)
0 )

D(F). □

We write D(F) = O(e)
E ⊗L(N(e)

0 )
D′(F)∼=O(e)

E ⊗L(N(e)
0 )

D(F). The key property exploited

in Colmez’ study of his functor D is that in the case F = Qp (and e = 1) the module

D(F) is finitely generated over O(1)
E . Namely:

Theorem 5.11. Suppose F = Qp and e = 1 and that the k-vector space F(x+)
N

(1)
0 ,p=0

has dimension n <∞. Then D(F) can be generated as an O(1)
E -module by n elements.

Proof: The proof is parallel to that of Lemma 5.8, with Lemma 5.7 (in that proof) re-

placed by the following fact: for F = Qp and e = 1 the natural map F(σ) ∼= F(x+)
N

(1)
0 →

H0(X+,F)N
(1)
0 is bijective; this has e.g. been shown in [5] Theorem 3.2 (notice that

(N
(1)
0 , U

(1)
x+ ) = U

(1)
σ ). (In fact [5] Theorem 3.2 is stated for the coefficient ring k only, but

the devissage arguments used in the proof of [5] Theorem 3.3 easily give the result in

general.) □

If F = Qp then O(1)
E is exactly the ring OE used in Fontaine’s theory of (φ,Γ)-modules.

Theorem 5.11 describes Colmez’ functor from finitely generated o-torsion representations
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V of G (generated by V U
(1)
σ ), to finitely generated étale (φ,Γ)-modules. Namely, from

V pass to F (1)
V ∈ C(1)(Λ), then restrict the P̂

(1)
⋆ -action on D(F (1)

V ) to P
(1)
⋆ and of the

(P̂
(1)
⋆ )−1-action on D(F (1)

V ) to (P
(1)
⋆ )−1.

Thus, we may regard Theorem 5.10 as some sort of variation, available for arbitrary F

(and e), on Colmez’ construction. For F = Qp and e = 1 it is in fact an enhancement of

Colmez’ construction in that it provides actions P̂
(1)
⋆ , reps. of (P̂

(1)
⋆ )−1, on D′(F (1)

V ) resp.

on D(F (1)
V ) .

Let F be a finite extension of Qp, and let us indicate the dependence on F in our

definitions by the symbol [F ]. Using the trace map described in Lemma 5.13 below one

might try to pass from (finitely generated, as in Theorem 5.10) étale ((P̂
(e)
⋆ )−1, P̂

(e)
⋆ )-pairs

over L(N̂ (e)
0,1 )[F ] to (finitely generated) étale ((P̂

(e)
⋆ )−1, P̂

(e)
⋆ )-pairs over L(N̂ (e)

0,1 )[Qp]. From

here, can one pass to suitable modules finitely generated even over O(e)
E [Qp] ?

5.2 The pro-p-group N̂
(e)
0,1 and the Iwasawa algebra L(N̂ (e)

0,1 )

For i ≥ 0 consider the group homomorphism

ϵi :
∏

a∈OF /piF

pi+e−1
F −→ Autsets(OF )

sending (xa)a∈OF /piF
(with xa ∈ pi+e−1

F ) to the following permutation of (the set underlying)

OF : it sends x ∈ OF to x + xa(x), where a(x) ∈ OF/p
i
F is defined by a(x) ≡ x modulo

piF . Next, for k ≥ 0 define the map of sets

δk : (
∏

a∈OF /pkF

pk+e−1
F )× . . .× (

∏
a∈OF /pF

peF )× pe−1F −→ Autsets(OF ),

((xa,k)a∈OF /pkF
, . . . , (xa,1)a∈OF /pF , x0,0) 7→ ϵk((xa,k)a∈OF /pkF

)◦ . . .◦ϵ1((xa,1)a∈OF /pF )◦ϵ0(x0,0).

It induces a map of sets

δk : (
∏

a∈OF /pkF

pk+e−1
F )× . . .× (

∏
a∈OF /pF

peF )× pe−1F −→ Autsets(OF/p
k+1
F ).

Define H
(e)
0 = pe−1F . Let H

(e)
0 act on

∏
a∈OF /pF

peF by its action δ0 on the index set OF/pF .

Using this action we define H
(e)
1 = (

∏
a∈OF /pF

peF ) ⋊ H
(e)
0 . One easily checks that with

this group structure, δ1 is a group homomorphism. Using it we have H
(e)
1 acting on∏

a∈OF /p2F
pe+1
F and we may define H

(e)
2 = (

∏
a∈OF /p2F

pe+1
F ) ⋊ H

(e)
1 . Inductively we thus

define a group H
(e)
k for every k ≥ 0. We then define H

(e)
∞ to be the projective limit of the

H
(e)
k , i.e.

H(e)
∞ = (. . . ((

∏
a∈OF /pkF

pk+e−1
F )⋊ ((

∏
a∈OF /pk−1

F

pk+e−2
F )⋊ (. . . ((

∏
a∈OF /pF

peF )⋊ pe−1F ) . . .))) . . .).
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We have H
(e′)
∞ ⊂ H

(e)
∞ for e′ ≥ e while, of course, abstractly the H

(e)
∞ for the various e

are all isomorphic.

Define the group homomorphism ∂(e) : H
(e+1)
∞ → H

(e)
∞ not as the inclusion, but as the

product of all the maps

(diag,−id) :
∏

a∈OF /pkF

pk+e
F −→ (

∏
a∈OF /pk+1

F

pk+e
F )⋊ (

∏
a∈OF /pkF

pk+e−1
F ),

i.e. the negative of the inclusion
∏

a∈OF /pkF
pk+e
F ⊂

∏
a∈OF /pkF

pk+e−1
F in the second com-

ponent, and the diagonal embedding
∏

a∈OF /pkF
pk+e
F ↪→

∏
a∈OF /pk+1

F
pk+e
F (induced by the

natural projection of index sets OF/p
k
F → OF/p

k+1
F ) in the first component.

Lemma 5.12. We have a natural isomorphism

H
(e)
∞

im(∂(e))
∼= N̂

(e)
0,1 .(25)

Proof: N acts simply transitively on the set of ends of X different from t−∞x+;

similarly, N
(1)
0 acts simply transitively on the set of (infinite) ends of X+. Therefore,

identifying N
(1)
0 with the additive group (OF ,+) and sending f ∈ OF

∼= N
(1)
0 to the end

f(t∞x+) is a bijection between OF and the set of ends of X+. The group H
(e)
∞ acts on

(the set underlying) OF through δ∞ = lim← δk. Together we get an action of H
(e)
∞ on

the set of ends of X+. It induces an action of H
(e)
∞ on X0

+ as follows. Given x ∈ X0
+,

choose an end α of X+ with x ∈ [x+, α]. For h ∈ H
(e)
∞ we then define hx ∈ X0

+ as the

unique vertex belonging to [x+, hα] with d(x+, x) = d(x+, hx); it is independent of the

choice of α. It follows from the definitions that this H
(e)
∞ -action on X0

+ induces a surjective

homomorphism H
(e)
∞ → N̂

(e)
0,1 whose kernel is im(∂(e)). □

Let us redescribe N̂
(e)
0,1 and L(N̂ (e)

0,1 ) in the case F = Qp, using the isomorphism (25).

For k ≥ 0 and i ∈ Zp/p
kZp consider the corresponding copy of pk+e−1Zp as a factor of H

(e)
∞ .

Let us denote by e
(k)
i its topological generator pk+e−1. Then H

(e)
∞ is the pro-p-completion

of the group generated by all the e
(k)
i , subject only to the following relations:

e
(k)
i · e(ℓ)j = e

(ℓ)
j · e(k)

i+pℓ
if k ≥ ℓ and i ≡ j mod (pℓ),

e
(k)
i · e(ℓ)j = e

(ℓ)
j · e(k)i if k ≥ ℓ and i ̸≡ j mod (pℓ).

(Here, of course, i+ pℓ is the class of i+ pℓ modulo (pk).) Next, im(∂(e)) is topologically

generated inside H
(e)
∞ by all expressions∏

i∈Zp/pkZp
i−j∈pk−1Zp

e
(k)
i = (e

(k−1)
j )p
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for k ≥ 1 and j ∈ Zp/p
k−1Zp. Write U

(k)
i = 1− e

(k)
i in L(H(e)

∞ ) for k ≥ 0 and i ∈ Zp/p
kZp.

The above description of H
(e)
∞ translates as follows: L(H(e)

∞ ) is the (p-adically complete)

formal power series algebra in the variables U
(k)
i , subject to the commutation relations

U
(k)
i · U (ℓ)

j = U
(ℓ)
j · U (k)

i+pℓ
if k ≥ ℓ and i ≡ j mod (pℓ),

U
(k)
i · U (ℓ)

j = U
(ℓ)
j · U (k)

i if k ≥ ℓ and i ̸≡ j mod (pℓ).

Next, the quotient L(N̂ (e)
0,1 ) is then obtained by dividing out the closure of the ideal

generated by all expressions ∏
i∈Zp/pkZp

i−j∈pk−1Zp

(1− U
(k)
i )− (1− U

(k−1)
j )p

for k ≥ 1 and j ∈ Zp/p
k−1Zp.

To indicate the dependence on the local field F (which was fixed so far) let us now

write N̂
(e)
0,1 [F ] and H

(e)
∞ [F ] and ∂(e)[F ] instead of N̂

(e)
0,1 and H

(e)
∞ and ∂(e). Let F/E be a

finite extension of local fields, let e(F/E) be its ramification index.

Lemma 5.13. For any e, e′ ∈ N with e′ · e(F/E) ≤ e there is a natural trace map

tr : N̂
(e)
0,1 [F ] −→ N̂

(e′)
0,1 [E]

Proof: Let traceF/E : F → E be the usual trace map. As e′ · e(F/E) ≤ e it restricts

to a map traceF/E : p
e+m·e(F/E)−t−1
F → pe

′+m−1
E for all m ≥ 0 and all 0 ≤ t ≤ e(F/E)− 1.

For all m ≥ 1 and 0 ≤ t ≤ e(F/E)− 1 the inclusion OE ⊂ OF induces an injective map

OE/p
m
E → OF/p

m·e(F/E)−t
F . We may thus define the composition∏

OF /p
m·e(F/E)−t
F

p
e+m·e(F/E)−t−1
F −→

∏
OF /p

m·e(F/E)−t
F

pe
′+m−1
E −→

∏
OE/pmE

pe
′+m−1
E

where the first arrow is the product of the above trace maps (in each factor), and the

second arrow is the natural projection induced by the above inclusion of index sets.

Summing over all 0 ≤ t ≤ e(F/E)− 1 we obtain a map∏
OF /p

m·e(F/E)
F

p
e−1+m·e(F/E)
F × · · · ×

∏
OF /p

(m−1)·e(F/E)+1
F

p
e+(m−1)·e(F/E)
F −→

∏
OE/pmE

pe
′−1+m
E(26)

for any m ≥ 1. Taking the product of the maps (26) for all m ≥ 1, while taking for m = 0

just the trace map traceF/E : pe−1F → pe
′−1
E , we obtain a trace map H

(e)
∞ [F ] → H

(e′)
∞ [E].

It is straightforward to check that it maps im(∂(e)[F ]) into im(∂(e)[E]), hence it induces,

using the isomorphisms (25) for N̂
(e)
0,1 [F ] and N̂

(e′)
0,1 [E], a trace map tr : N̂

(e)
0,1 [F ] −→ N̂

(e′)
0,1 [E]

as desired. □
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