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Preface

This volume comprises the Lecture Notes of the CIMPA Summer School
Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray
University, Istanbul during June 13-25, 2005. In the Summer School there were
fifteen lectures forming an impressive group of mathematicians covering a wide
range of topics related to hypergeometric functions. The full schedule of talks
from the workshop appears on the next page. In addition to the lecture notes
submitted by its lecturers, this volume contains several research articles.

A group of fourty graduate students and young researchers attended the
school. Among the participants there were 2 Algerian, 3 American, 1 Armenian, 1
Bulgarian, 1 Canadian, 3 Dutch, 2 Georgian, 7 German, 1 Indian, 2 Iraqi, 1 Iranian,
1 Italian, 1 Russian, 5 Japanese, 23 Turkish and 1 Ukrainian mathematicians,
including the lecturers.

We would like to thank the Centre des Mathématiques Pures et Appliquées,
for their financial support and Professor Michel Jambu for organizational help. We
could support participants from across the region thanks to the generous finan-
cial help provided by the International Center for Theoretical Physics (ICTP)
and the International Mathematical Union (IMU). The local participants has
been supported by the Scientific and Technological Research Councel of Turkey
(TÜBİTAK).

This summer school has been realized not only by financial support from
its sponsors but also thanks to the generousity of its lecturers, who all agreed to
finance their travel from their own personal grants. Some of them did so also for
the accomodation.

The proposal for the AGAHF Summer School was submitted to CIMPA in
February 2004. During the long preparatory process and during the summer school,
Ayşegül Ulus, Özgür Ceyhan, and Özgür Kişisel contributed at various levels to
the organization. We are grateful to them.

Sabine Buchmann is a French artist living in Istanbul, who likes to draw
Ottoman-style miniatures of the boats serving across the bosphorus; these boats
are an inseparable part of the city panorama. When asked, she liked the idea of
a boat full of mathematicians and drew it for the conference poster — with the
names of all the lecturers hidden inside, written in minute letters. Her miniature
helped us much in attracting the audience of the summer school.
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We are thankful to the student team hired by the university comprising Anet
İzmitli, Egemen Kırant, Günce Orman, Haris Saybaşılı and Eylem Şentürk for
turning this summer school into a pleasant experience.

Finally we would like to thank warmly Prof. Dr. Duygun Yarsuvat, the rec-
tor of the Galatasaray University for offering us the great location and financial
support of the university.

The second named editor was supported by TÜBİTAK grant Kariyer 103T136
during the summer school and during the preperation of this volume.

Rolf-Peter Holzapfel, A. Muhammed Uludağ and Masaaki Yoshida, Editors
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A. Muhammed Uludağ: Geometry of Complex Orbifolds

Alexander Varchenko: Special functions, KZ type equations, and representation
theory

Jürgen Wolfart: Arithmetic of Schwarz maps (preceded by Shiga’s lectures)

Masaaki Yoshida: Schwarz maps (general introduction)



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Daniel Allcock, James A. Carlson and Domingo Toledo
Hyperbolic Geometry and the Moduli Space of Real Binary Sextics . . 1

Frits Beukers
Gauss’ Hypergeometric Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Igor V. Dolgachev and Shigequki Kondō
Moduli of K3 Surfaces and Complex Ball Quotients . . . . . . . . . . . . . . . . . . 43

Amir Džambić
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Hyperbolic Geometry and the Moduli Space of
Real Binary Sextics

Daniel Allcock, James A. Carlson and Domingo Toledo

Abstract. The moduli space of real 6-tuples in CP 1 is modeled on a quotient
of hyperbolic 3-space by a nonarithmetic lattice in Isom H3. This is partly
an expository note; the first part of it is an introduction to orbifolds and
hyperbolic reflection groups.

Keywords. Complex hyperbolic geometry, hyperbolic reflection groups, orb-
ifolds, moduli spaces, ball quotients.

These notes are an exposition of the key ideas behind our result that the
moduli space Ms of stable real binary sextics is the quotient of real hyperbolic
3-space H3 by a certain Coxeter group (together with its diagram automorphism).
We hope they can serve as an aid in understanding our work [3] on moduli of real
cubic surfaces, since exactly the same ideas are used, but the computations are
easier and the results can be visualized.

These notes derive from the first author’s lectures at the summer school
“Algebra and Geometry around Hypergeometric Functions”, held at Galatasary
University in Istanbul in July 2005. He is grateful to the organizers, fellow speakers
and students for making the workshop very rewarding. To keep the flavor of lec-
ture notes, not much has been added beyond the original content of the lectures;
some additional material appears in an appendix. The pictures are hand-drawn to
encourage readers to draw their own.

Lecture 1

Hyperbolic space H3 is a Riemannian manifold for which one can write down an
explicit metric, but for us the following model will be more useful; it is called
the upper half-space model. Its underlying set is the set of points in R3 with

First author partly supported by NSF grant DMS 0231585. Second and third authors partly
supported by NSF grants DMS 9900543 and DMS 0200877.
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positive vertical coordinate, and geodesics appear either as vertical half-lines, or
as semicircles with both ends resting on the bounding R2:

Note that the ‘endpoints’ of these geodesics lie in the boundary of H3, not in H3

itself. Planes appear either as vertical half-planes, or as hemispheres resting on
R2:

If two planes meet then their intersection is a geodesic. The most important prop-
erty of the upper half-space model is that it is conformal, meaning that an angle
between planes under the hyperbolic metric equals the Euclidean angle between
the half-planes and/or hemispheres. For example, the following angle θ looks like
a π/4 angle, so it is a π/4 angle:
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This lets us build hyperbolic polyhedra with specified angles by pushing
planes around. For example, the diagram

P0 (1)

describes a polyhedron P0 with four walls, corresponding to the nodes, with the
interior angle between two walls being π/2, π/3 or π/4 according to whether the
nodes are joined by no edge, a single edge or a double edge. For now, ignore the col-
ors of the nodes; they play no role until Theorem 2. We can build a concrete model
of P0 by observing that the first three nodes describe a Euclidean (π/2, π/4, π/4)
triangle, so the first three walls should be arranged to appear as vertical half-
planes. Sometimes pictures like this can be easier to understand if you also draw
the view down from vertical infinity; here are both pictures:

How to fit in the fourth plane? After playing with it one discovers that it cannot
appear as a vertical halfplane, so we look for a suitable hemisphere. It must be
orthogonal to two of our three walls, so it is centered at the foot of one of the half-
lines of intersection. The radius of the hemisphere is forced to be 2 because of the
angle it makes with the remaining wall (namely π/3). We have drawn the picture
so that the hemisphere is centered at the foot of the back edge. The figure should
continue to vertical infinity, but we cut it off because seeing the cross-section makes
the polyhedron easier to understand. We’ve also drawn the view from above; the
boundary circle of the hemisphere strictly contains the triangle, corresponding to
the fact that P0 does not descend all the way to the boundary R2.

(2)
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We think of P0 as an infinitely tall triangular chimney with its bottom bitten off
by a hemisphere. The dimensions we have drawn on the overhead view refer to
Euclidean distances, not hyperbolic ones. The “radius” of a hemisphere has no
intrinsic meaning in hyperbolic geometry; indeed, the isometry group of H3 acts
transitively on planes.

Readers may enjoy trying their hands at this by drawing polyhedra for the
diagrams

P1

P2

P3

(3)

where the absent, single and double bonds mean the same as before, a triple bond
indicates a π/6 angle, a heavy bond means parallel walls and a dashed bond means
ultraparallel walls. In the last two cases we describe the meaning by pictures:
Parallelism means

or or

and ultraparallelism means

or

That is, when two planes do not meet in H3, we call them parallel if they meet at
the boundary of H3, and ultraparallel if they do not meet even there.

Diagrams like (1) and (3) are called Coxeter diagrams after H. S. M. Coxeter,
who introduced them to classify the finite groups generated by reflections. Given a
random diagram, there is no guarantee that one can find a hyperbolic polyhedron
with those angles, but if there is one then it describes a discrete group acting on
H3:

Theorem 1 (Poincaré Polyhedron Theorem). Suppose P ⊆ H3 is a polyhedron
(i.e., the intersection of a finite number of closed half-spaces) with every dihedral
angle of the form π/(an integer). Let Γ be the group generated by the reflections
across the walls of P . Then Γ is discrete in IsomH3 and P is a fundamental
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domain for Γ in the strong sense: every point of H3 is Γ-equivalent to exactly one
point of P .

The proof is a very pretty covering space argument; see [5] for this and
for a nice introduction to Coxeter groups in general. A reflection across a plane
means the unique isometry of H3 that fixes the plane pointwise and exchanges the
components of its complement. A reflection across a vertical half-plane looks like
an ordinary Euclidean reflection, and a reflection across a hemisphere means an
inversion in it; here are before-and-after pictures of an inversion.

An inversion exchanges vertical infinity with the point of R2 “at the center” of the
hemisphere.

The data of a group Γ acting discretely on H3 is encoded by an object called
an orbifold. As a topological space it is H3/Γ, but the orbifold has more structure.
An orbifold chart on a topological space X is a continuous map from an open
subset U of Rn to X , that factors as

U → U/ΓU → X,

where ΓU is a finite group acting on U and the second map is a homeomorphism
onto its image. Our H3/Γ has lots of such charts, because if x ∈ H3 has stabilizer
Γx and U is a sufficiently small open ball around x, then

U → U/Γx → H3/Γ

is an orbifold chart. An orbifold is a space locally modeled on a manifold mod-
ulo finite groups. Formally, an orbifold X is a hausdorff space covered by such
charts, with the compatibility condition that if x ∈ X lies in the image of charts
U → U/ΓU → X and U ′ → U ′/ΓU ′ → X then there are preimages v and v′ of x
in U and U ′ with neighborhoods V and V ′ preserved by ΓU,v and ΓU ′,v′ , an iso-
morphism ΓU,v

∼= ΓU ′,v′ and an equivariant isomorphism τV,V ′ between V and V ′

identifying v with v′. The group ΓU,v is called the local group at x, and the nature
of the isomorphisms τV,V ′ determines the nature of the orbifold. That is, if all the
τV,V ′ are homeomorphisms then X is a topological orbifold, if all are real-analytic
diffeomorphisms then X is a real-analytic orbifold, if all are hyperbolic isometries
then X is a hyperbolic orbifold, and so on. So H3/Γ is a hyperbolic orbifold. There
is a notion of orbifold universal cover which allows one to reconstruct H3 and its
Γ-action from the orbifold H3/Γ.
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Only in two dimensions is it easy to draw pictures of orbifold charts; here
they are for the quotient of the upper half-plane H2 by the group Γ generated by
reflections across the edges of the famous (π/2, π/3, π/∞) triangle.

mod out by Γ−→

Here are local orbifold charts around various points of H3/Γ:

For three-dimensional Coxeter groups essentially the same thing happens: the local
chart at a generic point of a wall is the quotient of a 3-ball by a reflection, and
along an edge it is the quotient of a 3-ball by a dihedral group. One needs to
understand the finite Coxeter groups in dimension 3 in order to understand the
folding at the vertices, but this is not necessary here.

We care about hyperbolic orbifolds because it turns out that moduli spaces
arising in algebraic geometry are usually orbifolds, and it happens sometimes that
such a moduli space happens to coincide with a quotient of hyperbolic space (or
complex hyperbolic space or one of the other symmetric spaces). So we can some-
times gain insight into the algebraic geometry by manipulating simple objects like
tilings of hyperbolic space.

Suppose a Lie group G acts properly on a smooth manifold X , with finite
stabilizers. (Properly means that each compact set K in X meets only “compactly
many” of its translates—that is, there exists a compact set in G such that if g ∈ G
lies outside it, then K ∩ gK = ∅. This is needed for the quotient space to be
Hausdorff.) Because G acts on the left, we write G\X for the quotient, which is an
orbifold by the following construction. For x ∈ X one can find a small transversal T
to the orbit G.x, which is preserved by the stabilizer Gx. Then T → Gx\T → G\X
gives an orbifold chart. In particular, the local group at the image of x in G\X
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is Gx. If X is real-analytic and G acts real-analytically then G\X is a real-analytic
orbifold.

Now we come to the case which concerns us. Let C be the set of binary sextics,
i.e., nonzero 2-variable homogeneous complex polynomials of degree 6, modulo
scalars, so C = CP 6. Let CR be the subset given by those with real coefficients,
C0 the smooth sextics (those with 6 distinct roots), and CR

0 the intersection. Then
G = PGL2C acts on C and C0 and GR = PGL2R acts on CR and CR

0 . The moduli
space M0 of smooth binary sextics is G\C0, of 3 complex dimensions. The real
moduli space MR

0 = GR\CR
0 is not the moduli space of 6-tuples in RP 1; rather it is

the moduli space of nonsingular 6-tuples in CP 1 which are preserved by complex
conjugation. This set has 4 components, MR

0,j being GR\CR
0,j, where j indicates the

number of pairs of conjugate roots. It turns out that G acts properly on C0, and
since the point stabilizers are compact algebraic subgroups of G they are finite;
therefore M0 is a complex-analytic orbifold and the MR

0,j are real-analytic orbifolds.
The relation with hyperbolic geometry begins with the following theorem:

Theorem 2. Let Γj be the group generated by the Coxeter group of Pj from (1) or
(3), together with the diagram automorphism when j = 1. Then MR

0,j is the orbifold
H3/Γj, minus the image therein of the walls corresponding to the blackened nodes
and the edges corresponding to triple bonds. Here, ‘is’ means an isomorphism of
real-analytic orbifolds.

In the second lecture we will see that the faces of the Pj corresponding to
blackened nodes and triple bonds are very interesting; we will glue the Pj together
to obtain a real-hyperbolic description of the entire moduli space.

References. The canonical references for hyperbolic geometry and an introduction
to orbifolds are Thurston’s notes [15] and book [16]. The book is a highly polished
treatment of a subset of the material in the notes, which inspired a great deal of
supplementary material, e.g., [4]. For other applications of hyperbolic geometry
to real algebraic geometry, see Nikulin’s papers [12] and [13], which among other
things describe moduli spaces of various sorts of K3 surfaces as quotients of Hn.

Lecture 2

We will not really provide a proof of Theorem 2; instead we will develop the ideas
behind it just enough to motivate the main construction leading to Theorem 4
below. Although Theorem 2 concerns smooth sextics, it turns out to be better to
consider mildly singular sextics as well. Namely, let Cs be the set of binary sextics
with no point of multiplicity 3 or higher, and let Δ ⊆ Cs be the discriminant,
so C0 = Cs − Δ. (For those who have seen geometric invariant theory, Cs is the
set of stable sextics, hence the subscript s.) It is easy to see that Δ is a normal
crossing divisor in Cs. (In the space of ordered 6-tuples in CP 1 this is clear; to
get the picture in Cs one mods out by permutations.) Now let Fs be the universal
branched cover of Cs, with ramification of order 6 along each component of the
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preimage of Δ. Fs turns out to be smooth and the preimage of Δ a normal crossing
divisor. More precisely, in a neighborhood of a point of Fs describing a sextic with
k double points, the map to Cs is given locally by

(z1, . . . , z6) 	→ (z6
1 , . . . , z

6
k, zk+1, . . . , z6) ,

where the branch locus is the union of the hypersurfaces z1 = 0, . . . , zk = 0. Let F0

be the preimage of C0 and let Γ be the deck group of Fs over Cs. We call an element
of Fs (resp. F0) a framed stable (resp. smooth) binary sextic. Geometric invariant
theory implies that G acts properly on Cs, and one can show that this G-action
lifts to one on Fs which is not only proper but free, so G\Fs is a complex manifold.
The reason we use 6-fold branching rather than some other sort of branching is
that in this case G\Fs has a nice description, given by the following theorem. See
the appendix for a sketch of the Hodge theory involved in the proof.

Theorem 3 (Deligne–Mostow [6]). There is a properly discontinuous action of Γ on
complex hyperbolic 3-space CH3 and a Γ-equivariant complex-manifold diffeomor-
phism g : G\Fs → CH3, identifying G\F0 with the complement of a hyperplane
arrangement H in CH3.

Complex hyperbolic space is like ordinary hyperbolic space except that it has
3 complex dimensions, and hyperplanes have complex codimension 1. There is an
upper-half space model analogous to the real case, but the most common model
for it is the (open) complex ball. This is analogous to the Poincaré ball model for
real hyperbolic space; we don’t need the ball model except to see that complex
conjugation of CH3, thought of as the complex 3-ball, has fixed-point set the real
3-ball, which is H3.

Given a framed stable sextic S̃, Theorem 3 gives us a point g(S̃) of CH3.
If S̃ lies in FR

0 (the preimage of CR
0 ), say over S ∈ CR

0 , then we can do better,
obtaining not just a point of CH3 but also a copy of H3 containing it. The idea
is that complex conjugation κ of C0 preserves S and lifts to an antiholomorphic
involution (briefly, an anti-involution) κ̃ of F0 that fixes S̃. This uses the facts
that F0 → C0 is a covering space and that π1(F0) ⊆ π1(C0) is preserved by κ.
Riemann extension extends κ̃ to an anti-involution of Fs. Since κ normalizes G’s
action on Cs, κ̃ normalizes G’s action on Fs, so κ̃ descends to an anti-involution κ′

of CH3 = G\Fs. Each anti-involution of CH3 has a copy of H3 as its fixed-point
set, so we have defined a map gR from FR

0 to the set of pairs

(x ∈ CH3, a copy of H3 containing x). (4)

Note that κ̃ fixes every point of FR
0 sufficiently near S̃, so all nearby framed real sex-

tics determine the same anti-involution κ′ of CH3. Together with the G-invariance
of g, this proves that gR is invariant under the identity component of GR. A closer
study of gR shows that it is actually invariant under all of GR. We write K0 for the
set of pairs (4) in the image gR(FR

0 ). An argument relating points of Cs preserved
by anti-involutions in G� (Z/2) to points of CH3 preserved by anti-involutions in
Γ�(Z/2) shows that if x ∈ FR

0 has image (g(x), H), then every pair (y ∈ H−H, H)
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also lies in K0. That is, K0 is the disjoint union of a bunch of H3’s, minus their in-
tersections with H. The theoretical content of Theorem 2 is that gR : GR\FR

0 → K0

is a diffeomorphism.
The computational part of Theorem 2 is the explicit description of K0, in

enough detail to understand M0 = G\FR
0 /Γ = K0/Γ concretely. It turns out that

Γ, H and the anti-involutions can all be described cleanly in terms of a certain
lattice Λ over the Eisenstein integers E = Z[ω=e2πi/3]. Namely, Λ is a rank 4 free
E-module with Hermitian form

〈a|a〉 = a0ā0 − a1ā1 − a2ā2 − a3ā3 . (5)

The set of positive lines in P (C1,3 = Λ ⊗E C) is a complex 3-ball (i.e., CH3),
Γ = PAut Λ, H is the union of the hyperplanes orthogonal to norm −1 elements
of Λ, and the anti-involutions of CH3 corresponding to the elements of K0 are
exactly

κ0 : (x0, x1, x2, x3) 	→ (x̄0, x̄1, x̄2, x̄3)

κ1 : (x0, x1, x2, x3) 	→ (x̄0, x̄1, x̄2,−x̄3)

κ2 : (x0, x1, x2, x3) 	→ (x̄0, x̄1,−x̄2,−x̄3)

κ3 : (x0, x1, x2, x3) 	→ (x̄0,−x̄1,−x̄2,−x̄3)

(6)

and their conjugates by Γ. We write H3
j for the fixed-point set of κj .

Since H3
0 , . . . , H

3
3 form a complete set of representatives for the H3’s com-

prising K0, we have

MR
0 = K0/Γ =

3∐
j=0

(H3
j −H)

/
(its stabilizer Γj in Γ)

Understanding the stabilizers Γj required a little luck. Vinberg devised an algo-
rithm for searching for a fundamental domain for a discrete group acting on Hn

that is generated by reflections [18]. It is not guaranteed to terminate, but if it
does then it gives a fundamental domain. We were lucky and it did terminate; the
reflection subgroup of Γj turns out to be the Coxeter group of the polyhedron Pj .

One can obtain our polyhedra by applying his algorithm to the Z-sublattices
of Λ fixed by each κj . For example, an element of the κ2-invariant part of Λ has
the form (a0, a1, a2

√
−3, a3

√
−3) with a0, . . . , a3 ∈ Z, of norm a2

0− a2
1− 3a2

2− 3a2
3.

Similar analysis leads to the norm forms

〈a|a〉 = a2
0 − a2

1 − a2
2 − a2

3

〈a|a〉 = a2
0 − a2

1 − a2
2 − 3a2

3

〈a|a〉 = a2
0 − a2

1 − 3a2
2 − 3a2

3

〈a|a〉 = a2
0 − 3a2

1 − 3a2
2 − 3a2

3

in the four cases of (6). Now, Γj lies between its reflection subgroup and the
semidirect product of this subgroup by its diagram automorphisms. After checking
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that the diagram automorphism of P1 lies in Γ1, the identification of the Γj is
complete.

The final part of Theorem 2 boils down to considering how the H3’s com-
prising K0 meet the hyperplanes comprising H. There is no big idea here; one just
works out the answer and writes it down. There are essentially two ways that the
H3 fixed by an anti-involution κ of Λ can meet a hyperplane r⊥, where r ∈ Λ has
norm −1. It might happen that κ(r) is proportional to r, in which case H3 ∩ r⊥

is a copy of H2; this accounts for the deleted walls of the Pj . It can also happen
that κ(r) ⊥ r, in which case H3 ∩ r⊥ is a copy of H1; this accounts for the deleted
edges.

Now, the deleted faces are very interesting, and the next step in our discus-
sion is to add them back in. By Theorem 3 we know that points of H represent
singular sextics, which occur along the boundary between two components of CR

0 .
For example,

Varying the remaining four points gives a family of singular sextics which lie in
the closures of both CR

0,0 and CR
0,1. This suggests reinstating the deleted walls of

P0 and P1 and gluing the reinstated wall of P0 to one of the reinstated walls of P1.
Which walls, and by what identification? There is really no choice here, because
H3

0 and H3
1 meet along an H2 that lies in H, namely the locus

{(a0, a1, a2, a3) ∈ C1,3 | a0, a1, a2 ∈ R and a3 = 0} .
This gives a rule for identifying the points of P0 and P1 that lie in this H2.

Carrying out the gluing visually is quite satisfying; we will draw the pictures
first and then worry about what they mean. We have indicated why P0 and P1

are glued; in a similar way, P1 and P2 are glued, as are P2 and P3. This uses up
all the gluing walls of the various H3

j /Γj because each has only two, except for
P0 and P3 which have one each. The j = 1 case is interesting because P1 has four
gluing walls, but H3

1/Γ1 has only two because the diagram automorphism of P1

exchanges them in pairs. So the gluing pattern is

P0 P1

/
(Z/2) P2 P3

(7)

Working with polyhedra is so much simpler than working with quotients of them
by isometries that we will carry out the gluing by assembling P1 and two copies
each of P0, P2 and P3, according to

P0

P0

P1

P2

P2

P3

P3

(8)
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and take the quotient of the result by the diagram automorphism.
We begin by assembling P1 and the copies of P0 and P2. This requires pictures

of the polyhedra. P0 appears in (2), and for the others we draw both 3-dimensional
and an overhead views.

P2

P1

As before, length markings refer to Euclidean, not hyperbolic, distances.
There is only one way to identify isometric faces in pairs, pictured in Figure 1.

We wind up with a square chimney with four bites taken out of the bottom, two of
radius 2 and two of radius

√
2. The result appears in Figures 2 and 3 in overhead

and 3-dimensional views.
It is time to attach the two copies of P3. We won’t use a “chimney” picture

of P3 because none of the four vertical walls in Figure 3 are gluing walls; rather,
the two gluing walls are the two small faces on the bottom. Happily, the region
bounded by one of these walls and the extensions across it of the three walls it
meets is a copy of P3. That is, P3 may be described as the interior of a hemisphere
of radius

√
2, intersected with a half-space bounded by a vertical half-plane and
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Figure 1. Overhead view of instructions for gluing P1 to two
copies of P0 and two copies of P2.

Figure 2. Overhead view of the result of gluing P1 to two copies
of P0 and two copies of P2.
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Figure 3. Three-dimensional view of the result of gluing P1 to
two copies of P0 and two copies of P2.

the exteriors of two hemispheres of radius 2:

The 3-dimensional picture shows a copy of P3 that fits neatly beneath one of
the bottom walls of Figure 3 (the back one). Adjoining it, and another copy of P3

in the symmetrical way, completes the gluing described in (8). The result appears
in Figures 4 and 5.
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Figure 4. Overhead view of the final result of gluing the poly-
hedra according to (8).

Figure 5. Three-dimensional view of the final result of gluing
the polyhedra according to (8).
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One can find its dihedral angles from our pictures; it is a Coxeter polyhedron
with diagram

This leads to our main result; we write ΓR for the group generated by this Coxeter
group and its diagram automorphism, and Q for H3/ΓR.

Theorem 4. We have MR
s
∼= Q = H3/ΓR, where “∼=” means the following:

(i) MR
s → Q is a homeomorphism;

(ii) MR
s → Q is an isomorphism of topological orbifolds if the orbifold structure

of Q is changed along the edges associated to triple bonds, by replacing the
dihedral group D6 of order 12 by Z/2 (see below);

(iii) MR
s → Q is an isomorphism of real-analytic orbifolds if Q is altered as in (ii)

and also along the loci where the Pj are glued together.

For the rest of the lecture we will focus on the perhaps-surprising subtlety
regarding the orbifold structures of MR

s and Q. We take FR
s to be the preimage of

CR
s , or equivalently the closure of FR

0 . Now, FR
s is not a manifold because of the

branching of the cover Fs → Cs. One example occurs at S̃ ∈ FR
s lying over a sextic

S ∈ CR
s with a single double point, necessarily real. In a neighborhood U of S, CR

s

is a real 6-manifold meeting the discriminant (a complex 5-manifold) along a real
5-manifold. A neighborhood of S̃ is got by taking a 6-fold cover of U , branched
along Δ. Therefore near S̃, FR

s is modeled on 12 half-balls of dimension 6 meeting
along their common 5-ball boundary. Here are pictures of the relevant parts of CR

s

and FR
s :

To get an orbifold chart around the image of S in MR
s , we take a small transversal

to GR.S and mod out by the stabilizer of S in GR, as explained in lecture 1. To
get an orbifold chart around the image of S̃ in GR\FR

s /Γ we do the following,
necessarily more complicated than before because FR

s isn’t a manifold. We choose
a transversal to GR.S̃, which is identified under g with a neighborhood of g(S̃) in
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the union X of six H3’s meeting along an H2. We take the quotient of X by the
stabilizer Z/6 of S̃ in Γ. The result is isometric to H3, and we take an open set in
this H3 as the domain for the orbifold chart, mapping to GR\FR

s /Γ by taking the
quotient of it by

(the simultaneous stabilizer of g(S̃) and X in Γ)
/

(Z/6) ,

which is exactly the stabilizer of S in GR. Identifying MR
s with GR\FR

s /Γ leads to
two orbifold charts around the same point. One can check that these charts define
the same topological orbifold structure but different real-analytic structures. This
leads to (iii) in Theorem 4.

A slightly different phenomenon leads to (ii). The second possibility for how
Δ meets CR

s is at a sextic S with two complex conjugate double points. Then in a
neighborhood U of S, Δ has two branches through S, meeting transversely. The
real 6-manifold CR

s meets Δ along a real 4-manifold lying in the intersection of
these two branches. Since Δ has two branches through S, there is not 6-to-1 but
36-to-1 branching near S̃ ∈ FR

s lying over S. It turns out that a neighborhood
Ũ of S̃ in FR

s may be taken to be the union of six real 6-balls meeting along a
common 4-ball, with each of the 6-balls mapping to U as a 6-to-1 cover branched
over the 4-ball. We get an orbifold chart around the image of S̃ in GR\FR

s /Γ
as follows. Choose a transversal to ΓR.S̃, which maps bijectively to its image in
CH3, which can be described as a neighborhood of g(S̃) in the union of six H3’s
meeting along an H1. Choose one of these H3’s and take the quotient of it by
the subgroup of Γ which carries both it and g(S̃) to themselves. Generically this
subgroup is D6, because of the Z/6 coming from the branching and the fact that
S has a Z/2 symmetry exchanging its double points. This gives an orbifold chart
U → U/D6 → GR\FR

s /Γ. (The idea also applies if S has more symmetry than the
generic Z/2.)

Now, this cannot be a valid description of the orbifold MR
s , because the

symmetry group of S is Z/2 and so the local group at the image of S in MR
s

should be Z/2 not D6. The problem is that the Z/6 coming from the branching is
an artifact of our construction. To eliminate it, we take the quotient of the chart
by the Z/6, obtaining a topological ball, and use this ball rather than the original
one as the domain for the orbifold chart, with local group D6

/
(Z/6) = Z/2. The

effect of this operation is to replace the orbifold chart

−→ by −→
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We may picture this as a smoothing of the crease:

becomes .

Therefore MR
s ’s topological orbifold structure can be completely visualized by tak-

ing the hyperbolic polyhedron in Figure 5 and smoothing two of its edges in this
manner.

Appendix

We will give a sketch of the Hodge theory behind Theorem 3 and then make a few
remarks.

Theorem 3 is due to Deligne and Mostow [6], building on ideas of Picard;
our approach is more explicitly Hodge-theoretic, along the lines of our treatment
of moduli of cubic surfaces in [1]. Let S ∈ C0 be a smooth binary sextic, defined
by F (x0, x1) = 0, and let C be the 6-fold cyclic cover of CP 1 defined in CP 2

by F (x0, x1) + x6
2 = 0, which is a smooth curve of genus 10. It has a 6-fold

symmetry σ : x2 → −ωx2, where ω is our fixed cube root of unity. Now, σ∗ acts
on H1(C; C), and its eigenspaces refine the Hodge decomposition because σ acts
holomorphically. One finds H1

ω(C; C) = H1,0
ω (C)⊕H0,1

ω (C), the summands having
dimensions 1 and 3 respectively. In fact, H1,0

ω (C) is generated by the residue of
the rational differential

(x0 dx1 ∧ dx2 + x1 dx2 ∧ dx0 + x2 dx0 ∧ dx1)x3
2

F (x0, x1) + x6
2

.

We remark that our construction really only uses the 3-fold cover of CP 1 rather
than the 6-fold cover, because we are working with the ω-eigenspace. We have used
the 6-fold cover because the residue calculus is less fussy in projective space than
in weighted projective space. See remark 9 for a comparison of the approaches
using the 3-fold and 6-fold covers.

The Hermitian form

〈α|β〉 = i
√

3
∫

C

α ∧ β̄ (9)

on H1(C; C) is positive-definite on H1,0 and negative-definite on H0,1. Therefore
H1,0

ω (C) ↪→ H1
ω(C; C) is an inclusion of a positive line into a Hermitian vector

space of signature (1, 3), i.e., a point of the complex 3-ball consisting of all such
lines in P (H1

ω(C; C)). The
√

3 in (9) is not very important; it makes the map Z
defined below be an isometry.



18 Daniel Allcock, James A. Carlson and Domingo Toledo

To identify this ball with a single fixed complex 3-ball we need an additional
structure, namely a choice of basis for the relevant part of H1(C; Z), that is suitably
compatible with σ. Let Λ(C) be the sublattice of H1(C; Z) where σ∗ has order 3,
together with the 0 element. Then Λ(C) is an E-module, with ω acting as σ∗. The
eigenspace projection

Z : Λ(C)⊗E C = Λ(C)⊗Z R→ H1
ω(C; C)

is an isomorphism of complex vector spaces. The E-module structure and the
intersection pairing Ω together define a Hermitian form on Λ(C), namely

〈x|y〉 = −Ω(θx, y) + θΩ(x, y)
2

,

where θ = ω−ω̄. This turns out to be a copy of Λ, the lattice from (5). A framing of
S is a choice of isometry φ : Λ(C)→ Λ, taken modulo scalars. (The term ‘marking’
is already taken, usually indicating an ordering of the six points of S.) It turns out
that Z is an isometry, so together with φ it identifies the ball in P (H1

ω(C; C)) with
the standard one, i.e., the one in P (C1,3 = Λ ⊗E C). This defines a holomorphic
map g : F0 → B3. One constructs an extension of the covering space F0 → C0

to a branched covering Fs → Cs and extends g to Fs; g is then the isomorphism
of Theorem 3. One can show (see, e.g., [1, Lemma 7.12]) that the monodromy
homomorphism π1(C0, S) → PAutΛ(C) is surjective, and it follows that F0 and
Fs are connected, with deck group Γ = PAut Λ, and that g is Γ-equivariant.

The reason that Fs → Cs has 6-fold branching along each component of the
preimage of Δ is that one can use [14] to work out the monodromy in PAut Λ of
a small loop encircling Δ at a general point of Δ; it turns out to have order 6.

We close with some remarks relevant but not central to the lectures.

Remark 1. We have treated moduli of unordered real 6-tuples in CP 1, which at
first might sound like only a slight departure from the considerable literature on
the hyperbolic structure on the moduli space of ordered 6-tuples in RP 1. Briefly,
Thurston [17, pp. 515–517] developed his own approach to Theorem 3, and de-
scribed a component of GR\

(
(RP 1)6 − Δ

)
as the interior of a certain polyhe-

dron in H3. Using hypergeometric functions, Yoshida [19] obtained essentially the
same result, described the tessellation of GR\

(
(RP 1)6 − Δ

)
by translates of this

open polyhedron, and discussed the degenerations of 6-tuples corresponding to the
boundaries of the components. See also [8] and [10]. The relation to our work is
the following: the space GR\

(
(RP 1)6−Δ

)
is the quotient of H3

0 −H by the level 3
principal congruence subgroup Γ0,3 of Γ0. A component C of H3

0 −H is a copy of
Thurston’s open polyhedron, its stabilizer in Γ0 is S3 × Z/2, and the quotient of
C by this group is the Coxeter orbifold P0, minus the wall corresponding to the
blackened node of the Coxeter diagram. There are |S6|/|S3 × Z/2| = 60 compo-
nents of GR\

(
(RP 1)6 −Δ

)
, permuted by S6. The S6 action is visible because the

κ0-invariant part of Λ is Z1,3, and Γ0/Γ0,3 acts on the F3-vector space Z1,3/3Z1,3.
Reducing inner products of lattice vectors modulo 3 gives a quadratic form on this
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vector space, and S6 happens to be isomorphic to the corresponding projective
orthogonal group.

In a similar way, one could consider the moduli space of ordered 6-tuples of
distinct points in CP 1 such that (say) points 1 and 2 are conjugate and points
3, . . . , 6 are all real. This moduli space is a quotient of H3

1 − H by a subgroup
of Γ1. Other configurations of points give quotients by subgroups of the other
Γj . It is only by considering unordered 6-tuples that one sees all four types of
6-tuples occurring together, leading to our gluing construction. One way that our
results differ from earlier ones is that the gluing leads to a nonarithmetic group
(see Remark 5 below), whereas the constructions using ordered 6-tuples lead to
arithmetic groups.

Remark 2. Γ has a single cusp in CH3, corresponding to the 6-tuple consisting of
two triple points; this is the unique minimal strictly semistable orbit in C (in the
sense of geometric invariant theory). The two cusps of ΓR correspond to the two
possible real structures on such a 6-tuple—the triple points can be conjugate, or
can both be real.

Remark 3. Part (ii) of Theorem 4 lets us write down the orbifold fundamental
group πorb

1 (MR
s ). The theory of Coxeter groups shows that the reflection subgroup

R of ΓR is defined as an abstract group by the relations that the six generating
reflections are involutions, and that the product of two has order n when the
corresponding walls meet at angle π/n. The modification of orbifold structures
amounts to setting two of the generators equal if their walls meet at angle π/6. This
reduces R to D∞ ×Z/2 where D∞ denotes the infinite dihedral group. Adjoining
the diagram automorphism gives πorb

1 (MR
s ) ∼= (D∞ × Z/2) � (Z/2), where the

Z/2 acts on D∞ ×Z/2 by exchanging the involutions generating D∞. This larger
group is also isomorphic to D∞ × Z/2, so we conclude πorb

1 (MR
s ) ∼= D∞ × Z/2.

This implies that MR
s is not a good orbifold in the sense of Thurston [16].

Remark 4. One can work out the volumes of the Pj by dissecting them into suitable
simplices, whose volumes can be expressed in terms of the Lobachevsky function
Λ(z). For background see [9] and [11]. The results are

j covolume(Γj) fraction of total

0 Λ(π/4)
/
6 = .07633... ∼ 8.66 %

1 15Λ(π/3)
/
16 = .31716... ∼ 36.01 %

2 5Λ(π/4)
/
6 = .38165... ∼ 43.33 %

3 5Λ(π/3)
/
16 = .10572... ∼ 12.00 %

These results suggest that Γ0 and Γ2 are commensurable, that Γ1 and Γ3 are
commensurable, and that these two commensurability classes are distinct. We
have verified these statements.

Remark 5. The group ΓR is nonarithmetic; this is suggested by the fact that we
built it by gluing together noncommensurable arithmetic groups in the spirit of
Gromov and Piatetski-Shapiro’s construction of nonarithmetic lattices in O(n, 1).
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(See [7].) Their results do not directly imply the nonarithmeticity of ΓR, so we
used 12.2.8 of [6]. That is, we computed the trace field of ΓR, which turns out to
be Q(

√
3), showed that ΓR is a subgroup of the isometry group of the quadratic

form diag[−1,+1,+1,+1] over Z[
√

3], and observed that the Galois conjugate of
this group is noncompact over R.

Remark 6. The anti-involutions (6) and their Γ-conjugates do not account for
all the anti-involutions of CH3 in Γ � (Z/2): there is exactly one more conjugacy
class. Pick a representative κ4 of this class and write H3

4 for its fixed-point set. The
points of H3

4 correspond to 6-tuples in CP 1 invariant under the non-standard anti-
involution of CP 1, which can be visualized as the antipodal map on the sphere
S2. A generic such 6-tuple cannot be defined by a sextic polynomial with real
coefficients, so it corresponds to no point of MR

0 , but it does represent a real point
of M0. One can show that the stabilizer Γ4 of H3

4 in Γ is the Coxeter group

and that the moduli space of such 6-tuples is H3
4/Γ4, with the edge corresponding

to the triple bond playing exactly the same role as before.

Remark 7. When discussing the gluing patterns (7) and (8) we did not specify
information such as which gluing wall of P2 is glued to the gluing wall of P3. It
turns out that there is no ambiguity because the only isometries between walls
of the Pj are the ones we used. But for the sake of explicitness, here are the
identifications. The gluing wall of P0 is glued to one of the top gluing walls of P1,
the gluing wall of P3 is glued to the left gluing wall of P2, and the other gluing
wall of P2 is glued to one of the bottom gluing walls of P1. The words ‘left’, ‘right’,
‘top’ and ‘bottom’ refer to the Coxeter diagrams (1) and (3), not to the pictures
of the polyhedra.

Remark 8. In these notes we work projectively, while in [3] we do not. This means
that our space C is analogous to the CP 19 of cubic surfaces in CP 3, which is the
projectivization of the space called C in [3], and similarly for the various versions
of F. The group in [3] analogous to G here is the projectivization of the group
called G there, and similarly for GR, Γ, Γj and ΓR.

Remark 9. As mentioned above, our treatment of the Hodge theory uses the 6-
fold cover when the 3-fold cover would do; in [2] we used just the 3-fold cover,
and the translation between the approaches deserves some comment. There, a 6-
tuple is described by a sextic polynomial f(x, y), Xf is the 3-fold cover of CP 1

branched over it, namely the zero-locus of f(x, y) + z3 = 0 in the weighted pro-
jective space CP 1,1,2, σ acts by z 	→ ωz, and the period map is defined by the
inclusion H1,0

ω̄ (Xf ) → H1
ω̄(Xf ; C). Because we use σ in a different way, we write

σ[2] for the σ of [2]. Now, the pairs (Xf , σ[2]) and (C/〈σ3〉, σ−1) are isomorphic,
where the last σ indicates the induced action of σ on C/〈σ3〉. The isomorphism is
just x = x0, y = x1, z = x2

2. This identification gives

H1
σ[2]=ω̄(Xf ; C) = H1

σ=ω(C/〈σ3〉; C) = H1
σ=ω(C; C) .
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Gauss’ Hypergeometric Function

Frits Beukers

Abstract. We give a basic introduction to the properties of Gauss’ hypergeo-
metric functions, with an emphasis on the determination of the monodromy
group of the Gaussian hypergeometric equation.

Keywords. Gauss hypergeometric function, monodromy, triangle group.

1. Definition, first properties

Let a, b, c ∈ R and c �∈ Z≤0. Define Gauss’ hypergeometric function by

F (a, b, c|z) =
∑ (a)n(b)n

(c)nn!
zn. (1)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x + 1) · · ·
· (x + n− 1). The radius of convergence of (1) is 1 unless a or b is a non-positive
integer, in which cases we have a polynomial.

Examples.

(1− z)−a = F (a, 1, 1|z)

log
1 + z

1− z
= 2zF (1/2, 1, 3/2|z2)

arcsin z = zF (1/2, 1/2, 3/2|z2)

K(z) =
π

2
F (1/2, 1/2, 1, z2)

Pn(z) = 2nF (−n, n + 1, 1|(1 + z)/2)
Tn(z) = (−1)nF (−n, n, 1/2|(1 + z)/2).

Here K(z) is the Jacobi’s elliptic integral of the first kind given by

K(z) =
∫ 1

0

dx√
(1 − x2)(1 − z2x2)

.
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The polynomials Pn, Tn given by Pn = (1/n!)(d/dz)n(1 − z2)n and Tn(cos z) =
cos(nz) are known as the Legendre and Chebyshev polynomials respectively. They
are examples of orthogonal polynomials.

One easily verifies that (1) satisfies the linear differential equation

z(D + a)(D + b)F = D(D + c− 1)F, D = z
d

dz
.

Written more explicitly,

z(z − 1)F ′′ + ((a + b + 1)z − c)F ′ + abF = 0. (2)

There exist various ways to study the analytic continuation of (1), via Euler
integrals, Kummer’s solutions and Riemann’s approach. The latter will be dis-
cussed in later sections. The Euler integral reads

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)c−b−1(1− tz)−adt (c > b > 0)

and allows choices of z with |z| > 1. The restriction c > b > 0 is included to ensure
convergence of the integral at 0 and 1. We can drop this condition if we take the
Pochhammer contour γ given by

0 1

X

Y

as integration path. Notice that the integrand acquires the same value after ana-
lytic continuation along γ.

It is a straightforward exercise to show that for any b, c− b �∈ Z we have

F (a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)
1

(1− e2πib)(1− e2πi(c−b))

∫
γ

tb−1(1−t)c−b−1(1−tz)−adt.

Kummer gave the following 24 solutions to (2):

F (a, b, c|z)
= (1− z)c−a−bF (c− a, c− b, c|z)
= (1− z)−aF (a, c− b, c|z/(z − 1))

= (1− z)−bF (a− c, b, c|z/(z − 1)),
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z1−cF (a− c + 1, b− c + 1, 2− c|z)
= z1−c(1− z)c−a−bF (1 − a, 1− b, 2− c|z)
= z1−c(1− z)c−a−1F (a− c + 1, 1− b, 2− c|z/(z − 1))

= z1−c(1− z)c−b−1F (1− a, b− c + 1, 2− c|z/(z − 1)),

F (a, b, a + b− c + 1|1− z)
= x1−cF (a− c + 1, b− c + 1, a + b− c + 1|1− z)
= z−aF (a, a− c + 1, a + b− c + 1|1− 1/z)

= z−bF (b − c + 1, b, a+ b− c + 1|1− 1/z),

(1− z)c−a−bF (c− a, c− b, c− a− b + 1|1− z)

= (1− z)c−a−bz1−cF (1− a, 1− b, c− a− b + 1|1− z)

= (1− z)c−a−bza−cF (1− a, c− a, c− a− b + 1|1− 1/z)

= (1− z)c−a−bzb−cF (c− b, 1− b, c− a− b + 1|1− 1/z),

z−aF (a, a− c + 1, a− b + 1|1/z)
= z−a(1 − 1/z)c−a−bF (1− b, c− b, a− b + 1|1/z)
= z−a(1 − 1/z)c−a−1F (a− c + 1, 1− b, 2− c|1/(1− z))
= z−a(1 − 1/z)−aF (a, c− b, a− b + 1|1/(1− z)),

z−bF (b, b− c + 1, b− a + 1|1/z)
= z−b(1 − 1/z)c−a−bF (1− a, c− a, b− a + 1|1/z)
= z−b(1 − 1/z)c−b−1F (b− c + 1, 1− a, 2− c|1/(1− z))

= z−b(1 − 1/z)−bF (b, c− a, b− a + 1|1/(1− z)).

Strictly speaking, the above six 4-tuples of functions are only distinct when c,
c − a − b, a− b �∈ Z. If one of these numbers is an integer we find that there are
other solutions containing logarithms. For example, when c = 1 we find that z1−c

becomes log z and a second solution near z = 0 reads

(log z)F (a, b, 1|z) +
∞∑

n=1

(a)n(bn)
(n!)2

zn

[
n∑

k=1

(
1

a + k − 1
+

1
b + k − 1

− 2
k

)]
.

Notice that this solution can be obtained by taking the difference of solutions
z1−cF (a − c + 1, b − c + 1, 2 − c|z) − F (a, b, c|z), divide it by c − 1 and take the
limit as c→ 1.

Later it will turn out that Riemann’s approach to hypergeometric functions
gives a remarkably transparent insight into these formulas as well as the quadratic
transformations of Kummer and Goursat.

Examples of such transformations are

F (a, b, a + b + 1/2|4z − 4z2) = F (2a, 2b, a+ b + 1/2|z)
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and
F (a, b, a + b + 1/2|z2/(4z − 4)) = (1− z)aF (2a, a + b, 2a+ 2b|z).

Finally we mention the 6 contiguous functions

F (a± 1, b, c|z), F (a, b± 1, c|z), F (a, b, c± 1|z).
Gauss found that F (a, b, c|z) and any two contiguous functions satisfy a linear re-
lation with coefficients which are linear polynomials in z or constants, for example,

(c− a)F (a− 1, b, c|z)+ (2a− c− az + bz)F (a, b, c|z)+ a(z − 1)F (a+ 1, b, c|z) = 0.

Notice also that F ′(a, b, c|z) = (ab/c)F (a + 1, b + 1, c + 1|z). These observations
are part of the following theorem.

Theorem 1.1. Suppose a, b �≡ 0, c (mod Z) and c �∈ Z. Then any function F (a+ k,
b + l, c + m|z) with k, l,m ∈ Z equals a linear combination of F, F ′ with rational
functions as coefficients.

Proof. One easily verifies that

F (a + 1, b, c|z) =
1
a
(z

d

dz
+ a)F (a, b, c|z)

F (a− 1, b, c|z) =
1

c− a
(z(1− z)

d

dz
− bz + c− a)F (a, b, c|z)

and similarly for F (a, b + 1, c|z), F (a, b− 1, c|z). Furthermore,

F (a, b, c + 1|z) =
c

(c− a)(c− b)
(z(1− z)

d

dz
+ c− a− b)F (a, b, c|z)

F (a, b, c− 1|z) =
1

c− 1
(z

d

dz
+ c− 1)F (a, b, c|z).

Hence there exists a linear differential operator Lk,l,m ∈ C(z)[ d
dz ] such that F (a+

k, b + l, c + m|z) = Lk,l,mF (a, b, c|z). Since F satisfies a second order linear dif-
ferential equation, Lk,l,mF can be written as a C(z)-linear combination of F and
F ′. �

In general we shall call any function F (a + k, b + l, c+ m|z) with k, l,m ∈ Z
contiguous with F (a, b, c|z). Thus we see that, under the assumptions of Theorem
1.1, any three contiguous functions satisfy a C(z)-linear relation.

For many more identities and formulas we refer to [AS] and [E].

2. Ordinary linear differential equations, local theory

Consider the linear differential equation of order n,

y(n) + p1(z)y(n−1) + · · ·+ pn−1(z)y′ + pn(z)y = 0, (3)

where the pi are analytic in a neighbourhood of z = 0, except for a possible pole at
0. In this section we recall, without proof, a number of facts from the local theory
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of ordinary linear differential equations. Most of it can be found in standard text
books such as Poole, Ince, Hille.

Lemma 2.1 (Wronski). Let f1, . . . , fm be meromorphic functions on some open
subset G ⊂ C. There exists a C-linear relation between these function if and only
if W (f1, . . . , fm) = 0, where

W (f1, . . . , fm) =

∣∣∣∣∣∣∣∣∣
f1 . . . fm

f ′
1 . . . f ′

m
...

...
f

(m−1)
1 . . . f

(m−1)
m

∣∣∣∣∣∣∣∣∣
is the Wronskian determinant of f1, . . . , fm.

If z = 0 is not a pole of any pi, it is called a regular point of (3), otherwise it
is called a singular point of (3). The point z = 0 is called a regular singularity if
pi has a pole of order at most i for i = 1, . . . , n.

Theorem 2.2 (Cauchy). Suppose 0 is a regular point of (3). Then the vector space
of solutions of (3) is spanned by n C-linear independent Taylor series solutions
f1, . . . , fn in z with positive radius of convergence.
Moreover, the fi can be chosen such that fi(z)/zi−1 has a non-zero limit as z → 0
for i = 1, 2, . . . , n.
Finally, the Wronskian determinant W (f1, . . . , fn) satisfies the equation W ′ =
−p1(z)W .

As an important remark we note that it may happen that there is a basis of
holomorphic solutions near z = 0 but 0 may still be a singular point. In that case
we call 0 an apparent singularity. An example is given by the differential equation
(D−1)(D−3)y = 0 which obviously has the holomorphic solutions z, z3. However,
working (D − 1)(D − 3)y = 0 out, we find y′′ − 3

z y
′ + 3

z2 y = 0, hence z = 0 is a
singularity. However, we do have the following theorem which we shall repeatedly
apply.

Theorem 2.3. Suppose there exists a basis of power series solutions f1, . . . , fn such
that fi/z

i−1 has a non-zero limit as z → 0 for i = 1, . . . , n. Then z = 0 is a regular
point.

Suppose that z = 0 is regular or a regular singularity. We can rewrite (3) by
multiplication with zn and using the rule zr(d/dz)r = D(D − 1) · · · (D − r + 1)
where D = z d

dz . We obtain

Dny + q1(z)Dn−1y + · · ·+ qn−1(z)Dy + qn(z)y = 0. (4)

The condition of regular singularity sees to it that the functions qi(z) are holo-
morphic near z = 0. The indicial equation of (3) at z = 0 is defined as

Xn + q1(0)Xn−1 + · · ·+ qn−1(0)X + qn(0) = 0.
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Suppose we introduce a local parameter t at 0 given by z = c1t+ c2t
2 + c3t

3 + · · ·
with c1 �= 0. The differential equation can be rewritten in the new variable t. We
obtain, writing Dt = t d

dt ,

Dn
t y + q̃1(t)Dn−1

t y + · · ·+ q̃n−1(t)Dty + q̃n(t)y = 0,

with new functions q̃i(t) holomorphic at t = 0.
One can show that q̃i(0) = qi(0) for i = 1, . . . , n, hence the indicial equation

does not depend on the choice of local parameter at 0. The roots of the indicial
equation are called the local exponents at z = 0.

Remark 2.4. Notice that if we replace y by zμw, the differential equation for w
reads

(D + μ)nw + q1(z)(D + μ)n−1w + · · ·+ qn−1(z)(D + μ)w + qn(z)w = 0.

In particular, the local exponents all decreased by μ.

Remark 2.5. Show that the local exponents at a regular point read 0, 1, . . . , n− 1.
Theorem 2.3 can be rephrased by saying that if there is a basis of holomorphic
solutions around z = 0, and if the local exponents are 0, 1, . . . , n− 1, then z = 0
is a regular point of (3).

In the following theorem we shall consider expressions of the form zA where
A is a constant n× n matrix. This is short hand for

zA = exp(A log z) =
∑
k≥0

1
k!
Ak(log z)k.

In particular zA is an n×n matrix of multivalued functions around z = 0. Examples
are,

z

0
@1/2 0

0 −1/2

1
A

=
(
z1/2 0
0 z−1/2

)
, z

0
@0 1

0 0

1
A

=
(

1 log z
0 1

)
.

Theorem 2.6 (Fuchs). Let z = 0 be a regular singularity of (3). Let ρ be a local
exponent at 0 such that none of the numbers ρ + 1, ρ + 2, . . . is a local exponent.
Then there exists a holomorphic power series g(z) with non-zero constant term
such that zρg(z) is a solution of (3).

Let ρ1, . . . , ρn be the set of local exponents ordered in such a way that ex-
ponents which differ by an integer occur in decreasing order. Then there exists
a nilpotent n × n matrix N , and functions g1, . . . , gn, analytic near z = 0 with
gi(0) �= 0, such that (zρ1g1, . . . , z

ρngn)zN is a basis of solutions of (3). Moreover,
Nij �= 0 implies i �= j and ρi − ρj ∈ Z≥0.

Example 2.7. Consider the linear differential equation

(z3 + 11z2 − z)y′′ + (3z2 + 22z − 1)y′ + (z + 3)y = 0.

The local exponents at z = 0 are 0, 0, and a basis for the local solutions is given
by

f1(z) = 1 + 3z + 19z2 + 147z3 + 1251z4 + · · ·
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f2(z) = f1(z) log z + 5z +
75
2
z2 +

1855
6

z3 +
10875

4
z4 + · · · .

3. Fuchsian linear differential equations

Consider the linear differential equation

y(n) + p1(z)y(n−1) + · · ·+ pn−1(z)y′ + pn(z)y = 0, pi(z) ∈ C(z). (5)

To study this differential equation near any point P ∈ P1 we choose a local
parameter t ∈ C(z) at this point (usually t = z − P if P ∈ C and t = 1/z if
P =∞), and rewrite the equation with respect to the new variable t. We call the
point P a regular point or a regular singularity if this is so for the equation in t
at t = 0. It is not difficult to verify that a point P ∈ C is regular if and only if
the pi have no pole at P . It is a regular point or a regular singularity if and only
if limz→P (z − P )ipi(z) exists for i = 1, . . . , n. The point ∞ is regular or a regular
singularity if and only if limz→∞ zipi(z) exists for i = 1, . . . , n.

Let P ∈ P1 be any point which is regular or a regular singularity. Let t be
a local parameter around this point and rewrite the equation with respect to the
variable t. The corresponding indicial equation will be called the indicial equation
of (5) at P . The roots of the indicial equation at P are called the local exponents
of (5) at P .

As a shortcut to compute indicial equations we use the following lemma.

Lemma 3.1. Let P ∈ C be a regular point or regular singularity of (5). Let

ai = lim
z→P

(z − P )ipi(z)

for i = 1, . . . , n. The indicial equation at P is given by

X(X − 1) · · · (X − n + 1) + a1X(X − 1) · · · (X − n + 2) + · · ·+ an−1X + an = 0.

When ∞ is regular or a regular singularity, let ai = limz→∞ zipi(z) for i =
1, . . . , n. The indicial equation at ∞ is given by

X(X + 1) · · · (X + n− 1)− a1X(X + 1) · · · (X + n− 2) + · · ·
+(−1)n−1an−1X + (−1)nan = 0.

Proof. Exercise. �

From Cauchy’s theorem of the previous section follows automatically

Theorem 3.2 (Cauchy). Suppose P ∈ C is a regular point of (5). Then there exist
n C-linear independent Taylor series solutions f1, . . . , fn in z − P with positive
radius of convergence. Moreover, any Taylor series solution of (5) is a C-linear
combination of f1, . . . , fn.

Corollary 3.3. Any analytic solution of (5) near a regular point can be continued
analytically along any path in C not meeting any singularity.
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Let S be the set of singularities of (5) and let z0 ∈ P1 \ S. Let f1, . . . , fn

be an independent set of analytic solutions around z0. Let γ ∈ π1(P1 \ S, z0). Af-
ter analytic continuation of f1, . . . , fn along γ we obtain continuations f̃1, . . . , f̃n,
which are again solutions of our equation. Hence there exists a square matrix
M(γ) ∈ GL(n,C) such that (f̃1, . . . , f̃n)t = M(γ)(f1, . . . , fn)t. The map ρ :
π1(P1 \ S) → GL(n,C) given by ρ : γ 	→ M(γ) is a group homomorphism and
its image is called the monodromy group of (3). Notice also that after analytic
continuation along γ we have W (f1, . . . , fn)→ det(M(γ))W (f1, . . . , fn).

Definition 3.4. The equation (5) is called Fuchsian if all points on P1 are regular
or a regular singularity.

Theorem 3.5 (Fuchs’ relation). Suppose (5) is a Fuchsian equation. Let ρ1(P ), . . .,
ρn(P ) the set of local exponents at any P ∈ P1. Then,∑

P∈P1

(ρ1(P ) + · · ·+ ρn(P )−
(
n

2

)
) = −2

(
n

2

)
.

Since the local exponents at a regular point are always 0, 1, . . . , n − 1, the
terms in the summation are zero when P is a regular point. So, in fact, the sum-
mation in this theorem is a finite sum.

Proof. From the explicit shape of the indicial equations, given in the Lemma above,
we infer that for P ∈ C,

ρ1(P ) + · · ·+ ρn(P ) =
(
n

2

)
− resP (p1(z)dz)

and

ρ1(∞) + · · ·+ ρn(∞) = −
(
n

2

)
− res∞(p1(z)dz).

Substract
(
n
2

)
on both sides and add over all P ∈ P1. Using the fact that∑

P∈P1 resP (p1(z)dz) = 0 yields our theorem. �

The hypergeometric equation (1) is an example of a Fuchsian equation. Its
singularities are 0, 1,∞, and the local exponents are given by the following scheme
(Riemann scheme):

0 1 ∞
0 0 a

1− c c− a− b b

It also turns out that Fuchsian equations with three singular points can be
characterised easily.

Theorem 3.6. Let A,B,C ∈ P1 be distinct points. Let α, α′, β, β′, γ, γ′ be any
complex numbers which satisfy α + α′ + β + β′ + γ + γ′ = 1. Then there exists
a unique Fuchsian equation of order two with rational function coefficients, no
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singularities other than A,B,C and having local exponents given by the following
Riemann scheme:

A B C
α β γ
α′ β′ γ′

Proof. Exercise. �

The solutions of this Fuchsian equation are related to the hypergeometric
function as follows. Via a Möbius transformation we can map A,B,C to any three
distinct points of P1. Let us take the mapping A,B,C → 0, 1,∞. So we have to
deal with the Fuchsian equation having Riemann scheme

0 1 ∞
α β γ
α′ β′ γ′

If we multiply the solutions of the latter equation by zμ we obtain a set of functions
that satisfy the Fuchsian equation with Riemann scheme

0 1 ∞
α + μ β γ − μ
α′ + μ β′ γ′ − μ

A fortiori, after multiplication of the solutions with z−α′
(1 − z)−β′

we obtain a
Fuchsian equation with a scheme of the form

0 1 ∞
α′′ β′′ γ′′

0 0 1− α′′ − β′′ − γ′′

This scheme corresponds to a hypergeometric equation with suitable parameters.
The 24 solutions of Kummer can now be characterised very easily. Suppose we
apply the above procedure to the hypergeometric equation itself. There exist 6
ways to map the set {0, 1,∞} to itself. Having chosen such a map, there exist four
ways to multiply by z−λ(1 − z)−μ since there are four choices for the pair (λ,μ)
of local exponents at 0 and 1. Choose the hypergeometric function (with suitable
parameters) as a solution of the final equation, then we obtain the 4 × 6 = 24
solutions given by Kummer.

It is also very simple to prove for example the quadratic relation

F (a, b, a + b + 1/2|t2/(4t− 4)) = (1− t)aF (2a, a + b, 2a+ 2b|t).
Substitute z = t2/(4t−4) in the hypergeometric equation with parameters a, b, a+
b + 1/2, then we obtain a new Fuchsian equation. The map t → z = t2/(4t − 4)
ramifies above 0, 1 in t = 0, 2 respectively. Above z = 1 we have the point t = 2,
above z = 0 the point t = 0 and above z =∞ the two points t = 1,∞. Notice that
our equation has local exponents 0, 1/2 in z = 1. Hence the new equation has local
exponents 0, 1 in t = 2, with regular solutions, and t = 2 turns out to be a regular
point. At t = 0 we get the local exponents 0, 2(1/2− a − b) and in t = 1,∞, the
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points above z =∞, we have the local exponents a, b and a, b. Thus our equation
in t has again three singular points and Riemann scheme

0 1 ∞
0 a a

1− 2a− 2b b b

By the method sketched above, one easily sees that (1− t)aF (2a, a+b, 2a+2b|t) is
a solution of this equation. Moreover, this is the unique (up to a constant factor)
solution holomorphic near t = 0. At the same time F (a, b, a+ b+ 1/2|t2/(4t− 4))
is a solution, and by the uniquess equality follows.

Example 3.7. In a similar way one can show the equality

F (a, b, a + b + 1/2|4z − 4z2) = F (2a, 2b, a+ b + 1/2|z).
3.8. Monodromy of the hypergeometric function

Let us now turn to the monodromy of the hypergeometric equation. Consider the
three loops g0, g1, g∞ which satisfy the relation g0g1g∞ = 1.

0 1

z0

X

Y

We denote the corresponding monodromy matrices by M0,M1,M∞. They
also satisfy M0M1M∞ = 1, and M0,M∞ generate the monodromy group. Since the
local exponents at 0, 1,∞ are 0, 1−c, 0, c−a−b and a, b respectively, the eigenvalues
of the matrices M0,M1 and M∞ are 1, exp(2πi(1− c)), 1, exp(2πi(c− a− b)) and
exp(2πia), exp(2πib) respectively. The monodromy group can be considered as
being generated by M0,M∞, and we know that M∞M0 = M−1

1 has eigenvalue 1.
This scant information already suffices to draw some important conclusions.

Lemma 3.9. Let A,B ∈ GL(2,C). Suppose that AB−1 has eigenvalue 1. Then
there exists a common eigenvector of A,B if and only if A,B have a common
eigenvalue.

Proof. Notice that ker(A − B) has dimension at least 1. If the dimension were
2 we would have A = B and our lemma would be trivial. So we can assume
dim(ker(A− B)) = 1. In this proof we let v ∈ ker(A−B), v �= 0.
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Suppose there exists a common eigenvector, w say, of A,B with eigenvalues
λA, λB . If these eigenvalues are equal, we are done. Suppose they are not equal.
Then w, v span C2. Choose α, β such that Av = αv + βw. Since Av = Bv we also
have Bv = αv + βw. Hence with respect to the basis v, w the matrices of A,B
read (

α β
0 λA

) (
α β
0 λB

)
Hence they have the common eigenvalue α.

Suppose A,B have a common eigenvalue λ. If v is an eigenvectore of A, we
are done, since Av = Bv implies that it is also an eigenvector of B. So suppose
v is not an eigenvector of A. Consider the vector w = (A − λ)v. Since A − λ has
non-trivial kernel, we have < w >C= (A−λ)C2. In particular, (A−λ)w is a scalar
multiple of w, i.e., w is an eigenvector of A. We also have w = (B − λ)v and a
similar argument shows that w is an eigenvector of B. Hence A,B have a common
eigenvector. �

Corollary 3.10. The monodromy group of (2) acts reducibly on the space of solu-
tions if and only if at least one of the numbers a, b, c− a, c− b is integral.

Proof. This follows by application of the previous lemma to the case A = M∞, B =
M−1

0 . Since M−1
1 = M∞M0, the condition that AB−1 has eigenvalue 1 is fullfilled.

Knowing the eigenvalues of M0,M∞ one easily checks that equality of eigenvalues
comes down to the non-empty intersection of the sets {0, c} and {a, b} considered
modulo Z. �

Definition 3.11. A hypergeometric equation is called reducible if its monodromy
group is reducible. A hypergeometric equation is called abelian if its monodromy
group is abelian.

Typical examples of abelian equations are (2) with a = c = 0 having solutions
1, (1 − z)−(b+1) and a = b = 1, c = 2 having solutions 1/z, log(1 − z)/z. Here is a
simple necessary condition for abelian equations, which has the pleasant property
that it depends only on a, b, c(mod Z):

Lemma 3.12. If (2) is abelian, then at least two of the numbers a, b, c− a, c− b are
integral.

Proof. Abelian monodromy implies reducibility of the monodromy, hence at least
one of the four numbers is integral. Let us say a ∈ Z, the other cases can be dealt
with similarly. It suffices to show that in at least one of the points 0, 1,∞ the local
exponent difference of (2) is integral. Then clearly, 1 − c ∈ Z implies c − a ∈ Z,
c− a− b ∈ Z implies c− b ∈ Z and a− b ∈ Z implies b ∈ Z.

Suppose that all local exponent differences are non-integral. In particular
the eigenvalues of each of the generating monodromy elements M0,M1,M∞ are
distinct. Then abelian monodromy implies that the monodromy group acts on
the solution space in a completely reducible way as a sum of two one-dimensional
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representations. In particular the generators of these representations are functions
of the form

zλ(1− z)μq(z) zλ′
(1− z)μ′

p(z)
where p(z), q(z) are polynomials with the property that they do not vanish at
z = 0 or 1. The local exponents can be read off immediately, λ, λ′ at 0, μ, μ′ at
1 and −λ − μ − deg(q),−λ′ − μ′ − deg(p) at ∞. The sum of the local exponents
must be 1, hence − deg(p)− deg(q) = 1. Clearly this is a contradiction. �

Lemma 3.13. Suppose that A,B ∈ GL(2,C) have disjoint sets of eigenvalues and
suppose that AB−1 has eigenvalue 1. Then, letting X2+a1X+a2 and X2+b1X+b2
be the characteristic polynomials of A,B, we have up to common conjugation,

A =
(

0 −a2

1 −a1

)
, B =

(
0 −b2
1 −b1

)
.

Proof. Choose v ∈ ker(A − B) and w = Av = Bv. Since A,B have disjoint
eigenvalue sets, v is not an eigenvector of A and B. Hence w, v form a basis of
C2. With respect to this basis A,B automatically obtain the form given in our
Lemma. �

Corollary 3.14. Suppose that (2) is irreducible. Then, up to conjugation, the mon-
odromy group depends only on the values of a, b, c modulo Z.

Let us now assume that a, b, c ∈ R, which is the case most frequently studied.
The eigenvalues of M0,M1,M∞ then lie on the unit circle.

Definition 3.15. Let R,S be two disjoint finite subsets of the unit circle of equal
cardinality. The sets R,S are said to interlace if every segment on the unit circle,
connecting two points of R, contains a point of S.

Lemma 3.16. Let A,B be non-commuting elements of GL(2,C). Suppose that the
eigenvalues of A,B have absolute value 1 and that AB−1 has eigenvalue 1. Let
G be the group generated by A,B. Then there exists a unique (up to a constant
factor) non-trivial hermitian form F on C2 such that F (g(x), g(y)) = F (x, y) for
every g ∈ G and every pair x, y ∈ C2. Moreover,

F degenerate ⇐⇒ A,B have common eigenvalues.

Supposing A,B have disjoint eigenvalue sets, we have, in addition,

F definite ⇐⇒ eigenvalues of A,B interlace

F indefinite ⇐⇒ eigenvalues of A,B do not interlace.
We call these three cases the euclidean, spherical and hyperbolic case respectively.

Proof. Let v ∈ ker(A − B) and w = Av. Suppose first that v, w form a basis
of C2. Of course, with respect to this basis A and B have the form given in the
previous lemma. In particular we see that A,B cannot have the same characteristic
equation, since this would imply that A = B.
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We have to find a hermitean form F such that

F (gv, gv) = F (v, v), F (gv, gw) = F (v, w),
F (gw, gv) = F (w, v), F (gw, gw) = F (w,w),

for every g ∈ G. It suffices to take g = A,B. Let X2 +a1X +a2 and X2 + b1X + b2
be the characteristic polynomials of A,B. Since the roots are on the unit circle we
have a2ā2 = 1, a2ā1 = a1 and similarly for b1, b2.

Let us first take g = A. Then F (Av,Av) = F (v, v) implies

F (w,w) = F (v, v).

The conditions F (Av,Aw) = F (v, w) and F (Aw,Av) = F (w, v) imply F (w,A2v)
= F (v, w) and F (A2v, w) = F (w, v). Hence, using A2 = −a1A− a2,

−ā1F (w,w) − ā2F (w, v) = F (v, w) (6)
−a1F (w,w) − a2F (v, w) = F (w, v). (7)

Because of the relations a2 = ā−1
2 and a2ā1 = a1 these equations are actually the

same. The condition F (Aw,Aw) = F (w,w) yields F (A2v,A2v) = F (w,w) and
hence

|a1|2F (w,w) + a1ā2F (w, v) + ā1a2F (v, w) + |a2|2F (v, v) = F (w,w).

Using |a2|2 = 1, a2ā1 = a1 and F (w,w) = F (v, v) this is equivalent to

a1ā1F (w,w) + a1ā2F (w, v) + a1F (v, w) = 0,

which is precisely (6) times a1. Hence A-invariance of F is equivalent to

F (v, v) = F (w,w), F (w, v) + a1F (w,w) + a2F (v, w) = 0.

Invariance of F with respect to B yields the additional condition

F (w, v) + b1F (w,w) + b2F (v, w) = 0.

Since A and B do not have the same characteristic equation the solutionspace for
F is one-dimensional. When a2 = b2, a solution is given by

F (w,w) = F (v, v) = 0, F (w, v) = (−a2)1/2, F (v, w) = (−a2)−1/2,

when a2 �= b2, a solution is given by

F (w,w) = F (v, v) = 1, F (w, v) = ε, F (v, w) = ε̄, ε =
a1 − b1
b2 − a2

.

We formally take ε = ∞ if a2 = b2. In both cases cases we see that F is definite,
degenerate, indefinite according to the conditions |ε| < 1, |ε| = 1, |ε| > 1 respec-
tively. It now a straightforward excercise to see that these inequalities correspond
to interlacing, coinciding or non-interlacing of the eigenvalues of A and B.

We are left with the case when v is an eigenvector of A and B. Let α be the
eigenvalue. If both A and B have only eigenvalues α, they automatically commute,
which case is excluded. So either A or B has an eigenvalue different from α. Let us
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say that A has the distinct eigenvalues α, α′. Let w be an eigenvector corresponding
to α′. Then, with respect to v, w the matrix of B must have the form(

α b12
0 β

)
.

with b12 �= 0. It is now straightforward to verify that
(

0 0
0 1

)
is the unique invari-

ant hermitean matrix. Moreover it is degenerate, which it should be as A,B have
a common eigenvector. �

Definition 3.17. With the assumptions as in the previous lemma let G be the group
generated by A and B. Then G is called hyperbolic, euclidean, spheric if F is
indefinite, degenerate, definite respectively.

Corollary 3.18. Let {x} denote the fractional part of x (x minus largest integer
≤ x). Suppose that (2) is irreducible. Let F be the invariant hermitean form for
the monodromy group. In particular, the sets {{a}, {b}} and {0, {c}} are disjoint.
If {c} is between {a} and {b}, then F is positive definite (spherical case). If {c}
is not between {a} and {b}, then F is indefinite (hyperbolic case).

The most pittoresque way to describe the monodromy group is by using
Schwarz’ triangles.

First a little geometry.

Definition 3.19. A curvilinear triangle is a connected open subset of C ∪∞ = P1

whose boundary is the union of three open segments of a circle or straight line
and three points. The segments are called the edges of the triangles, the points are
called the vertices.

It is an exercise to prove that, given the vertices and the corresponding angles
(< π), a curvilinear triangle exists and is uniquely determined This can be seen
best by taking the vertices to be 0, 1,∞. Then the edges connected to ∞ are
actually straight lines.

More generally, a curvilinear triangle in C ∪ ∞ = P1 is determined by its
angles (in clockwise ordering) up to a Möbius transformation.

Let z0 be a point in the upper half plane H = {z ∈ C|�(z) > 0} and let
f, g be two independent solutions of the hypergeometric equation near z0. The
quotient D(z) = f/g, considered as a map from H to P1, is called the Schwarz
map and we have the following theorem and picture.

Theorem 3.20 (Schwarz). Let λ = |1− c|, μ = |c− a− b|, ν = |a− b| and suppose
0 ≤ λ, μ, ν < 1. Then the map D(z) = f/g maps H ∪ R one-to-one onto a
curvilinear triangle. The vertices correspond to the points D(0), D(1), D(∞) and
the corresponding angles are λπ, μπ, νπ.
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1 ∝0 D(0)

D(1)

D(∝)

 D(z)  

As to the proof of Schwarz’ theorem, the following three ingredients are im-
portant.

– The map D(z) is locally bijective in every point of H. Notice that D′(z) =
(f ′g − fg′)/g2. The determinant f ′g − fg′ is the Wronskian determinant of
our equation and equals z−c(1 − z)c−a−b−1. In particular it is non-zero in
H. When g has a zero at some point z1 we simply consider 1/D(z) instead.
Since f and g cannot vanish at the same time in a regular point, we have
f(z1) �= 0.

– The map D(z) maps the segments (∞, 0), (0, 1), (1,∞) to segments of circles
or straight lines. For example, since a, b, c ∈ R we have two real solutions on
(0, 1) (see Kummer’s solutions). Call them f̃ , g̃. Clearly, the function D̃(z) =
f̃/g̃ maps (0, 1) on a segment of R. Since f, g are C-linear combinations of
f̃ , g̃ we see that D(z) is a Möbius transform of D̃(z). Hence D(z) maps (0, 1)
to a segment of a circle or a straight line.

– The map D(z) maps a small neighbourhood of 0 to a sector with angle
|1− c| = λ and similarly for 1,∞. This follows from the fact that near z = 0
the functions f, g are C-linear combinations of F (a, b, c|z) and z1−cF (a− c+
1, b− c + 1, 2− c|z).

For the exact determination of the image of the Schwarz map we need the
following additional result.

Proposition 3.21 (Gauss). Suppose that a, b, c ∈ R, c �∈ Z≤0 and c > a + b. Then

F (a, b, c|1) =
Γ(c− a)Γ(c− b)
Γ(c)Γ(c− a− b)

.

This can be proven by evaluation of Euler’s integral using the Euler Beta-
function.

To study the analytic continuation of D(z) we use Schwarz’ reflection prin-
ciple. Hopefully, the following picture illustrates how this works.
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The monodromy group modulo scalars arises as follows. Let W be the group
generated by the reflections in the edges of the curvilinear triangle. The mon-
odromy group is the subgroup of W consisting of all elements which are product
of an even number of reflections. In the following section we shall study precisely
such groups.

3.22. Triangle groups

In this section we let S be either the Poincaré disk {z ∈ C| |z| < 1}, C or P1,
equipped with the hyperbolic, euclidean and spherical metric respectively.

Definition 3.23. A (geodesic) triangle is an connected open subset of S, of finite
volume, whose boundary in S is a union of three open segments of a geodesic and
at most three points. The segments are called the edges of the triangles, the points
are called the vertices.

We first point out that under very mild conditions any curvilinear triangle
can be thought of as a geodesic triangle.

Lemma 3.24. Let λ, μ, ν be real numbers in the interval [0, 1). There exists a geo-
desic triangle with angles λπ, μπ, νπ if and only if λ + μ + ν < 1 + 2 min(λ, μ, ν).

Proof. Suppose first that λ + μ + ν < 1. Our condition is then trivially satisfied.
For any such curvilinear triangle we can take the common orthogonal circle of the
three edges, which will become the boundary of a Poincaré disk. The edges are
then automatically geodesics.

Suppose that λ + μ + ν = 1. Our condition is equivalent to saying that
all angles are positive. In this case geodesic triangles are planar triangles in the
euclidean geometry with finite area. The latter property is equivalent to positivity
of all angles.

Suppose that λ+μ+ν > 1. From spherical geometry it follows that a spherical
triangle exists if and only if our condition is satisfied. �

We let W (Δ) be the group of isometries of S generated by the 3 reflections
through the edges of a geodesic triangle Δ. First we look at subgroups generated
by reflection in two intersecting geodesics.
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Lemma 3.25. Let ρ, σ be two geodesics intersecting in a point P with an angle πλ.
Let r, s be the reflections in ρ, σ respectively. Then the group D generated by r, s is
a dihedral group consisting of rotations (rs)n around P with angles 2nπλ, n ∈ Z
and reflections in the lines (rs)n(ρ), (rs)n(σ). In particular D is finite of order 2m
if and only if λ = q/m for some q ∈ Z with q �= 0 and gcd(m, q) = 1. Furthermore,
D is discrete if and only if λ is either zero or a rational number.

Theorem 3.26. For any geodesic triangle Δ we have S =
⋃

γ∈W (Δ) γ(Δ), where Δ
denotes the closure of Δ in S.

Proof. First of all we note that there exists a positive d0 with the following prop-
erty. For any point P whose distance to Δ is less than d0 there exists γ ∈ W (Δ)
such that P ∈ γ(Δ). For γ we can simply take a suitable element from one of the
dihedral reflection groups around the vertices.

A fortiori, any point P with distance less than d0 from
⋃

γ∈W (Δ) γ(Δ) belongs
to this set.

As a consequence the set
⋃

γ∈W (Δ) γ(Δ) is open and closed in S, hence our
theorem follows. �

Definition 3.27. An elementary triangle is a geodesic triangle whose vertex angles
are all of the form π/n, n ∈ Z≥2 ∪ {∞}.

Theorem 3.28. Let Δ be an elementary triangle. Then, for any γ ∈ W (Δ), γ �= Id
we have γ(Δ) ∩Δ = ∅.

Proof. This is a special case of the theorem of Coxeter–Tits on representations of
Coxeter groups. See Humphreys book on Reflection groups and Coxeter groups
[H]. �

A group G of isometries acting on S is said to act discretely if there exists a
point P ∈ S and a positive d0 such that distance(P, g(P ))> d0 whenever g �= Id. In
particular it follows from the previous theorem that triangle groups generated by
elementary triangles act discretely. The following theorem characterises all groups
W (Δ) which act discretely on the symmetric space S.

Theorem 3.29. Suppose W = W (Δ) acts discretely. Then there exists an elemen-
tary triangle Δel such that W (Δ) = W (Δel). Moreover, Δ is a finite union of
copies of Δel under elements of W .

Proof. First of all note that the vertex angles must be either 0 or rational multiples
of π, otherwise the corresponding dihedral group is not discrete.

We shall show that if Δ is not elementary, then there exists a geodesic triangle
Δ′ such that W (Δ) = W (Δ′) and Vol(Δ′) ≤ Vol(Δ)/2. If Δ′ is not elementary we
repeat the process and so on. However, there is a limit to these processes since,
by discreteness, there is a positive lower bound to Vol(Δ′′) for any Δ′′ satisfying
W (Δ) = W (Δ′′). Hence we must hit upon an elementary triangle Δel such that
W (Δ) = W (Δel).
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Let α, β, γ be the edges of Δ and rα, rβ , rγ the corresponding reflections. Sup-
pose that the vertex angle between α and β is of the form mπ/n with gcd(m,n) =
1, but m > 1. Let δ be the geodesic between α and β whose angle with α is π/n.
Let rδ be the reflection in δ. Then the dihedral group generated by rα and rβ is the
same as the one generated by rα and rδ. Let Δ′ be the triangle with edges α, δ, γ.
Then, clearly, W (Δ) = W (Δ′). If the volume of Δ′ is larger than half the volume
of Δ we simply perform the above construction with α and β interchanged. �

Below we give a list of non-elementary triangles Δ = (λ, μ, ν) with vertex
angles λπ, μπ, νπ which allow a dissection with elementary triangles Δel such that
W (Δ) = W (Δel). In the spherical case discreteness of W (Δ) implies finiteness. The
list of spherical cases was already found by H.A. Schwarz and F. Klein (see [Kl]).
In the following table N denotes the number of congruent elementary triangles
needed to cover Δ.

λ μ ν N elementary
2/n 1/m 1/m 2 × (1/2, 1/n, 1/m) n odd
1/2 2/n 1/n 3 × (1/2, 1/3, 1/n) n odd
1/3 3/n 1/n 4 × (1/2, 1/3, 1/n) n �≡ 0 mod 3
2/n 2/n 2/n 6 × (1/2, 1/3, 1/n) n odd
4/n 1/n 1/n 6 × (1/2, 1/3, 1/n) n odd
2/3 1/3 1/5 6 × (1/2, 1/3, 1/5)
1/2 2/3 1/5 7 × (1/2, 1/3, 1/5)
3/5 2/5 1/3 10 × (1/2, 1/3, 1/5)
1/3 2/7 1/7 10 × (1/2, 1/3, 1/7)

As an application we construct a hypergeometric function which is alge-
braic over C(z). Take the triangle (4/5, 1/5, 1/5), which is spherical. Correspond-
ing values for a, b, c can be taken to be 1/10,−1/10, 1/5. Hence the quotient of
any two solutions f, g of the corresponding hypergeometric is algebraic. Its de-
rivative (f ′g − fg′)/g2 is algebraic and so is the Wronskian determinant f ′g −
fg′ = z−c(1 − z)c−a−b−1. Hence g and, a fortiori, f are algebraic. In particular,
F (1/10,−1/10, 1/5|z) is an algebraic function.

In many cases it is also possible to find elementary triangles Δel which can
be dissected into isometric copies of a smaller elementary triangle Δ′

el. Hence
W (Δel) ⊂W (Δ′

el). The most spectacular example is the dissection of the triangle
(1/7, 1/7, 1/7) into 24 copies of (1/2, 1/3, 1/7). As a corollary of this dissection we
find the remarkable identity

2F1

(
2
7
,
3
7
,
6
7

∣∣∣∣ z) = b(z)−1/28
2F1

(
1
84

,
29
84

,
6
7

∣∣∣∣ 123 z(z − 1)(z3 − 8z2 + 5 ∗ z + 1)
b(z)3

)
where b(z) = 1− 236z + 1666z2− 3360z3 + 3395z4 − 1736z5 + 42z6 + 228z7 + z8.
For a complete list of such dissections and the corresponding identities we refer to
[V].
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3.30. Some loose ends

In the Schwarz map we have assumed that the parameters a, b, c are such that
λ = |1− c|, μ = |c− a− b|, ν = |a− b| are all less than 1. It turns out that in the
irreducible case this is no restriction, since we can shift a, b, c by integers without
affecting the monodromy group. In fact:

Lemma 3.31. Assume that none of the numbers a, b, c− a, c− b is integral. There
exist a′ ∈ a(mod Z), b′ ∈ b(mod Z), c′ ∈ c(mod Z) such that

0 ≤ λ, μ, ν < 1 λ + μ + ν < 1 + 2 min(λ, μ, ν),

where λ = |1− c′|, μ = |c′ − a′ − b′|, ν = |a′ − b′|. In the case λ + μ+ ν < 1 there
exists only one choice for a′, b′, c′ and in the case λ + μ + ν > 1 there exist four
possible choices.

Proof. First of all let us suppose that 0 ≤ a, b, c < 1. Without loss of generality
we can assume that a ≤ b. We consider the following cases.

Case i) 0 < a < c < b < 1. We take a′ = a, b′ = b, c′ = c. Then, λ = 1− c, μ =
a + b − c, ν = b − a and the inequalities are satisfied. Moreover, λ + μ + ν =
1 + 2b− 2c > 1.

Case ii) 0 < a ≤ b < c < 1. We take a′ = a, b′ = b, c′ = c. When c ≥ a + b
we get λ = 1 − c, μ = c − a − b, ν = b − a and the inequalities hold. Moreover,
λ+ μ+ ν = 1− 2a < 1. When c ≤ a+ b we get λ = 1− c, μ = a+ b− c, ν = b− a
and the inequalities hold. Moreover, λ + μ + ν = 1 + 2b− 2c < 1.

Case iii) 0 ≤ c < a ≤ b < 1. We take a′ = a, b′ = b, c′ = c + 1. Then,
λ = c, μ = c + 1 − a − b, ν = b − a and the inequalities are readily verified.
Moreover, λ + μ + ν = 1 + 2c− 2a < 1.

As to uniqueness we note that an integral shift in the a, b, c such that the
corresponding values of λ, μ, ν stay below 1 necessarily gives the substitutions
of the form λ → 1 − λ, μ → 1 − μ, ν → ν and similar ones where two of the
parameters are replaced by 1 minus their value. In this case the condition λ+μ+ν <
1 + 2 min(λ, μ, ν) is violated by such a substitution. For example, λ + μ + ν ≤ 1
implies 1 − λ + 1 − μ + ν = 2 − (λ + μ + ν) + 2ν ≥ 1 + 2ν. In the spherical case
the condition is not violated. �

When we have obtained a geodesic Schwarz triangle in our construction we
automatically have a metric which is invariant under the projective monodromy
group. This closely reflects the nature of the natural hermitian form on the mon-
odromy group itself.

Theorem 3.32. Let a, b, c ∈ R be such that

0 ≤ λ, μ, ν < 1, λ + μ + ν < 1 + 2 min(λ, μ, ν),

where λ = |1 − c|, μ = |c − a− b|, ν = |a− b|. Let M be the monodromy group of
(2). Then,

M is spheric ⇐⇒ λ + μ + ν > 1
M is euclidean ⇐⇒ λ + μ + ν = 1
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M is hyperbolic ⇐⇒ λ + μ + ν < 1.

Proof. In the case when none of the numbers a, b, c − a, c − b is integral, this
statement can already be inferred from the proof of the previous lemma (we get
only the hyperbolic and spheric case). It remains to show that if one of the numbers
a, b, c−a, c−b is integral, we have λ+μ+ν = 1. Let us suppose for example that a ∈
Z. Notice that |a−b| < 1 and |a+b| < |c|+1 < 3. Hence |a| ≤ |a−b|/2+|a+b|/2 < 2.
So, a = 0,±1. A case-by-case analysis using the inequalities for λ, μ, ν yields our
statement. �
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on the complex ball uniformization of the moduli spaces of del Pezzo surfaces and
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It has been known for more than a century that a complex structure on a
Riemann surface of genus g is determined up to isomorphism by the period matrix
Π = (

∫
γj

ωi), where (γ1, . . . , γ2g) is a basis of 1-homology and (ω1, . . . , ωg) is a
basis of holomorphic 1-forms. It is possible to choose the bases in a such a way
that the matrix Π has the form (Z Ig), where Z is a symmetric complex matrix
of size g with positive definite imaginary part. All such matrices are parametrized
by a complex domain Zg in Cg(g+1)/2 which is homogeneous with respect to the
group Sp(2g,R). In fact, it represents an example of a Hermitian symmetric space
of non-compact type, a Siegel half-plane of degree g. A different choice of bases
with the above property of the period matrix corresponds to a natural action of
the group Γg = Sp(2g,Z) on Zg. In this way the moduli space Mg of complex
structures on Riemann surfaces of genus g admits a holomorphic map to the orbit
space Γg\Zg which is called the period map. The fundamental fact is the Torelli
Theorem which asserts that this map is an isomorphism onto its image. This gives
a moduli theoretical interpretation of some points of the orbit space. All points
can be interpreted as the period matrices of principally polarized abelian varieties,
i.e., g-dimensional complex tori equipped with an ample line bundle whose space
of holomorphic sections is one-dimensional. In this way the orbit space Γg\Zg

becomes isomorphic to the moduli space Ag of such complex tori. The Siegel half-
plane Zg is a Hermitian symmetric space of non-compact type III in Cartan’s
classification. The development of the general theory of periods of integrals on
algebraic varieties in the 1960s due to P. Griffiths raised a natural question on
moduli-theoretical interpretation of other Hermitian symmetric spaces and their
arithmetic quotients and the analogs of the Torelli Theorem. For the spaces of
classical types I–IV, this can be achieved by embedding any type of space into a
Siegel half-plane, and introducing the moduli space of abelian varieties with some
additional structure (like a level, complex multiplication or some tensor form on
cohomology). All of this becomes a part of the fancy theory of Shimura varieties.
However, a more explicit interpretation remained to be searched for. For the type
IV Hermitian symmetric space of dimension ≤ 19 such an interpretation had been
found in terms of moduli of complex algebraic surfaces of type K3. The fundamen-
tal result of I. Piatetsky-Shapiro and I. Shafarevich in the 1970s gives an analog of
the Torelli Theorem for polarized algebraic K3 surfaces. Although this gives only a
realization of the 19-dimensional type IV space by a very special arithmetic group
depending only on the degree of the polarization, a modified version of the polar-
ization structure due to V. Nikulin allows one to extend this construction to type
IV space of any dimension d ≤ 19, with a variety of arithmetic groups realized as
certain orthogonal groups of integral quadratic forms of signature (2, d). Recently,
some arithmetic quotients of type IV domain of dimension 20 have been realized
as periods of holomorphic symplectic manifolds of dimension 4.

A complex ball is an example of a Hermitian symmetric space of type I.
Some of its arithmetic quotients have a realization as periods of hypergeometric
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differential forms via the Deligne–Mostow theory. We refer for the details to Looi-
jenga’s article in the same volume [Lo]. A hypergeometric differential form has
an interpretation as a holomorphic 1-form on a certain algebraic curve on which
a cyclic group acts by automorphisms and the form is transformed according to
a character of this group. In Section 6 we discuss in a more general setting the
theory of what we call eigenperiods of algebraic varieties.

The periods of hypergeometric functions allows one to realize some complex
ball quotients as the moduli space of weighted semi-stable ordered point sets in
projective line modulo projective equivalence. In some cases these moduli spaces
are isomorphic to moduli spaces of other structures. For example, via the period
map of algebraic curves, the hypergeometric complex ball quotients are mapped
onto a subvariety of Ag parametrizing principally polarized abelian varieties with
a certain cyclic group action. For example, the moduli space of 6 points with equal
weights defines a curve of genus 4 admitting a cyclic triple cover of the projective
line ramified at the 6 points. Its Jacobian variety is an abelian variety of dimension
4 with a cyclic group of order 3 acting by automorphism of certain type. The
moduli space of such abelian varieties is a complex ball quotient. Another example
is the moduli space of equally marked sets of 5 points which leads to the moduli
space of marked del Pezzo surfaces of degree 4 [K3]. Other examples relating the
arithmetic complex ball quotients arising in the Deligne–Mostow theory to moduli
spaces of Del Pezzo surfaces were found in [MT], [HL]. It turns out that all of these
examples are intimately related to the moduli space of K3 surfaces with special
structure of its Picard group of algebraic cycles and an action of a cyclic group.
In Section 10 we develop a general theory of such moduli spaces. In Section 11 we
briefly discuss all the known examples of moduli spaces of Del Pezzo surfaces and
curves of low genus which are isomorphic to the moduli space of such structures
on K3 surfaces, and via this isomorphism admit a complex ball uniformization
by an arithmetic group. Some of these examples arise from the Deligne–Mostow
theory. We conjecture that all Deligne–Mostow arithmetic complex ball quotients
are moduli spaces of K3 surfaces.

We would like to thank the organizers of the Summer School, and especially
Professor Uludag for the hospitality and for providing a stimulating and pleasant
audience for our lectures.

2. Introduction to Hodge theory

In this and the next four sections we give a brief introduction to the Hodge theory
of periods of integrals on algebraic varieties. We refer for details to [GH] or [Vo].

Let M be a smooth compact oriented connected manifold of even dimension
2n. Its cohomologyH∗(M,Z) is a graded algebra over Z with multiplication defined
by the cup-product

∪ : Hk(M,Z)×H l(M,Z)→ Hk+l(M,Z)
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satisfying x ∪ y = (−1)kly ∪ x. In particular, the restriction of ∪ to the middle-
dimensional cohomology Hn(M,Z) is a Z-bilinear form

bM : Hn(M,Z)×Hn(M,Z)→ H2n(M,Z) ∼= Z,

where the latter isomorphism is defined by using the fundamental class [M ] of M .
The Poincaré duality asserts that this bilinear form is a perfect pairing, modulo
torsion. It is also symmetric if n is even, and skew-symmetric if n is odd.

Recall that the cohomology H∗(M,R) = H∗(M,Z)⊗R can be computed by
using the De Rham theorem:

H∗(M,R) ∼= H∗(0→ A0(M) d→ A1(M) d→ A2(M)→ . . .),

where Ak(M) is the space of smooth differential k-forms on M . The cup-product
is defined by

[α] ∪ [β](γ) =
∫

γ

α ∧ β, γ ∈ H∗(M,R),

where we consider cohomology as linear functions on homology. In particular, the
bilinear form bM is an inner product on Hn(M,R) defined by the formula

bM ([α], [β]) =
∫

M

α ∧ β. (2.1)

The same is true for the cohomology H∗(M,C) = H∗(M,R) ⊗ C if we replace
Ak(M) with complex valued smooth k-forms. Now suppose M is the underlying
differentiable structure of a complex manifold X . Then local coordinates t1, . . . , t2n

can be expressed in terms of complex coordinates z1, . . . , zn and its conjugates
z̄1, . . . , z̄n. This allows us to express locally a smooth k-form as a sum of forms of
type (p, q):

ω =
∑

ai1...ip;j1...jq(z, z̄)dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄q, p + q = k, (2.2)

where ai1...ip;j1...jq(z, z̄) are smooth complex-valued functions. This gives a decom-
position

Ak(X) =
⊕

p+q=k

Apq(X)

and d = d′ + d′′, where d′ (resp. d′′) is the derivation operator with respect to the
variables zi (resp. z̄i)). The Dolbeaut Theorem gives an isomorphism

Hq(X,Ωp
X) ∼= Hq(0 d′′

→ Ap,0 d′′
→ Ap,1 d′′

→ . . .),

where Ωp
X is the sheaf of holomorphic p-forms, i.e., forms from (2.2) of type (p, 0),

where the coefficients are holomorphic functions. The Dolbeaut theorem gener-
alizes a well-known fact that a smooth function f(z, z̄) of a complex variable is
holomorphic if and only if it satisfies the equation ∂f(z)

∂z̄ = 0.
A structure of a complex manifold X on a smooth manifold gives a decom-

position of the complexified tangent bundle TM ⊗C into a holomorphic and anti-
holomorphic part with local basis

(
∂

∂zi

)
and

(
∂

∂z̄i

)
, respectively. We denote the

holomorphic part by TX . An additional structure of a hermitian complex manifold
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on X is given by a choice of a holomorphically varying structures of a hermitian
vector space on tangent spaces TX,x defined by a tensor

ds2 =
∑

hij(z)dzi ⊗ dz̄j . (2.3)

It allows one to define the adjoint operator δ′′ of d′′, the Laplace operator Δ′′ =
δ′′d′′ + d′′δ′′, and the notion of a harmonic form of type (p, q) (an element of the
kernel of the Laplace operator). One shows that each d′′-closed form of type (p, q)
is d′′-cohomologous to a unique harmonic form of type (p, q). In particular, there
is a canonical isomorphism of vector spaces

Hpq ∼= Hq(X,Ωp
X),

where Hpq is the space of harmonic forms of type (p, q). On the other hand, a
hermitian form defines a structure of a Riemannian manifold on M . The latter
defines the adjoint operator δ of d, the Laplace operator Δ = δd + dδ, and the
space of harmonic forms Hk. Each cohomology class has a unique representative
by a harmonic form, i.e., there is a canonical isomorphism of vector spaces

Hk(M,R) = Hk.

A fundamental fact proved by Hodge asserts that if a hermitian metric on X is a
Kähler metric, i.e., the (1, 1)-form

ω =
i

2

∑
hij(z)dzi ∧ dz̄j (2.4)

is closed (in this case the 2-form is called the Kähler form), the Laplace operators
Δ′′ and Δ extended to H∗(X,C) coincide up to a constant factor. This shows that∑

p+q=k

Hpq = Hk,

and we have a Hodge decomposition

Hk(X,C) =
⊕

p+q=k

Hpq(X), (2.5)

where
Hpq(X) = Hpq ∼= Hq(X,Ωp

X).
The Hodge decomposition satisfies the following properties:

(HD1) The decomposition (2.5) does not depend on the choice of a Kähler metric;
(HD2) Hpq = Hqp, where the bar denotes the complex conjugation. In particular

hpq(X) = hqp(X), where

hpq(X) = dimC Hpq(X);

(HD3) The bilinear form Q : Hk(X,R)×Hk(X,R)→ R defined by the cup-product
(φ, ψ) 	→ φ ∪ ψ ∪ [ω]n−k is symmetric when k is even and skew-symmetric
otherwise. It satisfies

Q(x, y) = 0, x ∈ Hpq, y ∈ Hp′q′
, p �= q′.
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(HD4) Let Hk
prim(X,R) denote the orthogonal complement of [ω]n−

k
2 with respect

to Q (for k odd Hk(X,R)prim := Hk(X,R)). For any nonzero x ∈ Hpq
prim :=

Hpq ∩Hk
prim(X,R),

ip−q(−1)k(k−1)/2Q(x, x̄) > 0.

Using property (HD3) one can compute the signature I(M) of the cup-
product on Hn(M,R) if n is even and M admits a Kähler structure:

I(M) =
∑

p≡qmod2

(−1)phpq
1 , (2.6)

where hpq
1 = hpq if p �= q and hpq

1 = hpq − 1 otherwise. In particular, the Sylvester
signature (t+, t−) (recall that, by definition, I(M) = t+ − t−) of the quadratic
form on Hn(M,R) when n is even, is given by

t+ =
1
2
(bn(M) + I(M) + 1), t− =

1
2
(bn(M)− I(M) + 1), (2.7)

where bi(M) = dimR Hi(M,R) are the Betti numbers of M .
Define the subspace F p of Hk(X,C) by

F p =
∑
p′≥p

Hp′q(X),

so that F 0 = Hk(X,C), F k = Hk,0, F p = {0}, p > k. This defines a flag (F p) of
linear subspaces

0 ⊂ F k ⊂ F k−1 ⊂ . . . ⊂ F 0 = Hk(X,C).

Note that Hodge decomposition can be reconstructed from this flag by using prop-
erty (HD2),

Hpq(X) = {x ∈ F p : Q(x, ȳ) = 0, ∀y ∈ F p+1}. (2.8)
Assume that the Kähler form (2.4) is a Hodge form, i.e., its cohomology class [ω]
belongs to H2(X,Z). By a theorem of Kodaira this implies that X is isomorphic to
a complex projective algebraic variety. It admits a projective embedding such that
the cohomology class of a hyperplane section is equal to some positive multiple
of [ω]. The Hodge decomposition in this case has an additional property that the
form Q takes integer values on the image of Hk(X,Z) in Hk(X,R).

The flag (F p) defined by a Hodge decomposition is an invariant of a complex
structure on M , and a bold conjecture (not true in general) is that it completely
determines the complex structure on M up to isomorphism. In fact, this was shown
in the 19th century for Riemann surfaces, i.e., complex manifolds of dimension 1.

One can define an abstract Hodge structure of weight k (AHS) on a real vector
space V to be a decomposition into direct sum of complex subspaces

VC =
⊕

p+q=k

V pq

such that V pq = V qp. A polarization of AHS on V is a a non-degenerate bilinear
form Q on V which is symmetric if k is even, and skew-symmetric otherwise. It
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satisfies the conditions (HD3) and (HD4) from above, where Hpq
prim is replaced

with V pq.
An integral structure of a AHS is a free abelian subgroup Λ ⊂ V of rank

equal to dimV (a lattice) such that Q(Λ×Λ) ⊂ Z. One can always find an integral
structure by taking Λ to be the Z-span of a standard basis of Q for which the
matrix of Q is equal to a matrix

I(a, n− a) =
(

Ia 0a,b

0b,a −Ib

)
(2.9)

if k is even, and the matrix

J =
(

0m Im

−Im 0m

)
(2.10)

if k is odd.
A Hodge structure on cohomology V = Hk

prim(X,R) is an example of an
AHS of weight k. If [ω] is a Hodge class, then the cohomology admits an integral
structure with respect to the lattice Λ equal to the intersection of the image of
Hk(X,Z) in Hk(X,R) with Hk

prim(X,R).

3. The period map

Let (F p) be the flag of subspaces of VC defined by a polarized AHS of weight k on
a vector space V . Let

fp =
∑
p′≥p

hp′q(X) = dimF p, f = (f0, . . . , fk).

Let Fl(f , VC) be the variety of flags of linear subspaces F p of dimensions fp. It is
a closed algebraic subvariety of the product of the Grassmann varieties G(fp, VC).
A polarized AHS of weight k defines a point (F p) in Fl(f , VC). It satisfies the
following conditions:

(i) VC = F p ⊕ F k−p+1;
(ii) Q(F p, F k−p+1) = 0;
(iii) (−1)k(k−1)/2Q(Cx, x̄) > 0, where C acts on Hpq as multiplication by ip−q.

The subset of flags in Fl(f , VC) satisfying the previous conditions is denoted by
Df (V,Q) and is called the period space of (V,Q) of type f .

Fix a standard basis in V with respect to Q to identify V with the space Rr,
where r = f0. Let F p be the column space of a complex matrix Πp of size r × fp.
We assume that the first fp+1 columns of Πp form the matrix Πp+1. Then any flag
in Df := Df (Rr, A) is described by a set of matrices Πp satisfying the following
conditions:
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(PM1) det(Πp|Πk−p+1) �= 0;
(PM2) tΠp · A · Πk−p+1 = 0;
(PM3) (−1)k(k−1)/2tΠp ·A · Πk−p+1 ·K > 0, where K is a diagonal matrix with ±i

at the diagonal representing the operator C.

Note that condition (ii) is a closed algebraic condition and defines a closed algebraic
subvariety of Fl(f , VC). Other conditions are open conditions in complex topology.
Thus the collection of matrices (Πp) has a natural structure of a complex manifold.
Two collections of matrices (Πp) and (Π′

p) define the same point in the period
space if and only if there exists an invertible complex matrix X of size r such
that Π′

0 = Π0 ·X . The matrix X obviously belongs to a subgroup Pf of GL(r,C)
preserving the flag of the subspaces F p generated by the first fp unit vectors ei.
The flag variety Fl(f , VC) is isomorphic to the homogeneous space

Fl(f , VC) ∼= GL(r,C)/Pf .

The period space Df is an open subset (in complex topology) of a closed algebraic
subvariety Ďf of Fl(f , VC) defined by condition (ii). It is known that the group
GC = Aut(Cr, Q0) acts transitively on Ďf with isotropy subgroup P = GC ∩Pf so
that

Ďf
∼= GC/P

is a projective homogeneous variety. The group GR = Aut(Rr, Q0) acts transitively
on Df with a compact isotropy subgroup K so that

Df
∼= GR/K

is a complex non-compact homogeneous space.
In the case when the AHS is the Hodge structure on cohomology Hk(X,R) of

a Kähler manifold X , the matrices Πp are called the period matrices. If (γ1, . . . , γf0)
is a basis in Hk(X,Z)/Tors such that the dual basis (γ∗

1 , . . . , γ
∗
f0

) is a standard
basis of the polarization form defined by a choice of a Kähler structure, then

Πp = (
∫

γi

ωj),

where (ω1, . . . , ωk−p) is a basis of F p represented by differential k-forms.
Now, suppose we have a family of compact connected complex manifolds. It

is a holomorphic smooth map f : X → T of complex manifolds with connected
base T such that its fibre Xt = f−1(t). For any point t ∈ T we have the real vector
space Vt = Hk(Xt,R) equipped with a Hodge structure. We also fix a Kähler
class [ω] on X whose restriction to each Xt defines a polarization Qt of the Hodge
structure on Vt. One can prove (and this is not trivial!) that the Hodge numbers
hpq(Xt) do not depend on t. Fix an isomorphism

φt : (V,Q0)→ (Hk(Xt,R),∪) (3.1)

called a kth marking of Xt. Then pre-image of the Hodge flag (F p
t ) is a Q0-polarized

AHS of weight k on (V,Q0). Let Df be the period space of (V,Q0) of type f , where
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fp = dimF p
t . We have a “multi-valued” map

φ : T → D, t 	→
(
φ−1(F p

t )
)
.

called the multi-valued period map associated to f . According to a theorem of
Griffiths this map is a multi-valued holomorphic map.

To make the period map one-valued we need to fix a standard basis in (Vt, Qt)
for each t which depends holomorphically on t. This is not possible in general.
The vector spaces (Vt)t∈T form a real local coefficient system V on T , i.e., a real
vector bundle of rank f0 over T whose transition functions are matrices with
constant entries. As any local coefficient system it is determined by its monodromy
representation. If we fix a point t0 ∈ T and let V = Vt0 , then for any continuous
loop γ : [0, 1] → T with γ(0) = γ(1) = t0, the pull-back γ∗(V) of V to [0, 1] is a
trivial local coefficient system which defines a linear self-map aγ : V = γ∗(V)0 →
V = γ∗(V)1. It depends only on the homotopy class [γ] of γ. The map [γ] 	→ aγ

defines a homomorphism of groups

a : π1(T, t0)→ GL(V ),

called the monodromy representation. The pull-back of V to the universal covering
T̃ is isomorphic to the trivial local coefficient system T̃ × V and

V ∼= T̃ × V/π1(T, t0),

where π1(T, t0) acts by the formula [γ] : (z, v) = ([γ] · z, a([γ])(v)). Here the action
of π1(T, t0) on T̃ is the usual action by deck transformations.

One can show that the monodromy representation preserves the polarization
form Qt0 on V so that the image Γ(f) of the monodromy representation lies in
Aut(V,Q). This image is called the monodromy group of f . Of course, if T happens
to be simply-connected, say by restriction to a small neighborhood of a point t0,
the monodromy representation is trivial, and we can define a one-valued period
map.

Let π : T̃ → T be the universal covering map. The second projection of the
fibred product X̃ = X ×T T̃ of complex manifolds defines a holomorphic map
f̃ : X̃ → T̃ . Its fibre over a point t̃ is isomorphic to the fibre Xt over the point
t = π(t̃). Now we can define the one-valued holomorphic map

φ̃ : T̃ → Df . (3.2)

Assume that the monodromy group Γ(f) is a discrete subgroup of Aut(V,Q)
with respect to its topology of a real Lie group. Since Aut(V,Q) acts on Df with
compact isotropy subgroups, the isotropy subgroups of Γ(f) are finite. This implies
that the orbit space Γ(f)\Df is a complex variety with only quotient singularities
and the natural projection to the orbit space is a holomorphic map. The period
map φ̃ descends to a one-valued holomorphic map

φ̄ : T → Γ(f)\Df . (3.3)

The discreteness condition for the monodromy group is always satisfied if
f : X → T is a family of projective algebraic varieties and the Kähler form on
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each Xt defining the polarization Qt is a Hodge form. In this case the monodromy
group is a subgroup of GΛ = Aut(Λ, Q|Λ), where Λ is the image of Hk(Xt0 ,Z) in
V . Thus for any such family there is a holomorphic map

φ : T → GΛ\Df . (3.4)

One says that a Kähler manifold X satisfies an Infinitesimal Torelli Theorem
if for any family of varieties f : X → T as above with X ∼= Xt0 for some t0 ∈ T
the period map (3.2) is an isomorphic embedding of some analytic neighborhood
of t0 (or, equivalently, the differential of the map at t0 is injective). We say that
X satisfies a Global Torelli Theorem if for any two points t, t′ ∈ T with the same
image in Γ(f)\Df there is an isomorphism of complex manifolds φ : Xt → Xt′

such that f∗([ωt′ ]) = [ωt].
Fix a smooth manifold M underlying some complex manifold. Consider the

set of isomorphism classes of complex structures on M . A moduli problem is the
problem of putting on this set a structure of an analytic space (or a complex
variety)M such that for any holomorphic map f : Y → T of analytic spaces whose
fibres are complex manifolds diffeomorphic to M , the map T →M which assigns
to t ∈ T the isomorphism class of f−1(t) defines a holomorphic map φ : T →M.
Or, equivalently, for any f : Y → T there exists a holomorphic map φ : T → M
such that the fibres which are mapped to the same point must be isomorphic
complex manifolds. We require also that for anyM′ with the same property there
exists a holomorphic map s :M→M′ such that φ′ = s◦φ. IfM exists it is called
a coarse moduli space of complex structures on M .

If additionally, there exists a holomorphic map u : X →M such that any f
as above is obtained via a unique map φ : T → M by taking the fibred product
X ×M T → T . In this case M is called a fine moduli space, and u the universal
family. Note that, for any point m ∈M, the isomorphism class of the fibre u−1(m)
is equal to m. Fine moduli spaces rarely exist unless we put some additional data,
for example a marking on cohomology as in (3.1).

Similar definitions one can give for the moduli space of structures of an
algebraic variety, or for polarized Kähler manifolds or polarized projective algebraic
varieties. For the latter, one fixes a cohomology class in H2(M,R) and consider the
set of complex structures on M such that this cohomology class can be represented
by a Kähler (or a Hodge) form.

Suppose a coarse moduli of polarized algebraic manifolds of diffeomorphism
type M exists and the Global Torelli Theorem holds for the corresponding com-
plex manifolds. Then, by definition of a coarse moduli space there must be a
holomorphic map

per :M→ GΛ\Df .

A Local Torelli Theorem is the assertion that this map is a local isomorphism which,
together with Global Torelli Theorem, will assert that the map is an embedding of
complex varieties. Note that the Local Torelli Theorem implies the Infinitesimal
Torelli Theorem but the converse is not true in general.
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4. Hodge structures of weight 1

An abstract Hodge structure of weight 1 on a real vector space V is a decomposition
into direct sum of complex linear subspaces

VC = V 10 ⊕ V 01. (4.1)

such that

(i) V 10 = V 01.

A polarization on AHS of weight 1 is a non-degenerate skew-symmetric form
Q on V (a symplectic form) such that

(ii) Q|V 10 = 0, Q|V 01 = 0;
(iii) iQ(x, x̄) > 0, ∀x ∈ V 10 \ {0}.
Here, as always, we extend Q to the complexification by linearity.

Consider a Hodge structure of weight 1 on V . Let W = V 01. The composition
V →W of the natural inclusion map V ↪→ VC and the projection to W with respect
to the decomposition (4.1) is an R-linear isomorphism. This allows us to transfer
the structure of a complex space on W to V . Recall that a complex structure on
a real vector space V is defined by a linear operator I satisfying I2 = −1V by
setting

(a + bi) · v = av + bI(v).

We have
V = {w + w̄, w ∈ W}

and, for any v = w + w̄ we define I(v) to be the unique vector in V such that

I(v) = iw − iw̄.

In particular, the R-linear isomorphism V → W is defined by v 	→ 1
2 (v − iI(v)).

We will often identify V with W by means of this isomorphism. Conversely, a
complex structure I on V defines a decomposition (4.1), where W (resp. W ) is
the eigensubspace of I extended to VC by linearity with eigenvalue i =

√
−1 (resp.

−i). Thus we obtain a bijective correspondence between AHS of weight 1 on V and
complex structures on V . Note that replacing the Hodge structure by switching
V 10 with V 01 changes the complex structure to the conjugate one defined by the
operator −I.

Now let us see the meaning of a polarized AHS of weight 1. The polarization
form Q makes the pair (V,Q) a real symplectic vector space.

A complex structure I on V is called a positive complex structure with respect
to Q if Q(v, I(v′)) defines a symmetric positive definite bilinear form on V . It
follows from the symmetry condition that the operator I is an isometry of the
symplectic space (V,Q).

Consider a polarized Hodge structure on V of weight 1 and let I be the
complex structure I on V determined by the subspace W = V 01. Extending by



54 Igor V. Dolgachev and Shigeyuki Kondō

linearity, we will consider Q as a skew-symmetric form on VC. Let w = v − iI(v),
w′ = v′ − iI(v′) ∈ W . We have

−iQ(w, w̄′) = Q(v, I(v′)) + iQ(v, v′). (4.2)

By definition of a polarized AHS, Q(v, I(v)) = −iQ(w, w̄) > 0 for any w �= 0. This
shows that the complex structure I is positive with respect to Q.

Conversely, suppose I is a positive complex structure on (V,Q). Let V 01 be
the i-eigensubspace of VC of the operator I. Since Q(w, I(w′)) = iQ(w,w′) is a
symmetric and also a skew-symmetric bilinear form on W , it must be zero. Hence
W (and, similarly, V 10 = W ) is an isotropic subspace of Q. This checks property
(ii) of the Hodge structure. We have 0 < −iQ(v− iI(v), v+ iI(v)) = 2Q(v, v). This
checks property (iii). Thus we have proved the following.

Lemma 4.1. There is a natural bijection between the set of Hodge structures of
weight 1 on V with polarization form Q and the set of positive complex structures
on V with respect to Q.

Example. Let V = R2g with standard basis formed by the unit vectors ek. Define
the complex structure I by

I(ek) = ek+g, I(eg+k) = −ek, k = 1, . . . , g.

The space VC = C2g decomposes into the direct sum of the ±i-eigensubspaces V±
of I, where V± is spanned by the vectors ek ∓ iek+i. Let Q be a skew-symmetric
bilinear form defined by the condition

Q(ek, ek+g) = 1, Q(ek, ek′) = 0 if |k − k′| �= g

(the standard symplectic form on R2g). Then the matrix of Q(v, I(v′)) in the
standard basis is the identity matrix, so Q(v, I(v′)) is symmetric and positive
definite.

Recall that a hermitian form on a complex vector space E is a R-bilinear
form H : E × E → C which is C-linear in the first argument and satisfies

H(x, y) = H(y, x). (4.3)

One can view a hermitian form as a C-bilinear map E × Ē → C satisfying (4.3).
Here Ē is the same real space as E with conjugate complex structure. The restric-
tion of H to the diagonal is a real-valued quadratic form on the real space E, and
the signature of H is the signature of this quadratic form. In particular, we can
speak about positive definite hermitian forms.

Lemma 4.2. The formula

H(x, y) = −iQ(x, ȳ) (4.4)

defines a hermitian form on VC of signature (g, g).
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Proof. Obviously, formula (4.3) defines a bilinear form on VC×VC. Write x, y ∈ VC

in the form x = v + iw, y = v′ + iw′ for some v, w, v′, w′ ∈ V . Then

H(x, y) = iQ(v + iw, v′ − iw′) = i(Q(v, v′) + Q(w,w′)) + Q(w, v′)−Q(v, w′)
= H(y, x).

Let e1, . . . , e2g be a standard symplectic basis in V . Let fk = ek − iek+g, f̄k =
ek + iek+i, k = 1, . . . , g. These vectors form a basis of VC. We have

H(fk, fl) = −iQ(fk, f̄l) = −iQ(ek − iek+g, el + iel+g) = Q(ek, el+g)−Q(ek+g, el)
= 1

if k = i and 0 otherwise. This shows that for any nonzero x =
∑

akfk, we have

H(x, x) = 2
∑

akāk > 0.

Thus the restriction of H to the span W of the fk’s is positive definite. Similarly,
we check that the restriction of H to the span of the f̄k’s is negative definite and
two subspaces W and W are orthogonal with respect to H . This shows that H is
of signature (g, g). �

Note that the skew-symmetric form Q on VC is reconstructed from H by the
formula

Q(x, y) = iH(x, ȳ). (4.5)
Let G(g, VC) be the Grassmann variety of g-dimensional subspaces of VC. Let H
be a hermitian form on VC of signature (g, g) and Q be a skew-symmetric form on
VC associated to H by the formula (4.5). Set

G(g, VC)H = {W ∈ G(g, VC : Q|W = 0, H |W > 0}. (4.6)

We see that a Hodge structure of weight 1 on V defines a point W = V 01 in
G(g, VC)H , where H is defined by the formula (4.3). Conversely, for any W ∈
G(g, VC)H , set V 01 = W,V 10 = W . Since Q|W = 0, formula (4.5) implies that W
and W are orthogonal to each other, hence we have a direct sum decomposition
(4.1). We take Q to be defined by (4.5). Properties (ii) and (iii) are obviously
satisfied.

The hermitian form H defined in Lemma 4.2 will be called the hermitian
form associated to Q.

We have proved the following.

Theorem 4.3. Let (V,Q) be a real symplectic space. There is a natural bijection
between Hodge structures on V of weight 1 with polarization form Q and points in
G(g, VC)H , where H is the associated hermitian form of Q.

By choosing a standard symplectic basis in V , G(g, VC)H can be described as
a set of complex 2g × g-matrices satisfying conditions (PM1)–(PM3) with p = 1:

tΠ · J · Π = 0 (4.7)

−itΠ · J · Π̄ > 0. (4.8)
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Two such matrices Π′ and Π define the same AHS if and only if there exists
an invertible matrix X such that Π′ = Π · X . Recall that W defines a complex
structure I on V such that v 	→ v − iI(v) is an isomorphism of complex vector
spaces (V, I)→W . Let E be the real subspace of V spanned by the last g vectors
of the standard symplectic basis. We have E ∩ I(E) = {0} since w = I(v) ∈ E
for some v ∈ E implies Q(w, I(w)) = Q(w, I2(v)) = Q(v, w) = 0 contradicting
the positivity condition of a complex structure unless v = 0. This shows that the
vectors v − iI(v), v ∈ E span W as a complex space. Thus we can find a unique
basis of W such that the last g rows of the matrix Π form the identity matrix. In
other words, we can always assume that

Π =
(
Z
Ig

)
, (4.9)

for a unique square complex matrix Z of size g. The conditions (4.7) and (4.8) are
equivalent to the conditions

tZ = Z, Im(Z) =
1
2i

(Z − Z̄) > 0. (4.10)

We obtain that the period space D(2g,g) parametrizing polarized AHS of weight 1
is isomorphic to the complex manifold

Zg := {Z ∈Matg(C) : tZ = Z, Im(Z) > 0}, (4.11)

called the Siegel half-plane of degree g. Its dimension is equal to g(g + 1)/2. We
know that D(2g,g) is a complex homogeneous space of the form GR/K, where
GR = Aut(R2g, Q) and K is a compact subgroup of GR. Explicitly, GR can be
identified with the group of matrices (the symplectic group)

Sp(2g,R) = {M ∈ GL(2g,R) : tM · J ·M = J}.
The group Sp(2g,R) acts on Zg by its natural action on isotropic subspaces

W of G(g, VC) or on matrices Z ∈Mg(C) by the formula

M · Z = (A · Z + B) · (C · Z + D)−1, (4.12)

where M is written as a block-matrix M =
(

A B
C D

)
. Let Z = X + iY ∈ Zg. Since

Y is a symmetric positive definite matrix, it can be written as the product A · tA
for some invertible square matrix A. The matrix M =

(
A XtA−1

0 tA−1

)
belongs to

Sp(2g,R) and M · iIg = (iA + XtA−1) · At = X + iY. This checks that Sp(2g,R)
acts transitively on Zg. If we take Z to be the matrix iIg, then the stabilizer
Sp(2g,R)Z of Z consists of matrices M with iA + B = i(iC + D), i.e., satisfying
A = D,B = −C. The map M → X = A + iB is an isomorphism of Sp(2g,R)Z

onto a subgroup of complex g × g-matrices. Also the condition tM · J ·M = J
translates into the condition tX · X = Ig. Thus a compact subgroup K could be
taken to be a subgroup of Sp(2g,R) isomorphic to the unitary group U(g). So we
get

Zg
∼= Sp(2g,R)/U(g). (4.13)
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A Siegel upper-half plane is an irreducible hermitian symmetric space of type III
in Cartan’s classification.

Recall that hermitian symmetric space is a connected complex manifold X
equipped with a hermitian metric such that each point x ∈ X is an isolated fixed
point of a holomorphic involution of X which preserves the metric. One can show
that the metric satisfying this condition must be a Kähler metric. The group of
holomorphic isometries acts transitively on a hermitian symmetric space X and its
connected component of the identity is a connected Lie group G(X). The isotropy
subgroup of a point is a maximal compact subgroup K of G(X) which contains
a central subgroup isomorphic to U(1). An element I of this subgroup satisfying
I2 = −1 defines a complex structure on the tangent space of each point of X .
Any hermitian symmetric space is a symmetric space with respect to the canonical
structure of a Riemannian manifold. A hermitian symmetric space of non-compact
type is a homogeneous space G/K as above with G a semi-simple Lie group. It is
called irreducible if the Lie group is a simple Lie group.

The Siegel half-plane Z1 is just the upper half-plane

H = {z = x + iy ∈ C : y > 0}.
The action of Sp(2g,R) on Zg is analogous of the Moebius transformation of the
upper half-plane z 	→ az+b

cd+d .
It is known that H is holomorphically isomorphic to the unit 1-ball

U = {z ∈ C : |z| < 1}.
Similarly, the Siegel half-plane is isomorphic as a complex manifold to a bounded
domain in C

1
2 g(g+1) defined by

{Z ∈Matg(C) : tZ = Z, Ig − Z̄ · Z > 0} (4.14)

The isomorphism is defined by replacing matrix (4.9) satisfying (4.7) and (4.8)
with the matrix

Π′ =
(
Ig Ig

iIg −iIg

)
· Π

and then reducing it back to a form (4.9).
There is a natural definition of the direct sum of abstract polarized Hodge

structures which we leave to the reader. For AHS of weight 1 this of course cor-
responds to the operation of the direct sum of symplectic spaces and the direct
sum of complex structures. It is easy to see that a polarized AHS of weight 1
decomposes into a direct sum if and only if the corresponding matrix Z ∈ Zg is
the direct product of block-matrices of smaller size.

5. Abelian varieties

Recall that a torus T is a smooth manifold V/Λ, where V is a real space of
dimension n and Λ is a lattice in V . The additive group structure of V defines a
structure of a group manifold on T , the space V acts on T by translations with
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kernel equal to Λ. Obviously, T is diffeomorphic to Rn/Zn = (S1)n, the product
of n circles.

The space V is the universal covering of T , and the group Λ is identified with
the fundamental group of T . Since it is abelian, we obtain a canonical isomorphism

Λ ∼= H1(T,Z).

By the Künneth formula,

Hk(T,Z) ∼=
k∧

Λ, Hk(T,Z) ∼=
k∧

Hom(Λ,Z).

There is a natural bijective correspondence between tensor forms on the smooth
manifold V/Λ invariant with respect to translations and tensors on V . Tensoring
with R and C we can identify Hk(T,R) with the space k-multilinear forms on V =
Λ⊗R and Hk(T,C) with the space of k-multilinear forms on the complexification
VC of V .

Now assume n = 2g. A complex structure on T invariant with respect to
translations (making T a complex Lie group) is defined by a complex structure
I on the space V . The holomorphic tangent bundle of T becomes isomorphic to
the trivial bundle with fibre W = (V, I). A translation invariant structure of a
hermitian manifold on T is defined by a positive definite hermitian form h on W .
It is easy to see that

h(v, w) = Q(I(v), w) + iQ(v, w), (5.1)

where Q is a skew-symmetric form on V and g(v, w) = Q(I(v), w) is a positive
definite symmetric form. Since h(I(v), I(w)) = h(v, w), we see that g(v, w) is
a Riemannian metric on T invariant with respect to the complex structure and
also I is an isometry of the symplectic space (V,Q). It follows from (5.1) that
the conjugate complex structure −I on V is positive with respect to Q. Thus
a translation invariant structure of a hermitian manifold on T defines a Hodge
structure of weight 1 on V with polarization Q and W = V 10. As is easy to see
the converse is true.

Extend h to a hermitian form H on VC by requiring that the subspaces W
and W are orthogonal with respect to H and H |W = h, H(w̄, w̄′) = −H(w,w′).
Write w = 1

2 (v − iI(v)), w′ = 1
2 (v′ − iI(v′)) for some v, v′ ∈ V . Since

2iQ(w, w̄′) = 2iQ(
1
2
(v − iI(v)),

1
2
(v′ + iI(v′)) = Q(v, I(v′)) + iQ(v, v′) = h(v, v′),

we see that H is defined by

H(x, y) = 2iQ(x, ȳ)

and hence H and Ω = −2Q are associated hermitian and skew-symmetric forms
on VC as is defined in the previous section. Let zα be the coordinate functions on
W with respect to some basis e1, . . . , eg and z̄α be the coordinate functions on W
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with respect to the conjugate basis ē1, . . . , ēg. Then zα, z̄α are coordinate functions
on VC satisfying

zα(x) = z̄α(x̄).
Let hαβ = H(eα, eβ) so that, for any x, y ∈ W ,

h(x, y) =
∑

hαβzα(x)z̄β(y).

Then Ω(eα, eβ) = Ω(ēα, ēβ) = 0 and

Ω(eα, ēβ) = ih(eα, eβ) = ihαβ .

This shows that, for any x, y ∈ VC,

Ω(x, y) = i
∑

hαβzα(x) ∧ z̄β(y).

Comparing this with (2.3), we see that Ω defines the Kähler form on T associated to
the hermitian metric h. Since it has constant coefficients, its closedness is obvious.

Assume that the symplectic form Q satisfies the integrality condition with
respect to the lattice Λ, then the Kähler form ω associated to the hermitian metric
is a Hodge form, and hence the complex torus X = W/Λ admits an embedding
in a projective space such that the cohomology class in H2(T,Z) which is dual
(with respect to the Poincaré duality) to the homology class in H2n−2(T,Z) of a
hyperplane in Pn is equal to some positive multiple of the cohomology class [ω].

Conversely, let T = W/Λ be a complex torus. We identify the real vector
space V underlying W with Λ ⊗ R and VC with Λ ⊗ C. A choice of a symplectic
form Q on V such that the complex structure W on V is positive with respect
to −Q is called a polarization on T . Two polarizations are called equivalent if the
symplectic forms differ by a constant factor equal to a positive rational number. A
polarization defines a hermitian form on W and a structure of a hermitian complex
manifold on T . A pair (T,Q) is called a polarized complex torus. If additionally
Q(Λ×Λ) ⊂ Z, then the polarized torus is called a polarized abelian variety. Recall
that an abelian variety (over complex numbers) is a projective algebraic variety
isomorphic, as a complex manifold, to a complex torus. A projective embedding of
an abelian variety X defines a structure of a polarized abelian variety on X , the
Hodge class being the cohomology class of a hyperplane section.

Not every complex torus W/Λ is an abelian variety. A polarization Q is
defined by an integral matrix A in a basis of Λ. If we identify VC with C2g by
means of this basis and the space W̄ with the column space of a matrix Π (called
the coperiod matrix of the torus), then the necessary and sufficient conditions of
positivity of the complex structure of W̄ with respect to Q are the conditions

tΠ · A · Π = 0, −itΠ · A · Π̄ > 0. (5.2)

These conditions can be combined by introducing the square matrix Π̃ = (Π|Π̄)
(corresponding to the matrix Π0 in (PM1)–(PM3)). The condition is

−itΠ̃ ·A · Π̃ =
(
M 0g

0g −tM

)
, (5.3)
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where M is a positive definite hermitian matrix.
Since VC = W ⊕W , the matrix Π̃−1 is invertible. Write

P̃ = Π̃−1 = (P |P̄ )

for some 2g × g-matrix. The jth column of P gives an expression of the jth basis
vector of Λ as a linear combination of a basis of W formed by the columns of Π.
It is called the period matrix of T . One can restate the condition (5.3) in terms of
the period matrix by

itP̃ · A−1 · tP̃ =
(
M ′ 0g

0g −tM ′

)
, (5.4)

where M ′ = M−1 is a positive definite hermitian matrix. These are the so-called
Riemann–Frobenius conditions.

Example. Any one-dimensional torus is an abelian variety (an elliptic curve). In
fact let T be isomorphic to the complex torus C/Zγ1 + Zγ2. Under the multipli-
cation by γ1, the torus is isomorphic to the torus C/1 · Z + τZ, where τ = γ2/γ1.
Replacing τ by −τ , if necessary we may assume that Im(τ) > 0. Thus the period
matrix of T with respect to the basis 1 of C and the basis 1, τ of Λ is equal to
P = (1, τ). The Riemann–Frobenius condition is the existence of an integer r such
that

i

(
1 τ̄
1 τ

)
·
(

0 1/r
−1/r 0

)
·
(

1 1
τ τ̄

)
=
(
a 0
0 −a

)
,

where a is a positive real number. Computing the product we obtain that the
condition is equivalent to the condition ir−1(τ̄ − τ)) ∈ R>0 which is satisfied for
any negative integer r.

We leave to the reader to check that the complex torus T = C2/P ·Z2, where

P =
(√
−2

√
−3√

−5
√
−7

)
does not satisfy condition (5.4) for any integral skew-symmetric matrix A. Thus
it is not a projective algebraic variety.

Let (W/Λ, Q) be a polarized abelian variety. It is known from linear algebra
that Λ admits a basis such that the matrix of Q|Λ is equal to

JD =
(

0g D
−D 0g

)
, (5.5)

where D = diag[d1, . . . , dg] with 0 < d1|d2| . . . |dg. The vector (d1, . . . , dg) is an
invariant of an integral valued skew-symmetric form on Λ. The equivalence class of
D with respect to the equivalence relation defined by D ∼ D′ if D′ = aD for some
positive rational number a is called the type of the polarization of (W/Λ, Q). We
will always represent it by a primitive D (i.e., non-positive multiple of any other
D). A polarization of type (1, . . . , 1) is called a principal polarization.

Two polarized abelian varieties (W/Λ, Q) and (W ′/Λ′, Q′) are called isomor-
phic if there exists an isomorphism of complex spaces f : W → W ′ such that
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f(Λ) = Λ′ and Q′ ◦ (f × f) : Λ×Λ→ Z is equivalent to Q. Clearly, isomorphic po-
larized varieties have the same type of polarization. Any polarized abelian variety
of type (d1, . . . , dg) is isomorphic to the polarized variety Cg/P · Z2g, where P is
the period matrix such that the matrix of Q with respect to the basis of Λ formed
by the columns of P is the matrix (5.5). Then P satisfies (5.4). The matrix

Π′ =
(

1g 0g

0g D

)
· tP

satisfies (4.7) and (4.8). As we have seen, there exists an invertible complex matrix
X such that Π · X is of the form (4.9), where Z ∈ Zg. This implies that our
torus is isomorphic to the torus Cg/P · Z2g , where P = (Z|D) and Z ∈ Zg. The
period matrix of this form is called a normalized period matrix. Two polarized
abelian varieties with normalized period matrices P = (Z|D) and P ′ = (Z ′|D) are
isomorphic if and only if there exists a complex matrix X defining a map Cg → Cg

such that
X · (Z|D) = (Z ′|D) ·M,

where M is an invertible integral 2g × 2g-matrix satisfying
tM · JD ·M = JD.

Let Sp(2g,Z)D ⊂ GL(2g,Z) be the group of such matrices. If D = Ig, i.e., JD = J ,
the group Sp(2g,Z)D is the Siegel modular group

Γg = Sp(2g,Z)

of symplectic integral matrices. For any M ∈ Sp(2g,Z)D, the conjugate matrix

N =
(

1g 0g

0g D

)
·M ·

(
1g 0g

0g D

)−1

belongs to Sp(2g,Q) and leaves invariant the lattice ΛD in R2g with period matrix(
1g 0g

0g D

)
. It is easy to see that any such matrix arises in this way from a matrix

from Sp(2g,Z)D. Denote the group of such matrices by ΓD. We see that

ΓD =
(

1g 0g

0g D

)
· Sp(2g,Z)D ·

(
1g 0g

0g D

)−1

.

Assume that P = (Z|D), P ′ = (Z ′|D) are normalized. The corresponding tori
are isomorphic as polarized abelian varieties if and only if there exists a matrix
M ∈ Sp(2g,Z)D and a matrix X ∈ GL(g,C) such that

X · (Z ′|D) = (Z|D) ·M. (5.6)

Write M in the form

M =
(

1g 0g

0g D−1

)
·N ·

(
1g 0g

0g D

)
, (5.7)

where

N =
(
N1 N2

N3 N4

)
∈ Γg(D),
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and the blocks are all of size g. Then (5.6) is equivalent to

X = Z ·N3 + N4, X · Z ′ = Z ·N1 + N2.

This shows that X is determined by N and

Z ′ = (Z ·N3 + N4)−1 · (Z ·N1 + N2). (5.8)

Transposing these matrices and using that tZ = Z because Z ∈ Zg, we obtain

Z ′ = (tN1 · Z + tN2) · (tN3 · Z + tN4)−1. (5.9)

The group Sp(2g,Q) is invariant with respect to the transpose operation, let
tΓD be its subgroup of matrices tM , where M ∈ ΓD. Then ΓD acts on Zg by the
formula (5.8) or (5.9) and tΓD acts on Zg by the restriction of the action (4.12) of
Sp(2g,R) on Zg.

Summarizing, we obtain the following.

Theorem 5.1. The natural map assigning to a polarized abelian variety its nor-
malized period matrix defines a bijection between isomorphism classes of abelian
varieties with polarization of type D = (d1, . . . , dg) and the orbit space

AD = Zg/ΓD.

In fact one can show more, the coarse moduli space of abelian varieties with
polarization of type D exists and is isomorphic to Zg/ΓD.

6. Picard and Albanese varieties

Let X be a compact Kähler manifold. It defines a Hodge structure of weight 1

VC = H1(X,C) = H10(X)⊕H01(X)

on the real space V = H1(X,R) of dimension b1(X) = 2q. The map

α : H1(X,Z)→ H01(X)∗, α(γ)(ω) =
∫

γ

ω,

defines an isomorphism from H1(X,Z)/Tors onto a lattice Λ in H10(X)∗ =
H0(X,Ω1

X)∗. The complex torus

Alb(X) = H10(X)∗/Λ

is called the Albanese torus of X . Its period matrix with respect to a basis ω1, . . . , ωq

in H10(X) and a basis (α(γ1), . . . , α(γ2q)) of Λ is the matrix

P = (
∫

γj

ωi). (6.1)

Fixing a point x0 ∈ X defines a natural map (the Albanese map)

albx0 : X → Alb(X), x→ (
∫ x

x0

ω1, . . . ,

∫ x

x0

ωg) modΛ,
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where the integration is taken with respect to any 1-chain originated from x0

and ending at x. Since the difference of two such chains is a 1-cycle, the point in
the torus does not depend on a choice of a path. The Albanese map satisfies the
following universal property: for any holomorphic map φ : X → T to a complex
torus T there exists a unique (up to translation) map of complex tori f : Alb(X)→
T such that f ◦ alb = φ.

One can define another complex torus associated to X . Consider the projec-
tion Λ′ of H1(X,Z) ⊂ V to H01(X). It is a lattice in the complex space H01(X).
The complex torus

Pic0(X) = H01(X)/Λ′ (6.2)

is called the Picard torus of X . Recall that H01(X) ∼= H1(X,OX), where OX is
the sheaf of holomorphic functions on X . The exponential exact sequence

0→ Z→ C z �→e2πiz

−→ C∗ → 0

defines an exact sequence of sheaves

0→ Z→ OX
exp−→ O∗

X → 0

and the corresponding exact cohomology sequence

H1(X,Z)→ H1(X,O) c→ H2(X,Z).

One can show that the first map coincides with the composition of the maps
H1(X,Z)→ H1(X,C)→ H01(X) so that

Pic0(X) ∼= Ker(H1(X,O∗
X) c→ H2(X,Z)).

The group H1(X,O∗
X) is the Picard group of X of isomorphism classes of holomor-

phic line bundles over X . The coboundary map c is interpreted as taking the first
Chern class of a line bundle. Thus the Picard variety is a complex torus whose set
of points is naturally bijective to the set of isomorphism classes of holomorphic
line bundles L with trivial first Chern class c1(L).

Of course, one can also consider the complex tori Alb(X)′ and Pic0(X)′,
interchanging H10(X) with H01. This just replaces the complex structure of the
torus to the conjugate one.

The complex tori Alb(X) and Pic0(X) are examples of dual complex tori in
the sense of the following definition. Let T = V/Λ be a torus and W = (V, I) be a
complex structure on V . Recall that we identify W with the complex subspace of
VC of vectors v − iI(v). For any R-linear function φ ∈ V ∗ and w = v + iI(v) ∈ W
set

φ̃(w) = φ(I(v)) + iφ(v).

It is immediately checked that φ̃ is a C-linear function on W with imaginary part
equal to φ (when we identify W with (V,−I)). In this way we identify the real
spaces V ∗ and W

∗
and hence consider W as a complex structure on V ∗. Let

Λ∗ = {f ∈W
∗

: Im(f)(Λ) ⊂ Z}.
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The dual complex torus is
T ∗ := W

∗
/Λ∗.

In our case, H10(X)∗ = H01(X)
∗
. Since H1(X,Z) = {φ ∈ H1(X,R) : φ(H1(X,Z))

⊂ Z}, we see that Λ′ = Λ∗.
The dual complex tori correspond to the dual Hodge structure on V ∗

V ∗
C = (V ∗)10 ⊕ (V ∗)01,

where
(V ∗)10 = (V 01)∗ = (VC/V

10)∗ = (V 10)⊥,

(V ∗)01 = (V 10)∗ = (VC/V
01)∗ = (V 01)⊥.

Now let Q be a polarization of the Hodge structure on V with hermitian form
H . It defines a dual symplectic form Q∗ on V ∗ by viewing Q as a bijective map
V → V ∗ and setting Q∗ = −Q−1 : V ∗ → V . Since the subspaces V 10, V 01 are
isotropic with respect to Q, Q(V 10) = (V 10)⊥ = (V 01)∗, Q(V 01) = (V 10)∗. This
shows that (V 10)∗ and (V 01)∗ are isotropic with respect to Q∗. Let V 10 define a
complex structure I on V . Then the complex structure on (V 10)∗ is defined by the
operator I∗ which is adjoint to I with respect to the natural pairing between V and
V ∗. The symmetric bilinear form Q(v, I(v′)) can be considered as the composition
of the map V → V ∗ and I∗ : V ∗ → V ∗. The symmetric form Q∗(I∗(α), β) defines
the inverse map. This shows that I is positive with respect to Q if and only if
Q∗ is positive with respect to I∗. Thus Q∗ defines a polarization of the dual of a
polarized AHS of weight 1. It is called the dual polarization.

An example of dual Hodge structures is a Hodge structure on odd-dimensional
cohomology Hk(X,R) and on H2n−k(X,R), where X is a Kähler manifold of
dimension n. The duality is defined by the Poincaré duality. It is also a duality of
polarized Hodge structures.

It is clear that a polarized Hodge structure on H1(X,R) defines a polarization
on Pic0(X) and the dual polarization on Alb(X). An integral polarization defined
by a Hodge class makes these tori polarized abelian varieties.

Suppose Λ is an integral structure of Q. Choose a basis (vi) in Λ such that
the matrix of Q is equal to a matrix JD for some D. Let (v∗i ) be the dual basis in
V ∗. The map Q : V → V ∗ sends vi to div

∗
i+g and vi+g to −div

∗
i for i = 1, . . . , g.

Thus the matrix of Q∗ with respect to the basis v∗1+g, . . . , v
∗
2g, v

∗
1 , . . . , v

∗
g is equal

to J−1
D . Multiplying Q∗ by dg we get an integral structure of the dual AHS of type

D∗ = (1, dg/dg−1, . . . , d/d1) with respect to the dual lattice Λ∗.
In particular, we see that the dual of a polarized abelian variety of type D is

a polarized abelian variety of type D∗.
Now let Q be a polarization on T with the integral structure defined by Λ.

Let H be the associated hermitian form on VC and h be its restriction to W . It
defines a C-linear map h : W → W

∗
, x 	→ H(x, ). Since Im(h)(x, y) = Q(x, y), we

see that h(Λ) ⊂ Λ∗. Thus we have a holomorphic map of complex tori

h : T → T ∗ = Pic0(T ).
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Obviously the map is surjective, and its kernel is isomorphic to the finite abelian
group of order detJD = (d1 · · · dg)2 isomorphic to the cokernel of the map Q : Λ→
Λ∗. In particular, h is an isomorphism if D = 1g.

Let P be the period matrix of T with respect to the chosen bases of Λ and W .
It defines a map VC = ΛC → W , the direct sum of the transpose map W ∗ → V ∗

C

and its conjugate map W
∗ → V ∗

C define the dual Hodge structure. Thus the matrix
tP̄ is the coperiod matrix Π∗ of the dual torus T ∗ with respect to the bases (v∗i )
and (w̄i). The period matrix P ∗ of T ∗ is reconstructed from the equation(

P ∗

P̄ ∗

)
= (Π∗|Π̄∗)−1 = (tP̄ |tP )−1.

Example. Let T = W/Λ be a complex torus. The space T ×W is identified with
the trivial holomorphic tangent bundle of T . Thus the dual space W ∗ is the space
of holomorphic differentials H10(X). Thus

T ∼= Alb(T ).

Hence
Pic0(T ) = T ∗.

Also we see that a polarization on T defines the dual polarization of Pic0(T ). In
particular, if T is an abelian variety with a principal polarization, then T ∼= Pic0(T )
as polarized abelian varieties.

So far we have defined complex tori associated to a polarized AHS of weight
1 with integral structure Λ ⊂ V . One can associate complex tori to an AHS of any
odd weight k = 2m + 1. In fact, set

V 10 =
m⊕

s=0

Hm+1−s,m−s(X), V 01 =
m⊕

s=0

Hs,k−s(X), (6.3)

then VC = V 10⊕V 01 is an AHS of weight 1 which is polarized with respect to the
polarization form Q of the original AHS. This defines two dual complex tori

J = V 10/Λ, J̌ = (V 01)∗/Λ∗

where Λ is the projection of Λ to V 10. The torus J is called the Griffiths complex
torus associated to AHS.

In the case when the Hodge structure is the Hodge structure on odd-dimen-
sional cohomology Hk(X,R) of a n-dimensional Kähler variety with integral struc-
ture defined by Λ = Hk(X,Z) we obtain the definition of the kth Griffiths inter-
mediate Jacobian J = Jk(X). We have

J̌k(X) ∼= J2n−k(X).

In particular, they coincide when k = n = 2m+1. In this case Jn(X) is called the
intermediate Jacobian of X . Clearly,

J1(X) = Pic0(X), Jn−1(X) = Alb(X).
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Note that, in general, Q does not define a polarization of the AHS (6.3) since
the hermitian form iQ(x, x̄) is not positive on V 10; it changes signs on the direct
summands. Thus the Griffiths tori are not abelian varieties in general. However,
in one special case they are. This is the case when all summands except one in
V 10 are equal to zero. We call such AHS an exceptional AHS. In this case J is a
polarized abelian variety. It is a principally polarized variety if Q is unimodular on
Λ. For example, the intermediate Jacobian Jn(X) of an odd-dimensional Kähler
manifold with exceptional Hodge structure on the middle cohomology is a prin-
cipally polarized abelian variety. For example, any Kähler 3-fold with h30 = 0 (it
must be an algebraic variety in this case) defines a principally polarized abelian
variety J3(X) of dimension h21. Another example is a rigid Calabi–Yau 3-fold for
which h30 = 1, h21 = 0.

Let T be a connected complex variety. A family of polarized abelian varieties
with base T is a closed subvariety Y of PN×T such that each fibre Xt of the second
projection f : Y → T is an abelian variety of dimension g. Under the natural map
Xt → PN × {t}, each fibre is isomorphic to a closed projective subvariety of PN

and hence acquires a structure of a polarized abelian variety of some type D
independent of t. The period map is defined and is a holomorphic map

φ̄ : T → Zg/ΓD.

If we identify the orbit space with the coarse moduli space Ag(D) of abelian
varieties with polarization of type D, then the map is Xt 	→ Pic0(X). The abelian
varietyX can be uniquely reconstructed from Pic0(X) as the dual polarized abelian
variety. This proves the Global Torelli Theorem for polarized abelian varieties. It
gives an isomorphism

per : Ag(D)→ Zg/ΓD∗ ∼= AD∗ .

Example. Let M be a compact smooth oriented 2-manifold. Then b1(M) = 2g,
where g is the genus of M . We choose a complex structure on M which makes it a
compact Riemann surface X , or a projective nonsingular curve. It is known that
the group H1(M,Z) is a free abelian group of rank 2g which admits a standard
symplectic basis γ1, . . . , γ2g with respect to the cup-product

Q : H1(M,Z)×H1(M,Z)→ H2(M,Z) ∼= Z.

This defines an integral polarization of the Hodge structure corresponding the the
Kähler class generating H2(X,Z) = Z. It gives a principal polarization on Pic0(X).
Hence Alb(X) ∼= Pic(X) are isomorphic as principally polarized abelian varieties
and coincide, by definition, with the Jacobian variety Jac(X) of X . We know that
there exists a basis ω1, . . . , ωg in the space of holomorphic 1-forms H10(X) such
that the period matrix of Jac(X)

Π = (πij), πij =
∫

γi

ωj

is normalized, i.e., has the form t(Z|Ig), where Z ∈ Zg.
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A marked Riemann surface is a Riemann surface X together with a choice
of a symplectic basis in H1(X,Z). An isomorphism of marked Riemann surfaces
(X, (γi)) → (X ′, (γ′

i)) is an isomorphism f : X → X ′ of complex varieties such
that f∗(γ′

i) = γi. The Torelli Theorem for Riemann surfaces asserts that two
marked Riemann surfaces are isomorphic if and only if their normalized period
matrices with respect to the symplectic matrices are equal. In other words they
define the same point in the Siegel half-plane Zg. Two different markings on the
same surface define the points in Zg equivalent with respect to the action of the
Siegel modular group Γg = Sp(2g,Z). Thus we see that two Riemann surfaces are
isomorphic if and only if the corresponding Jacobian varieties are isomorphic as
principal abelian varieties, i.e., define the same point in Ag = Zg/Γg. The coarse
moduli spaceMg of Riemann surfaces of genus g exists and is an algebraic variety
of dimension 3g − 3. The period map

per :Mg → Zg/Γg
∼= Ag

is just the map X 	→ Jac(X). Thus the Torelli Theorem for Riemann surfaces is the
statement that two Riemann surfaces are isomorphic if and only if their Jacobian
varieties are isomorphic as principally polarized abelian varieties. Clearly, this also
establishes the Global Torelli Theorem for Hodge structures on one-dimensional
cohomology of Riemann surfaces.

In case g = 1, we have an isomorphism A1 = H/SL(2,Z) ∼= C. It is given by
the absolute invariant function j(τ). The Weierstrass function

℘(z) = z−2 +
∑

(m,n)∈Z2\{0}

( 1
(z + m + nτ)2

− 1
(m + nτ)2

)
defines a holomorphic map

C \ (Z + τZ)→ C2, Z 	→ (℘(z), ℘′(z))

which can be extended to an isomorphism from the elliptic curve Eτ = C/Z + τZ
to the plane cubic curve in P2 defined by

x2
2x0 − 4x3

1 + g2x1x
2
0 + g3x

3
0 = 0.

We have

j(τ) = 1728
g3
2

4g3
2 + 27g2

3

and Eτ
∼= Eτ ′ if and only if j(τ) = j(τ ′).

7. Eigenperiods

Let VC = ⊕V pq be a polarized AHS of weight k on a vector space (V,Q). A Hodge
isometry of VC is a R-linear automorphism of (V,Q) such that its linear extension
to VC preserves the Hodge decomposition. Let A be a finite abelian group acting
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on (V,Q) by Hodge isometries via a linear representation ρ : A→ Aut(V,Q). The
vector space VC splits into a direct sum of eigensubspaces

VC(χ) = {x ∈ VC : g(x) = χ(g)x,∀g ∈ A},
corresponding to different characters χ ∈ Â := Hom(A,C∗). The reality condition
of the representation ρ on VC is equivalent to the condition

Vχ = Vχ̄. (7.1)

We have a decomposition

VC(χ) =
⊕

p+q=k

V pq
χ , V pq

χ = VC(χ) ∩ V pq. (7.2)

It is not a Hodge decomposition in general because

V pq
χ = V qp

χ̄

and also because the complex vector space VC(χ) does not have a natural identifica-
tion with a complexification of a real vector space. However it satisfies properties
(HD2) and (HD3) of a polarized AHS of weight k. Since, for any x ∈ VC(χ),
y ∈ VC(χ′),

Q(x, y) = Q(g(x), g(y)) = Q(χ(g)x, χ′(g)y) = χ(g)χ′(g)Q(x, y), (7.3)

we obtain that the eigensubspaces VC(χ) and VC(χ′) are orthogonal if χ �= χ′.
Denote by (F p

χ) the flag of subspaces

F p
χ = ⊕p′≥pV

p′q
χ .

It satisfies the properties

(i) F p
χ ∩ F k−p+1

χ = {0};
(ii) (−1)

k(k−1)
2 Q(Cx, x̄) > 0, where C acts on V pq

χ as multiplication by ip−q.
Note that similar to (2.8) the spaces V pq

χ can be reconstructed from the flag (F p
χ)

V pq
χ = {x ∈ F p

χ : Q(x, ȳ) = 0, ∀y ∈ F p+1
χ }. (7.4)

Let
fp(χ) = dimF p

χ , f(χ) = (f0(χ), . . . , fk(χ)).

Let H(x, y) = Q(x, ȳ) be the hermitian form on VC(χ). If χ is real, i.e., χ(g) = ±1,
we define Fl(f(χ), VC(χ))0 to be the open subset of the flag variety Fl(f(χ), VC(χ))
which consists of flags (F p) satisfying conditions (i) and (ii). If χ is real, we define
Fl(f(χ), VC(χ))0 to be the period space Df(χ)(V (χ), Q|V (χ)). Note that in this
case the decomposition (7.2) is a polarized Hodge structure on the real eigenspace
V (χ).

Let Wt(ρ) denote the subset of χ ∈ Â such that (VC)(χ) �= 0. Let Wt0(ρ) ⊂ Â
be the subset of real characters. Then Wt(ρ) can be written as a disjoint union of
three subsets

Wt(ρ) = Wt+(ρ)
∐

Wt−(ρ)
∐

Wt0(ρ), (7.5)
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such that Wt±(ρ) = Wt∓(ρ). The conjugation map of VC sends the set
Fl(f(χ), VC(χ)) to the set Fl(f(χ̄), VC(χ̄)). The group A acts naturally on the pe-
riod space Df (V,Q) via its representation ρ. Let

Df (V,Q)ρ = {x ∈ Df (V,Q) : ρ(a)(x) = x,∀a ∈ A}.

We have a natural map

Φ : Df (V,Q)ρ −→
∏

χ∈Wt+(ρ)∪Wt0(ρ)

Fl(f(χ), VC(χ))0. (7.6)

It is obviously injective since one can reconstruct the Hodge structure from the
image using (7.4) applied to F p

χ and F p
χ̄ .

For any Kähler manifold X together with a Kähler class [ω] let Aut(X, [ω])
denote the group of holomorphic automorphisms leaving [ω] invariant. Fix a real
vector space V together with a non-degenerate bilinear form Q0, symmetric (resp.
skew-symmetric) if k is even (resp. odd) and a linear representation ρ0 : A →
GL(V,Q0). A ρ-marking of a polarized Kähler manifold X on which A acts via a
homomorphism σ : A→ Aut(X, [ω]) is an isomorphism

φ : (V,Q0)→ (Hk(X,R), Q)

such that, for any g ∈ A, ρ ◦ ρ0(g) ◦ φ−1 = σ∗(g).
Let f : Y → T be a family of polarized Kähler manifolds. Suppose that

the group A acts holomorphically on Y preserving the Kähler form [ω] on Y
which defines the polarization form [ω]t on each fibre Xt. Also we assume that
g(Xt) = Xt for all t ∈ T . Let V = Hk(Xt0 ,R) with polarization form Qt0 . Fix
an isomorphism (Hk(Xt0 ,R), Qt0) → (V,Q) and define ρ : A → Aut(V,Q) as the
representation g 	→ g∗ of A on Hk(Xt0 ,R). One can show that the monodromy
representation π(T, t0) → Aut(V,Q) commutes with the representation ρ. Let
Γρ(f) be the centralizer of the group ρ(A) in Aut(V,Q). Since Γρ(f) preserves a
lattice in V , the image of Hk(X,Z), the group Γρ(f) is a discrete subgroup of
Aut(V,Q). So the period map

φ : T → Γρ(f)\Df (V,Q0)ρ (7.7)

is a holomorphic map of complex varieties. Consider the composition of the multi-
valued period map T → Df (V,Q)ρ with the projection to Fl(f(χ), VC(χ))0. The
group Γρ(f) leaves each subspace VC(χ) invariant and preserves the flags (F p

χ).
Since, in general, it is not a discrete subgroup of Aut(VC(χ), Q), only the multi-
valued period map is defined as a holomorphic map. By passing to the universal
cover T̃ we have a one-valued holomorphic map

φλ : T̃ → Fl(f(χ), VC(χ))0. (7.8)

We call this map the eigenperiod map of the family f .
Consider the case when k = 1. A Hodge isometry of V is an automorphism

of V which is an automorphism of (V, I), where I is a positive complex structure



70 Igor V. Dolgachev and Shigeyuki Kondō

defined by a Q-polarized Hodge structure on V . Conversely any complex auto-
morphism of VC preserving the Hodge decomposition and Q arises from a R-linear
automorphism of V by extension of scalars.

Given a representation A → Sp(V,Q) := Aut(V,Q) we want to describe the
set of positive complex structures I on V such that any g ∈ A commutes with I.
In other words, the group A acts naturally on the Siegel half-plane G(g, VC)H via
its action on VC and we want to describe the subset

G(g, VC)ρ
H = {W : g(W ) ⊂W, ∀g ∈ A}

of fixed points of A.
Let Wχ = Vχ ∩W . Then

VC(χ) = Wχ ⊕Wχ.

We know that H |Wχ > 0 and H |Wχ < 0. Also W and W are orthogonal with
respect to H . Therefore the signature of H |VC(χ) is equal to (pλ, qλ), where pλ =
dimWχ, q = dimWχ.

For any hermitian complex vector space (E, h) of signature (p, q) let us denote
by G(p, (E, h)) the open subset of the Grassmannian G(p,E) which consists of p-
dimensional subspaces L such that h|L > 0. It is known that E admits a basis
e1, . . . , ep+q such that the matrix of E is equal to the matrix I(p, q) (2.9). This
shows that the group U(E, h) of isometries of (E, h) is isomorphic to the group

U(p, q) = {A ∈ GL(p + q,C) : tA · I(p, q) · Ā = I(p, q)}. (7.9)

By Witt’s theorem, the group U(E, h) acts transitively on G(p, (E, h)) with the
isotropy subgroup of L equal to U(L, h|L)× U(L⊥, h|L⊥). Thus

G(p, (E, h)) ∼= U(p, q)/U(p)× U(q).

It has a structure of a hermitian symmetric space of non-compact type I in Car-
tan’s classification.

Identifying E with Cg and h with the matrix I(p, q), we identify a subspace
from G(p, (E, h)) with the column space of a matrix Π of size (p+q)×p. Writing the

matrix in the form Π =
(

A
B

)
, where A is a square matrix of size p, the positivity

condition is expressed by the condition(
tA tB

)
·
(
Ip 0pq

0qp −Iq

)
·
(
Ā
B̄

)
= tA · Ā− tB · B̄ > 0.

One can show that |A| �= 0 so, replacing Π with Π ·A−1 we may assume that Π is

of the form
(

Ip

Z

)
for some complex (q × p)-matrix. The condition on Z is

Ip − tZ · Z̄ > 0. (7.10)

This shows that G(p, (E, h)) is isomorphic to a bounded domain Ipq in Cpq defined
by the previous inequality. Any hermitian symmetric space of non-compact type
I is isomorphic to such a domain.
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Taking p = 1 we see that I1q is isomorphic as a complex manifold to the unit
complex ball of dimension q

Bq = {z ∈ Cq : |z1|2 + . . . + |zq|2 < 1}. (7.11)

In particular, we we have

U(1, q)/U(1)× U(q) ∼= Bq.

There is a natural embedding of Ipq into the Siegel half-plane Zp+q for which
we choose a boundary model from (7.10). It is given by assigning to a matrix Z of
size p× q satisfying (4.14) the symmetric square matrix of size p + q

Z ′ =
(

0p
tZ

Z 0q

)
(7.12)

satisfying (7.10). Similarly, we have an embedding

k∏
i=1

Ipiqi ↪→ Zg, (7.13)

where g = p1 + . . . + pk = q1 + . . . + qk. Also we see that the Siegel half-plane Zg

is isomorphic to a closed subvariety of Igg defined by the equation tZ = Z.
Fix a partition of Wt(ρ). Let Hχ = H |VC(χ). For any χ ∈ Wt(ρ)+, let

(pχ, qχ) be the signature of Hχ. By (7.1), the signature of Hχ̄ = (qχ, pχ). The set
of pairs of numbers (pχ, qχ), well-defined up to permutation, is called the type of
the representation ρ.

We construct the inverse of the map (7.6)∏
χ∈Wt(ρ)+

G(pχ, (VC(χ), Hχ))→ G(g, VC)ρ
H . (7.14)

It is defined by assigning to a collection of subspaces (Eχ) from the left-hand side
the direct sum

W =
⊕

χ∈Wt(ρ)+

Eχ ⊕ (Eχ)⊥Hχ
.

It is clear that (Eχ)⊥Hχ
⊂ Vχ̄ and the restriction of H to this subspace is positive.

Thus H |W > 0 and

dimW =
∑

χ∈Wt(ρ)+

pχ +
∑

χ∈Wt(ρ)−
qχ = g.

Also, using (7.3) and the fact that H(Eχ, (Eχ)⊥Hχ
) = 0 implies Q(Eχ, (Eχ)⊥Hχ

) = 0,
we see that Q|W = 0. Thus W ∈ G(g, VC)H . As a sum of eigensubspaces it is
obviously ρ-invariant, so the map is well defined and is easy to see coincides with
the inverse of the map (7.6).
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Thus for any linear representation ρ : A→ Sp(V,Q) with Wt(VC) = {χi, χ̄i,
i = 1, . . . , k} and (pi, qi) = (pχi , qχi), then we obtain an embedding of hermitian
symmetric domains

k∏
i=1

Ipi,qi ↪→ Zg.

Example. Let A = (g) be a cyclic group of order 4. Its generator g satisfies g2 = −1.
Therefore its action on V is equivalent to a complex structure I on V and hence
defines a subspace L ⊂ VC on which g acts with eigenvalue i. Thus

L = (VC)χ, L̄ = (VC)χ̄,

where χ(g) = i, χ̄(g) = −i. Let Q be a symplectic form on V such that Q(v, I(v′)) is
a symmetric form of signature (p, q) and H = iQ(x, x̄) be the associated hermitian
form. Its restriction h to L is of signature (p, q). Let E be a positive subspace of L
of dimension p. Let E⊥

h be its orthogonal complement in L with respect to h. The
restriction of h to E⊥

h is negative. Its conjugate subspace E′ = E⊥
h belongs to W .

Since H(x, x̄) = −H(x̄, x), the restriction of H to E′ is positive. Thus W = E⊕E′

defines a positive complex structure on V with respect to Q. The operator I acts on
a p-dimensional subspace E of W as i1E and acts on the orthogonal q-dimensional
subspace E′ as −i1E′ . The decomposition VC = W ⊕W is a Q-polarized Hodge
structure invariant with respect to the representation of A in V .

In coordinates, choose a standard symplectic basis ei in V for a symplectic
form Q, and define I by the formula

I(ek) = ek+g, k = 1, . . . , p, I(ep+k) = −ep+g+k, k = 1, . . . , q.

Then Q(v, I(v′)) is a symmetric quadratic form of signature (p, q). Then I preserves
the lattice in V spanned by the vectors vi and acts on W preserving the projection
Λ of this lattice in W . Thus g acts an automorphism of the principally polarized
abelian variety A = W/Λ. This automorphism is of type (p, q), i.e., W decomposes
into a direct sum of eigensubspaces of dimension p and q.

We can find a basis in VC which is a sum of a basis in L and L̄ such that
W = E ⊕ E′ is represented by a matrix⎛⎜⎜⎝

Ip 0pq

Z 0q

0q Iq

0qp
tZ

⎞⎟⎟⎠
where Z ∈ Ipq. After an obvious change of a basis this matrix becomes a matrix
(7.12) defining the embedding of Ipq in Zg.

This shows that the isomorphism classes of principally polarized abelian va-
rieties of dimension g admitting an automorphism of order 4 of type (p, q) is
isomorphic to the space of orbits

Γpq\Ipq ⊂ Ag = Sp(2g,Z)\Zg,
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where Γpq is the subgroup of matrices M ∈ Sp(2g,Z) which commute with the

matrix
(

0g Ip,q

−Ip,q 0g

)
defining the operator I.

8. Arrangements of hyperplanes

Let H1, . . . , Hm be hyperplanes in Pn(C) defined by linear forms

fi(t0, . . . , tn) =
n∑

i=0

aijtj , i = 1, . . . ,m.

We assume that the hyperplanes are in a general position. This means that all
maximal minors of the matrix

M = (aij) (8.1)
are not equal to zero. Geometrically this means that the intersection of any n+ 1
hyperplanes is a point. Let

U = Pn \
m⋃

i=1

Hi

be the complementary set. Choose a set of rational numbers

μ = (μ1, . . . , μm),

satisfying
0 < μi < 1; (8.2)

|μ| :=
m∑

i=1

μi ∈ Z. (8.3)

It is well-known that the fundamental group π1(U, u0) is a free group gen-
erated by the homotopy classes gi of loops which are defined as follows. Choose
a line � in Pn which does not intersect any codimension 2 subspace Hi ∩Hj and
contains u0. Let γi be a path in � which connects u0 with a point on a small circle
around the point pi = � ∩ Hi, goes around the circle in a counterclockwise way,
making the full circle, and then returns in the opposite direction to the point u0.
The homotopy classes gi = [γi] generate the group π1(U, u0) with the defining
equation g1 · · · gm = 1.

Let Lμ be the complex local coefficient system on U defined by the homo-
morphism

χ : π1(U, u0)→ C∗, gi 	→ e−2πiμi . (8.4)

Let d be their common denominator of the numbers μi and

Ad(m) = (Z/d)m/Δ(Z/d),

where Δ denotes the diagonal map. Consider the finite cover U ′ of U corresponding
to the homomorphism π1(U, u0) → Ad(m) defined by sending g1 to the vector
e1 = (1, 0, . . . , 0), and so on. Let X be the normalization of P1 in the field of
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rational functions on U ′. This is a nonsingular algebraic variety which can be
explicitly described as follows. Consider the map

f : Pn → Pm−1, (t0, t1, . . . , tn) 	→ (f1(t), . . . , fm(t)).

Its image is a linear n-dimensional subspace L of Pm−1. Let φ : Pm−1 → Pm−1 be
the cover defined by

(z0, . . . , zm−1)→ (zd
0 , . . . , z

d
m−1).

Then X is isomorphic to the pre-image of L under the cover φ. If we write the
linear forms fi, i > n + 1, as linear combinations αi0f1 + . . . + αinfn+1, then X
becomes isomorphic to the subvariety in Pm−1 given by the equations

−xd
i + αi0x

d
0 + . . . + αinx

d
n = 0, i = n + 1, . . . ,m.

The group Ad(m) acts naturally on X via multiplication of the coordinates xi by
dth roots of unity. The quotient space X/A is isomorphic to Pn. The group Ad(m)
acts on V = Hn(X,R) and on its complexification VC = Hn(X,C).

Lemma 8.1. Let χ ∈ Âd(m) be defined by (8.4). Then

Hj(U,Lμ) = 0, j �= n, Hn(U,Lμ) ∼= Hn(X,C)(χ).

Proof. Let

U ′ = X \
m−1⋃
i=0

{xi = 0}

and let π : U ′ → U be the natural projection. This is a unramified Galois cov-
ering with the Galois group Ad(m). The direct image of the constant coefficient
system CU ′ in U decomposes into the direct sum of local coefficients systems Lχ

corresponding to different characters χ ∈ Âd(m)

π∗(CU ′ ) =
⊕
χ∈Â

Lχ.

We have an isomorphism of cohomology with compact support

Hj
c (U, π∗(CU ′)) ∼= Hj

c (U ′,C)

which is compatible with the action of A and gives an isomorphism

Hj
c (U ′,C)(χ) ∼= Hj

c (U,Lμ).

One can show (see [DM], p. 20) that for any character χ determined by the numbers
μi satisfying (8.2) and (8.3), Hj

c (U,Lχ) ∼= Hj(U,Lχ). Let Y = X\U ′. Now consider
the long exact sequence

. . .→ Hj
c (U ′,C)→ Hj(X,C)→ Hj(Y,C)→ Hj+1

c (U,C)→ . . . .

Since U ′ is affine, it has homotopy type of a CW-complex of dimension n, and hence
Hj

c (U ′,C) = 0 for j > n. Hn−1(Y,C) is generated by the fundamental classes of
the irreducible components Yi = Y ∩ {xi = 0}. They are fixed under the action
of Ad(m), and hence Hn−1(Y,C)χ = 0. Since Yi and X are complete intersections
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in projective space, by Lefschetz’s Theorem on a hyperplane section, the natural
homomorphism Hj(Pm−1,C)→ Hj(X,C), is an isomorphism for j < n. Similarly,
Hj(Pm−2,C)→ Hj(Yi,C), is an isomorphism for j < n−1. Since the group Ad(m)
acts trivially on cohomology of the projective space, we obtain that

Hj(X,C)(χ) = {0}, j �= n.

Also using the Mayer–Vietoris sequence, one shows that

Hj(Y,C)(χ) = 0, j �= n− 1.

The long exact sequence now gives

Hj(U,Lμ) ∼= Hj
c (U ′,C)(χ) = 0, j �= n,

Hn(U,Lμ) ∼= Hn
c (U ′,C)(χ) ∼= Hn(X,C)(χ). �

Lemma 8.2. For any character χ defined by a collection μ,

dimHpq
χ (X) =

(
|μ| − 1

p

)(
m− 1− |μ|

q

)
,

dimHn(X,C)χ =
(
m− 2

n

)
.

Proof. We only sketch the proof. Another proof was given by P. Deligne [De]. One
can compute explicitly the Hodge decomposition of a nonsingular complete inter-
section n-dimensional subvariety X in projective space PN . Let F1 = . . . = FN−n =
0 be homogeneous equations of X in variables x0, . . . , xN . Let y1, . . . , yN−n be new
variables and

F = y1F1 + . . . + yN−nFN−n.

Define the jacobian algebra of F as the quotient algebra

R(F ) = C[x0, . . . , xN , y1, . . . , yN−n]/JF ,

where JF is the ideal generated by partial derivatives of F in each variable. It has
a natural bigrading defined by degxi = (1, 0), deg yj = (0, 1). There is a natural
isomorphism (see [Ter])

Hpq
prim(X) ∼= R(F )q,((N+1+q)d−n−1),

where d is the sum of the degrees of the polynomials Fi. If G is a group of auto-
morphisms of X induced by linear transformations of PN , then its action on the
cohomology is compatible with the action on the ring R(F ) (the representation on
this ring must be twisted by the one-dimensional determinant representation). In
our case the equations fi are very simple, and the action of the group Ad(m) can
be explicitly computed.

The second formula follows from the first by using the combinatorics of bi-
nomial coefficients. �
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Let χ be the character corresponding to μ. Using the isomorphism from
Lemma 8.1, we can define

H0(U,Lμ)pq = Hpq
χ (X). (8.5)

One has the following description of this space (see [DM], [De]).

H0(U,Lμ)pq = Hq(Pn,Ωp
Pn(log∪Hi)⊗ Lμ),

where Ωp
Pn(log∪Hi) is the sheaf of meromorphic differential p-forms with at most

simple poles on the hyperplanes Hi. These forms can be considered as multi-valued
forms on Pn with local branches defined by the local coefficient system.

Consider the family X parametrized by the set of all possible ordered sets of
m hyperplanes in general linear position. Any such collection is defined uniquely
by the matrix M (8.1) of coefficients of linear forms defining the hyperplanes. Two
matrices define the same collection if and only if their columns are proportional.
The set of equivalence classes is an algebraic variety Xn,m of dimension mn. Let
X̃n,m be the universal covering of Xn,m. We have the eigenspace period map

φ : X̃n,m → Fl(f(χ), VC(χ))0,

where V = Hn(Xt0 ,R) for some t0 ∈ Xn,n and

fp(χ) =
∑
p′≥p

(
|μ| − 1

p′

)(
m− 1− |μ|

n− p′

)
, p = 0, . . . , n.

The group GL(n + 1,C) acts naturally on Xn,m by left-multiplications. Ge-
ometrically this means a projective transformation sending a collection of hyper-
planes to a projectively equivalent collection. On can show that the orbit space
Pn,m = Xn,m/GL(n + 1,C) is a quasi-projective algebraic variety of dimension
(m − n − 1)m. Two Xt and Xt′ corresponding to points in the same orbit are
Ad(m)-equivariantly isomorphic. This shows that the eigenperiod map is defined
on the universal covering P̃n,m.

The following result is a theorem of A. Varchenko [Va].

Theorem 8.3. Assume that χ corresponds to collection of numbers μi such that

|μ| = μ1 + . . . + μm = n + 1,

or, equivalently, hn0
χ (X) = 1. Then the eigenperiod map

P̃n,m → Fl(f(χ), VC(χ))0

is a local isomorphism onto its image.

Example. We take n = 1. In this case U = P1 − {p1, . . . , pm}. Without loss of
generality we may assume that pm is the infinity point and other pi’s have affine
coordinates zi.

Consider a multi-valued form

ω = g(z)(z − z1)−μ1 . . . (z − zm−1)−μm−1dz,
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where g(z) is a polynomial of degree |μ|−2 (zero if |μ| < 2). Under the monodromy
transformation the power (z − zi)−μi is transformed in the way prescribed by
the local coefficient system. At the infinity we have to make the variable change
z = 1/u to transform ω to the form

ω = h(u)(1− z1u)−μ1 . . . (1 − zm−1u)−μm−1u−μmdu.

Again we see that the local monodromy u 	→ ue2πiφ agrees with the monodromy
of the local coefficient system. This shows that the forms ω span a subspace of
dimension |μ| − 1. Comparing with the formula from Lemma 8.2 we see that they
span the whole space H1(U,Lμ)10 = H10

χ (X).
Assume

|μ| = μ1 + . . . + μm = 2, (8.6)

or, equivalently, h10
χ (X) = 1. In this case, the space F 1

χ = H1(U,Lμ)10 is generated
by the form

ωμ = (z − z1)−μ1 . . . (z − zm−1)−μm−1dz.

The form ωμ is called the hypergeometric form with exponents (μ1, . . . , μm−1). The
space V = H1(X,R)(χ) is of dimension m − 2 and Fl(f(χ), VC(χ))0 is the open
subspace of the projective space of lines in VC such that restriction of the hermitian
form iQ(x, x̄) to F 1 is positive definite. Thus Fl(f(χ), VC(χ))0 is isomorphic to a
complex ball Bm−3 and we have the eigenperiod map

P̃1,m → Bm−3. (8.7)

Note that dimP1,m = m − 3 = dim Bm−3. By Theorem 8.3, this map is a local
isomorphism (in the case n = 1 this is an earlier result which can be found in
[DM].)

Now recall some constructions from Geometric Invariant Theory. Consider
the space X = (Pn)m parametrizing m-tuples of points in Pn, not necessary dis-
tinct. Consider a map f : (Pn)m → PN given by all multi-homogeneous monomials
of multi-degrees k = (k1, . . . , km), ki > 0. The group SL(n + 1) acts naturally on
Pn by projective transformations and on the product by the diagonal action. Let
S be the projective coordinate ring of the image of the product in PN . The group
G = SL(n+ 1,C) acts on S via its linear action on PN . Let SG be the subring of
invariant elements. By a theorem of Hilbert, the subring SG is a finitely generated
graded algebra over C. By composing the map f with the Veronese map PN → PM

defined by all homogeneous monomials of some sufficiently large degree one may
assume that SG is generated by elements of degree 1. A standard construction
realizes this ring as the projective coordinate ring of some projective variety. This
projective variety (which is uniquely defined up to isomorphism) is denoted by
X//kG and is called the GIT -quotient of X by G with respect to the linearization
defined by numbers k. Assume n = 1. Let U s (resp. U ss) be the open Zariski subset
of (P1)m parametrizing collections of points (p1, . . . , pm) such that for any p ∈ P1
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the following conditions is satisfied:

2
∑
pi=p

ki <

m∑
i=1

ki (resp. 2
∑
pi=p

ki ≤
m∑

i=1

ki). (8.8)

One shows that there is a canonical surjective map U ss → X//kG whose restriction
to U s is isomorphic to the natural projection of the orbit space U → U/G. Two
point sets in the set U ss \ Us are mapped to the same point if and only if they
have the same subset of points pj , j ∈ J , satisfying 2

∑
j∈J ki =

∑m
i=1 ki or its

complementary set.
Let P ss

1,k (resp. P s
1,k) denote the GIT-quotient (P1)m//kSL(2,C) (resp. its

open subset isomorphic to the orbit space U s/SL(2)). Our variety P1,m is isomor-
phic to an open subset of P s

1,k for any k = (k1, . . . , km).
The following is a main result of Deligne–Mostow’s paper [DM].

Theorem 8.4. Let μ satisfy condition (8.6). Write μi = ki/d, where d is a common
least denominator of the μi’s. Assume that the following condition is satisfied:

(1− μi − μj)−1 ∈ Z, for any i �= j such that μi + μj < 1. (8.9)

Then the monodromy group Γμ is a discrete group of holomorphic automorphisms
of Bm−3 and the eigenperiod map (8.7) extends to an isomorphism

Φ : P s
1,k → Γμ\Bm−3.

Moreover, Φ can be extended a holomorphic isomorphism

Φ : P s
1,k → Γμ\Bm−3,

where the target space is a certain compactification of the ball quotient obtained by
adding a finite set of points.

The list of collections of numbers (μ1, . . . , μm) satisfying (8.9) is finite for
m > 4. It consists of 27 collections with m = 5, of 7 collections with m = 6 and
one collection with m = 7 and m = 8. One can extend the theorem to the case
when μ satisfies a weaker condition:

(1− μi − μj)−1 ∈ Z for any i �= j such that μi + μj < 1, μi �= μj (8.10)

2(1− μi − μj)−1 ∈ Z for any i �= j such that μi + μj < 1, μi = μj .

This gives additional cases, with largest m equal to 12.
Write μi = ki/d as in Theorem 8.4. Recall that, by Lemma 8.1 we have an

isomorphism
H1(U,Lμ) ∼= H1(X,C)(χ),

where X is the curve in Pm−1 defined by equations

−xd
i + ai0x

d
0 + ai1x

d
1 = 0, i = 2, . . . ,m− 1.

Let H = Ker(χ) and Xμ = X/H . One can show that the curve Xμ is isomorphic
to a nonsingular model of the affine algebraic curve with equation

yd = (x − z1)k1 . . . (x− zm−1)km−1 . (8.11)
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The cyclic group Cd = Z/dZ acts naturally on this curve by acting on the variable
y. One proves that

H1(U,Lμ) ∼= H1(Xμ,C)(χ).
For example, take m = 6, d = 3, μ1 = . . . = μ6 = 1. The curve Xμ is the curve of
genus 4 with affine equation y3 = (x−z1) · · · (x−z6). We have dimH10(Xμ)(χ) =
1. Thus the action of C3 on the Jacobian variety is of type (1, 3). As we see in
Section 11, the locus of principally polarized abelian 4-folds admitting an auto-
morphism of order 3 of type (1, 3) is isomorphic to a 3-dimensional ball quotient.
This agrees with the theory of Deligne–Mostow.

9. K3 surfaces

This is our second example. This time we consider compact orientable simply-
connected 4-manifolds M . Recall that by a theorem of M. Friedman, the home-
omorphism type of M is determined by the cup-product on H2(M,Z) ∼= Zb2(M).
It is a symmetric bilinear form whose matrix in any Z-basis has determinant ±1.
The corresponding integral quadratic form is called in such case a unimodular qua-
dratic form. The group H2(M,Z) equipped with the cup-product is an example
of a lattice, a free abelian group equipped with a symmetric bilinear form, or,
equivalently, with a Z-valued quadratic form. We will denote the values of the
bilinear form by (x, y) and use x2 to denote (x, x). We apply the terminology of
real quadratic forms to a lattice whose quadratic form is obtained by extension of
scalars to R. There are two types of indefinite lattices. The even type is when the
quadratic form takes only even values, and the odd type when it takes some odd
values. A unimodular indefinite lattice of odd type can be given in some Z-basis
by a matrix I(p, q) (2.9). Its Sylvester signature is (p, q). A unimodular indefinite
quadratic form S of even type of signature ≤ 0 is isomorphic to the orthogonal
sum U⊕p ⊕ E⊕q

8 , where U is given by the matrix(
0 1
1 0

)
and E8 is a unique (up to isomorphism) even negative definite unimodular lattice
of rank 8. The index of S is equal to −8q and the Sylvester signature is equal
to (p, p + 8q). The lattice E8 is defined by the Dynkin diagram of type E8. Its
vertices correspond to vectors with (x, x) = −2 and (xi, xj) = 1 or 0 dependent
on whether the corresponding vertices are joined by an edge. Note that changing
the orientation changes the index I(M) to its negative. Also by a theorem of
Donaldson, p �= 0 for the even cup-product on a simply-connected 4-manifold.

A 4-manifold M is called a K3-manifold if it realizes the form LK3 = U3⊕E2
8 ,

where the direct sum is considered to be an orthogonal sum.

Theorem 9.1. Each K3-manifold is homeomorphic to a compact simply connected
complex Kähler surface X with trivial first Chern class (i.e., the second exterior
power of the holomorphic tangent bundle is the trivial line bundle).
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Proof. It is enough to construct such a complex surface realizing the quadratic
form LK3. Let X be a nonsingular quartic surface in P3(C). The standard exact
sequence

0→ TX → TP3 |X → NX/P3 → 0
allows one to compute the Chern classes of X . We have

1 + c1 + c2 = (1 + h)4/(1 + 4h) = 1 + 6h2,

where h is the class of a plane section. Thus c1 = 0 and c2 = 6 · 4 = 24. Since
c1 = 0, the canonical class KX = −c1 = 0. Thus H20(X) = H0(X,Ω2

X) = C. Since
24 = c2 = χ(X) =

∑
(−1)ibi(X) and X is simply-connected, we get b2(X) = 22.

Thus b2 = h20 + h11 + h02 implies h11 = 20. By the Index formula (2.7) we obtain
that I(M) = −16, hence the Sylvester signature is (3, 19). One also uses Wu’s
Theorem which asserts that the cup-product is even if c1(X) is divisible by 2 in
H2(X,Z). Thus H2(X,Z) is an even lattice. This implies that the cup-product
H2(X,Z) is isomorphic to the lattice LK3. �

A non-trivial theorem which is a corollary of the theory of periods of K3
surfaces is the following.

Theorem 9.2. All complex K3 surfaces are diffeomorphic to a nonsingular quartic
surface in P3(C).

Let X be an algebraic K3 surface (e.g., a quartic surface). We have already
observed that (h20, h11, h02) = (1, 20, 1). The Hodge flag is

0 ⊂ F 2 = H20(X) ⊂ F 1 = H20(X) + H11(X) ⊂ F 0 = H2(X,C).

The Hodge structure on cohomology V = H2
prim(X,R) is a AHS of weight 2 of

type (1, 19, 1), where we take the polarization defined by a choice of a Hodge form
h ∈ H2(X,Z). The polarization form Q admits an integral structure with respect
to the lattice H2(X,Z). Note that the flag (F p) is completely determined by F 2

(because F 1 = (F 2)⊥). This shows that the period space Df (V,Q) is isomorphic,
as a complex manifold, to

Dh(V ) = {C · v ∈ P(VC) : Q(v, v) = 0, Q(v, v̄) > 0}. (9.1)

A marking of a K3 surface is an isomorphism of lattices φ : LK3 → H2(X,Z).
After tensoring with R or C, it defines an isomorphism φR : (LK3)R → H2(X,R),
φC : (LK3)C → H2(X,C). Choose a marking. Let l = φ−1(h). Let l⊥ denote the
orthogonal complement of Zl in LK3. It is a sublattice of signature (2, 19). The
period space Dh(V ) becomes isomorphic to the 19-dimensional complex variety

Dl = {Cv ∈ P((l⊥)C) : (v, v) = 0, (v, v̄) > 0}.
Note that, in coordinates, the period space Dl is isomorphic to a subset of

lines in P20 whose complex coordinates (t0, . . . , t19) satisfy

t20 + t21 − t23 − . . .− t219 = 0,

|t0|2 + |t1|2 − |t3|2 − . . .− |t19|2 > 0.
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One can give another model of the period space as follows. For any line
Cv ∈ Dl write v = x + iy, where x, y ∈ (l⊥)R and consider the plane P in
V = (l⊥)R spanned by x, y. We have (x+ iy, x− iy) = x2 + y2 > 0. Also P carries
a canonical orientation defined by the orientation class of the basis formed by x
and y, in this order. This defines a map

Dl → G(2, V )+Q = {P ∈ G(2, V )0 : Q|P > 0},

where G(2, V )0 is the Grassmannian of oriented planes in V . It is easy to construct
the inverse map. For any P ∈ G(2, V )+Q with a basis (x, y) we assign a line in
VC spanned by x + iy. A different basis in the same orientation class changes
the complex vector by a complex multiple. This gives a well-defined map to the
projective space P(VC) and, as is easy to see, the image is equal to Dl. The changing
of orientation in the plane P corresponds to replacing x + iy with x − iy, i.e.,
replacing v with v̄. If v arises as the period of a K3 surface, this switching is
achieved by the changing the complex structure of the surface to the conjugate
one.

The real Grassmannian model shows that the group O(V ) ∼= O(2, 19) acts
transitively onDl with the isotropy group of some point isomorphic to the subgroup
SO(2)×O(19). Here O(p, q) denotes the orthogonal group of the real quadratic form
on Rn defined by the diagonal matrix I(p, q), and SO(p, q) denotes its subgroup
of matrices with determinant 1. So, we obtain

Dl
∼= O(2, 19)/SO(2)×O(19).

This description shows that the period space is not connected. It consists of two
disconnected copies of a Hermitian symmetric space of non-compact type IV iso-
morphic to the orbit space SO(2, 19)/SO(2) × SO(19). In coordinate description
of Dl the connected components are distinguished by the sign of Im( t1

t0
).

It is known that the K3-lattice LK3 represents any even number 2d, i.e.,
the set of elements x ∈ LK3 with x2 = 2d is not empty. This is easy to see, for
example, considering the sublattice of LK3 isomorphic to U . Less trivial is the
fact that any two vectors x and y with x2 = y2 differ by an isometry of LK3

provided that none of them is divisible by an integer �= ±1 (i.e., x, y are primitive
elements of the lattice). Let (X,h) be a polarized algebraic K3 surface of degree
h2 = 2d. As always in this case we assume that the polarization class h belongs to
H2(X,Z), i.e., is a Hodge class. We can always choose h to be a primitive element
in H2(X,Z). For each positive integer d fix a primitive element l ∈ LK3 with
l2 = 2d. Let φ : LK3 → H2(X,Z) be a marking of (X,h). Then σ(φ−1(h)) = l
for some σ ∈ O(LK3). This shows that (X,h) always admits a marking such that
φ−1(h) = l. We call it a marking of a polarized K3 surface. Its period

pX,φ = φ−1
C (H20(X))

belongs to Dl. Note that the polarization h is determined by the marking since,
by definition, φ(l) = h, so there is no need to use the notation pX,h,φ.
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We say that two marked polarized K3 surfaces (X,φ) and (X ′, φ′) are iso-
morphic if there exists an isomorphism of algebraic varieties f : X ′ → X such
that φ′ = f∗ ◦ φ and f∗(h′) = h. Obviously this implies that pX,φ = pX′,φ′ . Con-
versely, suppose this happens. Then ψ = φ ◦ φ−1 : H2(X ′,Z) → H2(X,Z) is an
isomorphism of lattices such that ψ(H20(X ′)) = H20(X) and ψ(h′) = h.

The following is a fundamental result due to I.R. Shafarevich and I.I. Pia-
tetsky-Shapiro [SPS], called the Global Torelli Theorem for polarized algebraic K3
surfaces.

Theorem 9.3. Let (X,h) and (X ′, h′) be two polarized algebraic K3 surfaces. Sup-
pose there is an isometry of lattices φ : H2(X ′,Z)→ H2(X,Z) such that φ(h′) = h
and φ∗

C(H20(X ′)) = H20(X). Then there exists a unique isomorphism of algebraic
varieties f : X → X ′ such that f∗ = φ.

Let
Γl = {σ ∈ O(LK3) : σ(l) = l}.

For any marked polarized K3 surface (X,φ) with pX,φ ∈ Dl and any σ ∈ Γl we
have pX,φ◦σ ∈ Dl. So the orbit Γl · pX,φ depends only on isomorphism class of
(X,h). The group Γl is isomorphic to a discrete subgroup of O(2, 19) which acts
transitively on Dl with compact stabilizers isomorphic to SO(2) × O(19). This
shows that Γl is a discrete subgroup of the automorphism group of Dl (i.e., its
stabilizers are finite subgroups). Thus the orbit space Γl\Dl has a structure of
a complex variety (with quotient singularities). In fact, it has a structure of a
quasi-projective algebraic variety. Note that, although the period space Dl is not
connected, the orbit space is an irreducible algebraic variety. The reason is that
the group Γl contains an element which switches the two connected components.
In fact, it is easy to see that there is an isomorphism of lattices

l⊥ ∼= U2 ⊕ E2
8⊕ < −2d >,

where < m > denotes a lattice of rank 1 defined by the matrix (m). The isometry
σ of l⊥ defined by being the minus-identity on one copy of U and the identity on all
other direct summands belongs to Γl. Since it switches the orientation of a positive
definite 2-plane spanned by a vector x ∈ U and a vector y from another copy of
U such that (x, x) > 0, (y, y) > 0, the isometry σ switches the two connected
components of Dl.

We see that the isomorphism class of (X,h) defines a point

pX,h ∈ Γl\Dl

and the Global Torelli Theorem from above asserts that p(X,h) = p(X ′, h′) if and
only if (X,h) and (X ′, h′) are isomorphic polarized surfaces. This is truly one of
the deepest results in mathematics generalizing the Torelli theorem for curves and
polarized abelian varieties.

The Global Torelli Theorem can be restated in terms of the period map for
a family π : X → T of polarized K3 surfaces, where we always assume that T
is connected. The cohomology groups of fibres H2(Xt,Z) form a sheaf H2(π) of
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Z-modules (the sheaf R2π∗(ZY )). A marking of the family is an isomorphism of
sheaves φ : (LK3)T → H2(π), where (LK3)T is the constant sheaf with fibre LK3.
For any t ∈ T the map of fibres defines a marking φt of Xt. The polarization
classes ht of fibres define a section h of H2(π) and we require that φ−1(h) = l. For
any t ∈ T , the map of fibres φC : (LK3)C → H2(Xt,C) defines the period point
pXt,φt ∈ Dl. This gives a map

pπ,φ : T → Dl. (9.2)

By Griffiths’ theorem it is a holomorphic map of complex varieties. In general, a
family does not admit a marking because the sheaf H2(π) need not be constant.
However, it is isomorphic to a constant sheaf when the base T is simply connected.
So replacing T by the universal covering T̃ we can define the period map (9.2). Now
for any two points t̃ and t̃′ in T̃ over the same point in T , the fibres of the family
f̃ : Y ×T T̃ → T̃ over these points are isomorphic polarized surfaces. Therefore
their images in Dl lie in the same orbit of Γl. This defines a holomorphic map

pπ : T → Γl\Dl

called the period map of a family. The Global Torelli Theorem asserts that the
points in the same fibre of the period map are isomorphic polarized K3 surfaces.

One can construct a coarse moduli space of polarized K3 surfaces. Let X be
an algebraic K3 surface which contains a Hodge class h with h2 = 2d. One can
show that a line bundle L with c1(L) = 3h defines an isomorphism from X to a
closed subvariety of P9d+1. Two different embeddings defined in this way differ by a
projective transformation of P9d+1. A construction from algebraic geometry based
on the notion of a Hilbert scheme allows one to parametrize all closed subvarieties
of P9d+1 isomorphic to an embedded K3 surface as above by some quasi-projective
algebraic variety H2d. The orbit space H2d/PGL(9d + 2,C) exists and represents
a coarse moduli space of K3 surfaces (see [SPS]). We denote it byM2d. Then we
have the period map

per :M2d → Γl\Dl. (9.3)

The Global Torelli Theorem implies that this map is injective. A further result,
the Local Torelli Theorem asserts that this map is a local isomorphism of complex
varieties, and hence the period map is an isomorphism with its image.

Before we state a result describing the image of the period map let us remind
some terminology from algebraic geometry. Let Pic(X) be the Picard group of X .
It is a subgroup of H2(X,Z) spanned by the fundamental classes of irreducible
1-dimensional complex subvarieties (curves) on X . An integral linear combination∑

ni[Γi] of such classes is cohomologous to zero if and only if the divisor D =∑
niΓi is linearly equivalent to zero (i.e., the divisor of a meromorphic function).

So Pic(X) can be identified with the group of divisor classes on X . Via the well-
known relation between divisor classer and isomorphism classes of algebraic line
bundles over X (defined by the first Chern class map), we see another description
of Pic(X) as the group of isomorphism classes of line bundles, or invertible sheaves
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of OX -modules. We identify Pic(X) with a sublattice SX of the unimodular lattice
H2(X,Z) with respect to the cup-product (the Picard lattice).

Recall that a line bundle L is called ample if sections of some positive tensor
power L⊗m define an embedding of X in projective space. In this case the line
bundle becomes isomorphic to the restriction of the line bundle corresponding to
a hyperplane. A line bundle L is ample if and only if its first Chern class c1(L) is
the cohomology class of some Hodge form. A line bundle L is ample if and only if

c1(L)2 > 0, (c1(L), [C]) > 0,

for any curve C. We say that L is pseudo-ample if the first condition holds but
in the second one the equality is possible. It is known that the restriction of the
cup-product Q to Pic(X) has signature (1, r− 1), where r = rank Pic(X). This is
because, by the Lefschetz Theorem,

Pic(X) = H11(X) ∩H2(X,Z). (9.4)

By the property of signature of the intersection form on H11, any irreducible
curve C with (c1(L), [C]) = 0 must satisfy [C]2 < 0. Since KX = 0, the adjunction
formula implies that C ∼= P1 and C2 = −2 (we will omit writing the brackets
[C] indicating the divisor class). Such a curve is called a (−2)-curve. Thus if X
has no (−2)-curves, any divisor class D with D ·D > 0 is ample. It follows from
the Riemann–Roch Theorem on algebraic surfaces that any divisor class D with
D2 = −2 is either effective, i.e., the class of some curve, maybe reducible, or −D
is effective. It is known that a line bundle L is pseudo-ample if and only if sections
of some positive tensor power of L define a map from X to a surface in X ′ in some
projective space such that all (−2)-curves R with (R, c1(L)) = 0 are blown down
to singular points of X ′ and outside of the union of such curves the map is an
isomorphism.

The next result describes the image of the period map (9.3). Let δ ∈ LK3 sat-
isfy (δ, l) = 0, δ2 = −2. Let Hδ denotes the intersection of Dl with the hyperplane
{Cx ∈ P((l⊥)C) : (x, δ) = 0}. Let

Δl =
⋃

δ2=−2,(δ,l)=0

Hδ.

It is a union of countably many closed hypersurfaces in Dl. We call it the dis-
criminant locus of Dl. Note that for any marked polarized K3 surface (X,φ) of
degree 2d its period pX,φ does not belong to any hyperplane Hδ. In fact, otherwise
0 = (δ, pX,φ) = (φ(δ), H20(X)) implies, by (9.4) that φ(δ) ∈ Pic(X) and φ(δ) or
its negative is an effective divisor class. However 0 = (δ, l) = (φ(δ), h) contradicts
the assumption that h = c1(L) for some ample line bundle. So we see that the
image of the period map is contained in the complement of the discriminant lo-
cus. A deep result, called the Surjectivity Theorem for the periods of polarized K3
surfaces asserts that the image is exactly the complement of Δl. In fact, it gives
more.
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By weakening the condition on the polarization one can consider pseudo-
polarized K3 surfaces as pairs (X,h), where h is a primitive divisor class corre-
sponding to a pseudo-ample line bundle. One can extend the notion of a marked
pseudo-polarized K3 surface (X,φ) and define its period point pX,φ and extend
the definition of the period map to families of pseudo-polarized K3 surfaces. Then
one proves the following.

Theorem 9.4. Any point in Dl is realized as the period point pX,φ of a marked
pseudo-polarized K3 surface (X,h). The image of the set {δ : pX,φ ∈ Hδ} under
the map φ is equal to the set Δ(X,h) of divisor classes of curves R such that
(R, h) = 0. In particular, the periods of marked polarized K3 surfaces is equal to
the set Dl \Δl. The orbit space Γl\Dl is a coarse moduli space for pseudo-polarized
K3 surfaces of degree h2 = 2d.

Note that the set Δ(X,h) is finite because it is contained in the negative
definite lattice equal to the orthogonal complement of h in SX . This shows that
the set of hyperplanes Hδ is locally finite, i.e., each point lies in the intersection
of only finite many hyperplanes. Let R(X,h) be the sublattice of SX generated
by the subset of Δ(X,h). It is negative definite (because it is a sublattice of the
hyperbolic lattice SX orthogonal to an element h with h2 > 0) and is spanned
by divisor classes R with R2 = −2. Let [R] ∈ Δ(X,h), replacing R with −R
we may assume that R is a curve on X . Writing it as a sum of its irreducible
components Ri we see that (Ri, h) = 0, so Ri ∈ Δ(X,h). This shows that Δ(X,h)
is spanned by the classes of (−2)-curves from Δ(X,h). All negative definite lattices
generated by elements x with x2 = 2 lattices have been classified by E. Cartan.
They coincide (after multiplying the value of the quadratic form by −1) with root
lattices of semi-simple Lie algebras of types An, Dn, En and their direct sums and
described by the corresponding Cartan matrices and their direct sums. Recall that
the pseudo-polarization h defines a birational model of X as a surface X ′ with
singular points whose minimal resolution is isomorphic to X . The singular points
are rational double points of types corresponding to the irreducible components of
the lattice RX . The simplest case is when Δ(X,h) consists of one element. In this
case, X ′ has one ordinary singularity (of type A1). All possible lattices R(X,h)
which may occur have been classified only in the cases h2 = 2 or 4.

10. Lattice polarized K3 surfaces

Let M be any abstract even lattice of signature (1, r − 1) (if r > 1 it is called a
hyperbolic lattice). It is known that the cone

VM = {x ∈MR : x2 ≥ 0} (10.1)

after deleting the zero vector consists of two connected components. In coordinates,
the cone is linearly isomorphic to

{x = (x1, . . . , xr) ∈ Rr : x2
1 − x2

2 − . . .− x2
r ≥ 0}.
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The components are distinguished by the sign of x1.
Let V0

M be one of the two “halves” of the cone VM , and set

M−2 = {x ∈M : x2 = −2}.

Fix a connected component C(M)+ of

V0
M \

⋃
δ∈M−2

δ⊥.

Let
M+

−2 = {δ ∈M−2 : (m, δ) > 0, ∀m ∈ C(M)+}.
This gives a decomposition

M−2 = M+
−2

∐
M−

−2,

where M−
−2 = {−δ : δ ∈M+

−2}. We have

C(M)+ = {x ∈ V0
M : (x, δ) > 0, ∀δ ∈M+

−2}.

Take the Picard lattice SX as M . Then we have a canonical decomposition
of

(SX)−2 = (SX)+−2

∐
(SX)−−2

where (SX)+−2 consists of the classes of effective divisors. The corresponding con-
nected component is denoted by K0

X and is called ample cone. We denote by KX

the closure of K0
X in V0

SX
.

A M -polarized K3 surface is a pair (X, j) consisting of an algebraic K3 surface
X and a primitive embedding of lattices j : M → Pic(X) (where primitive means
that the cokernel is a free abelian group) such that j(C(M)+) ∩ KX �= ∅. A M -
marking is called ample if j(C(M)+) ∩ K0

X �= ∅ (see [Do]).
We say that two M -polarized K3 surfaces (X, j) and (X ′, j′) are isomorphic if

there exists an isomorphism of algebraic surfaces f : X → X ′ such that j = f∗ ◦j′.
When M is of rank 1 and is generated by an element x with x2 = 2d, an M -

polarized (resp. ample M -polarized) K3 surface is a pseudo-ample (resp. ample)
polarized K3 surface of degree 2d.

It turns out that the isomorphism classes of M -polarized K3 surfaces can
be parametrized by a quasi-projective algebraic varietyMM . The construction is
based on the period mapping.

First we fix a primitive embedding of M in LK3 . If it does not exist,MM = ∅.
We shall identify M with its image. Then we consider a marking of (X, j). It is an
isomorphism of lattices φ : LK3 → H2(X,Z) such that φ|M = j. An isomorphism
of marked M -polarized surfaces is an isomorphism of surfaces f : X → X ′ such
that f∗ ◦ φ′ = φ.

Let N = M⊥ be the orthogonal complement of M in LK3. Set

DM = {Cv ∈ P(NC) : v2 = 0, (v, v̄) > 0} (10.2)
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In the case M = Zl is generated by one element, we see that DM
∼= Dl. Since M

is of signature (1, r− 1), the signature of the lattice N is (2, 20− r). As before we
see that

DM
∼= G(2, NR)+ ∼= O(2, 20− r)/SO(2)× O(20− r).

It is a disjoint union of two copies of a hermitian symmetric space of non-compact
type IV of dimension 20− r.

Let j(M) ⊂ SX , its orthogonal complement j(M)⊥ in H2(X,Z) is equal to
φ(N) and does not depend on the choice of φ. Set

V 20 = H20(X), V 11 = H11(X) ∩ φ(N)C, V 02 = H02(X). (10.3)

This defines an AHS of weight 2 on the vector space V = φ(N)R with the period
flag of type f = (1, 21 − r, 22 − r). The polarization form is obtained from the
symmetric bilinear form defining the lattice structure on N . The space DM is
isomorphic to the period space of such abstract Hodge structures.

Since φ(M) ⊂ Pic(X) ⊂ H11(X), φ−1(H20(X)) ⊂ NC. This shows that

p(X,φ) = φ−1(H20(X)) ∈ DM .

Let
N−2 = {δ ∈ N : δ2 = −2}.

For any δ ∈ N−2 let δ⊥ denote the hyperplane of vectors in P(NC) orthogonal to
δ. Let Hδ = δ⊥ ∩ DM , and define

ΔM =
⋃

δ∈N−2

Hδ.

Theorem 10.1. Let (X, j) be a M -polarized K3 surface. Then:

(i) The M -polarization is ample if and only if for any choice of a marking pX,φ ∈
DM \ΔM .

(ii) If (X,φ) and (X ′, φ′) are two marked M -polarized K3 surfaces, then pX,φ =
pX′,φ′ if and only if there exists an isomorphism of marked M -polarized sur-
faces (X,φ) ∼= (X ′, φ′ ◦α), where α is a product of reflections with respect to
vectors δ ∈ N−2 such that pX,φ ∈ Hδ.

(iii) Any point in DM is realized as the point pX,φ for some M -polarized K3
surface.

Proof. Suppose (X, j) is an ample M -polarized K3 surface and � = pX,φ ∈ Hδ for
some δ ∈ N−2. This implies that (φ(δ), H20(X)) = 0 and hence φ(δ) is the class
of a divisor R (maybe reducible) with R2 = −2. Replacing R with −R if needed,
we may assume that R is a curve. Since j(M) contains a polarization class and
[R] ∈ j(M)⊥ we get a contradiction.

Conversely, suppose pX,φ �∈ ΔM but (X, j) is not ample. This means that
j(C(M)+) ∩ KX �= ∅ but j(C(M)+) ∩ K0

X = ∅. Equivalently, j(C(M)+) is con-
tained in the boundary of KX defined by the equations (x, [R]) = 0, where R is
a (−2)-curve. Since C(M)+ spans M , this implies that there exists a (−2)-curve
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R such that φ−1([R]) ∈ N−2 ∩ φ−1(H20(X)⊥). Therefore pX,φ = φ−1(H20(X)) ∈
Hδ,where δ = φ−1([R]), contradicting the assumption.

The last two assertions follow from the Global Torelli Theorem of Burns–
Rappoport for non-polarized Kähler surfaces. We refer for the proof of these as-
sertions to [Do]. Note that fixing C(M)+ in the definition of a M -polarized surface
is used for the proof of assertion (ii). �

Now let us see how the period point pX,φ depends on the marking φ. For
any isometry σ of the lattice LK3 which is identical on M we obtain another
marking σ ◦ φ of the M -polarized surface (X, j). Let ΓM denote the group of
such isometries. We have a natural injective homomorphism ΓM → O(N) and one
can easily determine the image. Let D(N) = N∗/N be the discriminant group
of N . The group O(N) acts naturally on N∗ leaving N invariant. This defines a
homomorphism O(N)→ Aut(D(N)) and we have

ΓM
∼= O(N)∗ := Ker

(
O(N)→ Aut(D(N))

)
.

This is because every isometry from the right-hand side can be extended to an
isometry of L acting identically on M = N⊥. The group ΓM is a discrete subgroup
of the group of automorphisms of DM and the orbit space ΓM\DM is a quasi-
projective algebraic variety. The image of pX,φ in the orbit space ΓM\DM depends
only on (X, j). It is denoted by pX,j and is called the period of M -polarized surface
X .

Let π : Y → T be a family of K3 surfaces parametrized by some algebraic
variety T . The cohomology groups H2(Xt,Z), t ∈ T, form a local coefficient system
H2 on T . Assume that there exists an embedding j : MT ↪→ H2 of the constant
coefficient system MT such that for each t ∈ T the embedding jt : M → H2(Xt,Z)
defines an M-polarization of Xt. We say then that π is a family of M -polarized
K3 surfaces. We leave to the reader to extend the notion of the period map of
polarized K3 surfaces to the case of M -polarized K3 surfaces

pπ : T → ΓM\DM .

This is called the period map of the family π : X → T .
Note that the group ΓM contains reflections sδ : x 	→ (x, δ)δ for any δ ∈ N−2.

Applying Theorem 10.1, we obtain that for any M -polarized K3 surfaces (X, j)
and (X ′, j′)

p(X, j) = p(X ′, j′)⇐⇒ (X, j) ∼= (X ′, j′). (10.4)

This implies that ΓM\DM (resp. ΓM\D0
M ) can be taken as a coarse mod-

uli space MM,K3 (resp. Ma
M,K3) of M -polarized (resp. ample M -polarized) K3

surfaces.
Notice that there are only finitely many orbits of ΓM on the set N−2. So,

ΓM\ΔM

is a closed subset in the Zariski topology of ΓM\DM . We know that in the case
when M is of rank 1, the orbit space is irreducible because ΓM contains an element
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switching two connected components of DM . The same is true (and the same proof
works) if the lattice N contains a direct summand isomorphic to U [Do].

Let (X, j) be a M -polarized K3 surface. Note that in general j(M) �= SX .
As we explained, a surface (X, j) is ample M -polarized if and only if j(M)⊥ ∩ SX

contains no curves R with R2 = −2. As in the case of a pseudo-polarized K3
surface we can define the degeneracy lattice R(X, j) as the span of (−2)-curves in
j(M)⊥.

11. Eigenperiods of algebraic K3 surfaces

First we recall the fundamental result due to Nikulin [N2].

Theorem 11.1. Let X be an algebraic K3 surface and let ωX be a nowhere vanishing
holomorphic 2-form on X. Let

α : Aut(X)→ C∗

be a homomorphism defined by g∗(ωX) = α(g) · ωX for g ∈ Aut(X). Then:
(1) The image of α is a cyclic group of a finite order m.
(2) Assume that α(g) is a primitive m-th root of 1. Then g∗ has no non-zero

fixed vectors in TX ⊗Q.

Let Cm be a cyclic group of order m acting on a M -polarized K3 surface
(X, j) as automorphisms effectively. We assume that the restriction of g∗ to j(M)
is the identity map for any g ∈ Cm. Fixing a marking φ : LK3 → H2(X,Z) such
that φ|M = j we obtain a homomorphism

ρφ : Cm → O(LK3), g 	→ φ−1 ◦ g−1∗ ◦ φ.
Fix a homomorphism ρ : Cm → O(LK3) such that

M = Lρ
K3 := {x ∈ LK3 : ρ(a)(x) = x, ∀a ∈ Cm}. (11.1)

Define a (ρ,M)-marking of (X, j) as a marking φ : LK3 → H2(X,Z) with φ|M = j
such that ρ = ρφ.

Let χ ∈ Ĉm be the unique character of Cm such that

H20(X) ⊂ H2(X,C)(χ).

Then
pX,φ = φ−1(H20(X)) ⊂ NC(χ)

where N = M⊥.
Assume that χ is not a real character. Then NC(χ) is an isotropic subspace of

NC with respect to the quadratic form Q defined by the lattice N . The restriction
of the hermitian form Q(x, ȳ) to pX,φ is positive. Let

Dρ,χ
M = {Cx ∈ NC(χ) : Q(x, x̄) > 0}.

We know that
Dρ,χ

M
∼= Bd(χ),
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where d(χ) = dimNC(χ)− 1.
If χ is a real character, then NC(χ) = NR(χ)⊗ C and we set

Dρ,χ
M = {Cx ∈ NC(χ) : Q(x, x) = 0, Q(x, x̄) > 0.}.

This is nothing but a type IV Hermitian symmetric space of dimension d(χ)− 1.
There is a natural inclusion Dρ,χ

M ⊂ DM corresponding to the inclusion of
NC(χ) ⊂ NC .

The group Cm acts on DM via the restriction of the representation ρ to the
homomorphism ρ′ : Cm → O(N). We denote by Dρ

M the set of points which are
fixed under all ρ(a), a ∈ Cm. It is clear that

Dρ
M =

∐
χ∈Ĉm

Dρ,χ
M .

Theorem 11.2. Let (X,φ) be a (ρ,M)-marked ample M -polarized K3 surface such
that H20(X) ⊂ H2(X,C)(χ). Then pX,φ ∈ Dρ,χ

M \ ΔM . Conversely, any point in
Dρ,χ

M \ΔM is equal to pX,φ for some (ρ,M)-marked ample M -polarized K3 surface
(X,φ).

Proof. The first part was already explained. Let � be a point in Dρ,χ
M \ΔM . It rep-

resents a line in NC which is fixed under ρ(a), a ∈ Cm. Let φ : LK3 → H2(X,Z) be
an ample M -marking of X such that φ(�) = H20(X). Then φ−1 ◦ρ(a)◦φ acts iden-
tically on j(M) and preserves H20(X). Since (X, j) is ample M -polarized, j(M)
contains an ample class which is preserved under ρ(a). By the Global Torelli The-
orem ρ(a) = g∗ for a unique g ∈ Aut(X). This defines an action of Cm on X and a
(ρ,M)-marking of X . Obviously, H20(X) and pX,φ are eigenspaces corresponding
to the same character of Cm. �

Let
ΓM,ρ = {σ ∈ ΓM : σ ◦ ρ(a) = ρ(a) ◦ σ, ∀a ∈ Cm}. (11.2)

Obviously, the group ΓM,ρ leaves the connected components Dρ,χ
M of Dρ

M

invariant. Applying Theorem 11.2, we obtain

Theorem 11.3. The orbit space ΓM,ρ\(Dρ,χ
M \ΔM ) parametrizes isomorphism classes

of ample (ρ,M)-polarized K3 surfaces such such that H20(X) ⊂ H2(X,C)(χ).

Remark 11.4. Let

Γ̃M,ρ = {σ ∈ O(N) : σ ◦ ρ(a) = ρ(a) ◦ σ, ∀a ∈ Cm}. (11.3)

If the canonical map Γ̃M,ρ → O(D(N)) is surjective, the quotient Γ̃M,ρ/ΓM,ρ is
isomorphic to O(D(N)) ∼= O(D(M)). The orbit space Γ̃M,ρ\(Dρ,χ

M \ ΔM ) (resp.
ΓM,ρ\(Dρ,χ

M \ ΔM )) sometimes parametrizes the moduli space of some varieties
(resp. some varieties with a marking). See Section 12.

Lemma 11.5. Let pX,φ ∈ Dρ
M ∩ ΔM . Then ρ = ρφ is not represented by any

automorphisms of X.
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Proof. Assume that pX,φ ∈ Dρ
M ∩ΔM and ρ = ρφ is a representation of Cm acting

on X as automorphisms. Since Cm is finite, by averaging, we can find a polarization
class h such that g∗(h) = h for all g ∈ Cm. By condition (11.1), h ∈ j(M) which
contradicts the assumption that (X, j) is not ample. �

In the following we study the locus Dρ
M ∩ΔM under the assumption that m

is an odd prime number p. Recall that Cp acts trivially on M and acts effectively
on N = M⊥. This implies that D(M) ∼= D(N) are p-elementary abelian groups.
Consider the degeneracy lattice R(X, j) of (X, j). If r ∈ R(X, j) is a (−2)-vector,
then 〈r, ωX〉 = 0 implies that 〈ρi(r), ωX〉 = 0. Hence for any marking φ of (X, j) its
pre-image R = φ−1(R(X, j)) is an invariant sublattice of LK3 under ρ orthogonal
to M . We consider the generic case, that is, R is generated by r, ρ(r), . . . , ρp−2(r).

Lemma 11.6. Let r ∈ R(X, j) with r2 = −2. Let R be the lattice generated by
r, ρ(r), . . . , ρp−2(r). Then R is ρ-invariant and isomorphic to the root lattice Ap−1.
Moreover ρ acts trivially on D(R).

Proof. Since R is generated by (−2)-vectors and negative definite, R is a root lat-
tice of rank p− 1. The ρ-invariance is obvious. Let mi = 〈r, ρi(r)〉. Then the defi-
niteness implies that |mi| ≤ 1. Obviously m1 = mp−1, m2 = mp−2, . . . ,m(p−1)/2 =
m(p+1)/2. Since −2 = r2 = 〈r,−

∑p−1
i=1 ρi(r)〉 = −2m1 − · · · − 2m(p−1)/2, mi = 1

for some 1 ≤ i ≤ (p − 1)/2. If mi = mj = 1 for 1 ≤ i �= j ≤ (p − 1)/2, then
r, ρi(r), ρj(r), ρp−i(r), ρp−j(r) generate a degenerate lattice. This contradicts the
definiteness of R. Thus there exists a unique i such that mi = 1 and mj = 0
for 1 ≤ i ≤ (p − 1)/2. By changing ρ by ρi, we may assume that m1 = 1. Then
〈ρi(r), ρi+1(r)〉 = 1 and hence r, ρ(r), . . . , ρp−2(r) generate a root lattice Ap−1.
The last assertion follows from the fact that ρ fixes a generator (r + 2ρ(r) + · · ·+
(p− 1)ρp−2(r))/p of D(Ap−1). �

Let R be as in Lemma 11.6. Let M ′ be the smallest primitive sublattice of
LK3 containing M ⊕R. We have a chain of lattices

0 ⊂M ⊕R ⊂M ′ ⊂M ′∗ ⊂ (M ⊕R)∗.

Since any ρ(a) acts identically on D(M⊕R) = D(M)⊕D(R) (Lemma 11.6), it acts
identically on D(M ′). Let N ′ = M ′⊥. Since N ′ is the orthogonal complement of M ′

in a unimodular lattice, the discriminant groups D(N ′) and D(M ′) are isomorphic
and the action of Cm on D(N ′) is also identical. This implies that (1M ′ ⊕ρ(a)|N ′)
can be extended to an isometry ρ′(a) of LK3. This defines a homomorphism ρ′ :
Cm → O(LK3) with the sublattice of fixed vectors Lρ′

K3 equal to M ′. Let j′ =
φ|M ′ : M ′ → Pic(X) and let M ′

−2 = M ′
−2

+
∐

M ′
−2

− be the partition of M ′
−2

which extends the partition of M−2 and is defined by the condition that j′(M ′
−2

+)
is contained in the set of effective divisor classes. Then (X, j′) is a M ′-polarized
K3 surface. The polarization is ample if p(X, j′) �∈ Hδ for any δ ∈ N ′

−2. If this
condition holds, the pair (X, j′) is a (ρ′,M ′)-polarized K3 surface. By induction,
we can prove the following result.
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Theorem 11.7. Assume m = p. For any point x ∈ Dρ,χ
M , let R(x) denote the

sublattice of N generated by the vectors δ ∈ N−2 such that x ∈ Hδ. Then R(x) is
a p-elementary root lattice, that is, R(x)∗/R(x) is a p-elementary abelian group.
Let M ′ be the smallest primitive sublattice of LK3 generated by M and R(x). Then
x = pX,φ for some marked ample (ρ′,M ′)-polarized K3 surface X, where ρ′ is a
representation of Cp on LK3 with Lρ′

K3 = M ′. The lattice R(x) is isomorphic to
the degeneracy lattice of the M -polarized K3 surface (X, j), where j = φ|M .

12. Examples

In this section, we shall give examples of eigenperiods of K3 surfaces. For a lattice
L and an integer m, we denote by L(m) the lattice over the same Z-module with
the symmetric bilinear form multiplied by m.

Example. Let C2 = (g) be a cyclic group of order 2. Write LK3 as a direct sum of
two lattices M = E8⊕U and N = E8⊕U⊕U and define ρ : C2 → O(LK3) by ρ(g)
to be the identity on the first summand and the minus identity on the second one.
Let f : X → P1 be an elliptic K3 surface with a section s (taking as the zero in the
Mordell–Weil group of sections) and assume that one of the fibres is a reducible
fibre of type II* in Kodaira’s notation. Choose an M -marking φ of X by fixing
an isomorphism from E8 to the subgroup of SX generated by components of the
reducible fibre not intersecting s and an isomorphism from U to the subgroup of SX

to be the pre-image under φ generated by any fibre and the section s. The partition
of M−2 is defined by taking M+

−2 to be the pe-image under φ of the set of divisor
classes of irreducible components of the reducible fibre and the section. Now the
coarse moduli space of isomorphism classes of M -polarized K3 surfaces consists of
elliptic K3-surfaces with a section and a fibre of type II∗. Each such surface admits
an automorphism of order 2 defined by the inversion automorphism x 	→ −x on a
general fibre with respect to the group law defined by the choice of a section. The
M -polarization is ample if and only if the elliptic fibration has only one irreducible
fibre. Let χ ∈ Ĉ2 be defined by χ(g) = −1. Then Dρ,χ

M
∼= DM and ΓM,ρ = ΓM . An

ample M -polarized K3 surface is automatically (ρ,M)-polarized K3 surface. The
degeneracy lattice R(X, j) is the sublattice of Pic(X) generated by components
of new reducible fibres not intersecting the section. Using Theorem 11.7 we see
that any M -polarized K3 surface admits a structure of a (ρ′,M ′)-polarized K3
surface, where M ′ is isomorphic to the sublattice of SX generated by components
of fibres and a section and ρ′ acts identically on M ′ and the minus-identity on its
orthogonal complement.

Example. (6 points on P1) Let X ′ be a surface in weighted projective space
P(1, 1, 2, 2) given by an equation f6(x0, x1) + x3

2 + x3
3 = 0, where f6 is a ho-

mogeneous form of degree 6 without multiple roots. The surface X ′ has 3 ordi-
nary nodes (0, 0, 1, a), where a3 = −1. A minimal resolution of these nodes is
a K3 surface X on which the cyclic group C3 = μ3 of 3rd roots of unity acts
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by (x0, x1, x2, x3) 	→ (x0, x1, αx2, αx3). Another way to define this surface is to
consider a quadratic cone in P3, take its transversal intersection with a cubic sur-
face, and then to define X ′ to be the triple cover of the cone branched along the
intersection curve C. The pre-image of the ruling of the cone defines an elliptic
fibration f : X → P1. Since C has 6 ramification points of order 3 over the roots of
f6, the fibration has 6 reducible fibres of Kodaira type III. The three exceptional
curves of the resolution X → X ′ form a group of sections isomorphic to Z/3Z.
An explicit computation of the Hodge structure on hypersurfaces in a weighted
projective space (see [Do2]) shows that H20(X) ⊂ H2(X,C)(χ), where χ(α) = α2

and
dimH11(X)(χ) = 3, dimH11(X)C3 = 12.

Let M be the primitive sublattice of SX generated by the classes of irreducible
components of fibres, and sections. Standard arguments from the theory of elliptic
surfaces yield that M ∼= U⊕E6⊕A3

2 and its orthogonal complement N ∼= A2(−1)⊕
A3

2. We see that
Dρ,χ

M
∼= B3.

The lattice N has a natural structure of a module over the ring of Eisenstein
numbers Z[e2πi/3] equipped with a hermitian form over this ring. One shows that

ΓM,ρ
∼= SU(4,Z[e2πi/3]).

Fix a primitive embedding of M in LK3 and choose C(M)+ to be the nef cone in
Pic(X0) for a fixed X as above. Let ρ be the representation of C3 on LK3 which
acts as the identity on M = U ⊕ E6 ⊕ A3

2 and acts on N as follows. Choose a
standard basis (r1, r2) of A2 corresponding to the vertices of the Dynkin diagram.
We want to define an action ρ of the group C3 on N such that NC3 = {0} and C3

acts trivially on the discriminant group of N (because it acts trivially on M). This
easily implies that each direct summand must be invariant, and the action on it has
no fixed vectors and the generator of D(A2) equal to (r1 +2r2)/3 is invariant. It is
easy to see that the representation on A2 with this property must be isomorphic
to the one given by ρ(e2πi/3)(r1, r2) = (r2,−r1 − r2). Now let ρ(e2πi/3) act on N
as the direct sum of the previous action on each direct summand. In this way we
obtain that the coarse moduli space of (M,ρ)-polarized K3 surfaces is isomorphic
to the ball quotient

Dρ,χ
M /ΓM,ρ

∼= B3/SU(4,Z[e2πi/3]).

Note that, using the hypergeometric functions with μ = (1/3, 1/3, 1/3, 1/3, 1/3,
1/3) the same quotient is isomorphic to the space P1,k of ordered 6 points on P1,
where k = (1, 1, 1, 1, 1, 1). It is also isomorphic to the moduli space of principally
polarized abelian varieties of dimension 4 with action of a cyclic group of order 3
of type (1, 3).

Example. (Del Pezzo surfaces of degree 2) Let R be a smooth del Pezzo surface
of degree 2. Recall that the anti-canonical model of a smooth del Pezzo surface of
degree 2 is a double cover of P2 branched along a smooth plane quartic curve C.
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Let f4(x, y, z) be the homogeneous polynomial of degree 4 defining C. Let X be a
quartic surface in P3 defined by

t4 = f4(x, y, z).

Then X is a K3 surface which is the 4-cyclic cover of P2 branched along C. Ob-
viously X admits an automorphism g of order 4. If C is generic, then the Picard
lattice SX (resp. the transcendental lattice TX) is isomorphic to M = U(2)⊕A⊕6

1

(resp. N = U(2)⊕ U(2)⊕D8 ⊕A⊕2
1 ). In this case, (g∗)2 acts trivially on M , but

g∗ does not. The above correspondence gives an isomorphism between the moduli
space of smooth del Pezzo surfaces of degree 2 and (B6 \ΔM )/Γ̃M,ρ. The quotient
(B6 \ ΔM )/ΓM,ρ is isomorphic to the moduli space of marked smooth del Pezzo
surfaces of degree 2. The natural map

B6/ΓM,ρ → B6/Γ̃M,ρ

is a Galois covering with O(D(M)) ∼= Sp(6,F2) as its Galois group. We remark that
this correspondence gives a uniformization of the moduli space of non-hyperelliptic
curves of genus 3. For more details we refer the reader to the paper [K1].

Example. (8 points on P1) This case is a degenerate case of the previous example
since 8 points on P1 correspond to a hyperelliptic curve of genus 3. Let {(λi : 1)}
be a set of distinct 8 points on the projective line. Let (x0 : x1, y0 : y1) be the
bi-homogeneous coordinates on P1 × P1. Consider a smooth divisor C in P1 × P1

of bidegree (4, 2) given by

y2
0 ·

4∏
i=1

(x0 − λix1) + y2
1 ·

8∏
i=5

(x0 − λix1) = 0. (12.1)

Let L0 (resp. L1) be the divisor defined by y0 = 0 (resp. y1 = 0). Let ι be an
involution of P1 × P1 given by

(x0 : x1, y0 : y1) −→ (x0 : x1, y0 : −y1) (12.2)

which preserves C and L0, L1. Note that the double cover of P1×P1 branched along
C + L0 + L1 has 8 rational double points of type A1 and its minimal resolution
X is a K3 surface. The involution ι lifts to an automorphism σ of order 4. The
projection

(x0 : x1, y0 : y1) −→ (x0 : x1)
from P1 × P1 to P1 induces an elliptic fibration

π : X −→ P1

which has 8 singular fibers of type III and two sections. In this case, M � U(2)⊕
D4 ⊕D4 and N � U ⊕ U(2) ⊕D4 ⊕D4. Thus we have an isomorphism between
the moduli space of ordered (distinct) 8 points on P1 and (B5 \ Δ)/ΓM,ρ. This
ball quotient appeared in Deligne–Mostow’s list [DM]. The group O(D(M)) ∼=
S8 naturally acts on the both spaces. Taking the quotient by S8, we have an
isomorphism between the moduli space of (distinct) 8 points on P1 and (B5 \
Δ)/Γ̃M,ρ. For more details we refer the reader to the paper [K3].
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Example. (Del Pezzo surfaces of degree 3) Let S be a smooth del Pezzo surface.
The anti-canonical model of S is a smooth cubic surface. Let l be a line on S.
Consider the conic bundle on S defined by hyperplanes through l. The line l is
a 2-section of this pencil. For generic S, this pencil has 5 degenerate members.
Moreover there are two fibers tangent to l. These give homogeneous polynomials
f5(x, y), f2(x, y) of degree 5 and 2 in two variables. Now consider the plane sextic
curve C defined by

z(f5(x, y) + z3f2(x, y)) = 0.

Take the double cover of P2 branched along C whose minimal resolution X is a
K3 surface. The multiplication of z by e2π

√−1/3 induces an automorphism g of
X of order 3. In this case, M � U ⊕ A⊕5

2 and N � A2(−1) ⊕ A⊕4
2 . The non-

trivial fact is that the K3 surface X is independent of the choice of a line l. Thus
we have an isomorphism between the moduli space of smooth cubic surfaces and
(B4 \Δ)/Γ̃M,ρ. The group O(D(M)) ∼= W (E6) appears as the Galois group of the
covering

B4/ΓM,ρ → B5/Γ̃M,ρ.

We remark that the pencil of conics on S induces an elliptic fibration on X with
five singular fibers of type IV and two singular fibers of type II. This gives a
set of 7 points on P1. The ball quotient B4/ΓM,ρ appeared in Deligne–Mostow’s
list [DM]. For more details we refer the reader to the paper [Vo]. Note that an-
other approach (see [ACT]) consists of attaching to a cubic surface with equation
f(x0, x1, x2, x3) = 0, the cubic hypersurface with equation f(x0, x1, x2, x3)+ x3

4 =
0, and considering its intermediate Jacobian variety. It is a principally polarized
abelian variety of dimension 5 with cyclic group of order 3 acting on it with
type (1, 4). As we know from Section 11, such varieties are parametrized by a
4-dimensional ball.

Example. (Del Pezzo surfaces of degree 4) Let S be a smooth del Pezzo surface
of degree 4. Its anti-canonical model is the complete intersection of two quadrics
Q1, Q2 in P4. It is known that Q1 and Q2 can be diagonalized simultaneously, that
is, we may assume

Q1 = {
∑

z2
i = 0}, Q2 = {

∑
λiz

2
i = 0}.

The discriminant of the pencil of quadrics {t1Q1 + t2Q2}(t1:t2) is distinct 5 points
{(λi : 1)} on P1. Conversely distinct 5 points on P1 give the intersection of two
quadrics. Thus the moduli space of smooth del Pezzo surfaces of degree 4 is iso-
morphic to the moduli of distinct 5 points on P1. Next we construct a K3 surface
from distinct 5 points {(λi : 1)} on P1. Let C be a plane sextic curve defined by

x6
0 = x0

5∏
i=1

(x1 − λix2).

Obviously C is invariant under a projective transformation of order 5 by the multi-
plication of x0 by a primitive 5-th root of 1. Take the double cover of P2 branched
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along C whose minimal resolution X is a K3 surface. The X has an automorphism
of order 5 induced from the above projective transformation. In this case M is of
rank 10 and D(M) = (Z/5Z)3, and

N ∼=
(

0 1
1 0

)
⊕
(

2 1
1 −2

)
⊕A4 ⊕A4.

Thus we have an isomorphism between the moduli space of ordered (distinct)
5 points on P1 and (B2 \ Δ)/ΓM,ρ. The ball quotient (B2 \ Δ)/ΓM,ρ appeared
in Deligne–Mostow [DM]. The group O(D(M)) ∼= S5 naturally acts on the both
spaces and the quotients give an isomorphism between the moduli space of smooth
del Pezzo surfaces of degree 4 and (B2 \ Δ)/Γ̃M,ρ. For more details we refer the
reader to the paper [K4].

Example. (Curves of genus 4) Let C be a non-hyperelliptic curve of genus 4. The
canonical model of C is the intersection of a smooth quadric Q and a cubic surface
S in P3. By taking the triple cover of Q branched along C, we have a smooth
K3 surface X with an automorphism of order 3. In this case M = U(3) and
N = U⊕U(3)⊕E8⊕E8. Thus we have an isomorphism between the moduli space
of non-hyperelliptic curves of genus 4 and (B9 \Δ)/Γ̃M,ρ. We remark that a ruling
of Q induces an elliptic fibration on X with 12 singular fibers of type II. This gives
a set of 12 points on P1. The arithmetic subgroup ΓM,ρ is isogeny to the complex
reflection group associated to 12 points on P1 that appeared in Mostow [Mo]. For
more details we refer the reader to the paper [K2].

Example. (Del Pezzo surfaces of degree 1) This case is a degenerate case of the
previous example. Let S be a smooth del Pezzo surface of degree 1. The anti-
bi-canonical model of S is a double cover of a quadric cone Q0 in P3 branched
along the vertex of Q0 and a smooth curve C of genus 4. It is known that C
is an intersection of Q0 and a cubic surface. By taking the triple cover of Q0

branched along C and then taking its minimal resolution, we have a K3 surface
X with an automorphism of order 3. In this case, M = U ⊕ A2(2) and N =
U ⊕ U ⊕ E8 ⊕D4 ⊕A2. Thus we have an isomorphism between the moduli space
of smooth del Pezzo surfaces of degree 1 and (B8 \Δ)/Γ̃M,ρ. For more details we
refer the reader to the paper [K2].

We summarize these examples in the Table 1.

13. Half-twists of Hodge structures

Here we discuss a version of a construction due to Bert van Geemen [vG].
Let

VC =
⊕

p+q=k

V pq

be a polarized AHS of weight k on a real vector space V . Let ρ : A→ GL(V ) be an
action of a cyclic group of order d on V by Hodge isometries. Choose a generator g
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Deligne − Mostow M N
Curves of genus 4 ( 1

6
1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6
) U(3) U ⊕ U(3) ⊕ E8 ⊕ E8

del Pezzo of degree 1 a subball quotient U ⊕ A2(2) U ⊕ U ⊕ E8 ⊕ D4 ⊕ A2

del Pezzo of degree 2 not appear U(2) ⊕ A⊕6
1 U(2) ⊕ U(2) ⊕ D8 ⊕ A⊕2

1

del Pezzo of degree 3 ( 2
6

2
6

2
6

2
6

2
6

1
6

1
6
) U ⊕ A⊕5

2 A2(−1) ⊕ A⊕4
2

del Pezzo of degree 4 ( 2
5

2
5

2
5

2
5

2
5
) U ⊕ D8 ⊕ D8 U(2) ⊕ U(2)

6 points on P1 ( 1
3

1
3

1
3

1
3

1
3

1
3
) U ⊕ E6 ⊕ A⊕3

2 A2(−1) ⊕ A⊕3
2

8 points on P1 ( 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4
) U(2) ⊕ D4 ⊕ D4 U ⊕ U(2) ⊕ D4 ⊕ D4

Table 1

of A and a subset Σ of Wt(ρ) which does not contain real characters and satisfies
Im(χ(g)) > 0 for any χ ∈ Σ. The vector space⊕

χ∈Σ∪Σ

VC(χ) ∼= WC

for some vector subspace W ⊂ V (because it is invariant with respect to the
conjugation of VC). Write

V pq
Σ =

⊕
χ∈Σ

V pq
χ , V pq

Σ
=
⊕
χ∈Σ

V pq
χ . (13.1)

Define the negative half twist of V to be the decomposition

WC =
⊕

r+s=k+1

W rs,

where
W rs = V r−1s

Σ ⊕ V rs−1

Σ
.

Obviously, the decomposition (13.1) satisfies property (HD1) of AHS. Let us define
a polarization form on W by changing the polarization form Q on V with

Q′(x, y) = Q(x, g(y))−Q(x, g−1(y)).

Using that each VC(χ) and VC(χ′) are orthogonal with respect to Q unless χ̄ = χ′,
and V ab orthogonal to V a′b′ unless a = b′, we check property (HD2). Let x ∈
V r−1s

χ , χ ∈ Σ, write χ(g)− χ̄(g) = bi, where b > 0. We have

ir−sQ′(x, x̄) = ir−sQ(x, g(x̄)− g−1(x̄))
ir−sQ(x, (χ̄(g)− χ(g))x̄) = ir−s(χ̄(g)− χ(g))Q(x, x̄) = bir−s−1Q(x, x̄) > 0.

Similarly, we check that ir−sQ′(x, x̄) > 0 if x ∈ V rs−1
χ , where χ ∈ Σ. This checks

property (HD3).
The situation with integral structure is more complicated. Let F be the ex-

tension of Q obtained by joining a dth root of unity. Suppose our AHS has an
integral structure with respect to some lattice Λ in V and ρ is obtained from a
representation in GL(Λ). Then Λ acquires a structure of a module over the ring
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of integers O in the field F = Q(e2πi/d) by setting e2πi/d · v = ρ(g)(v). The vector
space W becomes a vector space over F and Λ is a lattice in V such that Q′ can
be obtained from a bilinear form on Λ taking its values in O.

Example. Assume VC = V 10 ⊕ V 01 is a polarized AHS of weight 1. Then

W 20 = V 10
Σ , W 11 = V 01

Σ ⊕ V 10
Σ

, W 02 = V 01
Σ

.

Suppose dimV 10
Σ = 1, then we obtain a Hodge structure of the same type as

the Hodge structure arising from a K3 surface. It does not need to be a Hodge
structure of a K3 surfaces if, say dimW 11 > 19.

Let μ = (μ1, . . . , μm) = (a1
d , . . . , am

d ) as in Section 8. We assume that the
condition (8.6) holds and m > 4. Consider the curve X isomorphic to a nonsingular
projective model of the affine curve (8.11). Let Cd be a cyclic group of order d and
χ ∈ Â be the character corresponding to μ. We know that dimH10(X,C)(χ) = 1
and dimH10(X,C)(χ̄) = m − 3. Take Σ = {χ, χ̄}. Then we obtain that the half-
twist W is AHS with Hodge numbers (1, 2m−6, 1) and admitting a Hodge isometry
g. Assume that W contains a lattice N such that the AHS has an integral structure
with respect to N . It is easy to see that the signature of N is equal to (2, 2m− 6).
Assume that N can be primitively embedded in LK3 and let M = N⊥. Then our
AHS corresponds to a point in Dρ,χ

M
∼= Bm−3. By surjectivity of the period map

it corresponds to a (M,ρ)-polarized K3 surface. We conjecture that the needed
condition on mu are always satisfied if the monodromy group Γμ is an arithmetic
subgroup of Aut(Bm−3). For d = 3, 4, 5, 6, the conjecture holds (see Section 12).
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Macbeaths infinite series
of Hurwitz groups

Amir Džambić

Abstract. In the present paper we will construct an infinite series of so-called
Hurwitz groups. One possible way to describe Hurwitz groups is to define
them as finite homomorphic images of the Fuchsian triangle group with the
signature (2, 3, 7). A reason why Hurwitz groups are interesting lies in the fact,
that precisely these groups occur as the automorphism groups of compact
Riemann surfaces of genus g > 1, which attain the upper bound 84(g − 1) for
the order of the automorphism group. For a long time the only known Hurwitz
group was the special linear group PSL2(F7), with 168 elements, discovered
by F. Klein in 1879, which is the automorphism group of the famous Kleinian
quartic. In 1967 Macbeath found an infinite series of Hurwitz groups using
group theoretic methods. In this paper we will give an alternative arithmetic
construction of this series.

Mathematics Subject Classification (2000). 11F06, 14H37, 30F10, 30F35.

Keywords. Hurwitz groups, arithmetic Fuchsian groups, Fuchsian triangle
groups.

1. Theorem of Hurwitz

We consider a compact Riemann surface X of genus g > 1. As it is well-known,
X can be written as a quotient X = Γ\H, where H denotes the upper halfplane
H := {z ∈ C | �(z) > 0} and Γ is a cocompact Fuchsian group (discrete subgroup
of PSL2(R) with compact fundamental domain in H), without elliptic elements.
Using this description of X the automorphism group

Aut(X) := {f : X → X | f is biholomorphic}
is isomorphic to the factor group

Aut(X) ∼= N(Γ)/Γ (1.1)

where N(Γ) is the normalizer of Γ in PSL2(R). In 1893 Hurwitz proved the fol-
lowing
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Theorem 1.1. Let X = Γ\H be a compact Riemann surface of genus g > 1. For
the order |Aut(X)| of the automorphism group the following statements hold:

1. |Aut(X)| ≤ 84(g − 1),
2. |Aut(X)| = 84(g − 1) if and only if Γ is a torsion free normal subgroup of

finite index in a Fuchsian triangle group with signature (2, 3, 7).

Thereby a Fuchsian triangle group is defined as a subgroup in PSL2(R) gen-
erated by three elliptic elements δ1,δ2,δ3, with orders p, q, r respectively. In order
to be a discrete subgroup in PSL2(R) the relation 1

p + 1
q + 1

r < 1 has to be satis-
fied. The triple (p, q, r) is called the signature of the triangle group. The signature
determines the triangle group uniquely up to conjugation in PSL2(R). Therefore
one often identifies the triangle group with its signature.

Definition 1.2. A finite group which can be realized as automorphism group Aut(X)
in the case 2. of Theorem 1.1 is called Hurwitz group.

Now one can ask the following questions:

Are there some examples of Hurwitz groups?
And if there are any, are there infinitely many of them?

2. Groups of norm 1 elements in orders of quaternion algebras as
Fuchsian groups

2.1. Definitions and notations

Let K denote a totally real algebraic number field (i.e., a number field whose
Galois group consists only of elements leading to embeddings of K into R) and
OK its ring of integers. Let A = A/K = (a,b

K ) be a quaternion algebra over K, i.e.,
a central, simple algebra of dimension 4 over K with a basis {1, i, j, ij}, satisfying
the following equations:

i2 = a ∈ K∗, j2 = b ∈ K∗, ij = −ji.
Let O denote a maximal order in A/K (a maximal OK−module in A such that
O ⊗OK K ∼= A). In A exists an involution ¯: A→ A sending

x := x0 + x1i + x2j + x3ij

to
x̄ := x0 − x1i− x2j − x3ij.

We define the reduced norm Nrd(x) := xx̄ and the reduced trace Trd(x) := x+ x̄.
The group of elements of reduced norm 1 in O is defined as

O1 := {x ∈ O | Nrd(x) = 1}.
We put

ΓA,O := O1/{±1}.
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The localizations Kv of K at places v are fields containing K and complete with
respect to the valuations v. If v is a finite (i.e., non-archimedian) place, the com-
pletion Rv of OK in Kv is a discrete valuation ring with precisely one maximal
ideal, which is generated by one element, the uniformizer of Rv. We define local-
izations Av of A as Av := A ⊗K Kv. Av is then the completion of A under the
embedding K → Kv and A is dense in Av. Ov, O1

v and Γ(v)
A,O should denote the

complete closures of O,O1 and ΓA,O in Av, respectively.

2.2. Theorem of Borel and Harish-Chandra

From the theory of quadratic forms we have

Lemma 2.1. For every place v of K Av is either isomorphic to the matrix algebra
M2(Kv) or isomorphic to the unique division quaternion algebra DKv over Kv.

For example, if v is an infinite place, then the two posibilities for Av are
Av
∼= M2(R) or Av

∼= H, the skew-field of Hamiltonian quaternions.
We say that A is ramified at v if Av

∼= DKv and that A is unramified
otherwise. We put

Ram(A) := {v | A is ramified at v},
Ram∞(A) := {v ∈ Ram(A) | v is infinite place ofK}.

Now one observes that, if |Ram∞(A)| < [K : Q], i.e., if A is at least unram-
ified at one infinite place, then we obtain an embedding ϕ : A → M2(R). Noting
that Nrd = det ◦ϕ, we have an embedding of O1 into SL2(R). Now we are asking:
In which cases is ϕ(O1) discrete in SL2(R)? Or equivalently: In which cases is ΓA,O
a Fuchsian group? Borel and Harish-Chandra gave the answer in a general case
(see [2], Section 12). It follows from their result:

Theorem 2.2 (Borel and Harish-Chandra). The group ΓA,O is a Fuchsian group if
and only if A is unramified exactly at one infinite place (without loss of generality
we may assume that A is unramified at the identity σ0 : K ↪→ R, σ0 : x 	→ x).

Groups ΓA,O, which satisfy the condition of Theorem 2.2 are called Fuchsian
groups derived from the quaternion algebra A. For the rest of the paper ΓA,O will
denote such a group, where O is a maximal order in A.

Remark 2.3. The discreteness of O1 does not depend on the choice of O, never-
theless in the following we will restrict our considerations to the maximal orders
in A.

3. Principal congruence subgroups in ΓA,O
3.1. Definition

Let O ⊂ A be a maximal order and I an (two-sided) ideal in O. Let κ be the
canonical projection

κ : O −→ O/I,
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and κ1 the restriction of κ to the group ΓA,O: κ1 = κ |ΓA,O . We define the principal
congruence subgroup modulo I, denoted by ΓA,O(I), as the kernel of κ1:

ΓA,O(I) := ker(κ1) = {γ ∈ ΓA,O | γ ≡ 1 mod I}.

3.2. The quotients

We are interested in special ideals I, namely lifted prime ideals pO ⊂ O, where p
is a prime ideal in OK . Now we can state our main theorem.

Theorem 3.1. Let p be a prime ideal in OK , such that A is unramified at the place
p (here we use the 1 : 1 correspondence between the finite places of K and prime
ideals in OK). Then

ΓA,O/ΓA,O(pO) ∼= PSL2(OK/p).

Proof. Instead of ΓA,O/ΓA,O(pO) we look at its image under the diagonal embed-
ding ϕ of ΓA,O in the product

G :=
∏

v∈S,v �∈Ram(A)

Γ(v)
A,O,

where S is a finite set of places containing all infinite places of K. The reasons for
considering exactly such a product are the following facts (see [8]):
• The image ϕ(ΓA,O) is isomorphic to ΓA,O.
• ϕ(ΓA,O) is discrete subgroup in G.
• Let S

′
be a proper subset of S, containing only finite places. Then the pro-

jection ϕ
′
(ΓA,O) of ϕ(ΓA,O) on every non trivial partial product

{id} �= G
′
=

∏
v∈S′ ,v �∈Ram(A)

Γ(v)
A,O < G

is dense in G
′
.

• ϕ
′
(ΓA,O) ∼= ΓA,O.

Therefore our strategy will be to compute the local quotients Γ(v)
A,O/Γ

(v)
A,O(pO),

where v is not an element of Ram(A).
i. At the only one unramified infinite place, which is, as remarked, assumed to

be the place corresponding to σ0 we obtain Aσ0 = M2(R). The image of O
under σ0 is clearly O itself, which is closed subset in M2(R) and so Oσ0 = O.
Consequently Γ(σ0)

A,O = ΓA,O, Γ(σ0)
A,O(pO) = ΓA,O(pO) and Γ(σ0)

A,O/Γ(σ0)
A,O(pO) =

ΓA,O/ΓA,O(pO). Thus we have here no new information.
ii. Let v = p. According to assumption A is unramified at p, thus Ap

∼= M2(Kp).
O is a maximal order in A and therefore Op is a maximal order in M2(Kp).
But every maximal order in M2(Kv) where v is a finite place is conjugate
to M2(Rv) (see [8]). Thus we have Op

∼= M2(Rp). It follows that Γ(p)
A,O ∼=

PSL2(Rp).
How does Γ(p)

A,O(pO) look like?
The complete closure of p in Rp is the maximal ideal 〈π〉, where π is an
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uniformizer of Rp. Hence pO is embedded in πM2(Rp). The group Γ(p)
A,O(pO)

is the kernel of the restriction ψ |PSL2(Rp) of

ψ : M2(Rp)→M2(Rp)/πM2(Rp) ∼= M2(Rp/πRp).

Then we have

ψ |PSL2(Rp): PSL2(Rp) −→ PSL2(Rp/πRp).

This homomorphism is surjective (for the proof see [1]); because of the iso-
morphy Rp/πRp

∼= OK/p we obtain

Γ(p)
A,O/Γ

(p)
A,O(pO) ∼= PSL2(OK/p).

iii. Now let v = q �= p be a finite place, such that A is not ramified at q. With
the same arguments as in ii. we have Aq

∼= M2(Kq), Oq
∼= M2(Rq) and

Γ(q)
A,O ∼= PSL2(Rq). Now we want to compute Γ(q)

A,O(pO). The closure of pO is
an ideal in M2(Rq) and so conjugate to qnM2(Rq), where q is an uniformizer
of Rq and n is the q-valuation of the ideal p (see [8]). But p and q are two
distinct prime ideals and therefore is n = 0. Hence the closure of pO is
M2(Rq). Then the canonical projection ψ is

ψ : M2(Rq) −→M2(Rq)/M2(Rq) ∼= {0},

and therefore the multiplicative version is

ψ |PSL2(Rq): PSL2(Rq) −→ {1}.

Then the isomorphism theorem says that

Γ(q)
A,O/Γ

(q)
A,O(pO) ∼= {1}.

It follows, that only at p the factor group ΓA,O/ΓA,O(pO) has a non-trivial image.
It should be a subgroup in Γ(p)

A,O/Γ
(p)
A,O(pO) ∼= PSL2(OK/p). Now our assertion is:

ΓA,O/ΓA,O(pO) ∼= Γ(p)
A,O/Γ

(p)
A,O(pO).

To see this we define a map

h : ΓA,O −→ Γ(p)
A,O/Γ

(p)
A,O(pO),

by
h(γ) := γΓ(p)

A,O(pO).

h is a group homomorphism with the kernel ΓA,O(pO). If we are able to show that
h is surjective, then the assertion is verified. And indeed:
ΓA,O is dense in Γ(p)

A,O, i.e., in every neighbourhood of γ̂ ∈ Γ(p)
A,O there is γ ∈ ΓA,O.

But every coset γ̂Γ(p)
A,O(pO) is a neighbourhood of γ̂. Therefore there is γ ∈ ΓA,O,

such that γ ≡ γ̂ mod Γ(p)
A,O(pO). So every γ̂ is an image of h. This implies the

surjectivity and completes the proof. �
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4. The group of signature (2, 3, 7)

Let (2, 3, 7) denote a triangle group of this signature. We will keep in mind that
the group is unique up to conjugation, as remarked in Section 1.

4.1. (2, 3, 7) is derived from a quaternion algebra

Shimura showed that (2, 3, 7) is a Fuchsian group derived from a quaternion algebra
(see [5] or more generally [7]). We know from there that (2, 3, 7) is a group ΓA,O,
where A is a quaternion algebra over the totally real number field Q(c) := Q(ζ +
ζ−1) and ζ := exp(2πi

7 ) and O is a maximal order in A (in this case unique up to
conjugation in A). A is unramified exactly at one infinite place and unramified at
every finite place. In this section let ΓA,O denote the group (2, 3, 7).

4.2. Congruence subgroups

Now we will apply Theorem 3.1 to the congruence subgroups ΓA,O(pO) in ΓA,O.
First one has to compute the residue fields OQ(c)/p. The following lemma, which
is proven by standard arguments in algebraic number theory (see [9]), gives the
answer and relates the primes in OQ(c) with primes in Z. Note that OQ(c) = Z[c].

Lemma 4.1. Let p be a prime in Z. Then p has the following prime ideal decom-
position in Z[c]:

1. p = 7: pZ[c] = p3 with residue field Z[c]/p ∼= F7,
2. p ≡ ±1 mod 7: pZ[c] = p1p2p3 with Z[c]/pi

∼= Fp for i = 1, 2, 3,
3. p ≡ ±2, 3 mod 7: pZ[c] = p with Z[c]/p ∼= Fp3 .

Applying Theorem 3.1 to the quotients ΓA,O/ΓA,O(pO) we have

Corollary 4.2. Let p be a prime ideal in Z[c] and p a rational prime.

1. If p|7, then ΓA,O/ΓA,O(pO) ∼= PSL2(F7).
2. If p|p ≡ ±1 mod 7, then ΓA,O/ΓA,O(pO) ∼= PSL2(Fp).
3. If p|p ≡ ±2, 3 mod 7, then ΓA,O/ΓA,O(pO) ∼= PSL2(Fp3).

Let us go back to our starting point, to the Hurwitz groups. Using the defi-
nition at the begining, Hurwitz groups are the automorphism groups of Riemann
surfaces X = Γ\H, where Γ � ΓA,O torsion free and [ΓA,O : Γ] <∞. According to
(1.1) they are of the form N(Γ)/Γ. But we know

Lemma 4.3. The normalizer of every normal subgroup Γ of ΓA,O is already ΓA,O
itself.

Proof. See, say [6], where it is shown, that (2, 3, 7) is contained in no other Fuchsian
group. �

So the Hurwitz groups are quotients ΓA,O/Γ and putting Γ = ΓA,O(pO) in
(1.1) the above lemma gives us good reasons for assumption that the quotients in
corollary 4.2 are Hurwitz groups. We have only to check that ΓA,O(pO) are torsion
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free. This can be done by the following argumentation:
The isomorphisms in corollary 4.2 lead to the surjective homomorphisms

h : ΓA,O −→ PSL2(Z[c]/p),

with kernels
ker(h) = ΓA,O(pO).

Then it is impossible that ker(h) contains torsion elements. Assume the opposite,
i.e., there is γ ∈ ker(h) with γn = 1. It follows from the theory of Fuchsian groups
that γ, as an elliptic element in ΓA,O has to be conjugated to a power of a generator
of ΓA,O = 〈γ0, γ1, γ2 | γ2

0 = γ3
1 = γ7

2 = γ0γ1γ2 = 1〉. To see this let wγ ∈ H be
the fixed point of γ. Then wγ lies on the boundary of a fundamental domain
F

′
for ΓA,O. Actually wγ is a vertex of F

′
(if we enlarge the notion of vertex

also to the fixed points of order two elements). Let F denote the fundamental
domain with fixed points of γ0, γ1, γ2 as vertices. Now, there is an element of
ΓA,O which sends F to F

′
, it automatically sends vertices of F to vertices of F

′
.

Via this transformation the stabilizer groups StabΓA,O (wγ) and StabΓA,O (wγj ) are
conjugated for some j ∈ {0, 1, 2}. Since γj generates StabΓA,O (wγj ) γ is conjugated
to a power of γj .

So γ = Mγki

i M−1 with M ∈ ΓA,O and ki ∈ N i = 0, 1, 2. As a ho-
momorphic image PSL2(Z[c]/p) is generated by three elements x0, x1, x2 which
satisfy same relations as γi, but satisfying also some additional relations. Since
h(γ) = h(Mγki

i M−1) = h(M)xki

i h(M)−1 = 1 we have xki

i = 1. Now the relation

x2
0 = x3

1 = x7
2 = x0x1x2 = 1

forces ki to be zero or a multiple of 2,3 or 7 since we have three different primes.
In any case γ = id and this proves

Lemma 4.4. Principal congruence subgroups ΓA,O(pO) are torsion free.

Altogether we obtain

Corollary 4.5. The groups
• PSL2(F7),
• PSL2(Fp), if p is a prime p ≡ ±1 mod 7,
• PSL2(Fp3), if p is a prime p ≡ ±2, 3 mod 7,

are Hurwitz groups.

This infinite series was found by Macbeath in 1967, who used some group
theoretic methods to construct it (see [4]). So he gave a positive answer to the
question, if there are infinitely many Hurwitz groups. We should remark that
Macbeath proves even a stronger statement: The groups PSL2(Fq) are Hurwitz
groups if and only if q takes one of the values q = 7, q = p ≡ ±1 mod 7, q = p3 for
p ≡ ±2,±3 mod 7, given in corollary 4.5. In contrast to Macbeath’s result we get
also uniformizing groups of Riemann surfaces with Hurwitz automorphism groups
of corollary 4.5, namely the congruence subgroups ΓA,O(pO).
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Nowadays we know much more infinite series of Hurwitz groups, such as al-
ternating groups An (for all but finitely many n), symplectic groups and unitary
groups over finite fields (if their dimension is sufficiently large). One famous Hur-
witz group is the sporadic simple group big monster with ≈ 8 · 1053 elements. For
details and references on this subject we cite the article by M. Conder [3].
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[8] M.F. Vignéras, Arithmétique des Algèbre de Quaternions. Lecture Notes in Mathe-
matics 800, Springer Verlag, Berlin, 1980.

[9] L.C. Washington, Introduction to Cyclotomic Fields. Graduate Texts in Mathematics
83, Springer Verlag, New York, 1982.

Acknowledgment

I am grateful to J. Wolfart for his advice and support during the work on the
subject and R. P. Holzapfel for his interest in this topic.

Amir Džambić
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Abstract. We introduce “orbital categories”. The background objects are com-
pactified quotient varieties of bounded symmetric domains B by lattice sub-
groups of the complex automorphism group of B. Additionally, we endow
some subvarieties of a given compact complex normal variety V with a nat-
ural weight > 1, imitating ramifications. They define an “orbital cycle” Z.
The pairs V = (V,Z) are orbital varieties. These objects — also understood
as an explicit approach to stacks — allow to introduce “orbital invariants” in
a functorial manner. Typical are the orbital categories of Hilbert and Picard
modular spaces. From the finite orbital data (e.g. the orbital Apollonius cycle
on P2) we read off “orbital Heegner series” as orbital invariants with the help
of “orbital intersection theory”. We demonstrate for Hilbert and Picard sur-
face F how their Fourier coefficients can be used to count Shimura curves of
given norm on F . On recently discovered orbital projective planes the Shimura
curves are joined with well-known classical elliptic modular forms.
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1. Preface

We start with a simple example of an Picard orbiface. The Apollonius configuration
consists of a quadric together with three tangent lines on the complex projective
plane P2. Explicitly, for instance, we can take the projective curve described by
the equation

XY Z(X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z) = 0 :
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We endow the points of the plane with weights

• ∞ for the 3 touch points;
• 16 for the 3 intersection points of lines;
• all other points on the 4 curves get weight 4;
• the remaining points of the plane have trivial weight 1.

In the mean time it is known that the picture represents an orbital Picard modu-
lar plane together with weighted branch locus of a hyperbolic (complex ball) uni-
formization. A Picard modular plane is a Baily–Borel compactified Picard modular
surface, which is a projective plane. Without weights, but in connection with ball
uniformization, I saw the Apollonius configuration first in the paper [Y-S]. The
corresponding Picard modular group acting on the complex 2-ball has been deter-
mined precisely first in the HU-preprint [HPV] as congruence subgroup of the full
Picard modular group of the imaginary quadratic field Q(

√
−1) of Gauß numbers.

It has been published in [HV].
Surprisingly, in a pure algebraic geometric manner and with a finite number

of steps, we are able to read off almost from this weighted projective plane the
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Fourier series

HeegC(τ) =
∞∑

N=0

(
(
3N
2
− 1

8
)a2(N) + 3

N∑
m=1

σ(m)a2(N −m)

)
qN ∈M3(4, χ),

= −1
8
· ϑ6 − 17

2
· ϑ2θ,

q = exp(2πiτ), τ ∈ H (complex upper halfplane),
(2)

with Jacobi’s modular form ϑ and Hecke’s modular form θ described in the appen-
dix. This is an elliptic modular form of certain level, weight and Nebentypus χ.
The N -th coefficient counts (with intersection multiplicities) the arithmetic curves
of norm N on the Picard–Apollonius orbiplane. Thereby C is the orbital arith-
metic curve (with above weights) sitting in the Apollonius cycle, where σ(m)
denotes the sum of divisors of m, and a2(k) is the number of Z-solutions of
x2 + y2 = k, and χ = χ8 is the Dirichlet character on Z extending multiplica-
tively

(
2
p

)
= (−1)(p

2−1)/8 for odd primes p ∈ N and 0 for even numbers. More
precisely, let us extend the cycle and consider
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where all arithmetic curves of smallest norms 1 and 2 are drawn. One has the
most difficulties with the algebraic geometric calculation of the constant coefficient
of the Heegner series. For this purpose one has to consider rational orbital self-
intersections on the so-called released Picard–Apollonius orbiplane. We draw the
released Apollonius cycle:
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In the meantime we found another simple example. We call it the Hilbert–
Cartesius orbiplane. The supporting Cartesius configuration lies also on P2. It
consists of three quadrics touching each other (and nowhere crossing) together with
four lines, each of them joining three of the six touch points. Take, for example,
the projective closure of the affine curve described by the equation

(X2 + Y 2 − 2)(XY − 1)(XY + 1)(X2 − 1)(Y 2 − 1) = 0

consisting in the real affine plane of a circle, two hyperbolas and four lines parallel
two the axis through pairs of the points (±1,±1). Not visible are two further
intersection points of same quality (two quadrics meet two lines) at infinity. It is
easy to draw these seven curves.
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We endow the points of the plane with the following weights:

• ∞ for the six intersection points;
• all other points on the 7 curves get weight 2;
• the remaining points of the plane have “trivial weight” 1.

The picture represents an orbital Hilbert modular plane together with weighted
branch locus of a bi-disc uniformization. A Hilbert modular plane is a Baily–Borel
compactified Hilbert modular surface, which is a projective plane. The correspond-
ing Hilbert modular group acting on the bi-product H2 of the upper half plane
H can be found in [Hir1], [Hir2], [vdG]. It is commensurable with the full Hilbert
modular group of the real quadratic number field Q(

√
2). Also in this case it is

possible in almost the same purely algebraic geometric manner in finite steps to
read of the Fourier series

HeegC(τ) = −1 + 2 ·
∞∑

N=1

⎛⎝∑
d|N

χ(d)d

⎞⎠ qN ∈M2(8, χ), (5)

connected with the plane quadric C : X2 +Y 2− 2Z2 = 0. This is again an elliptic
modular form of certain level, weight and Nebentypus χ. More precisely, this is an
Eisenstein series. The coefficients again count (with degree multiplicities) the arith-
metic curves of fixed norms and of Humbert type. We also need for the calculation
of the rational constant coefficient of the series an orbital curve self-intersection
on the released Hilbert–Cartesius orbiface, whose non-trivially weighted curves we
draw in the following picture:
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2. Introduction

We only consider normal surfaces, analytic or algebraic over the complex numbers.
We need a precise geometric language. More precisely, we need objects, which are
a little finer than varieties but not so abstract as Shimura varieties over number
fields or stacks. The latter notions make much sense for fine number theoretic con-
siderations. But here we are near only to the original geometric Shimura varieties
over C, especially to Picard and Hilbert modular surfaces, called Shimura surfaces
in common, and modular or Shimura curves on them, which we call also arithmetic
curves. For example, a Picard modular surfaces is a ball quotient Γ\B by a lattice
Γ, which is a discrete subgroup Γ of PU((2, 1),C) acting properly discontinuously
on the 2-dimensional complex unit ball B. Let D be a linear disc on the ball B such
that Γ\D is an algebraic curve on Γ\B. Invariant metrics on the ball B (Bergmann)
go down to metrics on the surfaces with degeneration cycles (join of irreducible
curves and points). These curves and points are endowed with natural weights
coming from ramification indices of the locally finite covering B → Γ\B. It can
be proved that on canonical surface models (in Shimura’s sense) these curves are
defined over a ring the integers of a number field. At the same time these disc quo-
tient curves are geodesics with respect to the degenerate metric. In the mean time
it was proved (A.M. Uludag, [Ul]) that there are infinitely many Picard modular
projective planes.

Especially, it would be very interesting to find plane equations with integral
coefficients for the above arithmetic geodesics. At the moment we are only able to
give a numerical characterization of such curves. Looking back to history we know
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Plücker’s formula for plane curves C with only cusps or transversal self-intersection
points joining the numbers of them, the curve degree and the genus. Together with
the idea of proof we remember Plücker’s explicit relation

d(d− 1)− 2δ − 3κ = d∗ = 2d + (2g − 2)− κ, (6)

where g denotes the genus, d the degree of C, d∗ the number of tangents of C
through a fixed general point of P2, δ the number of double points and κ the
number of cusps of the curve. Forgetting d∗ we get a relation between the degree
d, the genus g, δ and κ.

We will define orbifaces, especially Picard and Hilbert modular orbifaces, and
orbital curves C on the latter, all with help of branch weights. We will introduce
orbital invariants for them, which are rational numbers explicitly expressed in
terms of algebraic geometry. Of special interest are the two orbital invariants E and
S, which are singularity modifications of the Euler number and the selfintesection
of the curve algebraically calculable on a special surface model, the so-called release
model, which we must introduce. Restricting, for example to Picard orbifaces we
get in analogy to (6) the relations

Eul(C) = vol(ΓD) = 2 · Self(C), (7)

with supporting curve C = Γ\D. Forgetting the Euler–Bergman volume vol(ΓD) of
a fundamental domain of the subgroup ΓD of Γ of all elements operating on D one
gets a characteristic relation between the orbital Euler invariant and the orbital
self-intersection of C:

Theorem 2.1. With the above notation (and definitions of orbital invariants below)
it holds that

Eul(C) = 2 · Self(C).

The relation (7) generalizes the relative proportionality for modular curves
and Shimura curves on neat ball quotient surfaces, see [H98]. For their importance
we show that the relative orbital Euler invariants are the constant terms of Fourier
series of modular quality joining infinitely many orbital invariants. Moreover, the
(orbital invariant) coefficients count (with multiplicity depending on C embedded
on X ) the number of arithmetic geodesics on X , see [H02].

It is not difficult to prove and write down the relative proportionality relation

Eul(C) = Self(C) (8)

for orbital modular or Shimura curves on any Hilbert orbiface (including also
symmetric Hilbert modular groups). It is also clear that the orbital invariant in
(8) is the constant coefficient of a Hirzebruch–Zagier modular form [HZ]. The aim
of the next section is to develop a common language for Hilbert and Picard modular
surface with a common algebraic geometric understanding of the involved elliptic
modular Hirzebruch–Zagier series [HZ] and Kudla–Cogdell series (ball case) [Cog].
To use this fine geometric language for common proofs and explicit calculations is
the aim of the whole paper.
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For a clear definition of orbital invariants we need a category C with a multi-
plicatively closed set of “finite coverings” D/C and “degrees” [D : C] of the latter,
satisfying the degree formula

[E : C] = [E : D] · [D : C]

for all double coverings E/D/C. A rational orbital invariant on C is simply a
non-constant map

h : Ob C −→ Q

from the objects of our “orbital category” satisfying the “orbital degree formula”

h(D) = [D : C] · h(C)

for all finite coverings D/C. Part of the work is to clarify, which orbital cate-
gories we can construct. In the paper [Ul] by A.M. Uludag I saw him working with
weighted surfaces X = (X,w), w : X → N+ a map from the surface X to the nat-
ural numbers. These object we will basically use for the construction of our orbital
categories. After the definition procedure we are able to find explicitly infinitely
many orbital invariants. We combine the rational intersection theory and Heegner
cycles. But all these invariants are “modular dependent”, which means, that they
are connected by modular forms of known and fixed type with each other. It follows
that it suffices only to know finitely many of the orbital invariants to determine
the others together with the corresponding modular form. The interpretation of
counting arithmetic curves on Picard or Hilbert modular surfaces is then general.
Until now the series were only known in neat cases. So it was e.g. until now not
possible to count arithmetic curves on modular planes. The extension from neat to
general cases is the progress described in this paper. In contrast, in the neat Picard
case the corresponding quotient surfaces are never rational. Explicit calculations
there seem to be very difficult. But in the plane case the situation is much better,
especially with a view to coding theory on explicit arithmetic curves.

Remark 2.2. Volumes of fundamental domains of Picard or Hilbert modular groups
with respect to fixed volume forms on the the uniformizing domains are obviously
orbital invariants. If we take the Euler volume form, then these volumes coincide
with the orbital Euler invariants of the corresponding orbital surfaces. This is a
theorem (Holzapfel, [H98], in the ball case, to be written down in the Hilbert case).
The same is true for the signature volume form, which leads to the corresponding
orbital signature invariants. The Euler and the signature forms are distinguished
by a factor. This leads to a proportionality relation between the orbital invariants
with different factors in the Picard and Hilbert surface cases.

For explicit calculations it is important to know that the orbital invariants
of the modular surfaces of the full lattices can be expressed by special values of
Zeta-functions (or L-series) of corresponding number fields. (Maass in the Hilbert
case, Holzapfel [H98] in the Picard case).
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3. The Language of Orbifaces

3.1. Galois weights

A weighted (algebraic) surface X = (X,w) is defined by:
• an irreducible normal complex algebraic surface X
• and a weight map w : X −→ N+ ∪ {∞}

with conditions
• almost everywhere (i.e. up to a proper closed algebraic subvariety of X) one

has absolute trivial weight 1:
• w is almost constant on each closed irreducible curve C of X (that means up

to a finite set of points P1, . . . , Pr on C);
The corresponding constant w(C) := w(C \ {P1, . . . , Pr}) is called the weight of
C on X.
• If P ∈ C, C an irreducible curve on X , then w(C) divides w(C).

A point P on X is relatively non-trivial weighted if w(P ) > w(C) for all irreducible
curves C though P . Otherwise it is called relatively trivial weighted. The formal
(finite) double sum

B = B(X,w) :=
∑

w(C)C +
∑

w(P )P = B1 + B0

over all irreducible curves C with non-trivial weight (> 1) respectively all relatively
non-trivial weighted points P on X is called the weight cycle of X. If the double
sum is restricted to (all) finite non-trivial weights, then we call it the finite weight
cycle of X, denoted by Bfin = Bfin(X,w). As above we have two partial sums,
one over the curves, the other over the points of finite non-trivial weights:

Bfin = Bfin
1 + Bfin

0 .

Complementarily, we define the infinite cycle of X by

B∞ = B∞(X,w) := B − Bfin = B∞
1 + B∞

0

together with its 1, 0-dimensional decomposition in obvious manner.
As usual we call the union of component sets of a cycle D on X the support of

D and denote it by suppD. The weighted surface
o

X= (
o

X,
o
w) with

o

X= X\suppB∞

and
o
w = w| o

X
is called open finite part of X. We get the first examples of open

subsurfaces
o

X⊆ X and open embeddings
o

X ↪→ X of weighted surfaces in this way.
Generally, we take open subsurfaces U of X instead of

o

X and define in analogous
manner open weighted subvarieties U ⊆ X and open embeddings U ↪→ X using
restrictions of the weight map w.

Let C be an irreducible curve on X . The system of open neighbourhoods U
of C defines the surface germ of X along C. We imagine it as a small open neigh-
bourhood of C or, more precisely, as refinement (equivalence) class of such neigh-
bourhoods. Working additionally with weight restrictions we define the weighted
surface germ C of X along C as refinement class of all U = (U,w|U ) with open
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neighbourhoods U of C. We write C ↼ X in this situation and consider it as
closed embedding of weighted objects (supported by the closed embedding of C
into X in the usual sense).

The same can be done with open neighbourhoods of a point P ∈ X . Working
with weight restrictions again we define the weighted surface germ P of X at P as
refinement class of all U = (U,w|U ) with open neighbourhoods U of P . We write
P εX in this situation. If P is a point on C, then we write P εC instead of the
pair (C,P) and consider it as (closed) embedding of weighted surface germs.

Remark 3.1. We left it to the reader to work with complex or with Zariski topology.
In the later definitions of orbital invariants there will be no difference. But there
will be numerical differences between the embedded germs P εX, P εC, P εD,
where D is another irreducible curve through P . This is not surprising because
already for unweighted surfaces it can happen that P is a singularity of one or two
of the objects X , C or D, but may be a regular point of the other one(s).

An isomorphism of weighted surfaces f : X ∼−→ Y, Y = (Y, v), X = (X,w)
as above, is nothing else but a surface isomorphism f : X

∼−→ Y , which is weight
compatible, that means v ◦ f = w. If the isomorphism sends the irreducible curve
C to D and the point P to Q ∈ Y , then it induces weighted surface germ isomor-
phisms C ∼−→ D and P ∼−→ Q. They are not globally depending on X or Y but
only on small open neighbourhoods U respectively V of the curves or points and
on the isomorphic compatible weights around. For P ∈ C we have Q ∈ D and
isomorphisms of embedded objects (C,P) ∼−→ (D,Q). As in scheme theory we
visualize the situation by a commutative diagram:

P ε C ↼ U ↪→ X

Q ε D ↼ V ↪→ Y
�
�

�
�

�
�

�
�

Trivially weighted surfaces (Y,1), 1 the constant weight map (with weight
1 for each point), are identified with the surfaces Y themselves. So we will write
Y again instead of (Y,1). A smooth surface Y together with a finite covering
p : Y → X is called a finite uniformization of X = (X,w), if and only if p = pG

is the Galois covering with Galois group G ⊆ Aut Y , X ∼= Y/G, w(P ) = #GQ

(number of elements of the stabilizer subgroup of G of all elements fixing Q) for
any p-preimage point Q ∈ Y of P . We write also p : Y → Y/G in this situation
and consider p as a uniformization morphism in the category of weighted surfaces.
The weighted surface X is called (finitely) uniformizable if and only if a (finite)
uniformization Y → X exists. The weights w(P ) are called Galois weights. The
weight of an irreducible curve on X coincides with the corresponding rami-fication
index. It is also called branch weight. The branch weight of such a curve is non-
trivial if and only if the curve belongs to the branch locus of pG.
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Point surface germs P on uniformizable weighted surfaces are called orbital
quotient points. This definition is extended to isomorphic objects. With the fol-
lowing local-global diagram we introduce further notations.

Q ε V ↪→ Y

Q/GQ = P ε U ↪→ X = Y/G
�
GQ

�
GQ

�
G (9)

using small open neighbourhoods and quotient maps by GQ or G in the columns
(local and global uniformizations). The left column (together with the middle) is
called a uniformization of P. The orbital point P is called smooth if and only if
the supporting point P is a smooth surface point of X (or U). Orbital quotient
points realized as above by abelian groups GQ are called abelian orbital points.
The others are called non-abelian.

A finitely weighted surface X is called orbiface (or finitely weighted orbiface),
if each of its point surface germs P is an orbital quotient point. If thereby X is
not compact, we call it an open orbiface. Let Y

H−→ Z be a uniformization of the
orbiface Z with subgroup H of G ⊆ Aut Y . Then pG factors through pH defining
a finite covering f : Z → X with pG = f ◦ pH . We get a commutative orbital
diagram

Y

Z X
�
H
	

	
	


G

�f

(10)

defining a uniformizable orbital covering or uniformizable finite orbital morphism
f = fG:H on this way on the bottom. Working with Galois weight maps wH : Z →
N+ and wG : X → N+ we define f∗wG := wG ◦ f . This lifted weight map is
obviously pointwise divisible by wH , which means that wH(z) divides f∗wG(z) =
wG(f(z)) for all z ∈ Z. We write wH | f∗wG and define the quotient weight map

wG:H := f∗wG

wH
: Z → N+ pointwise. The curve weights on Z coincide with the

corresponding ramification indices along f . If wG:H is constant on the fibres of
f , then we can push it down to the weight map wf : X → N+. This happens,
if H is a normal subgroup of G. Then we have wf = wG/H on X and a new
(reduced) kind of finite orbital covering Z → (X,wf ). We call it the reduction of
f : (Z,wH)→ (X,wG) and wf the reduction of wG through Z. A geometric Galois
problem for a given finite covering f : Z → X looks for a common uniformization
Y as described in diagram (10). For this purpose it is worth to notice that

wH =
f∗wG

f∗wf
(=

f∗wG

wG:H
).

So, if one knows wG and f (hence wf ) one recognizes already the branch weights
and curves of the possible uniformization pH .
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Weighted surface germs C ↼ X along irreducible curves C on X are called
(open) orbital curves if X is open orbital. The definition does not depend on X
but, more precisely, on open neighbourhoods U of C on X . It may happen that X
is not orbital but U ↪→ X is. Then C is orbital.

The notions of uniformization and of finite morphisms restrict to orbital
curves and points. From scheme theory it is well-known that finite morphisms
are surjective and open. So for orbital points, curves and orbifaces (open) we get
restriction diagrams along finite coverings f : Y → X via restrictions on germs

Q ε D ↼ V ↪→ Y

P ε C ↼ U ↪→ X
�

fD,Q

�
fD

�
f |V

�
f (11)

with vertical finite orbital coverings. These are orbitalizations of well-known dia-
grams in scheme theory or complex algebraic geometry. Here we used pairs (VQ, V )
of small open neighbourhoods of Q or D, respectively, to define finite coverings
fD,Q of orbital points on orbital curves. Working only with small open neighbour-
hoods V of Q we define finite orbital point coverings fQ algebraically visualized in
the diagram

Q ε V ↪→ Y

P ε U ↪→ X
�

fQ

�
f |V

�
f (12)

In the special case of uniformizations we dispose on Diagram (9) for orbital points.
Working with Galois group G again, the normalizer group (decomposition group)

NG(D) := {g ∈ G; g(D) = D}
of D and NG(D)-invariant small open neighbourhoods V of D. Orbital curves
are said to be smooth if and only if the supporting curve is smooth and the
supporting surface is smooth around the curve. Let D be a smooth curve on a
trivially weighted surface Y with G-action such that the orbital curve D ↼ Y is
smooth. Then we define an orbital curve uniformization fD of C by the vertical
arrow on the left-hand side of the diagram

D ↼ V ↪→ Y

C ↼ U ↪→ X
�
NG(D)

�
NG(D)

�
G (13)

The weight of C is equal to the order of the cyclic centralizer group (inertia group)

ZG(D) := {g ∈ G; g|D = id|D}.
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The curve C is isomorphic to the quotient curve D/GD, where GD is the effectively
on D acting group defined by the exact group sequence

1 −→ ZG(D) −→ NG(D) −→ GD = NG(D)/ZG(D) −→ 1. (14)

3.2. Orbital releases

We want to introduce special birational morphisms for orbital points, curves and
orbifaces. Changing special curve singularities by numerically manageable surface
singularities. These will be abelian singularities, which are defined as supporting
surface singularities of orbital abelian points P. The latter are well-understood by
linear algebra. Let G be a finite abelian subgroup of Gl2(C). It acts effectively on
the complex affine plane C2 and around the origin O = (0, 0) of C2, hence on the
trivially weighted smooth orbital point O εC2. Working in the analytic category,
that means with small open analytic neighbourhoods of points, it is true that for
each orbital quotient point P there is uniformization O→ P ∼= O/G for a suitable
finite subgroup G of Gl2(C) (H. Cartan). Let us call it a linear uniformization of
P. If G is not abelian, then there are precisely three G-orbits of eigenlines in C2

of non-trivial elements of G. Going down to P = O/G they define precisely three
orbital curve germs through P called eigen germ triple at P. There are precisely
two of them, called eigen germ pair at P if and only if G is an abelian group not
belonging to the center of Gl2(C). If G is central, then we declare the germs of
the images of any two different lines through O as eigen germ pair at P. Different
choices are isomorphic.

By the way, orbital curve germs on orbifaces X at a point P are defined
in the same manner as orbital curves but working with orbital curve germs at
P and small analytic open neighbourhoods of them instead of global curves and
their open neighbourhoods. More precisely, it is the weighted analytic surface germ
around a curve germ on X through P . Now let P be an orbital point on the orbital
curve C on X. If C is smooth at P , then C defines a unique orbital curve germ CP

at P. Now let P be an abelian orbital point. We say that two orbital curve(germ)s
C1 and C2 on X cross (each other) at P εX if and only if they form an eigen
germ pair there. Necessarily C1 and C2 have to be smooth at P .

A curve C on a surface X is called releasable at P ∈ C if and only if there
is a birational morphism ϕP : X ′ → X such that the exceptional curve EP of
ϕP is smooth, irreducible, ϕP (EP ) = P and the proper transform C′ of C on
X ′ crosses EP at any common point. Observe that C′ must be smooth at these
intersection points. So X ′ → X resolves the (releasable) curve singularity P . If P
is thereby a curve singularity, then we call ϕP the (honest) release of C at P . If P
is a smooth curve and surface point, then one could take the σ-process at P , but
this is not a honest release. Honest releases are only applied to curve singularities.
Using the uniqueness of minimal singularity resolution for surfaces (here applied
to the abelian surface singularities on EP ⊂ X ′) it is easy to see that this local
release ϕP is uniquely determined by P ∈ C ⊂ X . The curve C ⊂ X is called
releasable if and only if it is releasable at each of its points. There are only finitely
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many honestly releasable points on each fixed curve. Therefore, if C is releasable,
there exists a unique birational morphim ϕ = ϕC : X ′ → X releasing all singular
points of C. This morphism is called the release of X along C.

Remark 3.2. The surface singularities on X of released curve points P are of
special type. They are contractions of one curve EP supporting finitely many
abelian singularities (of X ′). So P has a surface singularity resolution consisting
of a (central) irreducible curve (the proper transform of EP ) crossed by some
disjoint linear trees of lines (that means isomorphic to P1) with negative self-
intersections smaller than −1. The linear trees are minimal resolutions of abelian
surface singularities. Such a singularity resolutions of P is called released. It can
happen that it is bigger than the minimal singularity resolution of P ; for instance,
if we are forced to release a smooth surface point, an abelian singularity or, more
generally, a quotient singularity P .

Example 3.3. Let P be an ordinary singularity of a curve C on a surface X smooth
at P . By definition, the branches of C at P cross each other there. Then the curve
singularity P is released by the σ-process at P . The curve branches appear as
(transversal) intersection points of the proper transform of C with the exceptional
line over P .

Example 3.4. Hypercusp singularities of curves at smooth surface points are de-
fined by local equations yn = xm, m,n > 0. They are releasable by a line (smooth
rational curve) supporting at most two abelian surface points. This releasing line
cuts the proper transform of the curve in precisely gcd(m,n) smooth points. These
intersections are transversal.

Idea of the proof. Stepwise resolution of the curve singularity by σ-processes. At
the end one gets a tree of lines with negative self-intersections. One discovers
that the proper transform of the curve crosses only one component of the tree.
The two (or less) partial trees meeting this component contract to an abelian
point. The resolution steps reduce the exponent pairs (m,n) following the euclidean
algorithm. It stops by arriving equal exponents in the singularity equation, yd =
xd, d = gcd(m,n). This is the local equation of an ordinary curve singularity with
d branches. �

Definition 3.5. An orbital curve C is releasable if and only if the supporting surface
embedded curve C is.

The definition does not depend on the choice of orbiface X defining C by
restriction.

Examples 3.6.

• Release of a curve cusp at smooth surface point.
Let [−3,−1,−2] represent a linear tree of three smooth rational curves on a
smooth surface with the indicated self-intersections. It is contractable (step-
wise) to the regular surface point P . But let us contract the first and last line
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to cyclic singularities P1, P2 of types < 3, 1 > respectively < 2, 1 > on the
middle line L. Now consider a curve C′ intersecting L transversally at one
point P ′ �= P1, P2. Contracting L, the image point P is a curve cusp on the
image curve C of C′. Altogether L → P is a release of (C,P ) with exactly
one branch point (C′, P ′), and P ′ ∈ C′ is totally smooth.
• A more complicated release of smooth point.

Let P be a smooth surface point again. There is a release L → P with two
honest cyclic singularities
P ′ : < 93, 76 > ← [−2,−2,−2,−2,−4,−2,−2,−2,−2,−2,−2,−2],

P ′′ : < 106, 17 > ← [−7,−2,−2,−2,−5],

on L numerically resolved by continued fractions (Hirzebruch–Jung singu-
larities). As in the previous example one has only to consider the composed
linear resolution tree connected by a (−1)-line and its stepwise blowing down
to a smooth point:

Ẽ′ : [−2,−2,−2,−2,−4,−2,−2,−2,−2,−2,−2,−2,−1,−7,−2,−2,−2,−5]

→ [−2,−2,−2,−2,−4,−1,−2,−2,−2,−5]

→ [−2,−2,−2,−2,−1,−5] → [−1] → P,

(15)

Remark 3.7. It is easy to see now that each abelian point has infinitely many
different releases.

• Hilbert cusps.
An irreducible neat Hilbert cusp curve is a contractible rational curve H on a
surface with a double point P as one and only curve singularity. Moreover, P
has to be a cyclic surface point (including smooth ones), and the two branches
of H cross each other at P . By the above remark each irreducible Hilbert cusp
curve has infinitely many releases which — by abuse of language — are also
called called releases of neat Hilbert cusp points. The irreducible Hilbert
cusp curves are also called simple releases of neat Hilbert cusp points. There
are also infinitely many simple releases of one and the same cusp point. One
has only to consider the minimal resolution of such cusp point with smooth
transversally intersecting components. It consists of a cycle of smooth rational
curves. Orbital Hilbert cusp points in general are finite quotients of neat
Hilbert cusp points. A release of one of them is nothing else but the quotient
of a neat Hilbert cusp point release.
We say that the birational morphism Y ′ → Y is a smooth release of the

curve D ⊂ Y , if it is a release of D and Y ′ is a smooth surface. Thereby we allow
also non-honest releases at some points. Let G be a finite group acting effectively
on Y and assume that the action lifts to Y ′ permuting the released points. The
(smooth) proper transform of D on Y ′ is denoted by D′. Let C =: D/G and
C′ =: D′/G be the image curve of D on X := Y/G or of D′ on X ′ := Y ′/G,
respectively. We say that the release Y ′ → Y is G-stable if and only if additionally
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the induced morphism X ′ → X is a release of C (with proper transform C′).
We endow X’ and X with Galois weights by means of orders of stabilizer groups
at points. Then we get an orbiface X′ and its contraction X. Such contractions
will shortly also be called orbifaces. The induced orbital curve C′ contracts to the
weighted weighted surface germ C, which we will also call orbital curve. Altogether
we get a commutative diagram of orbital curves

D′ D

C′ C
�
NG(D)

�

�
NG(D)

�

(16)

with trivially weighted release on the top, an orbital curve release on the bottom
and an orbital curve uniformization on the left-hand side.

Definition 3.8. The orbital curve C is called uniform releasable if and only if
there exist a commutative diagram (16). The corresponding quotient release C′ →
C is called an orbital release of C. The ambient map X′ → X is called the
orbital release of X along C. The morphisms D′ → D, Y ′ → Y are called release
uniformizations of C′ → C or of X′ → X, respectively.

Notice that a release uniformization of C endows automatically the surface
around C′ with (Galois) weights. Therefore we get an orbital curve in this case.
Starting from a smooth surface Y with G-action it is interesting to ask, which
curves D ⊂ Y have a releasable quotient curve C = D/G ⊂ X = Y/G ? Keep in
mind the Example 3.10 below, because it will play a central role.

Definition 3.9. The action of G on Y as above is ordinary at D if and only if the
curve

GD :=
⋃
g∈G

g(D)

has at most ordinary singularities. The action is smooth at D if and only if GD
is smooth. The action is separating at D if and only if for all g ∈ G the curve
g(D) is either equal to D or has no common point with D.

Obviously, a smooth action at D must be separating at D. For smooth curves
D both notions coincide.

Example 3.10. Let Y be a smooth surface with G-action and D a smooth curve
on X . If G acts ordinarily at D, then the orbital curve C = D/G is uniform
releasable.

Proof. We release simultaneously the ordinary singularities of GD by σ-processes.
Let Y ′ → Y be this simultaneous releasing morphism, and denote the proper
transform of D on Y ′ by D′. Then G acts on Y ′ and thereby smoothly at D′.
With C′ = D′/G = D′/NG(D) = D′/GD′ we get a uniform release diagram
(16). �
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Example 3.11. Let Y be a smooth surface with G-action separating at D, where
D is a curve on X with at most hypercusp singularities. Then the orbital curve
C = D/G is uniform releasable.

Proof. Because of the separating property we can assume that G = NG(D). Then
G acts on the set of singularities of D. In a G-equivariant manner we resolve
stepwise the curve singularities as described in Example 3.4, each by a linear tree
of lines such that the smooth proper transform D′ of D on the arising surface Y ′

intersects precisely one (central) line of the tree. All intersections of tree lines and
such lines with D′ are empty or transversal. The G-action on Y transfers to a
G-action on Y ′. Since NG(D′) = G the quotient curve C′ = D′/G is smooth, or in
other words, G acts smoothly at D′. Let Q ∈ D be a curve singularity and EQ ⊂ Y ′

the resolving linear tree over Q. Then the Q-stabilizing group GQ acts on EQ and
especially on the D′-crossing central line LQ of EQ. Now it is clear that G acts (via
GQ) separately, hence smooth at LQ. This property refers also to the other line
components of EQ. The isotropy groups GQ′ at points Q′ ∈ EQ must be abelian
because of transversal intersections of the components of EQ ∪D′. Therefore the
image of EQ on Y ′/G is again a linear tree of lines intersecting at abelian quotient
singularities. If we take the minimal singularity resolutions of them, then we get
again a linear tree of lines crossing each other. Now blow down the two partial
linear trees outside of the proper transform of the central line LQ/G = LQ/GQ

crossing C′ = D′/G in at most abelian singularities. Altogether one gets a uniform
release diagram (16) for the orbital curve C = D/G. The upper release D′ → D
is that of hypercusps of curves locally described in Example 3.4. �

3.3. Homogeneous points

Definition 3.12. A simple surface singularity is a singularity, whose minimal res-
olution curve consists of one (smooth) irreducible curve only. A simple surface
point is a simple singularity or a regular surface point.

In the latter case we consider the exceptional line of the σ-process as resolu-
tion curve.

Now let G be a finite group acting on a surface Y with only simple points, and
let Q ∈ Y be one of them. The group action extends to the simultaneous minimal
resolution Y ′ of all points of the orbit GQ, and the stabilizer group GQ acts on
the resolving curve EQ ⊂ Y ′. Moreover, GQ acts on the normal bundle over EQ

respecting fibres. Therefore the stationary subgroups of GQ at points on EQ must
be abelian (fibres and EQ are diagonalizing). Take a GQ-invariant open neighbour-
hood V ⊂ Y of Q, smooth outside of Q. Locally the situation is described by the
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following commutative local coniform release diagram:

V ′ V

U ′ = V ′/GQ U = V/GQ

�

� �
�

(17)

with vertical quotient morphisms and upper horizontal resolution. Let P ∈ U
be the image point of Q. We endow U ′, U \ {P} with Galois weights coming
from the finite GQ-uniformizations V ′ → U ′, V \ {Q} → U \ {P}. Finally, we set
w(P ) := w(EQ). The corresponding orbifaces are denoted by U′ or U, respectively.
Our diagram can be written as

V ′ V

U′ = V′/GQ U = V/GQ

�

� �
�

(18)

Again, we have a refinement equivalence class of weighted open neighbourhoods
of P denoted by P = Q/GQ ∈ U.

Definition 3.13. Weighted surface points P constructed on this way are called (or-
bital) homogeneous points.

It is clear that orbital quotient points are homogeneous. The morphism
Q → P of orbital points, defined as refinement class of V → U, is called a coni-
formization of P. It is a uniformization, if the preimage point Q is regular on
V . Homogeneous points which are coniformable but not uniformizable are called
honest homogeneous points.

Remark 3.14. The supporting surface point P of a homogeneous point P is in any
case a so-called quasihomogeneous singularity. The resolutions of these quasiho-
mogeneous singularities are precisely known. We refer to [P], [D]. For graphical
descriptions with weights see [H98].

Remark 3.15. Simple singularities are “cone-like”. Namely, up to isomorphy (look
at normal bundle of EQ), they are contractions of a section C of a line bundle over
C with negative self-intersection contractible to a singularity Q. In our imagination
the contracting surface looks like a cone around the singularity Q. Therefore we
introduced the notion “coniformization”.

Remark 3.16. Observe that the U′ supports finitely many abelian points sitting
on the smooth quotient curve EQ/G. These simpler orbital points “release” the
homogeneous point P, which explains our calling. Notice also that an abelian point
P can loose its original weight after a coniformization. The old one is “released”
by the new “coniform weight”.
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A global coniform release diagram looks like

Y ′ Y

X′ = Y′/G X = Y/G

�

� �
�

(19)

Thereby Y is a surface with only simple singularities, G a finite group acting
effectively on Y , Y ′ → Y resolves minimally all simple singularities of Y and,
possibly, G-orbits of finitely many regular points by σ-processes. The weights of X′

are Galois weights. We push forward the weights of the quotients of the exceptional
curves of Y ′ → Y to get a birational morphism of weighted surfaces in the bottom
of the diagram.

Definitions 3.17. Y −→ X supported by a a quotient morphism Y −→ X = Y/G
is called a (global) coniformization, if and only if one can extend it to a coniform
release diagram (19). Morphisms in the bottom of (19) are called coniform releases,
and Y ′ −→ Y is a coniformization of X′ −→ X.

An (finitely weighted) orbiface is a weighted surface supporting (finitely
weighted) homogeneous points only.

At the end of this section we want to describe orbital cusp points. A neat hyper-
bolic cusp point is a simple elliptic surface point Q ∈ V endowed with weight ∞.
Its resolution curve C ⊂ V is, by definition, elliptic. We use the notations of the
diagrams (17) and (18) to get the homogeneous quotient point P of the elliptic
point Q. We change the finite Galois weight of P by∞ to get a hyperbolic orbital
cusp point P∞. Notice that the weights of U outside of P will not be changed. Also
the weights of all points of the preimage curves of Q and P in diagram (17) will
be changed to∞. Then we get local coniform release diagrams (18) for hyperbolic
orbital cusp points P∞.

A neat Hilbert cusp singularity Q is a normal surface singularity which has a
cycle of transversally intersecting smooth rational curves as resolution curve. The
minimal resolution curve EQ is of the same type or a rational curve with only one
curve singularity which is an ordinary self-intersection of this curve. Locally, we
have diagrams of type (17) again with a finite group action around Q. Endowing
Q with weight ∞ and all other points on V outside Q with trivial weight 1, we
get a neat Hilbert cusp point Q∞. As in the hyperbolic cusp case we endow the
quotient point P , the points of EQ and of its quotient curve also with weight ∞
and all other points with the usual finite Galois weights to get a diagram (18) in
the category of weighted surfaces called local Hilbert cusp release diagrams. The
corresponding orbital point P∞ itself is called a Hilbert orbital cusp point. After
pulling back the weight ∞ to the points on the preimage curve of P we get, with
obvious notations, representatives U′∞ → U∞ called orbital cusp releases of P∞.
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Altogether, in the category of orbifaces Orb2 we dispose on orbital releases,
orbital release diagrams, coniform releases, finite orbital morphisms, orbital open
embeddings, birational orbital morphisms by composition of orbital releases, or-
bital morphisms by composition of birational and finite orbital morphisms, and
on orbital correspondence classes, which consist of orbital objects connected by
finite orbital coverings.

The notions restrict in obvious manner to orbital curves on orbifaces via
representative neighbourhoods. So we dispose on category of orbital curves Orb2,1

(on orbifaces) with all the types of orbital morphisms above.

Remark 3.18. Restricting to algebraic objects and morphisms one can work with
Zariski-open sets only to define refinement classes and corresponding weighted
(orbital) points. There will be no difference for the later definitions of orbital
invariants.

3.4. Picard and Hilbert orbifaces

Let B ⊂ C2 be a bounded domain and Γ a group of analytic automorphisms of
B acting properly discontinuously. Then the quotient Γ\B together with Galois
weights is a finitely weighted orbiface, which we denote by Γ\B.

There are two symmetric subdomains of C2: The irreducible complex unit
ball

B |z1|2 + |z2|2 < 1
and the product D2 of two unit discs. The latter is biholomorphic equivalent to
the product

H2 = H×H, H : Im z > 0,
of two upper half planes H of C.

The automorphism groups are the projectivizations of the unitary group
U((2, 1),C) ⊂ Gl3(C) or of the symmetric extension (by transposition of coordi-
nates) GS+

2 (R) of Gl+2 (R)×Gl+2 (R), respectively. Both groups act transitively on
the corresponding domain.

Now let K = Q(
√
D) be a quadratic number field with discriminant D =

DK/Q ∈ Z and ring of integers OK . In the ball case we let K be an imaginary
quadratic field and in the splitting case a real quadratic field. The arithmetic
groups acting (non-effectively) on B or H2,

ΓK =

{
SU((2, 1),OK), if K imaginary quadratic,
Sl2(OK), if K real quadratic,

are called full Picard modular or full Hilbert modular group of the field K, respec-
tively. To be precise, we use, if nothing else is said, in the Picard case the hermitian
metric on C3 of signature (2, 1) represented by the diagonal matrix

(
1 0 0
0 1 0
0 0 −1

)
. The

action on B restricts the Gl3-action on P2 in obvious manner. In the Hilbert case
we have to restrict the action on P1 × P1 of

Gl+2 (K) ! g : (z, w) 	→ (g(z), g′(w)),
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where ′ denotes the non-trivial field automorphism of K applied to each coefficient
of g.

Definitions 3.19. A Picard modular group (of the imaginary quadratic field K) is
a subgroup of Gl3(C) commensurable with ΓK .
A Hilbert modular group (of the real quadratic field K) is a subgroup of GS+

2 (R)
commensurable with ΓK .

Definitions 3.20. The finitely weighted orbital quotient surfaces

o

XΓ =

{
Γ\B = PΓ\B
Γ\H2 = PΓ\H2

are called the open Picard orbiface of Γ, if Γ is a Picard modular group, respectively
the open Hilbert orbiface of Γ, if Γ is a Hilbert modular group.

Forgetting Galois weights, the surfaces
o

XΓ= Γ\B or Γ\H2 are called open Pi-
card modular or open Hilbert modular surfaces, respectively. Each of them has
a unique analytic Baily-Borel compactification X̂Γ := Γ̂\B adding finitely many
hyperbolic respectively Hilbert cusp “singularities” (which may be regular). These
are projective normal surfaces. We extend the Galois weight map of XΓ to X̂Γ

endowing the cusps with weight∞ to get the orbital Baily-Borel model X̂Γ of
o

XΓ

or
o

XΓ. Releasing all cusp points we get the cusp released models XΓ with orbital
versions XΓ.

Each arithmetic group Γ has a neat normal subgroup Δ of finite index. By
definition, the eigenvalues of each element of a neat arithmetic linear group gen-
erate a free abelian subgroup of C∗ (which may be trivial). Especially, because of
absence of unit roots, a neat Picard and Hilbert modular group acts fixed point
free on B or H2, respectively. Moreover, the cusp points of the corresponding mod-
ular surfaces are neat. With the groups Δ and G := Γ/Δ we get the global cusp
release diagrams

XΔ X̂Δ

XΓ X̂Γ

�

�

/G

�
/G

�

(20)

Notice that XΔ is a smooth projective surface. Moreover, the objects and the
orbital release morphism on the bottom of the diagram do not depend on the choice
of Δ. In the Picard case we refer to [H98] for the complete classification of orbital
hyperbolic cusps and their local releases working on X̂Γ only. The analogous work
for the Hilbert case has not been done until now, but seems to be not difficult. Since
XΔ is smooth, all finitely weighted orbital points on X̂Γ are quotient points, also
well-classified in [H98]. The non-abelian ones have also unique releases. Locally,
they come from σ-processes at their preimage points on XΔ, not depending on the
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choice of Δ again. The complete release of non-abelian orbital quotient points of
XΓ is denoted by X′

Γ. We get global commutative orbital release diagrams

X ′
Δ XΔ

X′
Γ XΓ

�

�
/G

�

/G

�

(21)

Altogether we get orbital release diagrams

X ′
Δ XΔ X̂Δ

X′
Γ XΓ X̂Γ

�

�

�

�

/G

�
� �

(22)

We can shorten them to one diagram

X ′
Δ X̂Δ

X′
Γ X̂Γ

�

� �
�

(23)

with the releases of precisely all non-abelian orbital points, because all hyperbolic
orbital cusp points are homogeneous, hence releasable.

Visualization:

1) Released Picard modular Apollonius plane (4);
2) Released Hilbert modular Cartesius plane.

From Orb2 we single out the correspondence classes

•
o

Pic
2

K of open Picard orbifaces of the field K,

with objects
o

XΓ, Γ a Picard modular group of the field K;
• P̂ic

2

K of Picard orbifaces of the field K,
with objects X̂Γ;
• Pic2′

K of released Picard orbifaces of the field K,
with objects X′

Γ.

As surviving orbital morphisms in each of these correspondence classes we
take only the finite ones coming from pairs Δ ⊂ Γ of Picard modular groups of
the same field K.

In the same manner we dispose in Orb2 on correspondence classes
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•
o

Hilb
2

K of open Hilbert orbifaces of the field K,

with objects
o

XΓ, Γ a Hilbert modular group of the field K;

• Ĥilb
2

K of Hilbert orbifaces of the field K,
with objects X̂Γ;
• Hilb2′

K of released Hilbert orbifaces of the field K,
with objects X′

Γ.

In difference to the Picard case, the neat objects of HilbK come from mini-
mal singularity resolution of the corresponding neat objects of ĤilbK . One has
to plug in at the Baily–Borel cusps a cycle of rational curves with negative self-
intersection. In general we must plug in finite quotients of such cycles. For Picard
and Hilbert cases we call it cusp released in common.

We denote by Pic2 or Hilb2 the complete subcategories of Orb2 with the
above three types of Picard- or Hilbert objects, respectively. Both kinds of objects
together form the complete subcategory Shim2 of irreducible Shimura orbifaces.

3.5. Orbital arithmetic curves

Let Γ be a Picard or Hilbert modular group of a quadratic number field K. We
say that D ⊂ B or H2 is a K-arithmetic disc, if and only if there is a holomorphic
embedding of of the unit disc D1 ↪→ B with image D such that D is closed in B
and the D-normalizing subgroup (decomposition group) of Γ

NΓ(D) := {γ ∈ Γ; γ(D) = D}

is a D-lattice, that means NΓ(D)\D = ΓD\D is a quasiprojective algebraic curve,
where

ΓD = NΓ(D)/ZΓ(D), the effective decomposition group of D,

ZΓ(D) = {γ ∈ Γ; γ|D = idD}, D− centralizing (or inertia) group.

To be more precise, we have commutative diagrams with algebraic groups defined
over Q in the upper two rows

NΓ(D) N G Γ

SNΓ(D) SN SG SΓ

D B

� � �

�



�

�



�



�



�

(24)
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with algebraic Lie groups N, G acting on the symmetric domains below. The alge-
braic groups in the middle are special: SN(R) isomorphic to Sl2(R) or SU((1, 1),C).
The Q-algebraic group embeddings are lifted from the bottom row.

We denote the image curve of D on
o

XΓ= Γ\B by Γ\D or
o

DΓ. Its closure on
XΓ or X̂Γ is denoted by DΓ or D̂Γ, respectively, and their proper transform on X ′

Γ

by D′
Γ. We have birational curve morhisms

Γ̂D\D −→ D′
Γ −→ DΓ −→ D̂Γ.

with (unique) smooth compact model on the left.

The corresponding weighted orbital curves on
o

XΓ,X′
Γ,XΓ or X̂Γ are denoted

by
o

DΓ,D′
Γ,DΓ or D̂Γ, respectively. We have birational orbital curve morphisms

D′
Γ −→ DΓ −→ D̂Γ,

o

DΓ ↪→ D′
Γ,

o

DΓ ↪→ DΓ.

If
o

DΓ is non-compact, then
o

DΓ,D′
Γ,DΓ, D̂Γ, are (weighted) orbital modular

curves. If it is compact, then
o

DΓ,D′
Γ,DΓ, D̂Γ =

o

DΓ are orbital Shimura curves.
Altogether they are called orbital arithmetic curves. Their supporting curves are
defined over an algebraic number field because these are one-dimensional Shimura
varieties.

Theorem 3.21. Each open orbital arithmetic curve
o

DΓ on a Picard or Hilbert
modular surface has a smooth model in its correspondence class. More precisely,
one can find a finite uniformization of

o

DΓ.

In the Picard case also DΓ has a finitely covering smooth model in its corre-
spondence class.

Theorem 3.22. All orbital arithmetic curves DΓ are orbital releasable.

Proof steps for the last two theorems (e.g., for B):

Definition 3.23. A B-lattice Γ is called neat if and only if each stationary group
ΓP , P ∈ B, is torsion free.

It is well known by a theorem of Borel, that each lattice Γ contains a normal
sublattice Γ0 (of finite index), which is neat. Especially, Γ0 is torsion free.

Definition 3.24. Let D be a K-disc on B. A neat B-lattice Δ is called D-neat, if
and only if the implication

γ(D) ∩ D �= ∅ =⇒ γ(D) = D

holds for all γ ∈ Δ.

Since Δ is assumed to be neat there are no honest Galois weights, hence
o

XΔ=
o

XΔ. Then our D-neat condition is equivalent to the regularity of the image
curve

o

DΔ= Δ\D on
o

XΔ. Thus Theorem 3.21 follows from the following
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Proposition 3.25. Γ has a normal D-neat sublattice.

It is well known that the arithmetic group Γ has a neat subgroup of finite
index. Therefore we can assume Γ to be neat, hence ΓD = NΓ(D). Without loss of
generality we can also assume that all elements of Γ are special, hence

ΓD ⊂ SN(Z) ⊂ SG(Z) ⊃ Γ (25)

with the notations of diagram (24).

Proof. We call a point Q ∈ D a Γ-singular point on D, if and only if it belongs
to D ∩ γ(D) for a γ ∈ Γ not belonging to ΓD. The Γ-singular points on D are
precisely the preimages on D of the singular points of Γ\D. Therefore there are
only finitely many ΓD-equivalence classes of Γ-singular points on D. The branch
set at Q of the orbit curve ΓD ⊂ B corresponds bijectively to the set of branches of
Γ\D at the image point P . Let Q1, . . . , Qs be a complete set of ΓD- representatives
of Γ-singular points on D and Dij = γij(D), γij ∈ ΓD, j = 1, . . . , ki, all different
ΓD-branches at Qi excluding D.

It is a fact of algebraic group theory, see e.g. [B], II.5.1, that N is the
normalizing group of a line L in a faithful linear representation space E of G,
all defined over Q. Each X ∈ L(Q) defines, over Q again, a weight character
ρ = ρX = ρL : N→ Gl1, and

α : G −→ Gl(E), α(g)X = ρ(g)X, g ∈ N(Q),

Since SN is simple, ρ restricts to the trivial character on SN, hence ρ(ΓD) = {1}.
With the above chosen elements we define

E ! Xij := γijX �= X.

The latter non-incidence holds because each γij does not normalize D, hence does
not belong to N , so it cannot normalize L. We can assume (by choice of Q-base)
that all X , Xij belong to E(Z). We find a natural number a such that

X �≡ Xij mod (a), for all i = 1, . . . , s, j = 1, . . . , ki.

Now we show that Γ(a) is D-neat:
Assume the existence of γ′ ∈ Γ(a) such that γ′D intersects D properly at P . The
intersecting pair (D, γ′D) has to be ΓD-equivalent to one of the representative
intersection pairs (D, γijD), say

δγ′D = γijD, δ ∈ ΓD.

Therefore γ−1
ij δγ′ ∈ N because it normalizes D.

γ−1
ij δγ′X = X, δγ′X = Xij , γ1X = Xij ,

with γ1 := δγ′δ−1 ∈ Γ(a). Since γ1 ≡ id mod (a), we get the contradiction

X = id(X) ≡ γ1(X) = Xij mod (a). �
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4. Neat Proportionality

We want to define norms of orbital arithmetic curves
o

DΓ and their birational
companions on Picard or Hilbert modular surfaces. They sit in the specification of
the discs D = DV ↪→ B or H2 defining the supporting curve as

o

DΓ= Γ\D, namely

DV = P(V ⊥) ∩ B or P× P(V ⊥) ∩H2,

where in the Picard case : V ∈ K3, < V, V > positive, ⊥ with respect to unitary
(2, 1)-metric on C3.

In the Hilbert case the situation is more complicated: Let V ∈ Gl+2 (K) be
scew-hermitian with respect to the non-trivial K/Q-isomorphism ′, that means
tV ′ = −V , explicitly

V =
(

a
√

D λ

−λ′ b
√

D

)
, (26)

a, b ∈ Q, λ ∈ K. By abuse of language we define “orthogonality” with elements of
C2 × C2 in the following manner:

C2 × C2 ! (z1, z0;w1, w0)⊥ V : (z1, z0)V ( w1
w0 ) = 0

and the “bi-projectivization” of C2 × C2 by

P× P(z1, z0;w1, w0) := (z1 : z0)× (w1 : w0) ∈ P1 × P1 ⊃ H×H.

DV ⊂ P(V ⊥) or P× P(V ⊥) is complex 1-dimensional and analytically isomorphic
to the upper half plane H.

For later use of Heegner divisors we define norms of subdiscs and their quo-
tient curves on this place.

Definition 4.1. of norms

Picard case: N(V ) := < V, V > ∈ N+, V ∈ O3,+
K ,

Hilbert case: N(V ) := detV ∈ N+, V ∈ Scew+
2 (OK).

and of norm sets of arithmetic curves:

N (Γ̂\D) = N (D) := {N(V ); D = DV , V integral} ⊂ N+

Definition 4.2. For N ∈ N+ the Weil divisor

HN = HN (Γ) :=
∑

D
N (D)�N

Γ̂\D

is called the N -th Heegner divisor on X̂Γ.

The scew-symmetric elements (26) with fixed K form a quadratic vector
space VQ := (Scew2(K), det) with signature (2, 2) as well as VR

∼= R2,2. The
group Sl2(K) acts on Scew2(K) and on the positive part Scew+

2 (K):

Sl2(K) ! g : V 	→ tg′V g.
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It defines an embedding

H2 −→ Grass+(2,VR) ⊂ Grass(2,VR)

(z, w) 	→ (z, w)⊥ := {V ∈ VR; (z1, z0;w1, w0)⊥V }

and a homeomorphism

H2 ←→ SOe(2, 2)/(SO(2)× SO(2)),

where the lower index e denotes the unit component. The normalizer of DV in
Γ ⊆ Sl2(OK) is

NΓ(DV ) = ΓV = {g ∈ Γ; tg′V g = ±V }.
In the special case V =

(
0 λ

−λ′ 0

)
, λ ∈ OK , primitive, λ · λ′ = N , Γ = Sl2(OK) the

action on DV is (conjugation) equivalent to the action of

( λ 0
0 1 ) Sl2(O)

(
λ−1 0
0 1

)
on the diagonal of H2. Then for K = Q(

√
d)

NΓ(DV ) ∼=
{

Sl2(Z)(N)0 := {
(

a b
c d

)
; a, b, c, d ∈ Z, N | c}, if

√
d � λ

index 2 extension of Sl2(Z)(N)0, if
√
d | λ in OK .

Any hermitian symmetric domain B is embedded in its dual symmetric space B̌,
which is compact, hermitian and of same dimension as B. For B, D ∼= H or H2 the
duals are simply:

ˇB = P2, Ď = Ȟ = P1 Ȟ2 = P1 × P1.

The Lie algebra of the Lie group GC of the dual symmetric space B̌ is the com-
plexification of the Lie algebra corresponding to the Lie group G of B. For the
splitting case H2 we use the isomorphy of Lie algebras so(2, 2) ∼= sl2(R) × sl2(R)
to get the pairs

G ⊂ GC

SU((2, 1),C) ⊂ Sl3(C),

SOe(2, 2) ⊂ Sl2(C)× Sl2(C)

The conjugation classes of commutators of normalizing Lie group pairs N ′ =
[N,N ] with complexifications N ′

C corresponding to D ⊂ B or D ⊂ H2 are repre-
sented by:

G ⊃ N ′ ⊂ N ′
C ⊂ GC

SU((1, 1),C) ⊂ Sl2(C),

Sl2(R) ⊂ Sl2(C) diagonal in Sl2(C)2.

We have the following corresponding commutative embedding diagrams:

B̌ ←↩ B GC ←↩ G
↑ ↑ ↑ ↑
Ď ←↩ D N ′

C ←↩ N ′
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To be more explicit we consider the point-curve-surface flags

0× 0 = O ∈ 0× D ⊂ B , O ∈ Δ ⊂ H×H (diagonal);

O ∈ 0× P1 ⊂ P2 , O ∈ Δ′ ⊂ P1 × P1 (diagonal).

with embeddings

N ′
C ↪→ GC :

{
Sl2(C) ! h 	→ ( 1 o

o h ) , Picard case
Sl2(C) ! g 	→ (g, g) , Hilbert case.

The (special) compact stabilizer groups with complexifications are
Picard case:

K = StabO(G) = S(U(2)× U(1)) , KC = S(Sl2(C)×Gl1(C));

k = StabO(N ′) = S(U(1)× U(1)) , kC = S(Gl1(C)×Gl1(C)).

Hilbert case:
K = StabO(G) = SO(2)× SO(2) , KC = Gl1(C)) ×Gl1(C) ⊂ StabOGC;

k = StabO(N ′) = SO(2) , kC = S(Gl1(C)×Gl1(C)) ⊂ StabON
′
C.

Lie group diagram for O ∈ D ⊂ B:

K = GO G

k = N ′
O N ′

�

�

 

Complexification diagram for O ∈ Ď = P1 ∈ B̌ = P2 or P1 × P1:

KC P+ ·KC = GC,O GC

kC p+ · kC = N ′
C,O N ′

C

� �

�



�

 

with suitable stabilizer splitting complex parabolic groups P+ ⊂ GC or p+ ⊂
N ′

C, respectively. These are the unipotent radicals of the corresponding stabilizer
groups.

Example 4.3. 2-ball case:

P+ = {
(

1 0 0
0 1 0
a b 1

)
; a, b ∈ C} , p+ = {( 1 0

c 1 ) ; c ∈ C}

Now take a G-vector bundle
o

E on B. The stabilizer K = GO acts on the
fibre EO of E, and

o

E together with the G-action is received by extension of the
K-action along the G/K-transport:

o

E= EO ×K G.
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We extend the (really represented, bi-unitary or bi-orthogonal) K-action on
o

E by complexification to a KC-action. Putting together with the trivially defined
action of P+ on EO we get the GC-bundle

Ě := EO ×P+K GC on B̌.

Now let Γ be a neat arithmetic subgroup of G, and Γ\B −→ Γ̂\B a singularity
resolution of the Baily–Borel compactification of Γ\B (already smooth) with (com-

ponentwise) normal crossing compactification divisor. The G-bundle
o

E goes down

to the quotient bundle E := Γ\
o

E.

We endow
o

E with a G-equivariant hermitian metric
o

h. It extends along the
above GC/P+KC transport from EO to a hermitian GC-equivariant metric ȟ on Ě.
On the other hand it goes down along the quotient map B→ Γ\B to a hermitian
metric h on E.

Theorem 4.4 (Mumford). Up to isomorphy there is a unique hermitian vector
bundle Ē extending E on Γ\B, such that h is “logarithmically restricted” around
the (smooth) compactification divisor X∞

Γ .

This means: Using coordinates zi on a small polycylindric neighbourhood
Ū = Da+b around Q ∈ X∞

Γ with finite part U = (D \ 0)a ×Db, and a basis ej of Ē
over Ū , then

|h(ej , ek)|, | det(h(ej , ek))| ≤ C ·
(

a∑
i=1

log |zi|
)2N

with constants C,N > 0. Altogether we get bundle diagrams

Ě
o

E E Ē

B̌ B Γ\B Γ\B
�

��

�

�

� �
�� �

(27)

Let

1 + c1(F ) + . . . + cr(F ) ∈ Heven(V,R)

be the total Chern class of a holomorphic vector bundle of rank r on the compact
smooth complex algebraic variety V of dimension n, say. By Hodge theory we
interpret cj(F ) (uniquely up to exact forms) as a differential form γj = γj(F ) of
degree 2j on X . We have the differential forms

γj(F ) := γj1 ∧ . . . ∧ γjk
, j = (j1, . . . , jk),

∑
i

ji ≤ n;
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in particular the Chern forms, if
∑
i

ji = n. In the latter cases the Chern numbers

are defined as

cj(F ) :=
∫

V

γj(F ).

Especially, the Chern number cn(V ) = cn(TV ), where TV is the tangent bundle on
V , is the Euler number of V .

Coming back to our neat arithmetic quotient variety Γ\B and vector bundle
quadruples described in diagram (27), we come to the important

Theorem 4.5 (Mumford’s Proportionality Theorem). The Chern numbers of Ě
and Ē are related as follows:

cj(Ē) · cn(B̌) = cj(Ě) · cn(Γ\B),

where cn(Γ\B) denotes the Euler volume (with respect to Euler–Chern volume form
of the Bergmann metric on B) of a Γ-fundamental domain on B.

Now take a symmetric subdomain D of B such that ΓD is a neat arithmetic
D-lattice. We have an extended commutative diagram with vertical analytic em-
beddings

B̌ B Γ\B Γ\B

Ď D ΓD\D ΓD\D

�� �



��



�

 
(28)

satisfying the

Absolute and relative normal crossing conditions:

• All varieties in the diagram are smooth;
• the compactification divisor X∞

Γ = Γ\B \ (Γ\B) is normal crossing;
• the compactification divisor X∞

ΓD
= ΓD\D \ (ΓD\D) is normal crossing,

• at each common point, the (small) compactification divisor X∞
ΓD

crosses trans-
versally the big one X∞

Γ .

As described in the beginning of this section we work with the (special) Lie group
N ′ ⊂ G acting on D and containing ΓD. Starting with a N ′-equivariant hermitian
vector bundle

o
e on D we get a commutative diagram as (27)

ě o
e e ē

Ď D Γ\D Γ\D
�

��

�

�

� �
�� �

(29)
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Mumford’s Proportionality Theorem yields the Chern number relations

cj(ē) · cm(Ď) = cj(ě) · cm(Γ\D) (30)

with m = dim D, j = (j1, . . . , jk),
∑
i

ji = m.

If we start with a G-bundle
o

E on B and restrict it to the N ′-bundle
o
e=

o

E|D
on D, then we get two quadruples of bundles described in the diagrams (27) and
(29). By construction, it is easy to see that the bundles ě, e, ē are restrictions of
the bundles Ě, E or Ē, respectively. The relations (30) specialize to the

Theorem 4.6 (Relative Proportionality Theorem). For
o
e=

o

E|D, with the above
notations, it holds that

cj(Ē |Γ\D
) · cm(Ď) = cj(Ě |Ď) · cm(Γ\D). (31)

Corollary 4.7. In particular, for dim B = 2 and dim D = 1 we get with the condi-
tions of the theorem the relations

c1(Ē |Γ\D
) · c1(Ď) = c1(Ě |Ď) · c1(Γ\D). (32)

Knowing Ď = P1 and its Euler number c1(P1) = 2 we get

2 · c1(Ē |Γ\D
) = c1(Ě |Ď) · volEP (ΓD), (33)

where volEP denotes the Euler–Poincaré volume of a fundamental domain of a
D-lattice.

Now we work with canonical bundles K = T ∗ ∧T ∗, T the tangent bundle on
a smooth analytic variety with dual cotangent bundle T ∗. The above construction
yields

o

E= KB, Ě = KB̌, E = KΓ\B.

For the restriction of Ě to Ď we get

c1(Ě |Ď)=(KB̌ · Ď)=

{
(KP2 · L) = −3(L2) = −3, Picard case
(KP1×P1 ·Δ′) = ((−2H − 2V ) ·Δ′) = −4, Hilbert case

Thereby, H = P1 × 0 (horizontal line), V = 0× P1 (vertical line), Δ′ the diagonal
on P1 × P1 and L is an arbitrary projective line on P2. Substituting in (33) we
receive

c1(Ē |Γ\D
) =

{
− 3

2 · volEP (ΓD), Picard case
−2 · volEP (ΓD), Hilbert case.

(34)

One knows that for cotangent bundles that T̄ ∗ is the extension of T ∗
Γ\B

by loga-
rithmic forms along the compactification divisor X∞

Γ (allowing simple poles there).
Wedging them we see that the Mumford-extended canonical bundle is nothing else
but the logarithmic canonical bundle

Ē = Ω2
Γ\B

(logX∞
Γ )
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corresponding to the logarithmic canonical divisor K
Γ\B

+ X∞
Γ , where the first

summand is a canonical divisor of Γ\B and the second summand is the com-
pactification divisor (reduced divisor with the compactification set as support).
Therefore we get

c1(Ē |Γ\D
) = ((KΓ\B

+ X∞
Γ ) · Γ\D).

Together with (34) we get

(KΓ\B
· Γ\D) + (Γ\D ·X∞

Γ ) = −
{

3
2 · volEP (ΓD), Picard case
2 · volEP (ΓD), Hilbert case.

(35)

The adjunction formula for curves on surfaces relates the Euler number of Γ\D
with intersection numbers as follows:

−eul(Γ\D) = (Γ\D2
) + (KΓ\B

· Γ\D).

On the other hand, by a very classical formula, the Euler number can be read off
from the volume of a fundamental domain and the number of compactification
points:

eul(Γ\D) = volEP (ΓD) + (Γ\D ·X∞
Γ ) = eul(ΓD\D) + (Γ\D ·X∞

Γ ). (36)

Adding the last two relations we get

(KΓ\B
· Γ\D) + (Γ\D ·X∞

Γ ) = −(Γ\D2
)− volEP (ΓD). (37)

We define and obtain by substitution in (35)

Self(Γ\D) := (Γ\D2
) =

{
1
2 · volEP (ΓD), Picard case
1 · volEP (ΓD), Hilbert case.

(38)

We call Self(Γ\D) the orbital self-intersection and define also the orbital Euler
number

Eul(Γ\D) := eul(Γ\D) = volEP (ΓD)

of Γ\D ↼ Γ\B in the in the case of D-neat lattices Γ. Then, together with (36),
one gets

volEP (ΓD) = eul(Γ\D) = Eul(Γ\D) =

{
2 · (Γ\D2

) = 2 · Self(Γ\D),

1 · (Γ\D2
) = 1 · Self(Γ\D),

(39)

in the Picard or Hilbert case, respectively.

5. The General Proportionality Relation

5.1. Ten rules for the construction of orbital heights and invariants

We introduce relative orbital objects, and the corresponding notation:
These are finite orbital coverings: Y/X (surfaces), D/C (curves) Q/P (points)
and also birational ones (relative releases, mainly) X′→X, C′→C, P′→P.
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The relative orbital morphisms joining these relative objects are commutative
diagrams. We use the notation:

Y′/X′→Y/X, D′/C′→D/C, Q′/P′→Q/P.

Definition 5.1. A rational orbital invariant on Orb2,1 is a non-constant map h
corresponding each orbital curve a rational number

O �= h : Orb2 −→ Q with

R.1 deg(1/1)
[D : C]h(C)h(D) = [D : C] · h(C)
for all finite orbital curve coverings D/C. Thereby [D : C] := wD

wC
[D : C] is

the orbital degree of the covering with usual covering degree [D : C].

If 0 �= h : Orb2 −→ Q satisfies

R.1 deg(1/1)
h(D) = [D : C] · h(C),
for all finite orbital curve coverings D/C, then we call it an orbital height.

Remark 5.2. It is easy to see that we get immediately from an orbital height h an
orbital invariant h setting h(C) := wC · h(C).

Convention. In this paragraph we restrict ourselves to compact curves or to
open orbital curves

o

C with cusp point compactification Ĉ. For simplicity we will
write C instead of Ĉ and set h(

o

C) := h(Ĉ) = h(C) (same for h).
For constructions we need:

• h(P) local orbital invariants,
• relative orbital heights such that:

– for orbital curves:

h(C′→C) := h(C′)− h(C) , h(D/C) := h(D)− [D : C] · h(C)

– for orbital curve points:

h(P′→P) := h(P′)− h(P) , h(Q/P) := h(Q)− [Q : P ] · h(P),

where [Q : P ] has to be defined later.

and the Decomposition laws (absolute and relative):

R.2 Dec(1,0)
h(C) = h1(C) + h0(C) , h0(C) =

∑
P∈C

h(P)

R.3 Dec(11,00)
h(C′→C) = h1(C′→C) + h0(C′→C)

h0(C′→C) =
∑

P′→P∈C′→C

h(P′→P)
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with finite sums h0 and local incidence diagrams

P′ C′

P C

�

� �
�

Relative orbital rules:

R.4 deg(11/11)

h(D′→D) = [D : C] · h(C′→C)

R.5 deg(00/00)

h(Q′→Q) = [Q : P ] · h(P′→P)

Initial relations:

R.6 deg(1/1)sm

deg(00/00) holds for totally smooth D, C
(no curve and no surface singularities)

R.7 deg(00/00)sm

deg(00/00) holds for smooth releases of abelian point uniformizations
(background: stepwise resolution of singularities)

Shift techniques along releases:

R.8 (Shift)ab

shifts deg(1/1) along locally abelian releases
R.9 (Shift)ab∗

shifts deg(1/1) to all finitely weighted releasable orbital curves
R.10 (Shift)∗∞

shifts deg(1/1) to all releasable orbital curves including infinite weights.

Implications (Geometric Local-Global Principle):

(Imp 1) Dec(11,00), deg(00/00) =⇒ deg(11/11) =⇒ (Shift)ab;
(Imp 2) deg(1/1)sm, (Shift)sm

ab =⇒ deg(1/1)ab;

Later (via definitions)

(Imp 3) (Shift)ab
∗ , deg(1/1)ab =⇒ deg(1/1)∗;

(Imp 4) (Shift)∗∞, deg(1/1)∗ =⇒ deg(1/1).
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5.2. Rational and integral self-intersections

We need rational intersections of curves on (compact algebraic) normal surfaces.
Let ν : Y −→ X be a birational morphism of normal surfaces. We denote by
DivX the space of Weil divisors on X with coefficients in Q. There is a rational
intersection theory for these divisor groups together with canonically defined or-
thogonal embeddings ν# : DivX −→ Div Y extending the integral intersection
theory on smooth surfaces and the inverse image functor. Via resolution of sin-
gularities the intersection matrices are uniquely determined by the postulate of
preserving intersections for all ν#-preimages. Namely, let E = E(ν) the excep-
tional (reduced) divisor on Y , DivEY the Q-subspace of Div Y generated by the
irreducible components of E. For any Weil divisor C on X the generalized inverse
image ν#C satisfies the conditions

DivEY ⊥ ν#C = ν′C + ν#
E C , ν#

E C ∈ DivEY,

where ν′C is the proper transform of C on Y . Before proofs one has to define the
rational intersections on normal surfaces. Let ν be a singularity resolution, ( · )
the usual intersection product on smooth surfaces, here on Y , and E = E1 +
· · ·+Er the decomposition into irreducible components. There is only one divisor
ν′C +

∑
ciEi ∈ Div Y orthogonal to DivEY because the system of equations∑

ci(E1 · Ei) = −(E1 · ν′C),

· · · · · ·∑
ci(Er · Ei) = −(Er · ν′C),

has a regular coefficient matrix (negative definite by a theorem of Mumford). The
unique Q-solution determines ν#C. Then the rational intersection product on X
is well defined by

< C ·D > := (ν#C · ν#D) , C,D ∈ DivX.

Using orthogonality we get for self-intersections the relations

< C2 > = (ν#C · ν#C) = ((ν′C + ν#
E C) · ν#C)) = (ν′C · ν#C)

= (ν′C · (ν′C + ν#
E C)) = (ν′C · ν′C) + (ν′C · ν#

E C),

hence
(ν′C)2 := (ν′C · ν′C) = < C2 > −(ν′C · ν#

E C). (40)
For minimal singularity resolutions μ we write briefly (C2) := (μ′C)2 and notice

(C)2 = < C2 > −(μ′C · μ#
EC). (41)

This number is called the minimal self-intersection of C. The difference
(C)2− < C2 > splits into a finite sum of point contributions (μ′C · μ#

EC)Q at
intersection points Q of μ′C and E.

Now we compare self-intersections of locally abelian orbital curves and their
releases. The release at P is supported by a birational surface morphism, also
denoted by ρ, precisely ρ : (X ′, C′) −→ (X,C). The intersection point of the
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proper transform C′ of C and the exceptional line L is denoted by P ′. With the
weights w(C′) = w(C) and of L it supports a well-defined abelian point P′ of C′.
Let μ : X̃ → X , μ1 : X ′′ → X ′ be the minimal resolutions of P or P ′, respectively
and μ2 : X̃ ′ → X ′ that of X ′. (We have to resolve in general two cyclic singularities
lying on L). For further notation we refer to the commutative diagram

X̃ ′ X̃

X ′ X

�ρ̃

�
μ2

	
	

	


ν

�
μ

�
ρ

It restricts to morphisms along exceptional divisors

Ẽ′ Ẽ

L P

�ρ̃

�
μ2

	
	

	


ν

�
μ

�
ρ

Since < C2 > is a birational constant we get from (40), (41) and by definition of
minimal self-intersections the relation

(C
′2)− (C2) = ((C

′2)− (C2))P := (ν′C)2 − (C)2 = −(ν′C · ν#
E C) + (μ′C · μ#

EC)

with obvious notations. (The index E stands for the corresponding exceptional
divisor).

Lemma 5.3. The relative self-intersection

s(P ′→P ) := ((C
′2)− (C2))P ≤ 0

does only depend on the local release P ′→P , not on the choice of C, C′ crossing
P or P ′, respectively. More precisely, it only depends on the exceptional resolution
curves EP (ν), EP (μ), even only on the intersection graphs of E(ν) = EP (ν) and
E(μ) = EP (μ).

Proof. Both linear trees resolve P , the latter minimally. Therefore E(ν) → E(μ)
splits into a sequence of σ-processes. The stepwise contraction of a (−1)-line as-
cends (C̃

′2) by 1 if and only if this exceptional line crosses C̃′. If not, then (C̃
′2) is

not changed. By stepwise blowing down (−1)-lines we see that s(P ′→P ) is equal
to the number of steps contracting a line to a point on the image of C̃′. The curve
C̃′ crossing the first line of E(ν) can be chosen arbitrarily. �

Definitions 5.4. A release P′→P of an abelian orbital curve point is called smooth if
and only if P ′ is a smooth surface point. A release C′→C of a locally abelian orbital
curve C is called smooth if and only if it is smooth at each released abelian point
on C. A smooth release of the finite covering Q/P is a relative finite covering
Q′→Q/P′→P with smooth releases Q′→Q and P′→P. A smooth release of the
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finite covering D/C is a relative finite covering D′→D/C′→C with only smooth
local releases Q′→Q/P′→P.

Example 5.5. (Stepwise resolution of cyclic singularities) . Let (D,Q) be a uni-
formization of the abelian curve point (C,P ), the latter of cyclic type < d, e >. It
is realized by cyclic group action of Zd,e :=

〈(
ζd 0
0 ζe

)〉
⊂ Gl2(C), where ζg denotes

a g-th primitive unit root. Blow the point (D,Q) e times up, each time at intersec-
tion point of the exceptional line with the proper transform of C′. Blow down the
arising e−1 exceptional (−2)-lines. Then we get a smooth release (D′, Q′)→(D,Q).
The exceptional line E supports a cyclic surface singularity Q′′ of type < e, e−1 >.
Factorizing by Zd.e one gets a smooth release P ′→P with singularity P ′′ = Q′′/Zd,e

of type < e, d′ > on the exceptional line L over P , where d′ ≡ −dmode. Altogether
we get a smooth release Q′→Q/P ′→P of the uniformization Q/P of P .

Proof. We enlarge Zd,e by the reflection group S generated by < 1, ζe >, < ζe, 1 >
to an abelian group A acting around O ∈ C2. We consider the σ-release O′→O
by blowing up O to the (−1)-line N . The directions of x- or y-axis through O
correspond to points O′ and O′′ on N , respectively. Easy coordinate calculations
show that the double release O′→O←O′′ goes down via factorization by S to the
double release Q′→Q←Q′′. Thereby Q′→Q is a smooth release of the smooth
abelian point Q, and Q′′ is of type < e, e − 1 >. Furthermore, factorizing by
A yields the double release P′→P←P′′ with smooth release P′→P and P ′′ of type
< e, d′ > =< e,−d >. Now forget the weights and the upper σ-double release to
get P ′→P←P ′′ = Q′→Q←Q′′/ < d, e >. �

Proposition 5.6. Let D/C be a finite cover of orbital curves with smooth D. There
exists a smooth relative release D′→D/C′→C.

Proof. Essentially, we have only to find local smooth relative releases
Q′→Q/P′→P over Q/P ∈ D/C, if P is not smooth. If the weights around Q
and P are trivial (equal to 1), then we refer to the above proof. Otherwise the
weights w(C) and w(D) are Galois weights coming from a common local uni-
formization O of Q, P. Since Q is smooth it is a quotient point of O by an abelian
reflection group Σ. We lift Q′→Q to a release O′→O by normalization along the Σ-
quotient map around the exceptional line supporting Q′. Then we get the coverings
O′→O/Q′→Q/P′→P with the original weights we need. �

5.3. The decomposition laws

Definition 5.7. Let P′→P be a release of the abelian cross point P of the abelian
curve C of weight w, and < d′, e′ > respectively < d, e > the cyclic types of P ′ or
P . The number

h(P′→P) = h1(P′→P) + h0(P′→P) :=
s(P ′/P )

w
+ (

e′

wd′
− e

wd
) (42)

is called the (relative local) orbital self-intersection of the (local) release.
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For global releases C′→C of locally abelian orbital curves C we take sums over
the (unique) local branches (C′,P′) pulled back from (C,P) along local releases:

h0(C′→C) :=
∑

P′→P

h0(P′→P)

h1(C′→C) :=
∑

P′→P

h1(P′→P).

5.8. Relative Decomposition Law Dec(11/00)ab.

h(C′→C) := h1(C′→C) + h0(C′→C) =
∑

P′→P

h(P′→P).

Definition 5.9. The rational number h(C′→C) is called the (relative) self-inter-
section height of the release C′→C.

On this way we presented us the relative Decomposition Law Dec(11/00)ab for
releases of locally abelian orbital curves by definition. Now we are well-motivated
for the next absolute Decomposition Law given by definition again:

Definition 5.10. Decomposition Law Dec(1,0)ab.
Let C be a locally abelian orbital curve of weight w = w(C). The signature height
of C is

h(C) = h1(C) + h0(C) = h1(C) +
∑
P∈C

h(P) :=
1
w

(C2) +
∑
P∈C

eP

wdP
.

For a further motivation we refer to the rather immediately resulting relative
degree formula (43) below for local releases.

We shift this definition now to general (finitely weighted locally releasable)
orbital curves C. By definition, there exists a (geometrically unique minimal)
locally abelian release C′→C. Splitting C at each blown up point P into finitely
many orbital branch points (C′,P′) we are able to generalize the above definition
to the

Definition 5.11. Decomposition Law Dec(1,0)∗ for releasable orbital curves.
Set

h1(C) := h1(C′) =
1
w
· (C

′2),

h0(C) :=
∑
P∈C

h(P) with h(P) :=
∑

P′→P

(h(P′) + δrls
P ′ ),

h(C) = h1(C) +
∑

h(P) =
1
w

(
(C

′2) +
∑

P′→P

(δrls
P ′ +

eP ′

dP ′
)

)
with the local release branch symbol

δrls
P ′ = δrls

P ′ (C′) :=

{
1, if P ′ ∈ EP ∩ C′, EP exceptional release curve over P ),
0, else.
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We call h(C) the orbital self-intersection of C.

Remark 5.12. If w = w(C) > 1, then each abelian point on C is automatically
an abelian cross point of C. In this case do not release C or consider the identical
map as trivial release. So δrls

P ′ �= 0 appears only in the trivial weight case w = 1.

5.4. Relative local degree formula for smooth releases

Proof of deg(00/00)sm. We start with a uniformization of a cyclic singularity P
of type < d, e > unramified outside P , see Example 5.5. From the covering excep-
tional lines

(E;Q′, Q′′)→ Q : < 1, 0 > over (L;P ′, P ′′)→ P : < d, e >

supporting singular points Q′′ : < e, e− 1 > respectively P ′′ : < e,−d > we read
off:

h(Q′/Q) = s(Q′/Q) +
0
1
− 0

1
= −e + 0− 0 = −e,

h(P ′/P ) = s(Q′/Q) +
0
1
− e

d
= 0 + 0− e

d
= − e

d
,

hence
h(Q′/Q) = d · h(P ′/P ) = [Q : P ] · h(P ′/P ). (43)

Now we allow P ∈ C to come with honest weight w = w(C) > 1. As demonstrated
in the proof of Proposition 5.6 the situation is the same as above with additional
weight w at C,C′,D,D′. So we have only to divide the above identities by w to
get

h(Q′/Q) =
1
w
· d · h(P ′/P ) =

1
w
· [Q : P ] · h(P ′/P ) = [Q : P ] · h(P′/P). �

5.5. Degree formula for smooth coverings

Proof of deg(1/1)sm. Let D/C be a finite covering of totally smooth orbital curves.
By definition of orbital finite coverings and multiplicativity of covering degrees it
suffices to assume that D =: D is trivially weighted and C = D/G with Galois
group G. The supporting surfaces Y , X of D or C, respectively, are assumed to be
smooth along D or C, and the Galois covering D → C is the restriction of a global
Galois covering p : Y → X = Y/G. We can assume that G = NG(D) because the
self-intersection of a smooth curve on a smooth surface is locally defined as degree
of its normal bundle restricted to the curve. Looking at the normal bundle surfaces
we can also assume that D is the only preimage of C along p. The ramification
index is equal to w = w(C), hence p∗C = w · D. Now we apply the well-known
degree formula for inverse images of curves on smooth surface coverings to our
situation:

w2 · (D2) = (p∗C)2 = [Y : X ] · (C2) = #NG(D) · (C2) = [D : C] · w · (C2).

Division by w2, together with the definition of the orbital self-intersection invari-
ants and absence of singularities, yields finally

h(D) = [D : C] · 1
w
· (C2) = (

1
w
· [D : C]) · (w · h(C)) = [D : C] · h(C). �
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5.6. The shift implications and orbital self-intersection

Proof of Implication (Imp 1), first part. Suppose Dec(11,00), deg(00/00) to be
satisfied for locally abelian orbital curves. Consider relative releases D′→D/C′→C,
locally Q′→Q/P′→P, supported by relative finite orbiface coverings Y′→Y/X′→X.
For degree formulas it is sufficient to consider uniformizing orbital Galois coverings
D′→D of C′→C with trivially weighted objects D′, D (omitting fat symbols) and
Galois weights on C′,C.

X = Y/G , X′ = Y′/G , P = Q/GQ , P′ = Q′/GQ′ .

We use the notation of the following orbiface and orbital curve diagrams around
orbital points.

Y ′ Y

X′ X

�

� �
�

restricting to

D′ D

C′ C

�

� �
�

restricting to

Q′ Q

P′ P

�

� �
�

with vertical quotient morphisms and horizontal releases. The joining incidence
diagram on the released side can be understood as locally abelian Galois diagram:

Q′
D′

P′ C′

�

� �
�

∼=

Q′
D′

Q′/A(Q′) D′/NG(D)

�

� �
�

Especially we restrict to work along D, D′ with
G = NG(D), abelian A := GQ = GQ′ ,

[Q : P ] :=
#A

#ZA(D)
=

#A

w(C)
,

the number of preimage points of P on D around Q w.r.t. the local A-covering
(D,Q)→ (C,P ).
For fixed P it holds that∑

D�Q/P

[Q : P ] = [G : GQ] · #GQ

w
=

#G

w
. (44)

Applying Dec(11,00), deg(00/00) and (44) we get

h(D′→D) =
∑
Q∈D

h(Q′→Q) =
∑
P

∑
Q/P

h(Q′→Q)

=
∑
P

∑
Q/P

[Q : P ] · h(P′→P) =
#G

w

∑
P

h(P′→P)

= [D : C] · h(C′→C).

(45)

�
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Proof of Implication (Imp 1), second part. Together with the definitions of h for
relative objects one gets

h(D′/C′) = h(D′)− [D′ : C′] · h(C′) = h(D′)− [D : C] · h(C′)

= (h(D) + h(D′→D))− [D : C] · (h(C) + h(C′→C))

= (h(D) + h(D′→D)− [D : C] · h(C)− h(D′→D)
= h(D)− [D : C] · h(C) = h(D/C).

The degree formula deg(1/1) translates to the vanishing of relative degrees, by
definition. This vanishing condition is shifted by the above identity. �

Remark 5.13. Via stepwise resolutions and contractions it is not difficult to extend
the relations deg(11/11)sm, deg(00/00)sm for smooth releases to deg(11/11)ab,
deg(00/00)ab for all abelian releases. Since we do not need it for the proof of
deg(1/1)ab, the proof is left to the reader.

Proof of deg(1/1)ab via implication (Imp 2). Especially we dispose on the shifting
principle (Shift)sm

ab for smooth releases D′/C′→D/C with locally abelian objects
D,C. The implication (Imp 2) is a simple application of (Shift)sm

ab . Since we proved
already deg(1/1)sm, this degree formula shifts now to the covering D/C. �

Proof of deg(1/1) via implications (Imp 3), (Imp 4) in the coniform case.
We want to shift the main orbital property deg(1/1)ab to orbital curves supporting
honest ∗-singularities for given coniform releasable orbital curve Ĉ ⊂ X̂. More
precisely, we have globally the following situation:

Y ′ Y Ŷ

X′ X X̂
�

�

�

�

�
� �

(46)

with horizontal releases, vertical quotient maps by a Galois group G, Y →Ŷ releases
all honest cone singularities, such that Y is smooth. Let D̂ be a component of the
preimage of Ĉ on Ŷ and D its proper transform assumed to be smooth. The next
release Y ′→Y takes care for a smooth action of G along the proper transform D′

of D by equivariant blowing up of some points of Y . Take the minimal set of such
σ-processes. Locally along the orbital curves we get the following commutative
diagram:

D′ D D̂

C′ C Ĉ
�

�

�

�

�
� �

(47)

Already C is smooth at (honest) ∗-points (contraction points of X → X̂), and
C′ is smooth everywhere. The surface singularities of X and X ′ are cyclic. All of
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them around C′ are abelian cross points of C with released exceptional curves as
opposite cross germ. Remember that we already defined h(C) in 5.11 via releases
C′→C which are unique up to weights of released exceptional curves. These weights
play no role in 5.11.

We verify the degree property

h(D) = [D : C] · h(C),

which is sufficient for our coniform category (defining orbital curve coverings via
smooth releasable coniformizations). In the case of w > 1 it is easy to see that the
minimal release C′→C is the identity because all points on C are already abelian
cross points of C, see Remark 5.12. The degree formula is already proved. So we
can assume that w = 1, hence

GD = NG(D) = NG(D′), #NG(D) = #NG(D′) = #GD = [D : C].

Using the same counting procedure as in (45) we can also assume that C′→C
releases only one point P. Choosing a preimage Q of P on D we have

h(D′) = (D
′2) = (D2)−#G ·Q, hence h(D) = h(D′) + #G ·Q.

On the other hand, from (45) we get

h(C) = h(C′) + brls
P (C′→C), brls

P (C′→C) = #{(released) branches of C at P}.

This number of branches multiplied with #NG(D) coincides with #G ·Q:

brls
P ·#GD = #G ·Q, hence h(D) = h(D′) + brls

P · [D : C].

Now divide the latter identity by [D : C] to get

h(D)
[D : C]

=
h(D′)
[D : C]

+ brls
P = h(C′) + brls

P = h(C),

which proves the degree formula deg(1/1)∗.
The last shift to deg(1/1) including infinitely weighted points is simply done

by definitions. Observe that for the definition of orbital self-intersections of orbital
curves we never needed weights of points and of released exceptional curves. For
points only the singularity types (of curves and points) were important.

Definitions 5.14. If the orbital point R ∈ Ĉ ⊂ X̂ is not a quotient point, then we
set w(R) = ∞. The same will be done for any exceptional curve E releasing R:
w(E) :=∞.

We break the releases X → X̂ and C → Ĉ — and of its coniform Galois
coverings — in the diagrams (46), (47) into two releases starting with releases
X∗ → X at infinitely weighted points. Altogether we get commutative orbital
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diagrams

Y ′ Y Y ∗
Ŷ

X′ X X∗ X̂
�

�

�

�

�

�

�
� � �

(48)

D′ D D∗
D̂

C′ C C∗ Ĉ
�

�

�

�

�

�

�
� � �

(49)

Definition 5.15. With the above notation, the signature height of Ĉ is defined to
be

h(Ĉ) := h(C∗) =
1
w

(C
′2) +

∑
P∈C

h(P), w = w(C),

h(P) =
∑

P′→P

(h(P′) + δrls
P ′ ) = brls

P +
∑

P′→P

h(P′), h(P′) =
eP ′

wdP ′
,

brls
P the number of (released) curve branches of C at P .

For the general degree formula (deg(1/1) there is nothing new to prove. We
can restrict ourselves to Galois coverings as described in the above diagrams. Then
we get

h(D̂) = h(D∗) = [D : C] · h(C∗) = [D : C] · h(Ĉ)
by definition. �

For the signature height alone it makes not much sense to introduce infinite
weights because it works only with the internal curve weights w(C). But in the next
section we will introduce orbital Euler invariants working with external weights
around C. Then infinite weights will become useful.

5.7. Orbital Euler heights for curves

Let first C′ be an orbital curve with weight w having only abelian cross points. It
follows that the supporting C′ is a smooth curve. We follow the proof line of the
ten rules. In detail it is then not difficult to follow the proof of degree formula of
the signature height for orbital curves on orbifaces in the last subsection. Notice
that we distinguish in this subsection h and ĥ for local reasons.

Definition 5.16.

h(C′) := h1(C′)− h0(C′),

h1(C′) := eul(C′) (Euler number), h0(C′) :=
∑

P′∈C′
h(P′),

h(P′) := 1− 1
dP ′vP ′

,
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where < dP ′ , eP ′ > is the type of the cyclic singularity P ′ and vP ′ is the
weight of curve germ at P ′ opposite to C′. The proof is given in [H98] by the same
procedure as for orbital self-intersections through the first eight commandments.
Basically, Hurwitz genus formula for the change of Euler numbers along finite
curve coverings has to be applied.

Now we shift the definition as above along C′ → C along a coniform orbital
release as described in diagrams (48), (49), to the finitely weighted orbital curve
C setting

h(C) := h(C′) = h1(C)− h0(C),

h1(C) := h1(C′) = eul(C′), h0(C) :=
∑
P∈C

h(P),

h(P) :=
∑

C′�P′→P

h(P′) = brls
P −

1
vP

∑ 1
dP ′

,

(50)
where vP is the released weight of P defined as weight of the exceptional release
curve EP over P and brls

P is the number of exceptional curve branches of C at P .

(Shift)ab∗ : deg(1/1)sm = deg(1/1)ab ⇒ deg(1/1)∗

Let D′/C′ → D/C a locally abelian (coniform) release. Then

h(D) = h(D′) = [D′ : C′] · h(C′) = [D : C] · h(C).

(Shift)∗∞: deg(1/1)∗ ⇒ deg(1/1) =: deg(1/1)∞.

We have only to check what happens at points R with new weight∞. Chang-
ing to ∞ at some points we write Ĉ instead of C and define h(Ĉ) as in (50)
substituting the new weights ∞. So we get with obvious notations

ĥ(Ĉ) = eul(C′)−
∑

P∈Ĉfin

ĥ(P)−
∑

R∈Ĉ∞

ĥ(R)

= eul(C′)−
∑
P

(
brls
P −

1
vP

∑
P′→P

1
dP ′

)
−
∑
R

brls
R

(51)

defining ĥ for orbital points and curves. In order to prove that ĥ is orbital we have
only to check the realtive local degree formula the following deg(00/00)∗∞ over
infinitely weighted points R for coniform coverings D/C.∑

D�S/R

(ĥ(S)− h(S)) =
∑

D�S/R

bS

ĥ(R̂)− h(R) =
1
vR

∑
R′→R

1
dR′

.

The weight #ZG(D) of C doesn’t play any role. So we can assume that

G = NG(D) = NG(D′) = GD = GD′ = [D′ : C′] = [D : C]
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is the Galois group acting smoothly on D′, where we find all the curve branches
of D at points S over R we need. With the above notation we get∑

D�S/R

(ĥ(S)− h(S)) = [G : GS ] · bS = [D : C] · bS

#GS

ĥ(R̂)− h(R) =
∑

R′→R

1
#GS′

=
brls

P∑
i=1

1
#GS′

i

,

where S′ is a (D-branch) point on the release curve LS of S over R′ ∈ ER = LS/GS

and S′
i over R′

i after numeration. Since

bS =
brls

P∑
i=1

|GS · S′
i| =

brls
P∑

i=1

#GS

#GS′
i

= #GS ·
brls

P∑
i=1

1
#GS′

i

,

the relative local orbital property

(ĥ(S)− h(S))R =
∑

D�S/R

(ĥ(S)− h(S)) = [D : C] · ĥ(R̂)− h(R)

follows immediately, and also the global one after summation over all infinitely
weighted R ∈ Ĉ:

ĥ(D) = h(D) + (ĥ(D)− h(D)) = [D : C] ·
(
h(C) + ((ĥ(C)− h(C))

)
= [D : C] · ĥ(C).

We have to distinguish abelian points P ∈ X̂, which will not be released
along X′→X̂ and those P′, which arise from releasing. The former appear in (50)
by identifying P′ = P.

Convention 5.17. For an abelian point Q = (C, Q,D), C,D crossing curve germs
at Q with maximal weight product w(C) · w(D) around, we set in any case

w(Q) := dQ · w(C) · w(D),

where < dQ, eQ > is the cyclic singularity type of Q. If Q is, more distinguished,
understood as abelian cross point on C, then we set

wQ := w(C), vQ := w(D), hence w(Q) := dQ · wQ · vQ (52)

and call vQ the opposite weight to wQ (or to w(C)) at Q.

Definition 5.18. We call the abelian point Q on Ĉ a general point of Ĉ if and
only if w(Q) = w(Ĉ). The other orbital points on Ĉ are called special. We use
the notation Ĉgen for the open orbital curve of general points and Ĉsp for the
complementary (orbital) cycle (or set) of special orbital points.

Each abelian cross point P on Ĉ yields the contribution 1− 1
dQ·vQ

in the mid-

dle sum of (51), and the general points of Ĉ are precisely those with contribution
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0. The summands 1 in the point contributions disappear, if we change to the open
curve Ĉgen ∼= Cgen ∼= C

′gen and its Euler number:

ĥ(Ĉ) = eul(Ĉgen) +
∑

P∈Ĉsp

∑
P′→P

1
dP · vP

= eul(Ĉgen) +
∑

P∈Csp
fin

∑
P′→P

1
dP · vP

,
(53)

the latter because vP = ∞ outside of the set Csp
fin of finitely weighted special

points.

We will write he for the orbital Euler height ĥ and ĥe for the corresponding
orbital Euler invariant.

5.8. Released weights

Denote by v = w(EP ) the released weight of P defined as weight of the exceptional
release curve EP over P and brls

P is the number of exceptional curve branches of
C at P , as above. The weight w(EP ) is uniquely determined by the coniform
release. This follows from the self-intersection and Euler degree formulas applied
to L = LQ → E = EP = LQ/GQ, LQ the releasing resolution curve of the cone
singularity Q ∈ D over P . Namely, the orbital degree formulas yield

0 > (L2) = [L : E] · hτ (L) =
#GQ

v
· 1
v

(
(E2) +

∑
i

ei

di

)

2− 2g(L) = eul(L) = [L : E] · he(L) =
#GQ

v
·
(
eul(E)−

∑
i

(1− 1
vidi

)

)
where the sum runs through the branches P′

i ∈ C′ of (C,P). It follows that

eul(L)
(L2)

= v ·
eul(E)−

∑
i

(1− 1
vidi

)

(E2) +
∑
i

ei

di

,

from where one gets v uniquely, if the numerators on both sides do not vanish. In
the opposite case of an elliptic curve we work with the cusp weight v =∞.

For uniform releases we have L ∼= P1, (L2) = −1, hence

−2 = v ·
2−

∑
i

(1− 1
vidi

)

−1 +
∑
i

ei

di

,

w(EP )=

{
2(1− e1

d1
− e2

d2
)/( 1

v1d1
+ 1

v2d2
), if P is abelian,

2(1− e1
d1
− e2

d2
− e3

d3
)/(−1 + 1

v1d1
+ 1

v2d2
+ 1

v3d3
), if P is non-abelian.
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6. Relative proportionality relations,
explicit and general

Now we change notation to connect these numbers with the algebraically defined
orbital invariants. We write DΓ for the compactification of Γ\D on the minimal
surface singularity resolution XΓ of the Baily–Borel compactification X̂Γ of Γ\B.
Since Γ is D-neat we have Γ\D = ΓD\D (smooth) and we have only to resolve the
cusp singularities. In the Picard case the curve DΓ is already smooth, but in the
Hilbert case we have to release in general curve hypercusps at infinity. In any case
we have a release diagram

o

XΓ

X ′
Γ X̂Γ

D′
Γ D̂Γ

o

DΓ

�

	
	

	

�



�





�
�

��

with horizontal birational morphisms (releases) and vertical embeddings, closed
in the middle part and open in the top and bottom parts. The only non-trivial
weights are at infinity, especially DΓ has weight 1. Therefore we get the algebraic
orbital Euler height and orbital signature as volumes:

he(DΓ) = eul(Reg DΓ) +
∑

P∈D∞
Γ

∑
P ′→P

w(DΓ)
w(P ′)

= eul(Γ\D) +
∑

P∈D∞
Γ

∑
P ′→P

1
∞

= eul(Γ\D) = volEP (ΓD).

(54)

hτ (DΓ) = #Sing1
o

D + (D
′2
Γ ) +

∑
P∈D∞

Γ

∑
P ′→P

e(P ′)
d(P ′)

= (D
′2
Γ ) +

∑
P∈D∞

Γ

∑
P ′→P

0
1

= (D
′2
Γ ) = (Γ\D2

) =

{
1
2 · volEP (ΓD), Picard case
1 · volEP (ΓD), Hilbert case.

(55)
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Comparing the identities (54) and (55) we come to

Theorem 6.1. If Γ is a D-neat arithmetic group of Picard or Hilbert modular type
acting on B = B or H2, respectively, then the orbital Euler and signature heights
of DΓ are in the following relative proportionality relation:

he(DΓ) =

{
2 · hτ (DΓ) Picard case
1 · hτ (DΓ) Hilbert case.

In the last paragraph we extended the heights to arbitrary Picard and Hilbert
orbifaces satisfying the defining height rule R.1. With Remark 5.2 we orbitalize
the heights of arithmetic curves C = ĈΓ or C′

Γ to get the orbital Euler and
self-intersection invariants setting

Eul(C) := he(C) =
1
wC

he(C) , Self(C)) := hτ (C) =
1
wC

hτ (C).

They satisfy the defining orbital height rule R.1, also called orbital degree formula
(see also subsection 5.1). The Main Theorem of the article is the

Relative Orbital Proportionality Theorem 6.2. If Γ is an arbitrary arithmetic
group of Picard or Hilbert modular type acting on B or H2, respectively, then the
orbital Euler and self-intersection of the orbital arithmetic curve DΓ satisfy the
following relative proportionality relation:

Eul(DΓ) =

{
2 · Self(DΓ) Picard case
1 · Self(DΓ) Hilbert case.

7. Orbital Heegner Invariants and
Their Modular Dependence

We denote by Pic2 and Hilb2 the categories of all Picard respectively Hilbert
orbifaces, including releases, finite orbital coverings and open embeddings corre-
sponding to ball lattices commensurable with a group ΓK , K a quadratic number
field. If we restrict ourselves to Baily–Borel compactifications and orbital finite
coverings only, then we write P̂ic

2
. By restrictions we get the categories P̂ic

2,1
,

Ĥilb
2,1

, of orbital arithmetic curves on the corresponding surfaces. Disjointly joint
we denote the arising category by Shim2,1 because the objects are supported by
surface embedded Shimura varieties of (co)dimension 1. We admit as finite cov-
erings only those, which come from a restriction XΔ → XΓ with objects from

Shim2, where Δ is a sublattice of Γ. The notations for the subcategories Ŝhim
2,1

,
o

Shim
2,1

, Shim2,1,′ of Shim2,1, should be clear, also for the correspondence classes

Ŝhim
2,1

K ,
o

Shim
2,1

K , Shim2,1,′
K in Shim2,1

K , K a quadratic number field.
We look for further orbital invariants for orbital arithmetic curves.

0 �= h : Shim2,1 −→ Q



158 Rolf-Peter Holzapfel

satisfying, by definition, the orbital degree formula

h(D̂) = [D̂ : Ĉ] · h(Ĉ)

with orbital degree

[D̂ : Ĉ] :=
w(D̂)
w(Ĉ)

· [Ĉ : D̂]

for orbital finite coverings D̂/Ĉ of orbital arithmetic curves (in Ŝhim
2,1

). For
each level group Γ we dispose on the Q-vector space DivarX̂Γ of orbital divisors
generated by the (irreducible) arithmetic ones. The rational intersection product
extends to the orbital intersection product

< · >: DivarX̂×DivarX̂ −→ Q

defined by

< Ĉ · D̂ > :=
< Ĉ · D̂ >

w(Ĉ)w(D̂)

for (irreducible) arithmetic curves and Q-linear extension.

For finite orbital coverings f : Ŷ→ X̂ in Ŝhim
2

we dispose also on Q-linear
orbital direct and orbital inverse image homomorphisms

f# : DivarŶ −→ DivarX̂, f# : DivarX̂ −→ DivarŶ.

Restricting to coverings of arithmetic orbital curves D̂/Ĉ, the former is basically
defined by

f#D̂ := [D̂ : Ĉ] · Ĉ, (Ĉ = f(D̂)).

The orbital inverse image of Ĉ is nothing else but the reduced preimage divisor
f−1C endowed componentwise with the weights on Ŷ. In the orbital style of
writing we set

f#Ĉ := f−1Ĉ.

In [H02] we proved the projection formula in the Picard case. The proof transfers
without difficulties to the Hilbert case, because it needed only the general orbital
language. So

< f#B ·A > = < B · f#A >

holds for all arithmetic orbital divisors B on Ŷ or B on X̂, respectively. It follows
by Q-linear extension after proving it for arithmetic orbital curves.

Definition 7.1. The N -th Heegner divisor HN on X̂ = X̂(Γ) is the reduced (Weil-
) divisor with irreducible components Γ̂\D, D a K-disc on B of norm N ∈ N+

with respect to a maximal hermitian OK-lattice in K3. The N -th orbital Heegner

divisor HN = HN(Γ) ∈ DivarX̂ is the sum of the orbitalized components Γ̂\D ⊂
Γ̂\B of HN .



Relative Proportionality on Picard and Hilbert Modular Surfaces 159

For finite coverings f : Ŷ → X̂ corresponding to Picard lattices Γ′ ⊂ Γ it
holds that

f#HN (Γ) = HN (Γ′),

This property is called the orbital preimage invariance of Heegner divisors along
finite coverings.

Theorem 7.2. The correspondences

hN : Ŝhim
2,1
−→ Q, Ĉ 	→< Ĉ ·HN >,

where Ĉ ⊂ X̂(Γ) and HN = HN(Γ) are taken on the same level Γ, are orbital
invariants.

We use the neutral notation h. We should denote it by ĥ, and introduce
o

h
and h′ by same values on corresponding open or released orbital surfaces. The
reader should keep it in mind.

Proof. Let f : D̂ → Ĉ be a finite covering in Ŝhim
2,1

K corresponding to Γ′ ⊂ Γ,
then

hN (D̂) = < D̂ ·HN(Γ′) > = < D̂ · f#HN (Γ) > = < f#D̂ ·HN(Γ) >

= [D̂ : Ĉ]· < Ĉ ·HN(Γ) > = [D̂ : Ĉ] · hN (Ĉ). �

We look for a normalization of the three equal orbital invariants in the Pro-
portionality Theorem 2.1 of Part 5 and a synchronization with the orbital Heegner
invariants for establishing orbital power series.

Definition 7.3. We call h0 : Ŝhim
2,1

K → Q with

h0(Ĉ) := Eul(Ĉ) = (1− signDK/Q)/2) · Self(Ĉ) = volEP(ΓD)
:= 1

w(Ĉ)
volEP (ΓD)

for all orbital arithmetic curves Ĉ = Γ̂\D, the 0-th orbital Heegner invariant.

We define the Heegner Series of Ĉ by

HeegĈ(τ) :=
∞∑

N=0

hN (Ĉ) · qN , q = exp(2πiNτ), Im τ > 0.

Theorem 7.4. The Heegner series are elliptic modular forms belonging to
M3(DK/Q, χK) in the Picard case or M2(DK/Q, χK) in the Hilbert case of the
corresponding quadratic number field K with discriminant DK/IQ.

A detailed explanation of the vector spaces Mk(m,χK) of elliptic modular
forms of weight k, level m and Nebentypus χK can be found in the appendix.
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Proof. We can refer to [H02] again. We used simply the orbital degree formula
working simultaneously for each coefficient. We proved, that we find a D-neat
covering in any case. But then we get a Hirzebruch–Zagier series in the Hilbert
case, or a Kudla–Cogdell series in the Picard case. These are elliptic modular
forms of described type. The Heegner series we started with distinguish from the
latter by the orbital property (orbital degree formula) for the coefficients only by
a constant factor. �

Definition 7.5. An infinite series {hN}∞N=0 of orbital invariants on an orbital cat-
egory (or correspondence class only) is called modular dependent, if the corre-
sponding series

∑∞
N=0 hN (Ĉ) ·qN are elliptic modular forms of same type (weight,

level, Nebentypus character) for all objects Ĉ of the category. A countable set of
orbital invariants is called modular dependent, if and only if there is a numeration
such that the corresponding series is.

Since the spaces of modular forms of same type are of finite dimension, it
suffices to know the first coefficients of the series to know them completely, if the
space is explicitly known. We proved

Theorem 7.6. On each correspondence class Pic2,1
K or Hilb2,1

K are the correspond-
ing orbital Heegner invariants hN modular dependent. For each quadratic number
field there is up to a constant factor only one Heegner series. The coefficients are
rational numbers.

8. Appendix: Relevant Elliptic Modular Forms of Nebentypus

We consider the congruence subgroups

Γ0(m) := {
(

a b
c d

)
∈ Sl2(Z); c ≡ 0 mod m}

of the modular group Sl2(Z) acting on the upper half plane H ⊂ C. We also need
characters χ = χK : Z → {±1} of quadratic number fields K. They factorize
through residue class rings of the corresponding discriminants. A holomorphic
function f = f(τ), τ ∈ H, is called (elliptic) modular form of weight k, (scew) level
m and Nebentypus χ, if and only if it satisfies the following functional equations:

f(
aτ + b

cτ + d
) = (cτ + d)kχ(d)kf(τ) ∀

(
a b
c d

)
∈ Γ0(m),

and it must be regular at cusps. The space of these modular forms is denoted by
Mk(m,χ). This is a finite dimensional C-vector space, which is O for k < 0. In
[H02] we explained how to get

Example 8.1. . Take weight k = 3, level m = 4 = |DK/Q| and the Dirichlet
character χ = χK of the Gauß number field K = Q(i).

M3(4, χ) = Cϑ6 + Cϑ2θ
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with

ϑ :=
∑
n∈Z

qn2
= 1 + 2

∑
n>0

qn2
(Jacobi) ,

θ :=
∑

0<u odd

σ(u)qu = q ·
∞∏

m=1

(1 − q4m)4
∞∏

n=1

(1 + 2qn)4 (Hecke).

In [H02] we explained how to get the “Heegner-Apollonius modular form” (2)
in the Introduction from the extended orbital Apollonius cycle on the projective
plane, visualized in Figure 3.

Examples 8.2. Let D be the discriminant of a real quadratic number field K. Hecke
[Heck] defined Eisenstein series inM2(D,χK) for prime discriminants. From [vdG],
V, Appendix, we take more generally:

1
2
L(−1, χK) +

∞∑
N=1

⎛⎝ ∑
0<d|N

χK(d)d

⎞⎠ qN ,

=
∞∑

N=1

⎛⎝ ∑
0<d|N

χD1(d)χD2 (N/d) · d

⎞⎠ qN ,

with honest decompositions D = D1 ·D2 in two smaller discriminants.

Knowing dimensions of M2(D,χK) (see tables at the end of [vdG] and the
first coefficient of the Heegner series for the Hilbert–Cartesius orbiplane (K =
Q(
√

(2)) of the introduction we come in the same manner as in the Picard–
Apollonius orbiplane to the Heegner series (5).

On the orbiplanes we have a simple intersection theory. The intersection of
an arbitrary plane curve with a quadric is nothing else but the double degree of
the curve. In general for orbiplanes we left it as exercise for the reader to define
the orbital degree degree C of arithmetic curves there, such that the following
result holds.

Theorem 8.3. For each orbital arithmetic curve C on an Picard or Hilbert orbiplane
of the quadratic number field K, say, the Heegner series

HeegC(τ) = Eul(C) + degree C ·
∞∑

N=1

(degree HN)qN (56)

is an elliptic modular form belonging to M2(DK/Q, χK) or M2(DK/Q, χK), re-
spectively.

Comparing the coefficients in (56) with those of the explicit arithmetic el-
liptic modular forms of Picard–Apollonius (2) and Hilbert–Cartesius (5) in the
introduction we get a convenient counting of arithmetic curves sitting all in Heeg-
ner divisors with orbital degree multiplicities.
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Hypergeometric Functions and Carlitz
Differential Equations over Function Fields

Anatoly N. Kochubei

Abstract. The paper is a survey of recent results in analysis of additive func-
tions over function fields motivated by applications to various classes of special
functions including Thakur’s hypergeometric function. We consider basic no-
tions and results of calculus, analytic theory of differential equations with
Carlitz derivatives (including a counterpart of regular singularity), umbral
calculus, holonomic modules over the Weyl–Carlitz ring.

Mathematics Subject Classification (2000). Primary 11S80, 12H25, 33E50; Sec-
ondary 05A40, 11G09, 16S32, 32C38.

Keywords. Function fields, Thakur’s hypergeometric function, differential
equations with Carlitz derivative, umbral calculus, holonomic modules.

1. Introduction

Let K be the field of formal Laurent series t =
∞∑

j=N

ξjx
j with coefficients ξj from

the Galois field Fq, ξN �= 0 if t �= 0, q = pυ, υ ∈ Z+, where p is a prime number.
It is well known that any non-discrete locally compact field of characteristic p is
isomorphic to such K. The absolute value on K is given by |t| = q−N , |0| = 0. The
ring of integers O = {t ∈ K : |t| ≤ 1} is compact in the topology corresponding to
the metric dist(t, s) = |t− s|. The absolute value | · | can be extended in a unique
way onto the completion Kc of an algebraic closure of K.

Analysis over K and Kc initiated by Carlitz [5] and developed subsequently
by Wagner, Goss, Thakur, the author, and others (see the bibliography in [14, 39])
is very different from the classical calculus. The new features begin with an ap-
propriate version of the factorial invented by Carlitz — since the usual factorial i!,

This work was supported in part by CRDF (Grant UM1-2567-OD-03), DFG (Grant 436 UKR
113/72), and the Ukrainian Foundation for Fundamental Research (Grant 01.07/027).
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seen as an element of K, vanishes for i ≥ p, Carlitz introduced the new one as

Di = [i][i− 1]q . . . [1]q
i−1

, [i] = xqi − x (i ≥ 1), D0 = 1. (1.1)

An important feature is the availability of many non-trivial Fq-linear func-
tions, that is such functions f defined on Fq-subspaces K0 ⊂ K that

f(t1 + t2) = f(t1) + f(t2), f(αt) = αf(t),

for any t, t1, t2 ∈ K0, α ∈ Fq. Such are, for example, polynomials and power series
of the form

∑
akt

qk

, in particular, the Carlitz exponential

eC(t) =
∞∑

n=0

tq
n

Dn
, |t| < 1, (1.2)

and its composition inverse, the Carlitz logarithm

logC(t) =
∞∑

n=0

(−1)n t
qn

Ln
, |t| < 1, (1.3)

where Ln = [n][n−1] · · · [1] (n ≥ 1), L0 = 1. The notion of the Carlitz exponential
obtained a wide generalization in the theory of Drinfeld modules (see [14, 39]). On
the other hand, in various problems going beyond the class of Fq-linear functions,
an extended version of the Carlitz factorial (and its Gamma function interpola-
tions) is used, so that Dn can be seen as “an Fq-linear part” of the full factorial;
see [14, 39] and references therein for the details.

Among other special classes of Fq-linear functions there are various polyno-
mial systems (see below), an analog of the Bessel functions [6, 36], and Thakur’s
hypergeometric function [37, 38, 39]. The latter is defined as follows.

For n ∈ Z+, a ∈ Z, denote

(a)n =

⎧⎪⎨⎪⎩
Dq−(a−1)

n+a−1 , if a ≥ 1;
L−qn

−a−n, if a ≤ 0, n ≤ −a;
0, if a ≤ 0, n > −a.

(1.4)

Then, for ai, bi ∈ Z, such that the series below makes sense, we set

rFs(a1, . . . , ar; b1, . . . , bs; z) =
∞∑

n=0

(a1)n · · · (ar)n

(b1)n · · · (bs)nDn
zqn

. (1.5)

Thakur [37, 38, 39] has carried out a thorough investigation of the functions
(1.5) and obtained analogs of many properties known for the classical situation.
In particular, he found an analog of the hypergeometric differential equation. Its
main ingredients are the difference operator

(Δu)(t) = u(xt)− xu(t)

(an inner derivation of composition rings of Fq-linear polynomials or more general
Fq-linear functions) introduced by Carlitz [5], the nonlinear (Fq-linear) operator
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d = q
√ ◦ Δ, and the Fq-linear Frobenius operator τu = uq. For example, the

function y = 2F1(a, b; c; z) is a solution of the equation

(Δ− [−a])(Δ− [−b])y = d(Δ− [1− c])y. (1.6)

Here we touch only a part of Thakur’s results (he considered also hypergeometric
functions corresponding to other places of Fq(x), a version of (1.5) with parameters
from K and its extensions etc).

The Carlitz exponential eC satisfies a much simpler equation of the same
kind:

deC = eC , (1.7)
so that the operator d may be seen as an analog of the derivative. The operator τ

is an analog of the multiplication by t, so that Δ is the counterpart of t
d

dt
.

The same operators appear in the positive characteristic analogs of the canon-
ical commutation relations of quantum mechanics [17, 18]. In the analog of the
Schrödinger representation we consider, on the Banach space C0(O,Kc) of contin-
uous Fq-linear functions on O, with values from Kc (with the supremum norm),
the “creation and annihilation operators”

a+ = τ − I, a− = d

(I is the identity operator). Then

a−a+ − a+a− = [1]1/qI, (1.8)

the operator a+a− possesses the orthonormal (in the non-Archimedean sense [34])
eigenbasis {fi},

(a+a−)fi = [i]fi, i = 0, 1, 2, . . . ; (1.9)
a+ and a− act upon the basis as follows:

a+fi−1 = [i]fi, a−fi = fi−1, i ≥ 1; a−f0 = 0. (1.10)

Here {fi} is the sequence of normalized Carlitz polynomials

fi(s) = D−1
i

∏
m∈Fq[x]
deg m<i

(s−m) (i ≥ 1), f0(s) = s, (1.11)

which forms an orthonormal basis in C0(O,Kc). The spectrum of the “number
operator” a+a− is the set of elements [i], so that even this notation (proposed by
Carlitz in 1935) becomes parallel to the usual quantum mechanical situation.

An analog of the Bargmann–Fock representation is obtained if we consider
the operators of almost the same form,

ã+ = τ, ã− = d,

but on the Banach space H of power series u(t) =
∞∑

n=0

an
tqn

Dn
with an ∈ Kc, an → 0

as n → ∞. These new operators satisfy the same relations (1.8)-(1.10), but this
time instead of the Carlitz polynomials fn we get the eigenfunctions f̃n = tqn

Dn
.



166 Anatoly N. Kochubei

The above results motivated the author to begin to develop analysis and
theory of differential equations for Fq-linear functions over K and Kc, that is for
the case which can be seen as a concentrated expression of features specific for the
analysis in positive characteristic. This paper is a brief survey of some achievements
in this direction. In particular, we consider the counterparts of the basic notions
of calculus, analytic theory of differential equations (in the regular case and the
case of regular singularity), their applications to some special functions, like the
power function, logarithm and polylogarithms, Thakur’s hypergeometric function
etc. An umbral calculus and a theory of holonomic modules are initiated for this
case. Like in the classical situation (see [7]), it is shown that some basic objects of
the function field arithmetic generate holonomic modules.

Note that some of the results can be easily extended to the case where the
base field is a completion of Fq(x) with respect to a finite place determined by an
irreducible polynomial π ∈ Fq[x] (the field K corresponds to π(x) = x); for some
details see [23]. The situation is different for the “infinite” place widely used in
function field arithmetic (see [39]). In this case some of the basic objects behave
in a quite different way – absolute values of the Carlitz factorials Dn grow, as
n → ∞, the Carlitz exponential is an entire function, the Carlitz polynomials do
not form an orthonormal basis etc. A thorough investigation of properties of the
Carlitz differential equations for this situation has not been carried out so far.

2. Calculus

2.1. Higher Carlitz operators Δ(n) are introduced recursively,(
Δ(n)u

)
(t) = Δ(n−1)u(xt)− xqn−1

Δ(n−1)u(t), n ≥ 2. (2.1)

For n = 1, the formula (2.1) coincides with the definition of Δ = Δ(1), if we set
Δ(0) = I.

The first application of these operators is the reconstruction formula [18] for
the coefficients an of a power series u ∈ H . Note that the classical formula does
not make sense here because it contains the expression u(n)(t)/n! where both the
numerator and denominator vanish.

Theorem 2.1. If u ∈ H, then

an = lim
t→0

Δ(n)u(t)
tqn , n = 0, 1, 2, . . . .

For a continuous non-holomorphic Fq-linear function u the behaviour of the
functions

Dku(t) = t−qk

Δ(k)u(t), t ∈ O \ {0},
near the origin measures the smoothness of u. We say that u ∈ Ck+1

0 (O,Kc) if
Dku can be extended to a continuous function on O. This includes the case (k = 0)
of differentiable functions.
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The next theorem proved in [18] gives a characterization of the above smooth-
ness in terms of coefficients of the Fourier–Carlitz expansion. It includes, as a
particular case (k = 0), the characterization of differentiable Fq-linear functions
obtained by Wagner [43].

Theorem 2.2. A function u =
∞∑

n=0
cnfn ∈ C0(O,Kc) belongs to Ck+1

0 (O,Kc) if

and only if

qnqk |cn| → 0 for n→∞.

In this case
sup
t∈O
|Dku(t)| = sup

n≥k
q(n−k)qk |cn|.

For a generalization to some classes of not necessarily Fq-linear functions see
[45].

Similarly [18], a function u is analytic on the ball O (that is, u(t) =
∑

ait
qi

,

ai → 0) if and only if q
qn

q−1 |cn| → 0, as n→∞. A more refined result by Yang [44],
useful in many applications, which makes it possible to find an exact domain of
analyticity, is as follows (again we consider only Fq-linear functions while in [44]
a more general class is studied).

Theorem 2.3 (Yang). A function u =
∞∑

n=0
cnfn ∈ C0(O,Kc) is locally analytic if

and only if
γ = lim inf

n→∞
{
−q−n logq |cn|

}
> 0, (2.2)

and if (2.2) holds, then u is analytic on any ball of the radius q−l,

l = max(0, [−(log(q − 1) + log γ)/ log q] + 1).

2.2. Viewing d as a kind of a derivative, it is natural to introduce an anti-
derivative S setting Sf = u where u is a solution of the equation du = f , with
the normalization u(1) = 0. It is easy to find Sf explicitly if f is given by its
Fourier-Carlitz expansion (see [18]).

Next, we introduce a Volkenborn-type integral of a function f ∈ C1
0 (O,Kc)

(see [34] for a similar integration theory over Zp) setting∫
O

f(t) dt def= lim
n→∞

Sf(xn)
xn

= (Sf)′(0).

The integral is a Fq-linear continuous functional on C1
0 (O,Kc),∫

O

cf(t) dt = cq

∫
O

f(t) dt, c ∈ Kc,
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possessing the following “invariance” property (related, in contrast to the case of
Zp, to the multiplicative structure):∫

O

f(xt) dt = x

∫
O

f(t) dt− f q(1).

Calculating the integrals of some important functions we obtain new rela-
tions between them. In addition to the Carlitz exponential eC and the Carlitz
polynomials fn (see (1.2) and (1.11)), we mention the Carlitz module function

Cs(z) =
∞∑

i=0

fi(s)zqi

, s ∈ O, |z| < 1. (2.3)

Note that if s ∈ Fq[x], then only the terms with i ≤ deg s are different from zero
in (2.3).

We have ∫
O

tq
n

dt = − 1
[n + 1]

, n = 0, 1, 2, . . . ;

∫
O

fn(t) dt =
(−1)n+1

Ln+1
, n = 0, 1, 2, . . . ;

∫
O

Cs(z) ds = logC(z)− z, z ∈ K, |z| < 1;

∫
O

eC(st) ds = t− eC(t), t ∈ K, |t| < 1.

For the proofs see [18].

3. Differential Equations for Fq-Linear Functions

3.1. Let us consider function field analogs of linear differential equations with
holomorphic or polynomial coefficients. Note that in our situation the meaning
of a polynomial coefficient is not a usual multiplication by a polynomial, but the
action of a polynomial in the operator τ .

We begin with the regular case and consider an equation (actually, a system)

dy(t) = P (τ)y(t) + f(t) (3.1)

where for each z ∈
(
Kc

)m
, t ∈ K,

P (τ)z =
∞∑

k=0

πkz
qk

, f(t) =
∞∑

j=0

ϕj
tq

j

Dj
, (3.2)

πk are m×m matrices with elements from Kc, ϕj ∈
(
Kc

)m
, and it is assumed that

the series (3.2) have positive radii of convergence. The action of the operator τ
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upon a vector or a matrix is defined component-wise, so that zqk

=
(
zqk

1 , . . . , zqk

m

)
for z = (z1, . . . , zm).

We seek a Fq-linear solution of (3.1) on some neighbourhood of the origin, of
the form

y(t) =
∞∑

i=0

yi
tq

i

Di
, yi ∈

(
Kc

)m
, (3.3)

where y0 is a given element, so that the “initial” condition for our situation is

lim
t→0

t−1y(t) = y0. (3.4)

The next theorem, proved in [19], is the function field analog of the Cauchy
theorem from the classical analytic theory of differential equations.

Theorem 3.1. For any y0 ∈
(
Kc

)m
the equation (3.1) has a unique local solution

of the form (3.3), which satisfies (3.4), with the series having a positive radius of
convergence.

Thus, regular equations with Carlitz derivatives behave more or less as their
classical counterparts. The situation is different for singular equations. Let us
consider scalar equations of arbitrary order

m∑
j=0

Aj(τ)dju = f (3.5)

where f(t) =
∞∑

n=0
ϕn

tq
n

Dn
, Aj(τ) are power series having (as well as the one for f)

positive radii of convergence.
We investigate formal solutions of (3.5), of the form

u(t) =
∞∑

n=0

un
tq

n

Dn
, un ∈ Kc. (3.6)

One can apply an operator series A(τ) =
∞∑

k=0

αkτ
k (even without assuming its

convergence) to a formal series (3.6), setting

τku(t) =
∞∑

n=0

uqk

n [n + 1]q
k−1

. . . [n + k]
tq

n+k

Dn+k
, k ≥ 1,

and

A(τ)u(t) =
∞∑

l=0

tq
l

Dl

∑
n+k=l

αku
qk

n [n + 1]q
k−1

. . . [n + k]

where the factor [n+ 1]q
k−1

. . . [n+ k] is omitted for k = 0. These formal manipu-
lations are based on the identity

τ

(
tq

i−1

Di−1

)
= [i]

tq
i

Di
.
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Using also the relation

d

(
tq

i

Di

)
=

tq
i−1

Di−1
,

now we can give a meaning to the notion of a formal solution of the equation (3.5).

Theorem 3.2. Let u(t) be a formal solution (3.6) of the equation (3.5), where the
series for Aj(τ)z, z ∈ Kc, and f(t), have positive radii of convergence. Then the
series (3.6) has a positive radius of convergence.

This result (proved in [19]) is in a strong contrast to the classical theory. Note
that in the p-adic case a similar phenomenon takes place for equations satisfying
certain strong conditions upon zeros of indicial polynomials [1, 8, 27, 35]. In our
case such a behavior is proved for any equation, which resembles the (much sim-
pler) case [27] of differential equations over a field of characteristics zero, whose
residue field also has characteristic zero.

3.2. The equations (3.1) and (3.5) behave like linear equations, though they
are actually only Fq-linear. Theorem 3.1 can be extended [22] to the case of strongly
nonlinear equations (containing self-compositions y ◦ y ◦ · · · ◦ y).

On the other hand, it is natural to consider some equations of this kind in
wider classes of Fq-linear functions resembling meromorphic functions of a complex
variables. The set RK of locally convergent Fq-linear holomorphic functions forms
a non-commutative ring with respect to the composition operation (the pointwise
multiplication violates the Fq-linearity). The non-commutativity of RK makes the
algebraic structures related to Carlitz differential equations much more compli-
cated compared to their classical counterparts. So far their understanding is only
at its initial stage. It is known, however, that RK can be imbedded into a skew
field of Fq-linear “meromorphic” series containing terms like tq

−k

(see [22]). A deep
investigation of bi-infinite series of this kind convergent on the whole of Kc has
been carried out by Poonen [26].

A specific class of equations with solutions meromorphic in the above sense
is the class of scalar Riccati-type equations

dy(t) = λ(y ◦ y)(t) + (P (τ)y)(t) + R(t) (3.7)

where λ ∈ Kc,

(P (τ)y)(t) =
∞∑

k=1

pky
qk

(t), R(t) =
∞∑

k=0

rkt
qk

,

pk, rk ∈ Kc (note that the right-hand side of (3.7) does not contain the linear
term). The following theorem is proved in [22].

Theorem 3.3. If 0 < |λ| ≤ q−1/q2
, |pk| ≤ q−1/q2

, |rk| ≤ q−1/q2
for all k, then the

equation (3.7) possesses solutions of the form

y(t) = ct1/q +
∞∑

n=0

ant
qn

, c, an ∈ Kc, c �= 0,
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where the series converges on the open unit disk |t| < 1.

4. Regular Singularity

4.1. In analysis over C, a typical class of systems with regular singularity at the
origin ζ = 0 over C consists of systems of the form

ζy′(ζ) =

(
B +

∞∑
k=1

Akζ
k

)
y(ζ) (4.1)

where B,Aj are constant matrices, and the series converges on a neighbourhood
of the origin. Such a system possesses a fundamental matrix solution of the form
W (ζ)ζC where W (ζ) is holomorphic on a neighbourhood of zero, C is a constant
matrix, ζC = exp(C log ζ) is defined by the obvious power series. Under some
additional assumptions regarding the eigenvalues of the matrix B, one can take
C = B. For similar results over Cp see [11].

In order to investigate such a class of equations in the framework of Fq-linear
analysis over K, one has to go beyond the class of locally analytic functions. Instead
of power series expansions we can use the expansions in Carlitz polynomials on
the compact ring O ⊂ K. The property of local analyticity, if it takes place, can
be recovered with the use of Theorem 2.3. Note that our approach would fail if
we consider equations over Kc instead of K (our solutions may take their values
from Kc, but they are defined over subsets of K). In this sense our techniques are
different from the ones developed for both the characteristic zero cases.

We begin with the simplest model scalar equation

τdu = λu, λ ∈ Kc, (4.2)

whose solution may be seen as a function field counterpart of the power function
t 	→ tλ.

We look for a continuous Fq-linear solution u(t, λ) of the equation (4.2), with
the “initial condition” u(1, λ) = 1, in the form

u(t) =
∞∑

i=0

cifi(t), t ∈ O, (4.3)

where c0 = 1.
It is easy to see that the equation (4.2) has no continuous solutions if |λ| ≥ 1.

If |λ| < 1, then the solution u(t, λ) is unique, continuous on O, and the coefficients
from (4.3) have the form

cn =
n−1∏
j=0

(λ− [j]).

The function u(t, λ) is analytic on O if and only if λ = [j] for some j ≥ 0;
in this case u(t, λ) = u(t, [j]) = tq

j

. If λ �= [j] for any integer j ≥ 0, then u(t, λ)
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is locally analytic on O if and only if λ = −x, and in that case u(t,−x) = 0 for
|t| ≤ q−1. The relation

u(tq
m

, λ) = u(t, λqm

+ [m]), t ∈ O,

holds for all λ, |λ| < 1, and for all m = 0, 1, 2, . . .. For the proofs see [20].
Similarly, if in (4.1) λ = (λij) is is a m ×m matrix with elements from Kc,

and we look for a matrix-valued solution of (4.1), then such a solution is given by
the series (4.3) with the matrix coefficients

ci =

⎧⎨⎩
i−1∏
j=0

(λ − [j]Im)

⎫⎬⎭ c0, i ≥ 1

(Im is the unit matrix), if |λ| def= max |λij | < 1.

4.2. The analog, for our situation, of the system (4.1) is the system

τdu − P (τ)u = 0 (4.4)

where P (τ) is a matrix-valued analytic function, so that P (τ)z =
∞∑

k=0

πkz
qk

. We

assume that |πk| ≤ γ, γ > 0, for all k, |π0| < 1. Denote by g(t) a solution of the
equation τdg = π0g. Let λ1, . . . , λm ∈ Kc be the eigenvalues of the matrix π0.

Theorem 4.1. If

λi − λqk

j �= [k], i, j = 1, . . . ,m; k = 1, 2, . . . , (4.5)

then the system (4.4) has a matrix solution

u(t) = W (g(t)), W (s) =
∞∑

k=0

wks
qk

, w0 = Im,

where the series for W has a positive radius of convergence.

The paper [20] contains, apart from the proof of Theorem 4.1, a discussion of
some situations (the Euler type equations) where its conditions are violated, as well
as of the meaning of the conditions (4.5). Here we only mention that in the scalar
case m = 1 the condition (4.5) is equivalent to the assumption π0 �= −x, so that
it excludes the case where solutions of the equation τdg = π0g has pathological
properties.

4.3. For the above equation, continuous solutions were found as Fourier–
Carlitz expansions

u(t) =
∞∑

n=0

cnfn(t), (4.6)

and we had to impose certain conditions upon coefficients of the equation, in
order to guarantee the uniform convergence of the series on O (which is equivalent
to the fact that cn → 0). However formally we could write the series (4.6) for



Hypergeometric Functions and Carlitz Differential Equations 173

the solutions without those conditions. Thus, it is natural to ask whether the
corresponding series (4.6) converge at some points t ∈ O. Note that (4.6) always
makes sense for t ∈ Fq[x] (for each such t only a finite number of terms is different
from zero). The question is whether the series converges on a wider set; if the
answer is negative, such a formal solution is called strongly singular.

The available results regarding strong singularity of solutions of some equa-
tions are based on the following general fact [20].

Theorem 4.2. If |ci| ≥ ρ > 0 for all i ≥ i0 (where i0 is some natural number), then
the function (4.6) is strongly singular.

It follows from Theorem 4.2 that non-trivial formal solutions of the equation
(4.2) with |λ| ≥ 1 are strongly singular. A more complicated example is provided
by the equation

(Δ− [−a])(Δ− [−b])u = dΔu, a, b ∈ Z, (4.7)

for Thakur’s hypergeometric function 2F1(a, b; 1; t).
A holomorphic solution of (4.7) is given by an appropriate specialization of

(1.5). Classically (over C), there exists the second solution with a logarithmic
singularity. Here the situation is different. Looking for a solution of the form (4.6)
we obtain a recursive relation(

c
1/q
i+2 − ci+2

)
+ c

1/q
i+1[i + 1]1/q − ci+1([i] + [i + 1]− [−a]− [−b])

− ci([i]− [−a])([i]− [−b]) = 0, i = 0, 1, 2, . . . . (4.8)

Taking arbitrary initial coefficients c0, c1 ∈ Kc we obtain a solution u defined
on Fq[x]. On each step we have to solve the equation

z1/q − z = v. (4.9)

If |ci| ≤ 1 and |ci+1| ≤ 1, then in the equation for ci+2 we have |v| < 1.
It can be shown [20] that the equation (4.9) has a unique solution z0 ∈ Kc,

for which |z0| ≤ |v|, and q − 1 other solutions z, |z| = 1. It is natural to call a
solution generic if, starting from a certain step of finding the coefficients cn, we
always take the most frequent option corresponding to a solution of (4.9) with
|z| = 1. Now Theorem 4.2 implies the following fact.

Theorem 4.3. A generic solution of the equation (4.7) is strongly singular.

Of course, in some special cases the recursion (4.8) can lead to more regular
solutions, in particular, to the holomorphic solutions found by Thakur.

5. Polylogarithms and a Zeta Function

5.1. The Carlitz differential equations can be used for defining new special functions
with interesting properties. Some examples are given in this section.
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An analog of the function − log(1− t) is defined via the equation

(1− τ)du(t) = t, t ∈ Kπ, (5.1)

a counterpart of the classical equation (1− t)u′(t) = 1. The next results are taken
from [23] where the equation (5.1) is considered for an arbitrary finite place of
Fq(x).

Let l1(t) be a Fq-linear holomorphic solution of (5.1) with the zero initial
condition (in the sense of (3.4)). Then it is easy to show that

l1(t) =
∞∑

n=1

tq
n

[n]
, (5.2)

and the series in (5.2) converges for |t| ≤ q−1.
Note that l1(t) is different from the well-known Carlitz logarithm logC (see

(1.3)). Analogies motivating the introduction of special functions are not so un-
ambiguous, and, for instance, from the composition ring viewpoint, logC is an
analog of e−t, though in other respects it is a valuable analog of the logarithm. By
the way, another possible analog of the logarithm is a continuous function u(t),
|t|π ≤ 1, satisfying the equation Δu(t) = t (an analog of tu′(t) = 1) and the con-
dition u(1) = 0. In fact, u = D1, the first hyperdifferential operator (the definition
of D1 is given in Sect. 5.2 below); see [16].

Now we consider continuous non-holomorphic extensions of l1.

Theorem 5.1. The equation (5.1) has exactly q continuous solutions on O coincid-
ing with (5.2) as |t| ≤ q−1. These solutions have the expansions in the Carlitz poly-

nomials u =
∞∑

i=0

cifi where c1 is an arbitrary solution of the equation cq
1−c1+1 = 0,

higher coefficients are found from the relation

cn =
∞∑

j=0

(cn−1[n− 1])qj+1

, n ≥ 2,

and the coefficient c0 is determined by the relation

c0 =
∞∑

i=1

(−1)i+1 ci

Li
.

Below we denote by l1 an arbitrary fixed “branch” of extensions of (5.2).
The polylogarithms ln(t) are defined recursively by the equations

Δln = ln−1, n ≥ 2, (5.3)

which agree with the classical ones tl′n(t) = ln−1(t). Analytic Fq-linear solutions
of (5.3), such that t−1ln(t)→ 0 as t→ 0, are found easily by induction:

ln(t) =
∞∑

j=1

tq
j

[j]n
, |t| ≤ q−1. (5.4)
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Theorem 5.2. For each n ≥ 2, there exists a unique continuous Fq-linear solution
of the equation (5.3) coinciding for |t| ≤ q−1 with the polylogarithm (5.4). The

solution is given by the Carlitz expansion ln =
∞∑

i=0

c
(n)
i fi with∣∣∣c(n)

i

∣∣∣ ≤ Cnq
−qi−1

, Cn > 0, i ≥ 1,

c
(n)
0 =

∞∑
i=1

(−1)i+1 c
(n)
i

Li
.

5.2. Now that the above polylogarithms have been extended onto the disk
{|t| ≤ 1}, we can interpret their values at t = 1 as “special values” of a kind
of a zeta function. In order to define the latter, we introduce the operator Δ(α),
α ∈ O, a function field analog of the Hadamard fractional derivative

(
t d

dt

)α
from

real analysis (see [33]).
Denote by Dk(t), k ≥ 0, t ∈ O, the sequence of hyperdifferentiations defined

initially on monomials by the relations D0(xn) = xn, Dk(1) = 0, k ≥ 1,

Dk(xn) =
(
n

k

)
xn−k,

where it is assumed that
(
n
k

)
= 0 for k > n. Dk is extended onto Fq[x] by Fq-

linearity, and then onto O by continuity [42]. The sequence {Dk} is an orthonormal
basis of the space of continuous Fq-linear functions on O [16, 9].

Let α ∈ O, α =
∞∑

n=0
αnx

n, αn ∈ Fq. Denote α̂ =
∞∑

n=0
(−1)nαnx

n. For an

arbitrary continuous Fq-linear function u on O we define its “fractional derivative”
Δ(α)u at a point t ∈ O by the formula(

Δ(α)u
)

(t) =
∞∑

k=0

(−1)kDk(α̂)u(xkt).

The function α 	→
(
Δ(α)u

)
(t) is continuous and Fq-linear. As a function of t,

Δ(α)u is continuous if, for example, u is Hölder continuous.
Our understanding of Δ(α) as a kind of a fractional derivative is justified by

the following properties:

Δ(xn) = Δn, n = 1, 2, . . . ;

Δ(α)
(
Δ(β)u

)
(t) =

(
Δ(αβ)u

)
(t),

for any α, β ∈ O.

5.3. We define ζ(t), t ∈ K, setting ζ(0) = 0,

ζ(x−n) = ln(1), n = 1, 2, . . . ,

and
ζ(t) =

(
Δ(θ0+θ1x+··· )ln

)
(1), n = 1, 2, . . . ,



176 Anatoly N. Kochubei

if t = x−n(θ0+θ1x+· · · ), θj ∈ Fq. The function ζ is a continuous Fq-linear function
on Kx with values in Kc.

In particular, we have

ζ(xm) =
(
Δm+1l1

)
(1), m = 0, 1, 2, . . . .

The above definition is of course inspired by the classical polylogarithm re-
lation (

z
d

dz

) ∞∑
n=1

zn

ns
=

∞∑
n=1

zn

ns−1
.

In contrast to Goss’s zeta function defined on natural numbers and interpolated
onto Zp (see [14, 39]), the above ζ is purely an object of the characteristic p
arithmetic.

Let us write some relations for special values of our ζ; for the details see [23].
As we saw,

∞∑
j=1

tq
j

[j]n
=

∞∑
i=0

ζ(x−n+i)Di(t), |t| ≤ q−1.

Next, let us consider the double sequence An,r ∈ K, An,1 = (−1)n−1Ln−1,

An,r = (−1)n+rLn−1

∑
0<i1<...<ir−1<n

1
[i1][i2] . . . [ir−1]

, r ≥ 2.

These elements appear as the coefficients of the expansion [42] of a hyperdifferen-
tiation Dr in the normalized Carlitz polynomials, as well as in the expression [15]
of the operators Δ(n) from (2.1) via the iterations Δr. Here we have the identity

ζ(x−n) =
∞∑

i=1

(−1)i+1L−1
i

i∑
r=1

Ai,rζ(xr−n)

which may be seen as a distant relative of Riemann’s functional equation for the
classical zeta.

Finally, consider the coefficients ci of the Carlitz expansion of l1 (see Theorem
5.1). They are expressed via zeta values:

ci =
i∑

r=1

Ai,rζ(xr−1).

By Theorem 5.1, for i ≥ 2 we have

ci =
∞∑

j=0

(zi)qj

, zi = cq
i−1[i− 1]q. (5.5)

The series in (5.5) may be seen as an analog of
∑
j

j−z. This analogy becomes

clearer if, for a fixed z ∈ Kc, |z| < 1, we consider the set S of all convergent power
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series
∞∑

n=1
zqjn corresponding to sequences {jn} ⊂ N. Let us introduce the multi-

plication $ in S setting zqi$zqj

= zqij

and extending the operation distributively
(for a similar construction in the framework of q-analysis in characteristic 0 see
[25]). Denoting by

∏
p

� the product in S of elements indexed by prime numbers

we obtain in a standard way the identity

ci =
∏
p

�
∞∑

n=0

(zi)qpn

(the infinite product is understood as a limit of the partial products in the topology
of Kc), an analog of the Euler product formula. It would be interesting to study
the algebraic structure of S in detail.

6. Umbral Calculus

6.1. Classical umbral calculus [31, 30] is a set of algebraic tools for obtaining, in
a unified way, a rich variety of results regarding structure and properties of vari-
ous polynomial sequences. There exists a lot of generalizations extending umbral
methods to other classes of functions. However there is a restriction common to
the whole literature on umbral calculus – the underlying field must be of zero
characteristic. An attempt to mimic the characteristic zero procedures in the pos-
itive characteristic case [12] revealed a number of pathological properties of the
resulting structures. More importantly, these structures were not connected with
the existing analysis in positive characteristic based on a completely different al-
gebraic foundation.

A version of umbral calculus inmplementing such a connection was developed
by the author [21], and we summarize it in this section. Its basic notion is motivated
by the following identity for the non-normalized Carlitz polynomials ei = Difi:

ei(st) =
i∑

n=0

(
i

n

)
K

en(t){ei−n(s)}q
n

(6.1)

where the “K-binomial coefficients”
(
i

n

)
K

are defined as(
i

n

)
K

=
Di

DnD
qn

i−n

.

Computing the absolute values of the Carlitz factorials directly from their
definition (1.1), it is easy to show that∣∣∣∣( i

n

)
K

∣∣∣∣ = 1, 0 ≤ n ≤ i.
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In fact,
(
i

n

)
K

∈ Fq(x), and we can consider also other places of Fq(x), that

is other non-equivalent absolute values. It can be proved [24] that
(
i

n

)
K

belongs

to the ring of integers for any finite place of Fq(x).
We see the relation (6.1) as a function field counterpart of the classical bino-

mial identity [31, 30] satisfied by many classical polynomials. Now, considering a
sequence ui of Fq-linear polynomials with coefficients from Kc, we call it a sequence
of K-binomial type if deg ui = qi and for all i = 0, 1, 2, . . .

ui(st) =
i∑

n=0

(
i

n

)
K

un(t) {ui−n(s)}q
n

, s, t ∈ K. (6.2)

As in the conventional umbral calculus, the dual notion is that of a delta
operator. However, in contrast to the classical situation, here the delta operators
are only Fq-linear, not linear.

Denote by ρλ the operator of multiplicative shift, (ρλu)(t) = u(λt). We call
a linear operator T , on the Kc-vector space Kc{t} of all Fq-linear polynomials,
invariant if it commutes with ρλ for each λ ∈ K.

A Fq-linear operator δ = τ−1δ0, where δ0 is a linear invariant operator on
Kc{t}, is called a delta operator if δ0(t) = 0 and δ0(f) �= 0 for deg f > 1. A
sequence {Pn}∞0 of Fq-linear polynomials is called a basic sequence corresponding
to a delta operator δ = τ−1δ0, if degPn = qn, P0(1) = 1, Pn(1) = 0 for n ≥ 1,

δP0 = 0, δPn = [n]1/qPn−1, n ≥ 1, (6.3)

or, equivalently,

δ0P0 = 0, δ0Pn = [n]P q
n−1, n ≥ 1. (6.4)

It is clear that d = τ−1Δ is a delta operator. It follows from well-known
identities for the Carlitz polynomials ei [13] (see also (1.10)) that the sequence
{ei} is basic with respect to the operator d.

Theorem 6.1. For any delta operator δ = τ−1δ0, there exists a unique basic se-
quence {Pn}, which is a sequence of K-binomial type. Conversely, given a sequence
{Pn} of K-binomial type, define the action of δ0 on Pn by the relations (6.4), ex-
tend it onto Kc{t} by linearity and set δ = τ−1δ0. Then δ is a delta operator, and
{Pn} is the corresponding basic sequence.

The analogs of the higher Carlitz difference operators (2.1) in the present
general context are the operators δ(l)

0 = τ lδl. The identity

δ
(l)
0 Pj =

Dj

Dql

j−l

P ql

j−l (6.5)
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holds for any l ≤ j. If f is a Fq-linear polynomial, deg f ≤ qn, then a generalized
Taylor formula

f(st) =
n∑

l=0

(
δ
(l)
0 f
)

(s)

Dl
Pl(t) (6.6)

holds for any s, t ∈ K. For the Carlitz polynomials ei, the formulas (6.5) and
(6.6) are well known [13]. It is important that, in contrast to the classical umbral
calculus, the linear operators involved in (6.6) are not powers of a single linear
operator.

Any linear invariant operator T on Kc{t} admits a representation

T =
∞∑
l=0

σlδ
(l)
0 , σl =

(TPl)(1)
Dl

. (6.7)

The infinite series in (6.7) becomes actually a finite sum if both sides of (6.7) are
applied to any Fq-linear polynomial. Conversely, any such series defines a linear
invariant operator on Kc{t}.

Let us consider the case where δ = d, so that δ
(l)
0 = Δ(l). The next result

leads to new delta operators and basic sequences.

Theorem 6.2. The operator θ = τ−1θ0, where

θ0 =
∞∑
l=1

σlΔ(l),

is a delta operator if and only if

Sn
def=

n∑
l=1

σl

Dql

n−l

�= 0 for all n = 1, 2, . . . . (6.8)

Example 1. Let σl = 1 for all l ≥ 1, that is

θ0 =
∞∑

l=1

Δ(l). (6.9)

Estimates of |Dn| which follow directly from (1.1) show that |Sn| = q
qn−q
q−1 , so that

(6.8) is satisfied. Comparing (6.9) with a classical formula from [31] we may see
the polynomials Pn for this case as analogs of the Laguerre polynomials.

Example 2. Let σl =
(−1)l+1

Ll
. For this case it can be shown [21] that Sn = D−1

n ,

n = 1, 2, . . .; θ0(tq
j

) = tq
j

for all j ≥ 1 (of course, θ0(t) = 0), and P0(t) = t,
Pn(t) = Dn

(
tq

n − tq
n−1
)

for n ≥ 1.

6.2. As in the p-adic case [40, 41, 29], the umbral calculus can be used for
constructing new orthonormal bases in C0(O,Kc).
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Let {Pn} be the basic sequence corresponding to a delta operator δ = τ−1δ0,

δ0 =
∞∑
l=1

σlΔ(l). (6.10)

The sequence Qn =
Pn

Dn
, n = 0, 1, 2, . . ., called the normalized basic sequence,

satisfies the identity

Qi(st) =
i∑

n=0

Qn(t) {Qi−n(s)}q
n

,

another form of the K-binomial property. Though it resembles its classical coun-
terpart, the presence of the Frobenius powers is a feature specific for the case of a
positive characteristic.

Theorem 6.3. If |σ1| = 1, |σl| ≤ 1 for l ≥ 2, then the sequence {Qn}∞0 is an
orthonormal basis of the space C0(O,Kc) — for any f ∈ C0(O,Kc) there is a
uniformly convergent expansion

f(t) =
∞∑

n=0

ψnQn(t), t ∈ O,

where ψn =
(
δ
(n)
0 f

)
(1), |ψn| → 0 as n→∞,

‖f‖ = sup
n≥0
|ψn|.

By Theorem 6.3, the Laguerre-type polynomial sequence from Example 1 is
an orthonormal basis of C0(O,Kc). The sequence from Example 2 does not satisfy
the conditions of Theorem 6.3.

Note that the conditions of Theorem 6.3 imply that Sn �= 0 for all n, so that
the series (6.10) considered in Theorem 6.3 always correspond to delta operators.

In [21] recursive formulas and generating functions for normalized basic se-
quences are also given.

7. The Weyl–Carlitz Ring and Holonomic Modules

7.1. The theory of holonomic modules over the Weyl algebra and more general
algebras of differential or q-difference operators is becoming increasingly impor-
tant, both as a crucial part of the general theory of D-modules and in view of
various applications (see, for example, [4, 7, 32]). Usually, the holonomic property
of the module corresponding to a system of differential equations is a sign of its
“regular” behavior. Most of the classical special functions are associated (see [7])
with holonomic modules, which helps to investigate their properties.



Hypergeometric Functions and Carlitz Differential Equations 181

It is clear from the above results that in the positive characteristic case a
natural counterpart of the Weyl algebra is, for the case of a single variable, the
ring A1 generated by τ, d, and scalars from Kc, with the relations

dτ − τd = [1]1/q, τλ = λqτ, dλ = λ1/qd (λ ∈ Kc). (7.1)

The ring consists of finite sums

a =
∑
i,j

λijτ
idj , λij ∈ Kc, (7.2)

and the representation of an element in the form (7.2) is unique.
Basic algebraic properties of A1 [19, 3] are similar to those of the Weyl al-

gebra in characteristic 0 and quite different from the case of the algebra of usual
differential operators over a field of positive characteristic [28].

The ring A1 is left and right Noetherian, without zero divisors. A1 possesses
no non-trivial two-sided ideals stable with respect to the mapping∑

i,j

λijτ
idj 	→

∑
i,j

λq
ijτ

idj .

The centre of A1 is described explicitly in [3]; it contains countably many elements
(this corrects an erroneous statement from [19]). In fact, A1 belongs to the class of
generalized Weyl algebras [2]. A well-developed theory available for them enabled
Bavula [3] to classify ideals in A1, as well as all simple modules over A1.

A generalization of A1 to the case of several variables is not straightforward
because the Carlitz derivatives ds and dt do not commute on a monomial f(s, t) =
sqm

tq
n

, if m �= n. Moreover, if m > n, then dm
s f is not a polynomial, nor even a

holomorphic function in t (since the action of d is not linear and involves taking
the q-th root).

A reasonable generalization is inspired by Zeilberger’s idea (see [7]) to study
holonomic properties of sequences of functions making a transform with respect
to the discrete variables, which reduces the continuous-discrete case to the purely
continuous one (simultaneously in all the variables). In our situation, if {Pk(s)} is
a sequence of Fq-linear polynomials with degPk ≤ qk, we set

f(s, t) =
∞∑

k=0

Pk(s)tq
k

, (7.3)

and ds is well-defined. In the variable t, we consider not dt but the linear operator
Δt. The latter does not commute with ds either, but satisfies the commutation
relations

dsΔt −Δtds = [1]1/qds, Δtτ − τΔt = [1]τ,

so that the resulting ring A2 resembles a universal enveloping algebra of a solvable
Lie algebra.
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More generally, denote by Fn+1 the set of all germs of functions of the form

f(s, t1, . . . , tn) =
∞∑

k1=0

. . .

∞∑
kn=0

min(k1,...,kn)∑
m=0

am,k1,...,kns
qm

tq
k1

1 . . . tq
kn

n (7.4)

where am,k1,...,kn ∈ Kc are such that all the series are convergent on some neigh-
bourhoods of the origin. We do not exclude the case n = 0 where F1 will mean the
set of all Fq-linear power series

∑
m

amsqm

convergent on a neighbourhood of the

origin. F̂n+1 will denote the set of all polynomials from Fn+1, that is the series
(7.4) in which only a finite number of coefficients is different from zero.

The ring An+1 is generated by the operators τ, ds,Δt1 , . . .Δtn on Fn+1, and
the operators of multiplication by scalars from Kc. To simplify the notation, we
write Δj instead of Δtj and identify a scalar λ ∈ Kc with the operator of multi-
plication by λ. The operators Δj are Kc-linear, so that

Δjλ = λΔj , λ ∈ Kc, (7.5)

while the operators τ, ds satisfy the commutation relations (7.1). In the action of
each operator ds,Δj (acting in a single variable), other variables are treated as
scalars. The operator τ acts simultaneously on all the variables and coefficients.
We have the relations involving Δj :

Δjτ − τΔj = [1]τ, dsΔj −Δjds = [1]1/qds, j = 1, . . . , n. (7.6)

Using the commutation relations (7.1), (7.5), and (7.6), we can write any
a ∈ An+1, in a unique way, as a finite sum

a =
∑

cl,μ,i1,...,inτ
ldμ

s Δi1
1 . . .Δin

n . (7.7)

Let us introduce a filtration in An+1 (an analog of the Bernstein filtration)
denoting by Γν , ν ∈ Z+, the Kc-vector space of operators (7.7) with max{l + μ+
i1 + · · ·+ in} ≤ ν where the maximum is taken over all the terms of (7.7). Then
An+1 is a left and right Noetherian filtered ring.

In a standard way (see [10]) we define filtered left modules over An+1. All
the basic notions regarding a filtered module M (like those of the graded module
gr(M), dimension d(M), multiplicity m(M), good filtration etc) are introduced
just as their counterparts in the theory of modules over the Weyl algebra.

If we consider An+1 as a left module over itself, then

d(An+1) = n + 2, m(An+1) = 1. (7.8)

For any finitely generated left An+1-module M , we have d(M) ≤ n + 2. By (7.8),
this bound cannot be improved in general. However, if I is a non-zero left ideal in
An+1, then

d(An+1/I) ≤ n + 1. (7.9)
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For the module F̂n+1 of Fq-linear polynomials (7.4), we have

d
(
F̂n+1

)
= n + 1, m

(
F̂n+1

)
= n!

The proofs of all these results, as well as the ones given in this section below, can
be found in [24].

It is natural to call an An+1-module M holonomic if d(M) = n + 1. Thus,
F̂n+1 is an example of a holonomic module.

The next theorem demonstrates, already for the case of A1-modules, a sharp
difference from the case of modules over the Weyl algebras. In particular, we see
that an analog of the Bernstein inequality (see [10]) does not hold here without
some additional assumptions.

Theorem 7.1. (i) For any k = 1, 2, . . ., there exists such a nontrivial A1-module
M that dimM = k (dim means the dimension over Kc), that is d(M) = 0.

(ii) Let M be a finitely generated A1-module with a good filtration. Suppose that
there exists a “vacuum vector” v ∈M , such that dsv = 0 and τm(v) �= 0 for
all m = 0, 1, 2, . . .. Then d(M) ≥ 1.

7.2. Let us consider the case of holonomic submodules of the An+1-module
Fn+1, consisting of Fq-linear functions (7.4) polynomial in s and holomorphic near
the origin in t1, . . . , tn.

Let 0 �= f ∈ Fn+1,

If = {ϕ ∈ An+1 : ϕ(f) = 0} .
If is a left ideal in An+1. The left An+1-module Mf = An+1/If is isomorphic to
the submodule An+1f ⊂ Fn+1 – an element ϕ(f) ∈ An+1f corresponds to the
class of ϕ ∈ An+1 in Mf . A natural good filtration in Mf is induced from that in
An+1.

As we know (see (7.9)), if If �= {0}, then d(Mf ) ≤ n + 1. We call a function
f holonomic if the module Mf is holonomic, that is d(Mf ) = n+1. The condition
If �= {0} means that f is a solution of a non-trivial “differential equation” ϕ(f) =
0, ϕ ∈ An+1. The case n = 0 is quite simple.

Theorem 7.2. If a non-zero function f ∈ F1 satisfies an equation ϕ(f) = 0,
0 �= ϕ ∈ A1, then f is holonomic.

In particular, any Fq-linear polynomial of s is holonomic, since it is annihi-
lated by dm

s , with a sufficiently large m.
If n > 0, the situation is more complicated. We call the module Mf (and

the corresponding function f) degenerate if D(Mf ) < n + 1 (by the Bernstein
inequality, there is no degeneracy phenomena for modules over the complex Weyl
algebra). The simplest example of a degenerate function (for n = 1) is f(s, t1) =
g(st1) ∈ F2 where the function g belongs to F1 and satisfies an equation ϕ(g) = 0,
ϕ ∈ A1. It can be shown that d(Mf ) = 1.

In order to exclude the degenerate case, we introduce the notion of a non-
sparse function.
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A function f ∈ Fn+1 of the form (7.4) is called non-sparse if there exists such
a sequence ml → ∞ that, for any l, there exist sequences k

(i)
1 , k

(i)
2 , . . . , k

(i)
n ≥ ml

(depending on l), such that k(i)
ν →∞ as i→∞ (ν = 1, . . . , n), and a

m,k
(i)
1 ,...,k

(i)
n
�=

0.

Theorem 7.3. If a function f is non-sparse, then d(Mf ) ≥ n + 1. If, in addition,
f satisfies an equation ϕ(f) = 0, 0 �= ϕ ∈ An+1, then f is holonomic.

7.3. We use Theorem 7.3 to prove that the functions (7.4) obtained via the
sequence-to-function transform (7.3) or its multi-index generalizations, from some
well-known sequences of polynomials over K are holonomic. In all the cases below
the non-sparseness is evident, and we have only to prove that the corresponding
function satisfies a non-trivial Carlitz differential equation.

a) The Carlitz polynomials. The transform (7.3) of the sequence {fk} is the
Carlitz module function Cs(t); see (2.3). It is easy to check that dsCs(t) = Cs(t).
Therefore the Carlitz module function is holonomic, jointly in both its variables.

b) Thakur’s hypergeometric polynomials. We consider the polynomial case of
Thakur’s hypergeometric function (1.5), that is

lFλ(−a1, . . . ,−al;−b1, . . . ,−bλ; z) =
∑
m

(−a1)m . . . (−al)m

(−b1)m . . . (−bλ)mDm
zqm

(7.10)

where a1, . . . , al, b1, . . . , bλ ∈ Z+. It is seen from (1.4) that the terms in (7.10),
which make sense and do not vanish, are those with m ≤ min(a1, . . . , al, b1, . . . , bλ).
Let the function f ∈ Fl+λ+1 be given by

f(s, t1, . . . , tl, u1, . . . , uλ)

=
∞∑

k1=0

. . .

∞∑
kl=0

∞∑
ν1=0

. . .

∞∑
νλ=0

lFλ(−k1, . . . ,−kl;−ν1, . . . ,−νλ; s)

× tq
k1

1 . . . tq
kl

l uqν1

1 . . . uqνλ

λ .

It is known ([39], Sect. 6.5) that

dslFλ(−k1, . . . ,−kl;−ν1, . . . ,−νλ; s)

= lFλ(−k1 + 1, . . . ,−kl + 1;−ν1 + 1, . . . ,−νλ + 1; s) (7.11)

if all the parameters k1, . . . , kl, ν1, . . . , νλ are different from zero. If at least one of
them is equal to zero, then the left-hand side of (7.11) equals zero. This property
implies the identity dsf = f , the same as that for the Carlitz module function.
Thus, f is holonomic.
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c) K-binomial coefficients. It can be shown [24] that the K-binomial coeffi-

cients
(
k

m

)
K

(see Sect. 6) satisfy the Pascal-type identity(
k

m

)
K

=
(
k − 1
m− 1

)q

K

+
(
k − 1
m

)q

K

Dq−1
m (7.12)

where 0 ≤ m ≤ k and it is assumed that
(

k

−1

)
K

=
(
k − 1
k

)
K

= 0.

Consider a function f ∈ F2 associated with the K-binomial coefficients, that
is

f(s, t) =
∞∑

k=0

k∑
m=0

(
k

m

)
K

sqm

tq
k

. (7.13)

The identity (7.12) implies the equation

dsf(s, t) = Δtf(s, t) + [1]1/qf(s, t)

for the function (7.13). Therefore f is holonomic.
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Abstract. We show that the moduli space of 5 ordered points on P1 is iso-
morphic to an arithmetic quotient of a complex ball by using the theory of
periods of K3 surfaces. We also discuss a relation between our uniformization
and the one given by Shimura [S], Terada [Te], Deligne–Mostow [DM].
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1. Introduction

The purpose of this note is to show that the moduli space of 5 ordered points
on P1 is isomorphic to an arithmetic quotient of a 2-dimensional complex ball by
using the theory of periods of K3 surfaces (Theorem 6.5). This was announced in
[K2], Remark 6. The main idea is to associate a K3 surface with an automorphism
of order 5 to a set of 5 ordered points on P1 (see §3). The period domain of
such K3 surfaces is a 10-dimensional bounded symmetric domain of type IV . We
remark that a non-zero holomorphic 2-form on the K3 surface is an eigen-vector
of the automorphism, which implies that the period domain of the pairs of these
K3 surfaces and the automorphism of order 5 is a 2-dimensional complex ball
associated to a hermitian form of the signature (1, 2) defined over Z[ζ] where ζ is
a primitive 5-th root of unity (see 6.3). Here we use several fundamental results
of Nikulin [N1], [N2], [N3] on automorphisms of K3 surfaces and lattice theory.
Note that this moduli space is isomorphic to the moduli space of nodal del Pezzo

Research of the author is partially supported by Grant-in-Aid for Scientific Research A-14204001,
Japan.
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surfaces of degree 4. For the moduli space of del Pezzo surfaces of degree 1, 2 or
3, the similar description holds. See [K2], Remark 5, [K1], [DGK], respectively.

On the other hand, Shimura [S], Terada [Te], Deligne–Mostow [DM] gave a
complex ball uniformization by using the periods of the curve C which is the 5-fold
cyclic covering of P1 branched along 5 points. We shall discuss a relation between
their uniformization and ours in §7. In fact, the above K3 surface has an isotrivial
pencil whose general member is the unique smooth curve D of genus 2 admitting
an automorphism of order 5 (see Lemma 3.1). We show that the above K3 surface
is birational to the quotient of C ×D by a diagonal action of Z/5Z in §7.

In this paper, a lattice means a Z-valued non-degenerate symmetric bilinear
form on a free Z-module of finite rank. We denote by U or V the even lattice

defined by the matrix
(

0 1
1 0

)
,
(

2 1
1 −2

)
, respectively and by Am, Dn or El the

even negative definite lattice defined by the Dynkin matrix of type Am, Dn or El

respectively. If L is a lattice and m is an integer, we denote by L(m) the lattice
over the same Z-module with the symmetric bilinear form multiplied by m. We
also denote by L⊕m the orthogonal direct sum of m copies of L, by L∗ the dual of
L and by AL the finite abelian group L∗/L.

2. Quartic del Pezzo surfaces

2.1. Five points on P1

Consider the diagonal action of PGL(2) on (P1)5. In this case, the semi-stable
points and stable points in the sense of [Mu] coincide and the geometric quotient
P 5

1 is smooth and compact. The stable points are {p1, . . . , p5} no three of which
coincide. It is known that P 5

1 is isomorphic to the quintic del Pezzo surface D5,
that is, a smooth surface obtained by blowing up four points {q1, . . . , q4} in general
position on P2 (e.g. Dolgachev [D], Example 11.5). The quintic del Pezzo surface
D5 contains 10 lines corresponding to the 4 exceptional curves over q1, . . . , q4 and
the proper transforms of 6 lines through two points from {q1, . . . , q4}. These ten
lines correspond to the locus consisting of {p1, . . . , p5} with pi = pj for some i, j.
The group of automorphisms of D5 is isomorphic to the Weyl group W (A4) � S5

which is induced from the natural action of S5 on (P1)5.

2.2. Quartic del Pezzo surfaces

Let S be a smooth quartic del Pezzo surface. It is known that S is a complete
intersection of two quadrics in P4. Consider the pencil of quadrics whose base
locus is S. Its discriminant is a union of distinct five points of P1. Conversely any
distinct five points (1 : λi) on P1, the intersection of quadrics

5∑
i=1

z2
i =

5∑
i=1

λiz
2
i = 0 (2.1)
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is a smooth quartic del Pezzo surface. Thus the moduli space of smooth quartic
del Pezzo surfaces is isomprphic to (((P1)5 \Δ)/PGL(2))/S5 where Δ is the locus
consisting of points (x1, . . . , x5) with xi = xj for some i, j (i �= j). If five points are
not distinct, but stable, the equation (2.1) defines a quartic del Pezzo surface with
a node. Thus P 5

1 is the coarse moduli space of nodal quartic del Pezzo surfaces.

3. K3 surfaces associated to five points on P1

3.1. A plane quintic curve

Let {p1, . . . , p5} be an ordered stable point in (P1)5. It defines a homogenious
polynomial f5(x1, x2) of degree 5. Let C be the plane quintic curve defined by

x5
0 = f5(x1, x2) =

5∏
i=1

(x1 − λix2). (3.1)

The projective transformation

g : (x0 : x1 : x2) −→ (ζx0 : x1 : x2) (3.2)

acts on C as an automorphism of C of order 5 where ζ is a primitive 5-th root of
unity. Let E0, Li (1 ≤ i ≤ 5) be lines defined by

E0 : x0 = 0,

Li : x1 = λix2.

Note that all Li are members of the pencil of lines through (1 : 0 : 0) and Li meets
C at (0 : λi : 1) with multiplicity 5.

3.2. K3 surfaces

Let X be the minimal resolution of the double cover of P2 branched along the sextic
curve E0+C. Then X is a K3 surface. We denote by τ the covering transformation.
The projective transformation g in (3.2) induces an automorphism σ of X of order
5. We denote by the same symbol E0 the inverse image of E0.

Case (i) Assume that the equation f5 = 0 has no multiple roots. In this
case there are 5 (−2)-curves, denoted by Ei (1 ≤ i ≤ 5), obtained as exceptional
curves of the minimal resolution of singularities of type A1 corresponding to the
intersection of C and E0. The inverse image of Li is the union of two smooth
rational curves Fi, Gi such that Fi is tangent to Gi at one point. Let p, q be the
inverse image of (1 : 0 : 0). We may assume that all Fi ( resp. Gi ) are through p
(resp. q). Obviously σ preserves each curve Ei, Fj , Gj (0 ≤ i ≤ 5, 1 ≤ j ≤ 5) and
τ preserves each Ei and τ(Fi) = Gi.

Case (ii) If f5 = 0 has a multiple root, then the double cover has a rational
double point of type D7. Hence X contains 7 smooth rational curves E′

j , (1 ≤ j ≤
7) whose dual graph is of type D7. We assume that E′

1 meets E0 and 〈E′
1, E

′
2〉 =

〈E′
2, E

′
3〉 = 〈E′

3, E
′
4〉 = 〈E′

4, E
′
5〉 = 〈E′

5, E
′
6〉 = 〈E′

5, E
′
7〉 = 1. If λi is a multiple
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root, then Fi and Gi are disjoint and each of them meets one componet of D7, for
example, Fi meets E′

6 and Gi meets E′
7.

3.3. A pencil of curves of genus two

The pencil of lines on P2 through (1 : 0 : 0) gives a pencil of curves of genus two on
X . Each member of this pencil is invariant under the action of the automorphism
σ of order 5. Hence a general member is a smooth curve of genus two with an
automorphism of order five. Such a curve is unique up to isomorphism and is
given by

y2 = x(x5 + 1) (3.3)
(see Bolza [Bol]). If λi is a simple root of the equation f5 = 0, then the line Li

defines a singular member of this pencil consisting of three smooth rational curves
Ei + Fi + Gi. We call this singular member a singular member of type I. If λi is a
multiple root of f5 = 0, then the line Li defines a singular member consisting of
nine smooth rational curves E′

1, . . . , E
′
7, Fi, Gi. We call this a singular member of

type II. The two points p, q are the base points of the pencil. After blowing up at
p, q, we have a base point free pencil of curves of genus two. The singular fibers
of such pencils are completly classified by Namikawa and Ueno [NU]. The type I
(resp. type II) corresponds to [IX-2] (resp. [IX-4] ) in [NU]. We now conclude:

Lemma 3.1. The pencil of lines on P2 through (1 : 0 : 0) gives a pencil of curves
of genus two on X. A general member is a smooth curve of genus two with an
automorphism of order five. In case that f5 = 0 has no multiple roots, it has five
singular members of type I. In case that f5 = 0 has a multiple root (resp. two
multiple roots), it has three singular members of type I and one singular member
of type II (resp. one of type I and two of type II).

3.4. A 5-fold cyclic cover of P1 × P1

The above K3 surface has an automorphism of order 5 by construction. This
implies that X is obtained as a 5-fold cyclic cover of a rational surface. In this
subsection we shall explain such a construction of X due to I. Dolgachev. We use
the same notation as in 3.2, Case (i).

First blow up X at p, q and 5 points Fi ∩Gi (i = 1, 2, . . . , 5), and then blow
up at infinitely near points of Fi∩Gi. Then we have a surface X̃ which contains the
following curves: we have ten (−5)-curves F̃i, G̃i which are the strictly transforms
of Fi, Gi. Also we have five (−3)-curves Ẽi which are the strictly transformation of
Ei (i = 1, . . . , 5). We denote by Hi and H ′

i the (−2)- and (−1)-exceptional curves
over Fi∩Gi respectively. We also denote by Hp, Hq the exceptional curve over p, q
respectively. Then the strict transform C̃ of C has the self intersection number 0.

We can construct X̃ as a 5-cyclic cover of the smooth quadric surface as
follows. Let D be a divisor of P1 × P1 defined by

D = 4(l1 + · · ·+ l5) + m1 + m2 + 3m3 (3.4)

where l1, . . . , l5 are the fibers of the first projection from P1×P1 over the five points
determined by the polynomial f5(x1, x2) in (3.1), and m1,m2,m3 are three fibers
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of the second projection which are unique up to projective transformations. Take
the 5-cyclic cover of P1×P1 branched along D. Then taking the normalization and
resolving the singularities we have X̃. Locally the singularities over the intersection
points of li and m1,m2 are given by z5 = x4y and those over the intersection points
of li and m3 are given by z5 = x4y3. The exceptional curves over li ∩m1, li ∩m2

correspond to ten (−5)-curves F̃i, G̃i and those over li∩m3 correspond to the sum
of (−3)− and (−2)-curves Ẽi+Hi. Note that the ruling of the first projection from
P1× P1 gives a pencil of curves of genus 2 on X̃. li corresponds to H ′

i and m1,m2

or m3 corresponds to Hp, Hq or E0 respectively. On the other hand, consider the
involution of P1 × P1 which changes m1 and m2, and fixes m3. Let m4 be the
another fixed fiber of this involution. Then this involution induces an involution
of X̃ which fixes the inverse image C̃ of m4.

We can also write down the map from X to P1 × P1 as follows (due to the
referee). Consider an affine equation y2 = x0(x5

0 + f5(x1, 1)) of X (x2 = 1). Then
the automorphism σ of order 5 acts on X as

σ(y, x0, x1) = (ζ3y, ζx0, x1)

and the rational map from X to P1 × P1 is given by

(y, x0, x1)→ ((x3
0 : y), (x1 : 1)).

4. Picard and transcendental lattices

In this section we shall study the Picard lattice and the transcendental lattice of
K3 surfaces X given in 3.2. We denote by SX the Picard lattice of X and by TX

the transcendental lattice of X .

4.1. The Picard lattice

Lemma 4.1. Assume that f5 = 0 has no multiple roots. Let S be the sublattice
generated by E0 and components of the singular members of the pencil in Lemma
3.1. Then rank(S) = 10 and det(S) = 53. Moreover if X is generic in the sense of
moduli, then the Picard lattice SX = S.

Proof. First note that the dimension of P 5
1 is 2. On the other hand, X has an

automorphism σ of order 5 induced from g given in (3.2) which acts non trivially
on H0(X,Ω2). Nowhere vanishing holomorphic 2-forms are eigenvectors of σ∗. We
can see that the dimension of the period domain is (22− rank(SX))/(5− 1) ([N2],
Theorem 3.1. Also see the following section 6). Hence the local Torelli theorem
implies that rank(SX) = 10 for generic X . Let S0 be the sublattice of SX generated
by Ei, Fi, (1 ≤ i ≤ 5). Then a direct calculation shows that rank(S0) = 10 and
det(S0) = ±55. The first assertion now follows from the relations:

5E0 =
5∑

i=1

(Fi − 2Ei),
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Gi + Fi = 2E0 +
∑

j �=0,i

Ej .

Note that S∗/S � (Z/5Z)3. Now assume that rank(SX) = 10. If SX �= S, then
S ⊂ SX ⊂ S∗ and hence there exists an algebraic cycle C not contained in S and
satisfying

5C =
5∑

i=0

aiEi +
4∑

i=1

biFi, ai, bi ∈ Z.

By using the relations

〈5C,Ei〉 ≡ 0 (mod 5), 〈5C,Fi〉 ≡ 0 (mod 5),

we can easily show that

ai ≡ 0 (mod 5), bi ≡ 0 (mod 5).

This is a contradiction. �

4.2. Discriminant quadratic forms

Let L be an even lattice. We denote by L∗ the dual of L and put AL = L∗/L. Let

qL : AL → Q/2Z

be the discriminant quadratic form defined by

qL(x mod L) = 〈x, x〉 mod 2Z

and
bL : AL ×AL → Q/Z

the discriminant bilinear form defined by

bL(x mod L, y mod L) = 〈x, y〉 mod Z.

Let S be as in Lemma 4.1. Then AS is isomorphic to (Z/5Z)3 generated by

α = (E1 + 2F1 + 3F2 + 4E2)/5, β = (E1 + 2F1 + 3F3 + 4E3)/5,
γ = (E1 + 2F1 + 3F4 + 4E4)/5

with qS(α) = qS(β) = qS(γ) = −4/5, and bS(α, β) = bS(β, γ) = bS(γ, α) = 3/5.

4.3. The transcendental lattice

Let T be the orthogonal complement of S in H2(X,Z). For generic X , T is iso-
morphic to the transcendental lattice TX of X which consists of transcendental
cycles, that is, cycles not perpendicular to holomorphic 2-forms on X .

Lemma 4.2. Assume that f5 has no multiple roots. Then

S � V ⊕A4 ⊕A4, T � U ⊕ V ⊕A4 ⊕ A4

where V or U is the lattice defined by the matrix
(

2 1
1 −2

)
,
(

0 1
1 0

)
, respectively.
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Proof. We can see that qS and the discriminant quadratic form of V ⊕ A4 ⊕
A4 coincide. Also note that qT = −qS (Nikulin [N1], Corollary 1.6.2). Now the
assertion follows from Nikulin [N1], Theorem 1.14.2. �
Lemma 4.3. Let Si be the sublattice generated by E0 and components of the singular
members of the pencil in Lemma 3.1 where i = 1 or 2 is the number of multiple
roots of f5 = 0. Let Ti be the orthogonal complement of Si in H2(X,Z). Then

S1 � V ⊕ E8 ⊕A4, T1 � U ⊕ V ⊕A4,

S2 � V ⊕ E8 ⊕ E8, T2 � U ⊕ V.

Proof. The proof is similar to those of Lemmas 4.1, 4.2. �
4.4. The Kähler cone

Let SX be the Picard lattice of X . Denote by P (X)+ the connected component
of the set {x ∈ SX ⊗ R : 〈x, x〉 > 0} which contains an ample class. Let Δ(X) be
the set of effective classes r with r2 = −2. Let

C(X) = {x ∈ P (X)+ : 〈x, r〉 > 0, r ∈ Δ(X)}
which is called the Kähler cone of X . It is known that C(X)∩SX consists of ample
classes. Let W (X) be the subgroup of O(SX) generated by reflections defined by

sr : x→ x + 〈x, r〉r, r ∈ Δ(X).

Note that the action of W (X) on SX can be extended to H2(X,Z) acting trivially
on TX because r ∈ SX = T⊥

X . The Kähler cone C(X) is a fundamental domain of
the action of W (X) on P (X)+.

5. Automorphisms

We use the same notation as in §3, 4. In this section we study the covering invo-
lution τ of X over P2 and the automorphism σ of X of order 5.

5.1. The automorphism of order 2

Lemma 5.1. Let ι = τ∗. Then the invariant sublattice M = H2(X,Z)<ι> is gen-
erated by Ei (0 ≤ i ≤ 5).

Proof. Note that M is a 2-elementary lattice, that is, its discriminant group AM =
M∗/M is a finite 2-elementary abelian group. Let r be the rank of M and let l
be the number of minimal generator of AM

∼= (Z/2Z)l. The set of fixed points
of τ is the union of C and E0. It follows from Nikulin [N3], Theorem 4.2.2 that
(22− r − l)/2 = g(C) = 6 and the number of components of fixed points set of τ
other than C is (r− l)/2 = 1. Hence r = 6, l = 4. On the other hand we can easily
see that {Ei : 0 ≤ i ≤ 5} generates a sublattice of M with rank 6 and discriminant
24. Now the assertion follows. �
Lemma 5.2. Let N be the orthogonal complement of M = H2(X,Z)<ι> in S. Then
N is generated by the classes of Fi−Gi (1 ≤ i ≤ 5) and contains no (−2)-vectors.
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Proof. Since τ(Fi) = Gi, the classes of Fi − Gi are contained in N . A direct
calculation shows that their intersection matrix (〈Fi −Gi, Fj −Gj〉)1≤i,j≤4 is⎛⎜⎜⎝

−8 2 2 2
2 −8 2 2
2 2 −8 2
2 2 2 −8

⎞⎟⎟⎠
whose discriminant is ±24 ·53. On the other hand, N is the orthogonal complement
of M in S, and M (resp . S) has the discriminant ±24 (resp. ±53). Hence the
discriminant of N is ±24 · 53. Therefore the first assertion follows. It follows from
the above intersection matrix that N contains no (−2)-vectors. �

Lemma 5.3. Let r be a (−2)-vector in H2(X,Z). Assume that r ∈M⊥ in H2(X,Z).
Then 〈r, ωX〉 �= 0.

Proof. Assume that 〈r, ωX〉 = 0. Then r is represented by a divisor. By Riemann-
Roch theorem, we may assume that r is effective. By assumption ι(r) = −r. On the
other hand the automorphism preserves effective divisors, which is a contradiction.

�

Lemma 5.4. Let P (M)+ be the connected component of the set

{x ∈M ⊗ R : 〈x, x〉 > 0}
which contains the class of C where C is the fixed curve of τ of genus 6. Put

C(M) = {x ∈ P (M)+ : 〈x,Ei〉 > 0, i = 0, 1, . . . , 5}.
Let W (M) be the subgroup generated by reflections associated with (−2)-vectors in
M . Then C(M) is a fundamental domain of the action of W (M) on P (M)+ and
O(M)/{±1} ·W (M) ∼= S5 where S5 is the symmetry group of degree 5 which is
the automorphism group of C(M).

Proof. First consider the dual graph of E0, . . . , E5. Note that any maximal ex-
tended Dynkin diagram in this dual graph is D̃4 which has the maximal rank 4
(= rank(M)− 2). It follows from Vinberg [V], Theorem 2.6 that the group W (M)
is of finite index in O(M) the orthogonal group of M . The assertion now follows
from Vinberg [V], Lemma 2.4. �

Lemma 5.5. Let W̃ (M) be the subgroup of O(M) generated by all reflections asso-
ciated with negative norm vectors in M . Then C(M) is a fundamental domain of
the action of W̃ (M) on P (M)+. Moreover W̃ (M) = W (M) · S5.

Proof. First note that W (M) ⊂ W̃ (M) ⊂ O(M). Let r = Ei −Ej (1 ≤ i < j ≤ 5)
which is a (−4)-vector in M . Since 〈Ei − Ej ,M〉 ⊂ 2Z, the reflection defined by

sr : x→ x + 〈x, r〉r/2
is contained in O(M). These reflections generate S5 acting on C(M) as the auto-
morphism group of C(M). Now Lemma 5.4 implies that O(M) = {±1}·W̃ (M). �
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Lemma 5.6. Let C(X) be the Kähler cone of X. Then

C(M) = C(X) ∩ P (M)+.

Proof. Since the class of C is contained in the closure of C(X), C(X)∩P (M)+ ⊂
C(M), and hence it suffices to see that any face of C(X) does not cut C(M)
along proper interior points of C(M). Let r be the class of an effective cycle with
r2 = −2. If r ∈ M , Lemma 5.4 implies the assertion. Now assume ι(r) �= r. Then
r = (r + ι(r))/2 + (r − ι(r))/2. By Hodge index theorem, (r − ι(r))2 < 0. Since
r2 = −2, this implies that ((r + ι(r))/2)2 ≥ 0 or −1. If ((r + ι(r))/2)2 ≥ 0, again
by Hodge index theorem, 〈x, r + ι(r)〉 > 0 for any x ∈ C(M). Since ι acts trivially
on M , we have 〈x, r〉 > 0. If ((r + ι(r))/2)2 = −1, then 〈r, ι(r)〉 = 0. Note that
for any x ∈M , 〈x, r + ι(r)〉 = 2〈x, r〉 ∈ 2Z. Hence the (−4)-vector r + ι(r) defines
a reflection in W̃ (M). It follows from Lemma 5.5 that 〈r + ι(r), x〉 > 0 for any
x ∈ C(M). Since ι acts trivially on M , 〈r, x〉 > 0 for any x ∈ C(M). Thus we have
proved the assertion. �
5.2. An isometry of order five

Let σ be the automorphism of X of order 5 induced by the automorphism given
in 3.2. In the following Lemma 5.7 we shall show that σ∗ | T is conjugate to the
isometry ρ defined as follows:

Let e, f be a basis of U =
(

0 1
1 0

)
satisfying e2 = f2 = 0, 〈e, f〉 = 1. Let

x, y be a basis of V =
(

2 1
1 −2

)
satisfying x2 = −y2 = 2, 〈x, y〉 = 1, and let

e1, e2, e3, e4 be a basis of A4 so that e2
i = −2, 〈ei, ei+1〉 = 1 and other ei and ej

are orthogonal.
Let ρ0 be an isometry of U ⊕ V defined by

ρ0(e) = −f, ρ0(f) = −e− f − y, ρ0(x) = f − x, ρ0(y) = 3f − x + y. (5.1)

Also let ρ4 be an isometry of A4 defined by

ρ4(e1) = e2, ρ4(e2) = e3, ρ4(e3) = e4, ρ4(e4) = −(e1 + e2 + e3 + e4). (5.2)

Combining ρ0 and ρ4, we define an isometry ρ of T = U ⊕ V ⊕ A4 ⊕ A4. By
definition, ρ is of order 5 and has no non-zero fixed vectors in T . Moreover the
action of ρ on the discriminant group T ∗/T is trivial. Hence ρ can be extended to
an isometry ρ (we use the same symbol) of H2(X,Z) acting trivially on S (Nikulin
[N1], Corollary 1.5.2).

Lemma 5.7. The isometry σ∗ is conjugate to ρ.

Proof. By the surjectivity of the period map of K3 surfaces, there exists a K3
surface X ′ whose transcendental lattice TX′ is isomorphic to T . Moreover we may
assume that ωX′ is an eigenvector of ρ under the isomorphism TX′ ∼= T . Since ρ
acts trivially on SX′ , there exists an automorphism σ′ of X ′ with (σ′)∗ = ρ ([PS]).

Since SX′ ∼= S, there exist 16 (−2)-classes in SX′ whose dual graph coincides
with that of Ei, (0 ≤ i ≤ 5), Fj , Gk (1 ≤ j, k ≤ 5) on X in 3.2. We denote
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by E′
i, F

′
j , G

′
k these divisors corresponding to Ei, Fj , Gk. We shall show that if

necessary by changing them by w(E′
i), w(F ′

j), w(G′
k) for a suitable w ∈ W (X ′),

all E′
i, F

′
j , G

′
k are smooth rational curves. Consider the divisor D = 2E′

0 + E′
1 +

E′
2 + E′

3 + E′
4. Obviously D2 = 0. If necessary, by replacing D by w(D) where

w ∈ W (X ′), we may assume that D defines an elliptic fibration. Then D is a
singular fiber of type I∗0 and E′

i (0 ≤ i ≤ 4) are components of singular fibers. Thus
we may assume that E′

i (0 ≤ i ≤ 4) are smooth rational curves. Next consider the
divisor D′ = 2E′

0+E′
1+E′

2+E′
3+E′

5. By replacing D′ by w(D′), w ∈ W (X ′) with
w(E′

i) = E′
i, 0 ≤ i ≤ 4, D′ defines an elliptic fibration. Thus we may assume that all

E′
i are smooth rational curves. Since | F ′

i +G′
i |=| 2E′

0+E′
1+E′

2+E′
3+E′

4+E′
5−E′

i |,
all F ′

i , G
′
i are also smooth rational curves.

Next we shall show that the incidence relation of E′
i, F

′
j , G

′
k is the same as

that of Ei, Fj , Gk. Obviously E′
0 is pointwisely fixed by σ′. Recall that σ′ acts on

H0(X ′,ΩX′) non trivially. By considering the action of σ′ on the tangent space
of E′

i ∩ E′
0, σ

′ acts on E′
i non trivially. Now consider the elliptic fibration defined

by the linear system | 2E′
0 + E′

1 + E′
2 + E′

3 + E′
4 + E′

5 − E′
i | with sections F ′

j ,
G′

j (j �= i). Since no elliptic curves have an automorphism of order 5, σ′ acts on
the sections F ′

j and G′
j non trivially. Note that σ′ has exactly two fixed points on

each of E′
i, F

′
j , G

′
k, (1 ≤ i, j, k ≤ 5). Hence F ′

i and G′
i meets at one point with

multiplicity 2. Now we can easily see that not only the dual graph, but also the
incident relation of E′

i, F
′
j , G

′
k coincides with that of Ei, Fj , Gk.

Finally define the isometry ι′ of order 2 of SY by ι′(F ′
i ) = G′

i (1 ≤ i ≤ 5) and
ι′(E′

i) = E′
i. Then ι′ can be extended to an isometry of H2(X ′,Z) acting on TX′ as

−1TX′ as ι. By definition of ι′, it preserves C(M), and hence preserves the Kähler
cone C(X) (Lemma 5.5). By the Torelli theorem, there exists an automorphism
τ ′ with (τ ′)∗ = ι′. It follows from Nikulin [N3], Theorem 4.2.2 that the set of fixed
points of τ ′ is the disjoint union of E0 and a smooth curve of genus 6. By taking
the quotient of X ′ by τ ′, we have the same configuration as in 3.2. Thus X ′ can
be deformed to X smoothly and hence σ∗ is conjugate to ρ. �
Lemma 5.8. Let e ∈ T with e2 = 0. Let K be the sublattice generated by ρi(e)
(0 ≤ i ≤ 4). Then K contains a vector with positive norm.

Proof. First note that e, ρ(e), ρ2(e) are linearly independent isotoropic vectors.
Since the signature of T is (2, 8), we may assume that 〈e,±ρ(e)〉 > 0. Then e±ρ(e)
is a desired one. �
Lemma 5.9. Let r ∈ T with r2 = −2. Let R be the lattice generated by ρi(r)
(0 ≤ i ≤ 4). Assume that R is negative definite. Then R is isometric to the root
lattice A4.

Proof. Put mi = 〈r, ρi(r)〉, 1 ≤ i ≤ 4. Then by assumption | mi |≤ 1. Also
obviously m1 = m4,m2 = m3 and

∑4
i=0 ρ

i(r) = 0. Then

−2 = r2 = 〈r,−
4∑

i=1

ρi(r)〉 = −2m1 − 2m2.
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Hence (m1,m2) = (1, 0) or (0, 1). Therefore {ρi(r) : 0 ≤ i ≤ 3} is a basis of the
root lattice A4. �

Lemma 5.10. Let R ∼= A4 be a sublattice of T . Assume that R is invariant under
the action of ρ. Then the orthogonal complement R⊥ of R in T is isomorphic to
U ⊕ V ⊕A4.

Proof. Let T ′ be the orthogonal complement of R in T . Then T = R ⊕ T ′ or T
contains R ⊕ T ′ as a sublattice of index 5. We shall show that the second case
does not occur. Assume that [T : R ⊕ T ′] = 5. Then AT ′ = (T ′)∗/T ′ ∼= (F5)⊕4

because | AT | ·[T : R ⊕ T ′]2 =| AR | · | AT ′ |. Let ρ′ be an isometry of L so that
ρ′ | T ′ = ρ | T ′ and ρ′ | (T ′)⊥ = 1. The existence of such ρ′ follows from [N1],
Corollary 1.5.2. It follows from the surjectivity of the period map of K3 surfaces
that there exists a K3 surface Y whose transcendental lattice isomorphic to T ′

and whose period is an eigen-vector of ρ′ under a suitable marking. Since ρ′ acts
trivially on the Picard lattice (T ′)⊥ of Y , ρ′ is induced from an automorphism
σ′ of Y . It follows from Vorontsov’s theorem [Vo] that the number of minimal
generator of AT ′ is at most rank(T ′)/ϕ(5) = 2 where ϕ is the Euler function. This
contradicts the fact AT ′ ∼= (F5)⊕4. Thus we have proved that T = R ⊕ T ′. Since
qT ′ ∼= qU⊕V ⊕A4 , the assertion now follows from Nikulin [N1], Theorem 1.14.2. �

5.3. Discriminant locus

Let r ∈ T with r2 = −2. Let R be the sublattice generated by ρi(r) (0 ≤ i ≤ 4).
Assume that R is negative definite. Then R ∼= A4 and the orthogonal complement
of R in T is isomorphic to T ′ = U ⊕ V ⊕ A4 (Lemmas 5.9, 5.10). Let ρ′ be an
isometry of L so that ρ′ | T ′ = ρ | T ′ and ρ′ | (T ′)⊥ = 1. Then there exists an
K3 surface Y and an automorphism σ′ such that the transcendental lattice of Y
is isomorphic to T ′, the period of Y is an eigen-vector of ρ′ and σ′ acts trivially
on the Picard lattice of Y . By the same argument as in the proof of Lemma 5.7,
we can see that Y is corresponding to the case that f5 = 0 has a multiple root in
3.2.

6. A complex ball uniformization

6.1. Hermitian form

Let ζ = e4π
√−1/5. We consider T as a free Z[ζ]-module Λ by

(a + bζ)x = ax + bρ(x).

Let

h(x, y) =
2

5 +
√

5

4∑
i=0

ζi〈x, ρi(y)〉.

Then h(x, y) is a hermitian form on Z[ζ]-module Λ. With respect to a Z[ζ]-basis
e1 of A4, the hermitian matrix of h | A4 is given by −1. And with respect to a
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Z[ζ]-basis e of U ⊕ V , the hermitian matrix of h | U ⊕ V is given by (
√

5 − 1)/2.
Thus h is given by ⎛⎝

√
5−1
2 0 0
0 −1 0
0 0 −1

⎞⎠ . (6.1)

Let

ϕ : Λ→ T ∗

be a linear map defined by

ϕ(x) =
3∑

i=0

(i + 1)ρi(x)/5.

Note that ϕ((1 − ζ)x) = ϕ(x − ρ(x)) = −ρ4(x) ∈ T . Hence ϕ induces an isomor-
phism

Λ/(1− ζ)Λ � AT = T ∗/T. (6.2)

6.2. Reflections

Let a ∈ Λ with h(a, a) = −1. Then the map

R±
a : v → v − (−1± ζ)h(v, a)a

is an automorphism of Λ. This automorphism R+
a has order 5 and R−

a has order
10 both of which fix the orthogonal complement of a. They are called reflections.
Consider a decomposition

T = U ⊕ V ⊕A4 ⊕A4.

If a = e1 of the last component A4 as in (5.2), we can easily see that

R±
a = ±se1 ◦ se2 ◦ se3 ◦ se4

where sei is a reflection in O(T ) associated with (−2)-vector ei defined by

sei : x→ x + 〈x, ei〉ei.

In other words,

R±
e1

= 1U ⊕ 1V ⊕ 1A4 ⊕ (±ρ4).

Since sei acts trivially on AT , R+
a acts trivially on AT � Λ/(1− ζ)Λ. On the other

hand, R−
a acts on AT as a reflection associated with α = (e1 +2e2 +3e3 +4e4)/5 ∈

AT .
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6.3. The period domain and arithmetic subgroups

We use the same notation as in 5.2. Let

T ⊗ C = Tζ ⊕ Tζ2 ⊕ Tζ3 ⊕ Tζ4

be the decomposition of ρ-eigenspaces where ζ is a primitive 5-th root of unity
(see Nikulin [N2], Theorem 3.1). An easy calculation shows that

ξ = e1 + (ζ4 + 1)e2 + (−ζ − ζ2)e3 − ζe4

is an eigenvector of ρ4 with the eigenvalue ζ and

〈ξ, ξ̄〉 = −5.

On the other hand,

μ = e− (ζ4 + 1)f + (−ζ − ζ2)(e + f + y)− ζ(−e + f − x)

is an eigenvector of ρ0 with the eigenvalue ζ and

〈μ, μ̄〉 = 5(ζ2 + ζ3).

Thus if ζ = e±4π
√−1/5, the hermitian form 〈ω, ω̄〉/5 on Tζ is of signature (1, 2)

and is given by ⎛⎝
√

5−1
2 0 0
0 −1 0
0 0 −1

⎞⎠ . (6.3)

For other ζ, the hermitian form is negative definite. Now we take ζ = e4π
√−1/5

and define
B = {z ∈ P(Tζ) : 〈z, z̄〉 > 0}. (6.4)

Then B is a 2-dimensional complex ball. For a (−2)-vector r in T , we define

Hr = r⊥
⋂
B, H =

⋃
r

Hr

where r runs over (−2)-vectors in T . Let

Γ = {φ ∈ O(T ) : φ ◦ ρ = ρ ◦ φ}, Γ′ = {φ ∈ Γ : φ | AT = 1}. (6.5)

Remark 6.1. The hermitian form h in (6.1) coincides with the one of Shimura
[S], Yamazaki and Yoshida [YY]. This and the isomorphism (6.2) imply that our
groups Γ, Γ′ coincide with Γ, Γ(1− μ) in Yamazaki and Yoshida [YY].

Proposition 6.2. (1) Γ is generated by reflections R−
a with h(a, a) = −1 and Γ′ is

generated by R+
a with h(a, a) = −1. The quotient Γ/Γ′ is isomorphic to O(3,F5) �

Z/2Z× S5.
(2) B/Γ′ is isomorphic to the quintic del Pezzo surface and H/Γ′ consists

of 10 smooth rational curves corresponding to 10 lines on the quintic del Pezzo
surface. The factor Z/2Z in Γ/Γ′ acts trivially on B and S5 corresponds to the
group of automorphisms of the quintic del Pezzo surface.

Proof. The assertions follow from the above Remark 6.1 and Propositions 4.2, 4.3,
4.4 in Yamazaki and Yoshida [YY]. �
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6.4. Discriminant quadratic forms and discriminant locus

Let

qT : AT → Q/2Z

be the discriminant quadratic form of T . The discriminant group AT consists of
the following 125 vectors:

Type (00) : α = 0, #α = 1;
Type (0) : α �= 0, qT (α) = 0, #α = 24;
Type (2/5) : qT (α) = 2/5, #α = 30;
Type (−2/5) : qT (α) = −2/5, #α = 30;
Type (4/5) : qT (α) = 4/5, #α = 20;
Type (−4/5) : qT (α) = −4/5, #α = 20.

Let A4 be a component of T with a basis e1, e2, e3, e4 as in 5.2. Then (e1 + 2e2 +
3e3 + 4e4)/5 = (e12ρ(e1) + 3ρ2(e1) + 4ρ3(e1))/4 mod T is a vector in AT with
norm −4/5. It follows from Proposition 6.2 that Γ/Γ′ acts transitively on the set
of (−4/5)-vectors in AT . Hence for each α ∈ AT with qT (α) = −4/5 there exists a
vector r ∈ T with r2 = −2 satisfying α = (r+2ρ(r)+3ρ2(r)+4ρ3(r))/5. Moreover
±α defines

Hα =
⋃
r

Hr

where r moves over the set

{r ∈ T : r2 = −2, α = (r + 2ρ(r) + 3ρ2(r) + 4ρ3(r))/5 mod T }.

Thus the set

{α ∈ AT : qT (α) = −4/5}/± 1

bijectively corresponds to the set of components of H/Γ′. Let

Γ̃ = {φ̃ ∈ O(L) : φ̃ ◦ ρ = ρ ◦ φ̃}.

Lemma 6.3. The restriction map Γ̃→ Γ is surjective.

Proof. We use the same notation as in 3.2. The symmetry group S5 of degree
5 naturally acts on the set {E1, . . . , E5} as permutations. This action can be
extended to the one on S. Together with the action of ι, the natural map

O(S)→ O(qS) ∼= {±1} × S5

is surjective. Let g ∈ Γ. Then the above implies that there exists an isometry g′

in O(S) whose action on AS
∼= AT coincides with the one of g on AT . Then it

follows from Nikulin [N1], Proposition 1.6.1 that the isometry (g′, g) of S ⊕ T can
be extended to an isometry in Γ̃ which is the desired one. �
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6.5. Period map

We shall define an S5-equivariant map

p : P 5
1 → B/Γ′

called the period map. Denote by (P 5
1 )0 the locus of five distinct ordered points

on P1. Let {p1, . . . , p5} ∈ (P 5
1 )0. Let X be the corresponding K3 surface with the

automorphism σ of order 5 as in 3.2. The order of {p1, . . . , p5} defines an order of
smooth rational curves

Ei, (0 ≤ i ≤ 5) Fj , Gj , (1 ≤ j ≤ 5)

modulo the action of the covering involution ι. It follows from Lemma 5.7 that
there exists an isometry

α : L→ H2(X,Z)

satisfying α ◦ ρ = σ∗ ◦ α. Now we define

p(X,α) = (α⊗ C)−1(ωX).

Lemma 6.4. p(X,α) ∈ B \ H.

Proof. If not, there exists a vector r ∈ T with r2 = −2 which is represented by an
effective divisor on X as in the proof of Lemma 5.3. Obviously r + σ∗(r) + · · ·+
(σ∗)4(r) = 0. On the other hand r + σ∗(r) + · · · + (σ∗)4(r) is non-zero effective
because σ is an automorphism. Thus we have a contradiction. �

Thue we have a holomorphic map

p : (P 5
1 )0 → (B \ H)/Γ′.

The group S5 naturally acts on P 5
1 which induces an action on S as permutations

of E1, . . . , E5. On the other hand, S5
∼= Γ/{±1} ·Γ′ naturally acts on B/Γ′. Under

the natural isomorphism O(qS) ∼= O(qT ) ∼= {±1} ·S5, p is equivariant under these
actions of S5.

It is known that the quotient B/Γ′ is compact (see Shimura [S]). We remark
that cusps of B correspond to totally isotropic sublattices of T invariant under ρ.
Hence the compactness also follows from Lemma 5.8.

Theorem 6.5 (Main theorem). The period map p can be extended to an S5-equi-
variant isomorphism

p̃ : P 5
1 → B/Γ′.

Proof. Let M be the space of all 5 stable points on P1 and M0 the space of all
distinct 5 points on P1. We can easily see that M \M0 is locally contained in
a divisor with normal crossing. By construction, p is locally liftable to B. It now
follows from a theorem of Borel [Borel] that p can be extended to a holomorphic
map fromM to B/Γ′ which induces a holomorphic map p̃ from P 5

1 to B/Γ′. Next
we shall show the injectivity of the period map over (B \ H)/Γ′. Let C,C′ be two
plane quintic curves as in 3.1. Let (X,α) (resp. (X ′, α′)) be the associated marked
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K3 surfaces with automorphisms τ, σ (resp. τ ′, σ′). Assume that the periods of
(X,α) and (X ′, α′) coincide in B/Γ′. Then there exists an isometry

ϕ : H2(X ′,Z)→ H2(X,Z)

preserving the periods and satisfying ϕ◦(τ ′)∗ = τ∗◦ϕ and ϕ◦(σ′)∗ = σ∗◦ϕ (Lemma
6.3). It follows from Lemma 5.4 that ϕ preserves the Kähler cones. The Torelli
theorem for K3 surfaces implies that there exists an isomorphism f : X → X ′

with f∗ = ϕ. Then f induces an isomorphism between the corresponding plane
quintic curves C and C′. Thus we have proved the injectivity of the period map.

Since both P 5
1 and B/Γ′ are compact, p̃ is surjective. Recall that both P 5

1 \
(P 5

1 )0 and H/Γ′ consist of 10 smooth rational curves. The surjectivity of p̃ implies
that no components of P 5

1 \ (P 5
1 )0 contract to a point. Now the Zariski main

theorem implies that p̃ is isomorphic. By construction, p̃ is S5-equivariant over the
Zariski open set (P 5

1 )0. Hence p̃ is S5-equivariant isomorphism between P 5
1 and

B/Γ′. �

7. Shimura–Terada–Deligne–Mostow’s reflection groups

The plane quintic curve C defined by (3.1) appeared in the papers of Shimura [S],
Terada [Te], Deligne–Mostow [DM], and the moduli space of these curves has a
complex ball uniformization. As we remarked, the hermitian form (6.1) coincides
with those of Shimura [S], Terada [Te], Deligne–Mostow [DM] (see Remark 6.1).
This implies

Theorem 7.1. The arithmetic subgroup Γ is the one appeared in Deligne–Mostow’s
list [DM]: (

2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5

)
.

A geometric meaning of this theorem is as follows. Recall that X has an
isotrivial pencil of curves of genus two whose general member is the smooth curve
D of genus two with an automorphism of order 5 given by the equation (3.3). The
X is given by

s2 = x0(x5
0 − f5(x1, x2))

where x1/x2 is the parameter of this pencil. On the other hand, we consider C as
a base change C → P1 given by

(v, x1, x2)→ (x1, x2).

Then over C, v5 = f5(x1, x2) and hence the pencil is given by

s2 = x0(x5
0 + v5)

which is nothing but the equation of the curve D. Thus the K3 surface X is bira-
tional to the quotient of C×D by an diagonal action of Z/5Z. This correspondence
gives a relation between the Hodge structures of C and X .
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7.1. Problem

Let μi be a positive rational number (0 ≤ i ≤ d+1 or i =∞) satisfying
∑

i μi = 2.
Set

Fgh(x2, . . . , xd+1) =
∫ h

g

u−μ0(u− 1)−μ1

d+1∏
i=2

(u − xi)−μidu

where g, h ∈ {∞, 0, 1, x2, . . . , xd+1}. Then Fgh is a multivalued function on

M = {(xi) ∈ (P1)d+3 | xi �=∞, 0, 1, xi �= xj (i �= j)}.
These functions generate a (d + 1)-dimensional vector space which is invariant
under monodromy. Let Γ(μi) be the image of π1(M) in PGL(d + 1,C) under the
monodromy action. In Deligne–Mostow [DM] and Mostow [Mo], they gave a suffi-
cient condition for which Γ(μi) is a lattice in the projective unitary group PU(d, 1),
that is, Γ(μi) is discrete and of finite covolume, and gave a list of such (μi) (see
[Th] for the correction of their list).

Denote μi = μ′
i/D where D is the common denominator. As remarked in

Theorem 7.1, in the case D = 5, Γ(μi) is related to K3 surfaces. In case of D = 3, 4
or 6, Γ(μi) is also related to K3 surfaces (see [K2], [K3], [DGK]). In these cases,
the corresponding K3 surfaces have an isotrivial elliptic fibration whose general
fiber is an elliptic curve with an automorphism of order 4 or 6.

For the remaining arithmetic subgroups Γ(μi) with D > 6 in the Deligne–
Mostow’s list, are they related to K3 surfaces ?
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moduli space of cubic surfaces via periods of K3 surfaces, math.AG/0310342, J.
reine angew. Math. (to appear).
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Introduction

These notes are about a chapter in the theory of hypergeometric functions in
several variables. The functions in question generalize the Gauß hypergeometric
function and are obtained as integrals of a multivalued differential of the form

ηz := (z0 − ζ)−μ0 · · · (zn − ζ)−μndζ.

Here z0, . . . , zn are pairwise distinct complex numbers that are allowed to vary
and the exponents μk are taken in the open unit interval (0, 1) and are kept fixed.
If we choose a simple arc in C connecting two zeroes of ηz but avoiding any zero
on its relative interior and if a branch of ηz along that arc is chosen, then ηz can
be integrated along that arc (the integral will indeed converge). The value of this
integral will depend holomorphically on z = (z0, . . . , zn), for if we vary z a little,
then we can let the arc and the branch of ηz follow this variation in a continuous
manner. This type of (multivalued) function of z is called a Lauricella function.
Another choice of branch of ηz will change it by phase factor, but its dependence
on the arc is of course more substantial. The Lauricella functions have a beautiful
and fascinating associated geometry, and it is this geometry that this paper is
mostly concerned with. Let us briefly explain how this geometry enters.

One readily finds that it is better not to focus on one such integral, but to
consider all of them simultaneously, or rather, to consider for every z = (z0, . . . , zn)



208 Eduard Looijenga

as above (and given exponents), the space Lz of power series expansions in n + 1
complex variables at z that are linear combinations of the Lauricella functions
associated to ηz. It turns out that this subspace Lz ⊂ C{z0, . . . , zn} has dimen-
sion n and that the ‘tautological’ map-germ (Cn+1, z)→ L∗

z never takes the value
0 ∈ L∗

z and has the following regularity property: if M0,n+2 stands for the con-
figuration space of (n + 1)-tuples in C modulo affine-linear equivalence (which
is also the configuration space of (n + 2)-tuples on the Riemann sphere modulo
projective-linear equivalence), then this map-germ descends to a local isomorphism
(M0,n+2, [z]) → P(L∗

z). By analytic continuation we have an identification of Lz

with Lz′ for nearby z′ and the multivalued nature of the hypergeometric functions
is reflected by the fact that if we let z traverse a loop in the space of pairwise
distinct (n+ 1)-tuples and the elements of Lz follow that loop by analytic contin-
uation, then there results a linear (monodromy) transformation of Lz which need
not be the identity. The transformations of L∗

z thus obtained form a subgroup Γ of
GL(L∗

z), called the monodromy group of the system. The main questions addressed
here are:

1. When does Γ leave invariant a Hermitian form on L∗
z which is positive

definite, semidefinite or of hyperbolic signature? If such a form exists, then we
would actually ask for a bit more: The set of vectors in L∗

z with positive self-inner
product defines a domain D ⊂ P(L∗

z) that is left invariant by Γ. This domain
in fact is a complex symmetric manifold of constant holomorphic curvature on
which Γ acts by isometries: we get respectively all of P(L∗

z) with its Fubini-Study
metric, an affine space in P(L∗

z) with a translation invariant Hermitian metric or
an open ball with its complex hyperbolic metric. We would like the multi-valued
map defined onM0,n+2 to take its values in this domain, so thatM0,n+2 inherits
a Kähler metric of constant holomorphic curvature.

2. When is Γ discrete as a subgroup of GL(L∗
z)? If Question 1 has been

answered positively, then this is essentially equivalent to: when acts Γ properly on
D? A positive answer triggers the next question, namely: when is Γ arithmetic (in
a naturally defined Q-algebraic group that contains Γ)?

The answer to the first question in its strong form is short enough to give here:
when μ0 + · · ·+ μn is < 1, = 1 or in the interval (1, 2) respectively (although we
are not claiming the converse). Question 2 is harder to deal with. If Γ is discrete
as well, then the exponents μk must be rational numbers and one of the main
results of the theory states thatM0,n+2 has then finite invariant volume and that
its natural metric completion is an algebraic variety (we get a projective space in
the elliptic and parabolic cases and in the hyperbolic case it is obtained by adding
the stable orbits in a setting of geometric invariant theory). Deligne and Mostow
gave sufficient conditions for discreteness, which were later weakened by Mostow
and Sauter to make them necessary as well.

If the μk’s are all rational, then there is a connection with the theory of period
maps (even if Γ fails to be discrete): if m is their smallest common denominator
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and if we write μk = dk/m, then the hypergeometric functions become periods of
the cyclic cover of C defined by wm = (z0− ζ)d0 · · · (zn− ζ)dn . For ηz then lifts to
a regular single-valued differential on this affine curve (regular resp. with simple
poles at infinity when

∑
k μk is greater than resp. equal to 1) and γ is covered by a

cycle such that the hypergeometric integral is the period of the lift over this cycle.
As the reader will have gathered, this is mostly an account of work of Mostow

(and his student Sauter) and of Deligne–Mostow. It is basically self-contained in
the sense that we have included proofs (except for a technical lemma needed for an
arithmeticity criterion). Occasionally our treatment somewhat differs from theirs.
For instance, our discussion of invariant Hermitian forms does not use the approach
in [8] inspired by Hodge theory, but rather follows the more pedestrian path in [6].
We also found it natural to use the language of orbifolds throughout. For some
of the history of the material expounded here, we refer to the first and the last
section of [8] as well as to the review [5]. In Section 5 we — albeit very sketchily
— mention some recent developments.

Acknowledgements. This paper is based on a series of talks I gave at the
CIMPA summer school (2005) in Istanbul. I thank my hosts, in particular Professor
Uludag, for their hospitality and for making this summer school such a pleasant
and fruitful experience.

I have been so fortunate to have this paper checked by a very careful referee.
The reader has also good reason to be grateful, for the paper benefited greatly
from his or her comments. But all errors and inaccuracies that remained are my
responsibility, of course.

Some notation. Throughout this paper we denote by (Cn+1)◦ the set of
(z0, . . . , zn) ∈ Cn+1 whose components are pairwise distinct. So this is simply
the configuration space of n + 1 distinct numbered points in C. We shall also use

Vn := Cn+1/main diagonal and V ◦
n := (Cn+1)◦/main diagonal. (0.1)

The latter can be interpreted as the configuration space of n+1 distinct numbered
points in C, given up to a (common) translation. It is also clear that the orbit space
of (Cn+1)◦ with respect to the whole affine-linear group (assuming now n ≥ 2),
is equal to P(V ◦

n ) ⊂ P(Vn). As the affine group of C is the stabilizer of ∞ in
Aut(P1), we thus have an identification of P(V ◦

n ) with the moduli space M0,n+1

of (n+ 1)-pointed smooth rational curves. But this description breaks the natural
Sn+1-symmetry of M0,n+1 as only the action of the subgroup Sn is immediately
visible in P(V ◦

n ).
If C× acts on a variety X , then we often write P(X) for the orbit space of

the subspace of X where C× acts with finite isotropy groups. This convention is
also used if we are given a covering X̃ of X to which the C× action on X lifts to
one of a covering of C×: we may then denote the space of orbits in X̃ with finite
isotropy groups by P(X̃).
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1. The Lauricella differential

1.1. Definition and first properties

Assume given real numbers μ0, . . . , μn in the interval (0, 1), where n > 0. We shall
refer to the (n + 1)-tuple μ = (μ0, . . . , μn) as a weight system and we call its sum
|μ| :=

∑n
i=0 μi the total weight of μ. The Lauricella differential of weight μ is

ηz := (z0 − ζ)−μ0 · · · (zn − ζ)−μndζ, with z = (z0, . . . , zn) ∈ (Cn+1)◦.

(We recall that (Cn+1)◦ stands for the set of (z0, . . . , zn) ∈ Cn+1 whose com-
ponents are pairwise distinct.) If we wish to view this as a multivalued over
(Cn+1)◦ we will simply write η. Although this differential is multivalued, it has
a natural branch on a left half plane (where it is like (−ζ)−|μ|dζ) by taking
there the value of (−ζ)−|μ| whose argument lies in (−π/|μ|, π/|μ|) . We further
note that ηz is locally integrable as a multivalued function: near zk, ηz is of the
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form (ζ − zk)−μk exp(holom)dζ; this is the differential of a function of the form
const + (ζ − zk)1−μk exp(holom) and since 1 − μk > 0, that function takes a well-
defined value in zk. This implies that ηz can be integrated along every relative
arc of (C, {z0, . . . , zn}); by the latter we mean an oriented piecewise differentiable
arc in C whose end points lie in {z0, . . . , zn}, but which does not meet this set
elsewhere.

The behavior of a differential at infinity is studied (as usual) by means of the
substitution ζ = ω−1 and examining the result at ω = 0; here we get

ηz = −(ωz0 − 1)−μ0 · · · (ωzn − 1)−μnω|μ|−2dω,

which suggests to put zn+1 := ∞ and μn+1 := 2 − |μ|. In case μn+1 < 1 (equiva-
lently, |μ| > 1), ηz is also (multivalued) integrable at zn+1.

Remark 1.1. Following Thurston [16], we may think of ηz as a way of putting a
flat Euclidean structure on P1 with singularities at z0, . . . , zn+1: a local primitive
of ηz defines a metric chart with values in C, but now regarded as the Euclidean
plane (so the associated metric is simply |ηz |2). At zk, k ≤ n, the metric space
is isometric to a Euclidean cone with total angle 2π(1 − μk); this is also true for
k = n+1 in case μn+1 < 1, or equivalently, |μ| > 1; if |μ| = 1 (resp. |μ| < 1), then a
punctured neighborhood of∞ is isometric to a flat cylinder (resp. the complement
of a compact subset of a Euclidean cone with total angle 2π(1− |μ|)).

Let a relative arc γz of (C, {z0, . . . , zn}) be given and a branch of ηz on
γz so that

∫
γz

ηz is defined. Choose open disks Dk about zk in C such that the
D0, . . . , Dn are pairwise disjoint. Then we can find for every z′ ∈ D0 × · · · ×Dn,
a relative arc γz′ of (C, {z′0, . . . , z′n}) and a branch of ηz′ on supp(γz′) such that
both depend continuously on z′ and yield the prescribed value for z = z′. Any
primitive of η near (z, zk) with respect to its second variable is (as a function of
(z′, ζ)) of the form g(z′) + (ζ − z′k)1−μkh(ζ, z′), with g and h holomorphic and so
the function

z′ ∈ D0 × · · · ×Dn 	→
∫

γz′
ηz′ ∈ C

is holomorphic. We call such a function (or some analytic extension of it) a Lauri-
cella function. The Lauricella functions (with given weight system μ) define a local
system of C-vector spaces: its stalk Lz at z is the space of germs of holomorphic
functions at z ∈ (Cn+1)◦ that are in fact germs of Lauricella functions and it is
clear that for z′ ∈ D0 × · · · ×Dn, we can naturally identify Lz′ with Lz.

Here are some elementary properties of Lauricella functions (the proofs are
left to the reader, who should be duely careful with exchanging differentiation and
integration in the proof of (c)).

Proposition 1.2. Any f ∈ Lz

(a) is translation invariant: f(z0 +a, . . . , zn +a) = f(z0, . . . , zn) for small a ∈ C,
(b) is homogeneous of degree 1−|μ|: f(etz0, . . . , e

tzn) = e(1−|μ|)tf(z0, . . . , zn) for
small t ∈ C and
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(c) obeys the system of differential equations

∂2f

∂zk∂zl
=

1
zk − zl

(
μl

∂f

∂zk
− μk

∂f

∂zl

)
, 0 ≤ k < l ≤ n. (1.1)

The translation invariance of the Lauricella functions shows that they are in
fact defined (as multivalued functions) on V ◦

n . In other words, the local system is
a pull-back of a local system on V ◦

n . The homogeneity implies that when |μ| = 1,
these functions are also constant on the C×-orbits and hence define a local system
on P(V ◦

n ); for reasons which will become clear later, we call this the parabolic case.
An important consequence of part (c) of the preceding proposition is

Corollary 1.3. The map which assigns to f ∈ Lz its 1-jet at z is injective.

Proof. If f ∈ Lz, then its partial derivatives fk := ∂f
∂zk

satisfy the system of
ordinary differential equations

∂fk

∂zl
=

1
zk − zl

(μlfk − μkfl) , k �= l. (1.2)

We can complete this system in order to get such equations also for ∂fk

∂zk
, by using

the fact
∑

k fk = 0 (which follows from the translation invariance). The elementary
theory of such systems of ODE’s says that there is precisely one solution for it, once
the initial conditions fk(z) have been prescribed. To such a solution corresponds
at most one element of Lz up to a constant. �

1.2. L-slits

Definition 1.4. Given (z0, . . . , zn) ∈ Cn+1, we define an L-slit to be an oriented
arc in the Riemann sphere P1 = C ∪ {∞} from z0 to zn+1 = ∞ which passes
successively through z1, . . . zn and near∞ follows a line parallel to the real axis in
the positive direction. If δ is such an L-slit, then we denote the piece connecting
zk−1 with zk by δk and we often let δ also stand for the system of arcs (δ1, . . . , δn+1).

.
.............................

...........................
..........................

........................
.......................

...................... .................... ................... ................. ................. ................. ................. .................

�
z0

δ1

δ−1
�

z1. ................... .................. ................ ............... ............. ........... ........... ........... ..........
...........
............�δ2

δ−2

z2

�
zn. .......................................................................................................................

δn+1

δ−n+1C cut open by an L-slit

The complement of the support of δ is simply connected and so we have a
well-defined branch of ηz on this complement which extends the one we already
have on a left half plane. We also extend ηz to the support of δ itself by insisting
that ηz be continuous from the left along δ when we traverse that arc from z0 to∞.
This makes the branch of ηz discontinuous along δ. With these conventions,

∫
δk

ηz
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has for k = 1, . . . , n a well-defined meaning (and also makes sense for k = n+1 in
case μn+1 < 1). If we let z vary in a small neighborhood, we get an element of Lz

that we simply denote by
∫

δk
η. We denote by δ−k the arc connecting zk−1 with zk

that is ‘infinitesimally’ to the right of δk. By this we really mean that ηz is given
on δ−k the value it gets as a limit from the right. Notice that

ηz|δ−k = exp(−2π
√
−1(μ0 + · · ·+ μk−1))ηz |δk.

Theorem 1.5. The functions
∫

δ1
η, . . . ,

∫
δn

η define a basis for Lz. Moreover, Lz

contains the constant functions if and only if we are in the parabolic case: |μ| = 1.

Proof. Suppose γ is a closed piecewise differentiable path in C that is the boundary
of an embedded disk B ⊂ C whose interior contains no zk. Then we can choose
a branch of ηz over B and subsequently a primitive of ηz on B so that we have∫

γ ηz = 0 on this branch. Since
∫

γ ηz is a sum of Lauricella functions associated
to simple relative arcs, this yields a relation of linear dependence among such
functions.

This proves that Lz is generated by any set of Lauricella functions whose
underlying relative arcs generate the relative homology group H1(C, {z0, . . . , zn}).
Clearly, the set of arcs δ1, . . . , δn has that last property.

If |μ| = 1, then near ∞, ηz is equal to −ζ−1dζ. So then for a loop γ which
encircles z0, . . . , zn in the clockwise direction, we have∫

γ

ηz =
∫

γ

−ζ−1dζ = 2π
√
−1,

which proves that Lz contains the constant 2π
√
−1.

It remains to show that if a1, . . . , ak, c ∈ C are such that
∑n

k=1 ak

∫
δk

η = c,
then c �= 0 implies |μ| = 1 and c = 0 implies that all ai vanish as well. We prove this
with induction on n. To this end, we consider a curve z(s) in (Cn+1)◦ of the form
(z0, . . . , zn−2, 0, s), with s > 0 and an L-slit δ(s) for z(s) with δ1, . . . , δn−1 fixed
and δn = [0, s]. By analytic continuation we may assume that

∑n−1
k=1 ak

∫
δk

ηz(s) +
an

∫ s

0
ηz(s) = c. We multiply this identity by sμn and investigate what happens for

s→∞. For k < n,

sμn

∫
δk

ηz(s) =
∫

δk

(z0 − ζ)−μ0 · · · (zn−2 − ζ)−μn−2(−ζ)−μn−1(1 − s−1ζ)−μndζ,

which for s→∞ tends to
∫

δk
ηz′ , where z′ = (z0, . . . , zn−2, 0). On the other hand,∫

δk

ηz(s) =
∫ s

0

(z0 − ζ)−μ0 · · · (−t)−μn−1(s− t)−μndζ

= s(−s)−|μ|
∫ 1

0

(−s−1z0 + t)−μ0 · · · (t)−μn−1(−1 + t)−μndt

= s(−s)−|μ| + o(|s|1−|μ|), s→∞.
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So we find that

sμn

(
c + an

(
(−s)1−|μ| + o(|s|1−|μ|

))
=

n−1∑
k=1

ak

∫
δk

ηz′ , s→∞.

This shows that c �= 0 implies |μ| = 1 (and an = (−1)−|μ|c). Suppose now c = 0. If
μn < |μ|−1, then the left-hand side tends to zero as s→∞ and so the right-hand
side must be zero. Since in z′ can represent any element of V ′

n−1, our induction
hypothesis applied to η′, then implies that a1 = · · · = an−1 = 0 and from this we
see that an = 0, too. If μn > |μ| − 1, then we clearly must have an = 0 and the
induction hypothesis implies that a1 = · · · = an−1 = 0, also. �

Remark 1.6. The space of solutions of the (completed) system of differential equa-
tions (1.1) contains the constants and is of dimension ≤ n+1. It follows that in the
non-parabolic case, this solution space is equal to Lz ⊕C. (In fact, the dimension
of the solution space is always n+ 1, so that in the parabolic case, it also contains
Lz as a hyperplane.)

1.3. The rank of the Schwarz map

We find it convenient to modify our basis of Lauricella functions by a scalar factor
by putting

Fk(z, δ) :=
∫

δk

(ζ − z0)−μ0 · · · (ζ − zk−1)−μk−1(zk − ζ)−μk · · · (zn − ζ)−μndζ

= w̄k

∫
δk

ηz, where wk := e
√−1π(μ0+···+μk−1). (1.3)

The notation now also displays the fact that the value of the integral depends
on the whole L-slit (which was needed to make ηz single-valued) and not just on
δk. Notice that if z = x is real and x0 < x1 < · · · < xn and δ consists of real
intervals, then the integrand is real valued and positive and hence so is Fk. Let us
also observe that ∫

δk

ηz = wkFk(z, δ) and
∫

δ−
k

ηz = w̄kFk(z, δ),

where the second identity follows from the fact that ηz |δ−k = w̄2
kηz|δk. So if we are

in the parabolic case, then the integral of ηz along a clockwise loop which encloses
{z0, . . . , zn} yields the identity

∑n
k=1(wk − w̄k)Fk(z, δ) = 2π

√
−1, or equivalently,

n∑
k=1

Im(wk)Fk(z, δ) = π. (1.4)

In other words, F = (F1, . . . , Fn) then maps to the affine hyperplane An−1 in Cn

defined by this equation.
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Corollary 1.7. If we are not in the parabolic case, then F = (F1, . . . , Fn), viewed
as a multivalued map from V ◦

n to Cn, is a local isomorphism taking values in
Cn − {0}. In the parabolic case, F = (F1, . . . , Fn) factors through a local (multi-
valued) isomorphism from P(V ◦

n ) to the affine hyperplane An−1 in Cn defined by∑n
k=1 Im(wk)Fk = π.

Proof. Given (z, δ), consider the n covectors dF1(z, δ), . . . , dFn(z, δ) in the cotan-
gent space of z. According to Corollary 1.3, a linear relation among them must
arise from a linear relation among the function germs F1, . . . , Fn ∈ Lz and the
constant function 1. According to Theorem 1.5, such a relation exists if and only
if |μ| = 1. The corollary easily follows, except perhaps the claim that F is nowhere
zero. But if Fk(z, δ) = 0 for all k, then we must have |μ| �= 1; since F is identically
then zero on the C×-orbit through z, this contradicts the fact that F is a local
isomorphism. �

Definition 1.8. We call the multivalued map F from V ◦
n to Cn the Lauricella map

and its projectivization PF from P(V ◦
n ) to Pn−1 the Schwarz map for the weight

system μ.

The above corollary tells us that the Schwarz map always is a local isomor-
phism (which in the parabolic case takes values in the affine open An−1 ⊂ Pn−1).

1.4. When points coalesce

We investigate the limiting behavior of F when some of the zk’s come together.
To be specific, fix 0 < r < n, let us identify Vn with Cn by taking z0 = 0, put

zε = (0, εz1, . . . εzr, zr+1, . . . zn) ∈ Vn (1.5)

and let us see what happens when ε ∈ (0, 1] → 0. We assume here that 0 =
z0, . . . , zr lie inside the unit disk, whereas the others are outside that disk and
choose δ accordingly: δ1, . . . , δr (resp. δr+2, . . . , δn+1) lie inside (resp. outside) the
unit disk. We let δ(ε) be an L-slit for zε, that depends continuously on ε, with
δ(ε)k = δk for k > r + 1 and δ(ε)k = ε−1δk for k ≤ r.

If we let μ′ := (μ0, . . . , μr), then

Fk(zε, δ) = w̄k

∫
δ(ε)k

(εz0 − ζ)−μ0 · · · (εzr − ζ)−μr (zr+1 − ζ)−μr+1 · · · (zn − ζ)−μndζ

= ε1−|μ′|w̄k

∫
εδ(ε)k

(z0 − ζ)−μ0 · · · (zr − ζ)−μr (zr+1 − εζ)−μr+1 · · · (zn − εζ)−μndζ.

So if z′ = (z0, . . . , zr), then for k ≤ r,

ε|μ
′|−1z

μr+1
r+1 · · · zμn

n Fk(zε, δ) = (1 + O(ε))F ′
k(z′, δ′), (1.6)

where F ′
k is a component of the Lauricella map with weight system μ′ and δ′ equals

δ, but with fewer bus stops:

F ′
k(z′, δ′) = w̄k

∫
δk

(z0 − ζ)−μ0 · · · (zk − ζ)−μkdζ.
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When k > r + 1 or k = r + 1 and |μ′| < 1, we find

Fk(zε, δ(ε)) = (1 + O(ε))w̄k

∫
δk

(−ζ)−|μ′|(zr+1 − ζ)−μr+1 · · · (zn − ζ)−μndζ. (1.7)

Elliptic clustering. Assume now |μ′| < 1. Then these estimates suggest to replace
in F = (F1, . . . , Fn), for k ≤ r , Fk(z) by ε|μ

′|−1z
μr+1
r+1 · · · zμn

n Fk(z, δ). In geometric
terms, this amounts to enlarging the domain and range of F : now view it as a
multivalued map defined on an open subset of the blowup BlDr Vn of the diagonal
Dr defined z0 = · · · = zr and as mapping to the blowup Bl0×Cn−r Cn of the sub-
space of Cn defined by u1 = · · · = ur = 0. To be concrete, BlDr Vn = Bl0×Cn−r Cn

is the set of ([Z1 : · · · : Zr], 0, z1, . . . , zn) ∈ Pr−1 × Vn satisfying Zizj = Wjzi for
1 ≤ i < j ≤ r. Likewise, Bl0×Cn−r Cn is defined as a subset of Pr−1 × Cn. The lift
of F is then on Vn −Dr of course given by

([z1 : · · · : zr], 0, z1, . . . , zn) 	→ ([F1(z) : · · · : Fr(z)], F (z)).

(We omitted δ here in the argument of Fk.) But on the exceptional divisor Pr−1×
Dr it is

([Z1 : · · · : Zr], (0, . . . , 0, zr, . . . zn)) 	→
([F ′

0(0, Z1, . . . , Zr) : · · · : F ′
r(0, Z1, . . . , Zr)], 0, . . . , 0, Fr+1(z), . . . , Fn(z)),

and hence takes its values in the exceptional divisor Pr−1×0×Cn−r of Bl0×Cn−r Cn.
So if we identify Dr with V1+n−r (via (0, . . . 0, zr+1, . . . , zn) 	→ (0, zr, . . . , zn)), then
we see that the first component of this restriction is the Schwarz map PF ′ for the
weight system μ′ and the second component is w̄r times the Lauricella map for
the weight system (|μ′|, μr+1, . . . , μn).

If several such clusters are forming, then we have essentially a product situ-
ation.

Parabolic clustering. We shall also need to understand what happens when |μ′| =
1. Then taking the limit for ε → 0 presents a problem for Fr+1 only (the other
components have well-defined limits). This is related to the fact that ηz is single-
valued on the unit circle S1; by the theory of residues we then have∫

S1
ηz =

∫
S1

(z0 − ζ)−μ0 · · · (zn − ζ)−μndζ = 2π
√
−1z−μr+1

r+1 · · · z−μn
n .

We therefore replace ηz by η̂z := z
μr+1
r+1 · · · zμn

n ηz and F by F̂ := z
μr+1
r+1 · · · zμn

n F .
This does not change the Schwarz map, of course. Notice however, that now∫

S1 η̂z = 2π
√
−1.

Lemma 1.9. Assume that μ′ is of parabolic type: |μ′| = 1. Define Lauricella data
μ′′ := (μr+1, . . . , μn+1), z′′ := (z−1

r+1, . . . , z
−1
n , 0) and let δ′′ = (δ′′1 , . . . , δ

′′
n−r) be the

image of (δr+2, . . . , δn+1) under the map z 	→ z−1. Then we have

F̂k(zε, δ) =

{
(1 + O(ε))F ′

k(z′, εδ′) when 1 ≤ k ≤ r,
(1 + O(ε))F ′′

k−r−1(z
′′, δ′′) when r + 2 ≤ k ≤ n,
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whereas limε→0 F̂r+1(zε, δ)/ log ε is a nonzero constant.
Moreover, we have

∑r
k=1 Im(wk)F̂k(z, δ) = π.

Proof. The assertion for k ≤ r is immediate from our previous calculation. For
1 ≤ i ≤ n− r − 1 we find

F̂r+1+i(zε, δ)

= w̄r+1+i

∫
δr+1+i

(εz0 − ζ)−μ0 · · · (εzr − ζ)−μr (1− ζ

zr+1
)−μr+1 · · · (1− ζ

zn
)−μndζ

= −w̄′′
i

∫
δ′′

i

(εz0−ζ−1)−μ0 · · · (εzr−ζ−1)−μr (1− 1
ζzr+1

)−μr+1 · · · (1− 1
ζzn

)−μn
dζ

−ζ2

= w̄′′
i

∫
δ′′

i

(1−εz0ζ)−μ0 · · · (1−εzrζ)−μr (
1

zr+1
−ζ)−μr+1 · · · ( 1

zn
−ζ)−μn(−ζ)−μn+1dζ

= (1 + O(ε))F ′′
i (z′′, δ′′).

As to the limiting behavior of F̂r+1, observe that

F̂r+1(zε, δ(ε))

= −
∫

δ(ε)r+1

(εz0 − ζ)−μ0 · · · (εzr − ζ)−μr (1− ζ

zr+1
)−μr+1 · · · (1 − ζ

zn
)−μndζ

=
∫

δr+1(ε)

(ζ − εz0)−μ0 · · · (ζ − εzr)−μr

[
(1− ζ

zr+1
)−μr+1 · · · (1− ζ

zn
)−μn

]
dζ.

In order to understand the behaviour of this integral for ε→ 0, we may ignore the
bracketed factor and continue with∫ 1

εzr

(ζ − εz0)−μ0 · · · (ζ − εzr)−μrdζ =
∫ 1/ε

zr

(ζ − εz0)−μ0 · · · (ζ − εzr)−μrdζ,

where we indicated not the path of integration but only its end points. The last
integral is as a function of ε for large values of ε well approximated by

∫ 1/ε

zr
ζ−1dζ

and hence by − log ε. The claimed limiting behaviour follows from this.
The last assertion follows from the fact that

∫
S1 η̂z = 2π

√
−1 (see the deriva-

tion of Equation (1.4)). �

We can interpret this calculation geometrically as well: it tells us that the
n-tuple (F̂1, . . . , F̂r, exp(−F̂r+1), F̂r+2, . . . , F̂n) defines a (multi-valued) map from
an open subset of BlDr Vn (which contains an open-dense subset of the exceptional
divisor) to Ar−1 × C × Cn−r−1, where Ar−1 ⊂ Cr is the affine space defined by∑r

k=1 Im(wk)uk = 0. On the exceptional divisor we have almost separation of
variables, as it is there given by

([Z1 : · · · : Zr], 0, . . . , 0, zr+1, . . . , zn) 	→
(F ′(Z), 0, F ′′(z−1

r+1, . . . , z
−1
n )) ∈ Ar−1 × C× Cn−r−1. (1.8)
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Our reason for replacing F̂r+1 by exp(−F̂r+1) is that we thus make it single-valued
and holomorphic at the exceptional divisor: the monodromy around this divisor is
obtained by letting by letting z0 = 0, z1, . . . , zr rotate simultaneously and counter
clockwise around the 0 and although this does not affect the integrand, it does
affect the path of integration that defines F̂r+1 and causes F̂r+1 to change by the
constant 2π

√
−1.

The map defined by (F̂1, . . . , F̂r, exp(−F̂r+1), F̂r+2, . . . , F̂n) is constant on
C×-orbits and hence factors through the blowup of P(Dr) in P(Vn). The induced
map on the latter is a local isomorphism.

1.5. Monodromy group and monodromy cover

We begin with making a few remarks about the fundamental group of (Cn+1)◦.
We take [n] = (0, 1, 2, . . . , n) as a base point for (Cn+1)◦ and use the same symbol
for its image in V ◦

n (see Equation (0.1)). The projection (Cn+1)◦ → V ◦
n induces an

isomorphism on fundamental groups: π1((Cn+1)◦, [n]) ∼= π1(V ◦
n , [n]). This group is

known as the pure (also called colored) braid group with n+1 strands ; we denote it
by PBrn+1. Another characterization of PBrn+1 is that as the group of connected
components of the group of diffeomorphisms C→ C that are the identity outside
a compact subset of C and fix each zk.

If α is a path in (Cn+1)◦ from z to z′, and if we are given an L-slit δ for z,
then we can carry that system continuously along when we follow α; we end up
with an L-slit δ′ for z′ and this L-slit will be unique up to isotopy. In this way
PBrn+1 acts on the set of isotopy classes of L-slits. It is not hard to see that this
action is simply transitive: for every ordered pair of isotopy classes of L-slits, there
is a unique element of PBrn+1 which carries the first one onto the second one.

The group PBrn+1 has a set of distinguished elements, called Dehn twists,
defined as follows. The basic Dehn twist is a diffeomorphism of the annulus D1,2 ⊂
C : 1 ≤ |z| ≤ 2; it is defined by re

√−1θ 	→ re
√−1(θ+φ(r)), where φ is a differentiable

function which is zero (resp. 2π) on a neighborhood of 1 (resp. 2) (all such diffeo-
morphisms of D1,2 are isotopic relative to the boundary ∂D1,2). If S is an oriented
surface, and we are given an orientation preserving diffeomorphism h : D1,2 → S,
then the Dehn twist on the image and the identity map on its complement define
a diffeomorphism of S, which is also called a Dehn twist. Its isotopy class only
depends on the isotopy class of the image of the counter clockwise oriented unit
circle (as an oriented submanifold of S). These embedded circles occur here as the
isotopy classes of embedded circles in C−{z1, . . . , zn}. A particular case of interest
is when such a circle encloses precisely two points of {z1, . . . , zn}, say zk and zl.
The isotopy class of such a circle defines (and is defined by) the isotopy class of
an unoriented path in C − {z1, . . . , zn} that connects zk and zl (the boundary of
a regular neighborhood of such a path gives an embedded circle). The element of
the pure braid group associated to this is called simple; if we choose for every pair
0 ≤ k < l ≤ n a simple element, then the resulting collection of simple elements is
known to generate PBrn+1.
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There is a standard way to obtain a covering of V ◦
n on which F is defined as

a single-valued map. Let us recall this in the present case. First notice that if α is
a path in (Cn+1)◦ from z to z′, then analytic continuation along this path gives
rise to an isomorphism of vector spaces ρμ(α) : Lz → Lz′ . This is compatible with
composition: if β is a path in (Cn+1)◦ from z′ to z′′, then ρμ(β)ρμ(α) = ρμ(βα) (we
use the functorial convention for composition of paths: βα means α followed by β).
A loop in (Cn+1)◦ based at [n] defines an element ρμ(α) ∈ GL(L[n]) and we thus get
a representation ρμ of PBrn+1 in L[n]. The image of this monodromy representation
is called the monodromy group (of the Lauricella system with weight system μ);
we shall denote that group by Γμ, or simply by Γ. The monodromy representation
defines a Γ-covering Ṽ ◦

n of V ◦
n on which the Fk’s are single-valued. It is the covering

whose fundamental group is the kernel of the monodromy representation: a point
of Ṽ ◦

n can be represented as a pair (z, α), where α is a path in Cn+1 from [n] to z,
with the understanding that (z′, α′) represents the same point if and only if z− z′

lies on the main diagonal (so that Lz′ = Lz) and ρμ(α) = ρμ(α′). The action of
Γ on Ṽ ◦

n is then given as follows: if g ∈ Γ is represented by the loop αg in Cn+1

from [n], then g.[(z, α)] = [(z, αα−1
g )]. But it is often more useful to represent a

point of Ṽ ◦
n as a pair (z, δ), where δ is an L-slit for z, with the understanding that

(z′, δ′) represents the same point if and only if z − z′ lies on the main diagonal
and Fk(z, δ) = Fk(z′, δ′) for all k = 1, . . . , n. For this description we see right away
that the basic Lauricella functions define a single-valued holomorphic map

F = (F1, . . . Fn) : Ṽ ◦
n → Cn.

Since [(z, δ)] only depends on the isotopy class of δ, the action of Γ is also easily
explicated in terms of the last description. The germ of F at the base point defines
an isomorphism L∗

[n]
∼= Cn: c = (c1, . . . , cn) ∈ Cn defines the linear form on Lz

which sends Fk to ck. If we let Γ act on Cn accordingly (i.e., as the dual of L[n]),
then F becomes Γ-equivariant.

The C×-action on V ◦
n given by scalar multiplication will lift not necessarily

to a C×-action on Ṽ ◦
n , but to one of a (possibly) infinite covering C̃×. For this

action, F is homogeneous of degree 1 − |μ|. Let us denote by P(Ṽ ◦
n ) the C̃×-orbit

space of Ṽ ◦
n .

1.6. Invariant Hermitian forms

Our goal is to prove the following theorem.

Theorem 1.10. If |μ| < 1, then the monodromy group Γ leaves invariant a positive
definite Hermitian form H on Cn.

If |μ| = 1 (the parabolic case), then Γ leaves invariant a positive definite
Hermitian form H on the (linear) translation hyperplane of the affine hyperplane
An−1 in Cn, defined by

∑n
k=1 Im(wk)Fk = 0.
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If 1 < |μ| < 2, then the monodromy group Γ leaves invariant a hyperbolic
Hermitian form H on Cn (i.e., of signature (n − 1, 1)) with the property that
H(F (z̃), F (z̃)) < 0 for all z̃ ∈ Ṽ ◦

n .

Before we begin the proof, let us make the following observation. If W is a
finite dimensional complex vector space, then by definition a point u of P(W ) is
given by a one-dimensional subspace Lp ⊂W . An exercise shows that the complex
tangent space TpP(W ) of P(W ) at p is naturally isomorphic to Hom(Lp,W/Lp).
If we are also given a Hermitian form H on W which is nonzero on Lp, then it
determines a Hermitian form Hp on TpP(W ) ∼= Hom(Lp,W/Lp) as follows: since
H is nonzero on Lp, the H-orthogonal complement L⊥

p maps isomorphically onto
W/Lp. If we choose a generator u ∈ Lp and think of a tangent vector as a linear
map φ : Lp → L⊥

p , then we put Hp(φ, φ′) := |H(u, u)|−1H(φ(u), φ′(u)). This is
clearly independent of the generator u. It is also clear that Hp only depends on
the conformal equivalence class of H : it does not change if we multiply H by a
positive scalar.

If H is positive definite, then so is Hp for every p ∈ P(W ). In this way P(W )
acquires a Hermitian metric, known as the Fubini–Study metric. It is in fact a
Kähler manifold of constant holomorphic curvature 1 on which the unitary group
of (W,H) acts transitively.

There is another case of interest, namely when H has hyperbolic signature:
if we restrict ourselves to the set B(W ) of p ∈ P(W ) for which H is negative
on Lp, then Hp is positive definite as well. This defines a metric on B(W ) which
is invariant under the unitary group of (W,H). If we choose a basis of linear
forms u0, . . . , um on W such that H takes the standard form H(u, u) = −|u0|2 +
|u1|2 + · · · + |um|2, then we see that B(W ) is defined in P(W ) by the inequality
|u1/u0|2 + · · · + |um/u0|2 < 1, which is simply the open unit ball in complex m-
space. We call B(W ) a complex-hyperbolic space and the metric defined above, the
complex-hyperbolic metric. As in the Fubini–Study case, this metric makes B(W )
into a Kähler manifold of constant holomorphic curvature (here equal to −1) on
which the unitary group of (W,H) acts transitively. For m = 1 we recover the
complex unit disk with its Poincaré metric.

Returning to the situation of Theorem 1.10, we see that in all three cases
PF is a local isomorphism mapping to a homogeneous Kähler manifold: when
|μ| < 1, the range is a Fubini–Study space Pn−1 (this notation is a private one: the
subscript is supposed to distinguish it from the metricless projective space Pn−1),
for |μ| = 1 we get a complex affine space with a translation invariant metric
(indeed, denoted here by An−1) and when |μ| > 1 we get a complex ball Bn−1

with its complex-hyperbolic metric. Since these structures are Γ-invariant, we can
state this more poignantly: the weight system μ endows P(V ◦

n ) with a natural
Kähler metric locally isometric with a Fubini–Study metric, a flat metric or a
complex-hyperbolic metric. We will therefore use the corresponding terminology
for the cases |μ| < 1 and 1 < |μ| < 2 and call them the elliptic and hyperbolic case,
respectively. Recall that |mu| = 1 defined the parabolic case, so that we are in the
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elliptic, parabolic or, hyperbolic case, according to whether μn+1 is greater, equal
or smaller than 1.

Theorem 1.10 follows from a more specific result that takes some of prepa-
ration to formulate. We shall associate to the weight system μ a Hermitian form
H on Cn or on the hyperplane An−1 ⊂ Cn defined by

∑n
k=1 Im(wk)Fk = 0 in Cn

(recall that wk := e
√−1π(μ0+···+μk−1)), depending on whether |μ| is integral. We

do this somewhat indirectly. Let H̃ be the Hermitian form on Cn+1 defined by

H̃(F,G) =
∑

1≤j<k≤n+1

Im(wjw̄k)FkḠj .

The H̃-orthogonal complement in Cn+1 of the last basis vector en+1 is the hy-
perplane An ⊂ Cn+1 defined by

∑n
k=1 Im(wk)Fk = 0. Consider the composite

map
pr : An ⊂ Cn+1 = Cn × C→ Cn,

where the second map is a projection. When |μ| �∈ Z, we have Im(wn+1) �= 0
(because wn+1 = eπ

√−1|μ|) and so pr is an isomorphism; we then let H then be
the restriction of H̃ to An transfered to Cn via this isomorphism.

If |μ| ∈ Z, then Im(wn+1) = 0 and hence ker(pr) = Cen+1 and Im(pr) =
An−1 ⊂ Cn. Since en+1 is H̃-isotropic, we thus obtain an induced a Hermitian
form on An−1. The following proposition implies Theorem 1.10.

Proposition 1.11. For all weight systems μ, the form H is Γ-invariant. For 0 <
|μ| ≤ 1, the form H is positive definite. For 1 < |μ| < 2, H is of hyperbolic
signature and we have H(F (z, δ), F (z, δ)) = N(z), where

N(z) = −
√
−1
2

∫
C

ηz ∧ η̄z = −
∫

C

|z0 − ζ|−2μ0 · · · |zn − ζ|−2μnd(area).

Proof. The assertions about the signature of H involve a linear algebra calculation
that we leave to the reader (who may consult [7]). We treat the hyperbolic case
first, so assume 1 < |μ| < 2. First notice that the integral defining N(z) converges
(here we use that |μ| > 1) and takes is real and negative. We claim that

N(z) =
∑

1≤j<k≤n+1

wjw̄kF̄j(z, δ)Fk(z, δ). (1.9)

To see this, let us integrate ηz, using the branch defined by δ: Φz(ζ) :=
∫ ζ

z0
ηz ,

where the path of integration is not allowed to cross supp(δ). We have dΦz = ηz

outside supp(δ) and by Stokes theorem

N(z) = −
√
−1
2

∫
C

ηz∧η̄z =
√
−1
2

∫
C

d(Φ̄zηz) =
√
−1
2

n+1∑
k=1

(∫
δk

Φ̄zηz −
∫

δ−
k

Φ̄zηz

)
.

As to the last terms, we observe that on δk we have Φz(ζ) =
∑

j<k wjFj +
∫ ζ

zk−1
ηz

(we abbreviate Fj(z, δ) by Fj), where the last integral is taken over a subarc of
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δk. Likewise, on δ−k : (Φz |δ−k )(ζ) =
∑

j<k w̄jFj +
∫ ζ

zk−1
w̄2

kηz. Hence on δk we have

Φ̄zηz−(Φ̄zηz |δ−k ) =
∑
j<k

(
w̄j F̄j +

∫ ζ

zk−1

η̄z

)
ηz−

∑
j<k

(
wjF̄j +

∫ ζ

zk−1

w2
kη̄z

)
w̄2

kηz

=
∑
j<k

(
w̄j − wjw̄

2
k

)
F̄jηz =

∑
j<k

(w̄jwk − wjw̄k) F̄jw̄kηz ,

which after integration over δk yields∫
δk

Φ̄zηz −
∫

δ−
k

Φ̄zηz =
∑
j<k

(w̄jwk − wjw̄k) F̄jFk =
2√
−1

∑
j<k

Im(wjw̄k)F̄jFk.

Our claim follows if we substitute this identity in the formula for N above.
We continue the proof. The claim implies that H(F (z, δ), F (z, δ)) = N(z).

The function N is obviously Γ-invariant (it does not involve δ). Since N determines
H , so is H . So this settles the hyperbolic case.

For the elliptic and parabolic cases we may verify by hand that it is invariant
under a generating set of monodromy transformations, but a computation free
argument, based on analytic continuation as in [7], is perhaps more satisfying. It
runs as follows: if we choose a finite set of generators α1, . . . , αN of PBrn+1, then
for every weight system μ we have a projective linear transformation Pρμ(αi) of
Pn−1 that depends in a real-analytic manner on μ. The Hermitian forms hμ defined
on an open subset of the tangent bundle of Pn−1 also depend real-analytically on
μ; so if hμ is preserved by the Pρμ(αi)’s for a nonempty open subset of μ’s, then
it is preserved for all weight systems for which this makes sense. Hence Pρμ(αi)
multiplies H by a scalar. For 1 < |μ| < 2 this scalar is constant 1. Another analytic
continuation argument implies that it is 1 for all μ. �

1.7. Cohomological interpretation via local systems of rank one

We sketch a setting in terms of which the Hermitian form H is best understood. It
will not play a role in what follows (hence may be skipped), although it will reap-
pear in a more conventional context (and formally independent of this discussion)
in Section 4. The reader should consult § 2 of [8] for a more thorough treatment.

Fix complex numbers α0, . . . , αn in C×. Let L be a local system of rank one
on U := C − {z0, . . . , zn} = P1 − {z0, . . . , zn+1} such that the (counterclockwise)
monodromy around zk is multiplication by αk. It is unique up to isomorphism.
We fix a nonzero multivalued section e of L by choosing a nonzero section of L
on some left half plane and then extend that section to the universal cover of
U (defined by that left half plane). Denote by L := OU ⊗C L the underlying
holomorphic line bundle. So if μk ∈ C is such that exp(2πμk

√
−1) = αk, then

s(ζ) :=
∏n

k=1(zk − ζ)−μk ⊗ e can be understood as a generating section of L.
Likewise, sdζ is a generating section of Ω(L) = ΩU ⊗C L. Notice that L comes
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with a connection ∇ : L → Ω(L) characterized by

∇(s) =

(
n∑

k=0

μk

zk − ζ

)
sdζ

and that L is recovered from the pair (L,∇) as the kernel of ∇.
The topological Euler characteristic of a rank one local system on a space

homotopy equivalent to a finite cell complex is independent of that local system and
hence equal to the topological Euler characteristic of that space. So the topological
Euler characteristic of L is −n. Now assume that αk �= 1 for all k. This ensures
that L has no nonzero section. As there is no cohomology in degrees �= 0, 1, this
implies that dimH1(L) = n. Moreover, if j : U ⊂ P1 is the inclusion, then the
stalk of j∗L in zk is represented by the sections of L on a punctured neighborhood
of zk, hence is zero unless k = n + 1 and α0 · · ·αn = 1: then it is nonzero. So the
map of complexes u : j!L → j∗L has cokernel a one-dimensional skyscraper sheaf
at ∞ or is an isomorphism. This implies that for the natural map

H1(u) : H1
c (L)→ H1(L)

dimKer(H1(u)) = dim Coker(H1(u)) is 1 or 0, depending on whether or not
α0 · · ·αn = 1. It is customary to denote the image of H1(u) by IH1(L).

A relative arc α plus a section of L∨ over its relative interior defines a relative
cycle of (P1, {z0, . . . , zn+1}) with values in L∨ and hence an element [α] of the
relative homology space H1(P1, {z0, . . . , zn+1}; L∨). Alexander duality identifies
the latter cohomology space with the dual of H1(L). To make the connection
with the preceding section, let us identify η with sdζ (we need not assume here
that μk ∈ (0, 1)), so that we have a De Rham class [η] ∈ H1(L). If we are given
an L-slit δ and choose the determination of e on δk prescribed by the slit, then
{w̄k[δk]}nk=1 is a basis of H1(P1, {z0, . . . , zn+1}; L∨) and the value of [η] on w̄k[δk]
is just Fk(z, δ).

We have a perfect (Poincaré) duality H1
c (L) ×H1(L∨)→ C, which, if coho-

mology is represented by means of forms, is given by integration over U of the cup
product. Suppose now in addition that |αk| = 1 for all k. This implies that L carries
a flat metric; we choose this metric to be the one for which e has unit length. The
metric may be viewed as a C-linear isomorphism of sheaves L→ L∨ (here L stands
for the local system L with its complex conjugate complex structure) so that our
perfect duality becomes a bilinear map H1

c (L) × H1(L) → C. We multiply that
map by 1

2

√
−1 and denote the resulting sesquilinear map h : H1

c (L)×H1(L)→ C.
Then h is Hermitian in the sense that if α, β ∈ H1

c (L), then h(α, i∗β) = h(β, i∗α),
in particular, it induces a nondegenerate Hermitian form on IH1(L). This is just
minus the form we defined in Subsection 1.6. If we take μk ∈ (0, 1) for k = 0, . . . , n
and assume 1 < |μ| < 2 (so that μn+1 ∈ (0, 1) also and u is an isomorphism), then
h([η], [η]) equals 1

2

√
−1
∫

C
η∧η̄ indeed and hence equals−N(z) = −H(F (z), F (z)).
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2. Discreteness of monodromy and orbifolds

2.1. Monodromy defined by a simple Dehn twist

Fix a simple arc γ0 in (C, {z0, . . . , zn}) which connects zk with zl, k �= l. This
defines a Dehn twist D(γ0) and hence an element T of PBrn+1. We determine the
action of T on Cn. For this we need to make ηz single-valued. For this purpose it is
convenient to have also given a (closed) disk-like neighborhood B of γ0 in C which
does not contain any of the zi , i �= k, l and a straight piece of arc γ1 connecting zl

with a boundary point p1 ∈ B such that γ0γ1 is a simple arc whose complement
in B is simply connected. In other words, γ0γ1 defines a slit for ηz in B. Choose
any branch for ηz on this complement. Let us abbreviate uk := e2π

√−1μk and
ul := e2π

√−1μl . Then the value of ηz on γ0 (resp. γ1) when approached from the
right is ūk (resp. ūkūl) times the value that we get when we approach it from the
left. We may assume that the Dehn twist has support in the interior of B.

γ0
γ1

...........
.........
.........
.........
.........
..........
γ

B

............
...........
...........
...........
...........
...........

...................................................................

γ′

γ′′
�

zk
�
zl

� �

.......... ..................................................................................................................................................................................................................... ......... .......... ........... .................... ................. ............... ............ ................ .............. ............ .......... ........ ............

......

T (γ′)

B and its slit Effect of the Dehn twist T on γ′

There is essentially one way in which an arc can enter B and end up in zk

while avoiding the slit before hitting its destination: the final stretch is just a
simple arc γ from a point of ∂B to zk. For an arc ending in zl, there are two such:
one stays at the left and the other stays at the right of the slit. Let γ′ and γ′′ be
such arcs. Then one sees that∫

T (γ)

ηz =
∫

γ

ηz + (ūk − ūkūl)
∫

γ0

ηz ,∫
T (γ′)

ηz =
∫

γ′
ηz + (−1 + ūk)

∫
γ0

ηz,∫
T (γ′′)

ηz =
∫

γ′′
ηz + (−ukul + ul)

∫
γ0

ηz .

(2.1)

These formulae cover the general case by taking linear combinations of composites
of such arcs. For instance, γ0 itself is isotopic to a difference of an arc of the second
type and an arc of the first type and therefore∫

T (γ0)

ηz =
∫

γ0

ηz + ((−1 + ūk)− (ūk − ūkūl))
∫

γ0

ηz = ūkūl

∫
γ0

ηz .
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Another example is an arc γ̃ which simply crosses γ0. This arc is isotopic to the
difference of an arc of the third type and an arc of the second type and so∫

T (γ̃)

ηz =
∫

γ̃

ηz + (−(−ukul + ul)− (−1 + ūk))
∫

γ0

ηz

=
∫

γ̃

ηz + (ukul − 1)(ūk − 1)
∫

γ0

ηz .

Recall that μk, μl ∈ (0, 1), so that uk �= 1 �= ul and μk +μl ∈ (0, 2). By a com-
plex reflection we mean here a semisimple transformation which fixes a hyperplane
pointwise. One now easily deduces from the monodromy formulae (2.1):

Corollary 2.1. If μk +μl �= 1, then T acts in Cn semisimply as a complex reflection
over an angle e2π

√−1(μk+μl). If μk + μl = 1, then T acts in Cn as a nontrivial
unipotent transformation. In particular, T acts with finite order if and only if
μk + μl is a rational number �= 1.

In the elliptic and hyperbolic cases, T will be an orthogonal reflection with
respect the Hermitian form H ; in the parabolic case, it will be restrict to An−1 as
an orthogonal affine reflection.

The Dehn twist T has a natural square root
√
T which has the effect of

interchanging zk and zl. It preserves ηz up to a scalar factor if μk = μl, and in
that case a similar discussion shows:∫

√
T (γ)

ηz =
∫

γ

ηz + ūk

∫
γ0

ηz ,∫
√

T (γ′)
ηz =

∫
γ′
ηz −

∫
γ0

ηz,

∫
√

T (γ′′)
ηz =

∫
γ′′

ηz − u2
k

∫
γ0

ηz .

(2.2)

Corollary 2.2. If μk = μl ��= 1
2 , then

√
T acts in Cn semisimply as a complex

reflection over an angle e2π
√−1μk . If μk = μl = 1

2 , then
√
T acts in Cn as a

nontrivial unipotent transformation. In particular,
√
T acts with finite order if

and only if μk = μl is a rational number �= 1
2 .

2.2. Extension of the evaluation map

The Γ-covering Ṽ ◦
n → V ◦

n can sometimes be extended as a ramified Γ-covering
over a bigger open subset V f

n ⊃ V ◦
n of Vn (the superscript f stands for f inite

ramification; we may write V
f(μ)
n instead of V f

n if such precision is required). This

means that we find a normal analytic variety Ṽ f
n which contains Ṽ ◦

n as an open-
dense subset and to which the Γ-action extends such that the Γ-orbit space can
be identified with V f

n . This involves a standard tool in analytic geometry that
presumably goes back to Riemann and now falls under the heading of normal-
ization. It goes like this. If v ∈ Vn has a connected neighborhood Uv in Vn such
that one (hence every) connected component of its preimage in Ṽ ◦

n is finite over
Uv ∩ V ◦

n , then the Γ-covering over Uv ∩ V ◦
n extends to a ramified Γ-covering over

Uv. The property imposed on Uv is equivalent to having finite monodromy over
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Uv ∩ V ◦
n . The extension is unique and so if V f

n denotes the set of v ∈ Vn with this

property, then a ramified Γ-covering Ṽ f
n → V f

n exists as asserted. The composite

map Ṽ f
n → V f

n → Vn is often called the normalization of Vn in Ṽ ◦
n , because this is

the geometric counterpart of taking integral closure of a ring in finite extension of
that ring, at least when the maps involved have finite degree. The naturality of the
construction also ensures that the C̃×-action on Ṽ ◦

n (which covers the C×-action

on V ◦
n ) extends to Ṽ f

n .
The space Vn receives a natural stratification from the stratification of Cn+1

by its diagonals and since the topology of V f
n along strata does not change, V f

n is
a union of strata that is open in Vn. The codimension one strata are of the form
Dk,l, 0 ≤ k < l ≤ n, parameterizing the z for which zk = zl, but no other equality
among its components holds.

Lemma 2.3. The stratum Dk,l lies in V f
n if and only if μk +μl is a rational number

�= 1. The Schwarz map extends over the preimage of P(Dk,l)) holomorphically if
and only if μk + μl < 1 and it does so as a local isomorphism if and only if
1−μk−μl is the reciprocal of a positive integer. If |μ| �= 1, then the corresponding
assertions also hold for the Lauricella map.

Proof. In order that Dk,l ⊂ V f
n , it is necessary and sufficient that we have fi-

nite monodromy along a simple loop around Dk,l. This monodromy is the image
of a Dehn twist along a circle separating zk and zl from the other elements of
{z0, . . . , zn}. So the first assertion follows from Corollary 2.1.

If γ0 connects zk with zl within the circle specified above, then
∫

γ0
ηz =

(zk − zl)1−μk−μl exp(holom). This is essentially a consequence of the identity∫ ε

0

t−μk(t− ε)−μldt = ε1−μk−μl

∫ 1

0

t−μk(t− 1)−μldt.

Suppose now that μk + μl ∈ Q − {1} and write 1 − μk − μl = p/q with p, q
relatively prime integers with q > 0. So the order of the monodromy is q and
over the preimage of a point of Dk,l, we have a coordinate z̃k,l with the property
that zk − zl pulls back to z̃q

k,l. Hence
∫

γ0
ηz pulls back to z̃p

k,l. In order that the
Schwarz map extends over the preimage of Dk,l holomorphically (resp. as a local
isomorphism), a necessary condition is that the Lauricella function

∫
γ0

ηz (which
after all may be taken as part of a basis of Lauricella functions) is holomorphic
(resp. has a nonzero derivative everywhere). This means that p > 0 (resp. p = 1).
It is not hard to verify that this is also sufficient. �

2.3. The elliptic and parabolic cases

Here the main result is:

Theorem 2.4 (Elliptic case). Suppose that |μ| < 1 and that for all 0 ≤ k < l ≤ n,
1−μk−μl is the reciprocal of an integer. Then Γ is a finite complex reflection group
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in GL(n,C) (so that in particular V f
n = Vn) and F : Ṽn → Cn is a Γ-equivariant

isomorphism which descends to an isomorphism Vn → Γ\Cn.

So P(Vn) acquires in these cases the structure of an orbifold modeled on
Fubini–Study space. We remark that the hypotheses of this theorem are quite
strong: only very few weight functions μ satisfy its hypotheses. At the same time
we prove a proposition that will be also useful later. Observe that a stratum of
Vn is given by a partition of {0, . . . , n}: for z in this stratum we have zk = zl

if and only if k and l belong to the same part. Let us say that this stratum is
stable relative to μ if its associated partition has the property that every part has
μ-weight < 1. We denote by V st

n ⊂ Vn (or V
st(μ)
n ⊂ Vn) the union of stable strata.

Proposition 2.5. Suppose that whenever 0 ≤ k < l ≤ n are such that μk + μl < 1,
then 1−μk−μl is the reciprocal of an integer. Then V st

n ⊂ V f
n and Ṽ st

n is a complex
manifold. The Lauricella admits a holomorphic extension over this manifold which
has the same regularity properties as the map it extends: it is a local isomorphism
when we are not in the parabolic case, whereas in the parabolic case, the Schwarz
map defines a local isomorphism to An−1.

We shall need:

Lemma 2.6. Let f : X → Y be a local diffeomorphism from a manifold to a con-
nected Riemannian manifold. Assume that X is complete for the induced metric.
Then f is a covering map.

Proof. We use the theorem of Hopf–Rinow which says that completeness is equiv-
alent to the property that every geodesic extends indefinitely as a geodesic. Let
y ∈ Y . Choose ε > 0 such that the closed ε-ball B̄(y, ε) is geodesically convex
(i.e., any points of B̄(y, ε) are joined by a unique geodesic in B̄(y, ε)) and is the
diffeomorphic image of the closed ε-ball in TyY under the exponential map. It is
enough to show that for every x ∈ f−1B̄(y, ε), the connected component Cx of x
in f−1B̄(y, ε) is mapped by f diffeomorphically onto B̄(y, ε). Since X is complete,
so is Cx. The geodesic convexity of B̄(y, ε) is then easily shown to imply the same
property for Cx. It follows that Cx maps diffeomorphically onto B̄(y, ε). �

We now begin the proofs of Theorem 2.4 and Proposition 2.5. Let us write
Ak for the assertion of Theorem 2.4 for k + 1 points and Bk for the assertion of
Proposition 2.5 for elliptic strata of codimension ≤ k. Let us observe that B1 holds:
an elliptic stratum of codimension one is a stratum of the form Dk,l satisfying the
hypotheses of Lemma 2.3. We now continue with induction following the scheme
below.

Proof that Ak implies Bk. Consider a stratum of codimension k. Let us first as-
sume that it is irreducible in the sense that it is given by a single part. Without loss
of generality we may then assume that it is open-dense in the locus z0 = · · · = zk.
This is the situation we studied in Subsection 1.4 (mainly for this reason, as we
can now confess). We found that F extends as a multivalued map defined on an
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open subset of the blowup BlDk
Vn going to the blowup Bl0×Cn−k Cn. On the ex-

ceptional divisor, F is the product of the Schwarz map for μ′ = (μ0, . . . , μk) and
the Lauricella map for (|μ′|, μk+1, . . . , μn). Our hypothesis Ak then implies that
the projectivized monodromy near a point of the stratum is finite. Equation (1.6)
shows that in the transversal direction (the ε coordinate) the multivaluedness is
like that of (ε)1−|μ′|. Since μi + μj ∈ Q for all 0 ≤ i < j ≤ k and the sum of these
numbers is k|μ′|, it follows that |μ′| ∈ Q. So we also have finite order monodromy
along the exceptional divisor. This implies that we have finite local monodromy at
a point of the stratum: the stratum lies in V f . With this in mind, we now see from
Equation (1.6) that we proved slightly more, namely that this local monodromy
group is the one associated to the Lauricella system of type μ′. So we may invoke
Ak to conclude that Ṽ st

n is in fact smooth over this stratum.
In the general case, with a stratum corresponding to several clusters forming,

we have topologically a product situation: the local monodromy group near a point
of that stratum decomposes as a product with each factor corresponding to a
cluster being formed. It is clear that if each cluster is of elliptic type, then so is
the stratum. Its preimage in Ṽ st

n will be smooth.
The asserted regularity properties of this extension of the Lauricella map

hold on codimension one strata by Lemma 2.3. But then they hold everywhere,
because the locus where a holomorphic map between complex manifolds of the
same dimension fails to be a local isomorphism is of codimension ≤ 1. �

Proof that Bk−1 implies Ak. Since Bk−1 holds, it follows that V f
k contains Vk −

{0}. Thus PF : P(Ṽk) → Pk−1 is defined. The latter is a Γ-equivariant local
isomorphism with Γ acting on P(Ṽk) with compact fundamental domain (for its
orbit space is the compact P(Vk)) and on the range as a group of isometries. This
implies that P(Ṽk) is complete. According to Lemma 2.6, PF is then a covering

projection. Hence so is F : Ṽk−{0} → Ck − {0}. Since the domain of the latter
is connected and the range is simply connected, this map is an isomorphism. In
particular, P(Ṽk) is compact, so that the covering P(Ṽk) → P(Vk) is finite. This
means that the projectivization of Γ is finite. On the other hand, the C×-action
on Vk − {0} needs a finite cover (of degree equal to the denominator of 1 − |μ|)
to lift to Ṽk−{0}. This implies that Γ is finite, so that V f

k = Vk. It is now clear
that F : Ṽk → Ck is an isomorphism. It is Γ-equivariant and descends to an
isomorphism Vk → Γ\Ck of affine varieties. �

In the parabolic case P(Vn) acquires the structure of an orbifold modeled on
flat space:

Proposition 2.7 (Parabolic case). Suppose that |μ| = 1 and that for all 0 ≤ k <
l ≤ n, 1 − μk − μl is the reciprocal of an integer. Then Γ acts as a complex
Bieberbach group in An−1, V f

n = Vn − {0} and PF : P(Ṽn) → An−1 is a Γ-
equivariant isomorphism which descends to an isomorphism P(Vn)→ Γ\An−1.
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Proof. It follows from Proposition 2.5 that V f
n contains Vn − {0} so that PF :

P(Ṽn) → An−1 is defined. The latter is a Γ-equivariant local isomorphism with
Γ acting on the P(Ṽn) with compact fundamental domain and on the range as a
group of isometries. Hence P(Ṽn) is complete. It follows from Lemma 2.6 that PF
is a Γ-equivariant isomorphism. It also follows that Γ acts on An−1 discretely with
compact fundamental domain. This group is generated by complex reflections, in
particular it is a complex Bieberbach group. Clearly, PF induces an isomorphism
P(Vn) ∼= Γ\An−1. �

We have also partial converses of Theorem 2.4 and Proposition 2.7. They will
be consequences of

Lemma 2.8. The Lauricella map extends holomorphically over any stable stratum
contained in V f

n .

Proof. Let S ⊂ {0, . . . , n} be such that
∑

k∈S μk < 1 and assume that the stratum
DS that is open dense in the diagonal defined by S is contained in V f

n . For 0 ≤
k < l ≤ n in S, we have μk + μl ≤ |μ| < 1 and so the associated monodromy
transformation T is according to Corollary 2.1 a reflection over an angle 2π(μk+μl).
Since DS ⊂ V f

n , we must have μk +μl ∈ Q. Lemma 2.3 tells us that F then extends
holomorphically over the preimage of Dk,l. The usual codimension argument then
shows that this is also the case over the preimage of DS. �
Proposition 2.9. If |μ| < 1 and Γ is finite, then the Lauricella map descends to a
finite map Vn → Γ\Cn.

If |μ| = 1, n > 1 and Γ acts on the complex Euclidean space An−1 as a
complex Bieberbach group, then V f

n = Vn and the Schwarz map descends to a
finite map P(Vn)→ Γ\An−1.

Proof. In the elliptic case, it follows from Lemma 2.8 that the map F descends
to a map Vn → Γ\Cn which exists in the complex-analytic category. The map in
question is homogeneous (relative to the natural C×-actions) and the preimage
of 0 is 0. Hence it must be a finite morphism. In the parabolic case, the lemma
implies that the Schwarz map determines a map P(Vn) → Γ\An−1 which lives
in the complex-analytic category. This map will be finite, because its fibers are
discrete and its domain is compact. �

3. The hyperbolic case

Throughout this section we always suppose that 1 < |μ| < 2.

3.1. A projective set-up

An important difference with the elliptic and the parabolic cases is that zn+1 =∞
is now of the same nature as the finite singular points, since we have μn+1 =
2−|μ| ∈ (0, 1). This tells us that we should treat all the points z0, . . . , zn+1 on the
same footing. In more precise terms, instead of taking zn+1 = ∞ and study the
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transformation behavior of the Lauricella integrals under the affine group C× � C
of C, we should let z0, . . . , zn+1 be distinct, but otherwise arbitrary points of P1

and let PGL(2,C) play the role of the affine group. This means in practice that
we will sometimes allow some finite zk to coalesce with zn+1 (that is, to fly off to
infinity). For this we proceed as follows. Let Z0, . . . , Zn+1 be nonzero linear forms
on C2 defining distinct points z0, . . . , zn+1 of P1. Consider the multivalued 2-form
on C2 defined by

Z0(ζ)−μ0 · · ·Zn+1(ζ)−μn+1dζ0 ∧ dζ1.

Let us see how this transforms under the group GL(2,C). The subgroup SL(2,C)
leaves dζ0 ∧ dζ1 invariant, and so the above form transforms under SL(2,C) via
the latter’s diagonal action on the (C2)n+2 (the space that contains Z = (Z0, . . . ,
Zn+1)). The subgroup of scalars, C× ⊂ GL(2,C) leaves the 2-form invariant, as∑n+1

k=0 = 2. So the form has a pole of order one along the projective line P1

at infinity. We denote the residue of that form on P1 by ηZ . It is now clear,
that a Lauricella function

∫
γ
ηZ will be GL(2,C)-invariant. Since the 2-form (and

hence ηZ) is homogeneous of degree −μk in Zk, it follows that the quotient of two
Lauricella functions will only depend on the GL(2,C)-orbit of (z0, . . . , zn+1).

Let Q◦
μ denote the SL(2,C)-orbit space of the subset of (P1)n+2 parameteriz-

ing distinct (n+2)-tuples in P1. This is in a natural way a smooth algebraic variety
which can be identified with P(V ◦

n ) (every orbit is represented by an (n+ 2)-tuple
of which the last point is ∞). So we have a Γ-covering Q̃◦

μ → Q◦
μ and a local

isomorphism PF : Q̃◦
μ → Bn−1. Thus far our treatment of zn+1 as one of the other

zi’s has not accomplished anything, but it will matter when we seek to extend it
as a ramified covering.

We say that z = (z0, . . . , zn+1) ∈ (P1)n+2 is μ-stable (resp. μ-semistable)
if the R-divisor Div(z) :=

∑n+1
k=0 μk(zk) has no point of weight ≥ 1 (resp. > 1).

Let us denote the corresponding (Zariski open) subsets of (P1)n+2 by U st
μ resp.

U sst
μ . Notice that when z is μ-stable, the support of

∑n+1
k=0 μk(zk) has at least

three points. This implies that the SL(2,C)-orbit space (denoted Qst
μ ) of U st

μ is
in a natural manner a nonsingular algebraic variety: given a μ-stable point z, we
can always pick three pairwise distinct components for use as an affine coordinate
for P1. By means of this coordinate we get a nonempty Zariski-open subset in
(P1)n−1 which maps bijectively to an open subset of Qst

μ . These bijections define
an atlas for the claimed structure. In the strictly semistable case, we can choose a
coordinate for P1 such that∞ has weight 1 and the weighted sum of the remaining
points is 0; using the C×-action on P1 with 0 and∞ as fixed points we see that this
divisor has in its closure the divisor (0) + (∞). Geometric Invariant Theory tells
us that the stable orbits and the minimal strictly semistable orbits are the points
of a projective variety (at least when the μk’s are all rational): Qst

μ is compactified
to a normal projective variety by adding just finitely many points: one for each
orbit containing a point whose associated divisor is (0) + (∞) or equivalently, one
for each splitting of {0, . . . , n+1} into two subsets, each of which of total μ-weight
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1. (So if no such splitting exists, then Qst
μ is already a projective variety.) Let us

denote that projective compactification by Qsst
μ .

Theorem 3.1. Assume that for every pair 0 ≤ k < l ≤ n + 1 for which μk +
μl < 1, 1 − μk − μl is the reciprocal of an integer. Then the monodromy covering
Q̃◦

μ → Q◦
μ extends to a ramified covering Q̃st

μ → Qst
μ and F extends to a Γ-

equivariant isomorphism Q̃st
μ → Bn−1. Moreover Γ acts in Bm discretely and with

finite covolume; this action is with compact fundamental domain if and only if no
subsequence of μ has weight 1.

Remarks 3.2. Our hypotheses imply that the μk’s are all rational so that the GIT
compactification Qsst

μ makes sense. The compactification of Γ\Bn−1 that results by
Γ\Bn−1

∼= Qst
μ ⊂ Qsst

μ coincides with the Baily–Borel compactification of Γ\Bn−1.
The cohomology and intersection homology of the variety Qsst

μ has been in-
vestigated by Kirwan–Lee–Weintraub [11].

Before we begin the proof of Theorem 3.1 we need to know a bit about the
behavior of the complex hyperbolic metric on a complex ball near a cusp. Let
W be a finite dimensional complex vector space equipped with a nondegenerate
Hermitian form H of hyperbolic signature so that H(w,w) > 0 defines a complex
ball B(W ) ⊂ P(W ). Let e ∈W be a nonzero isotropic vector. Since its orthogonal
complement is negative semidefinite, every positive definite line will meet the affine
hyperplane in W defined by H(w, e) = −1. In this way we find an open subset Ω
in this hyperplane which maps isomorphically onto B(W ). This is what is called a
realization of B(W ) as a Siegel domain of the second kind.

Lemma 3.3. This subset Ω of the affine space H(w, e) = −1 is invariant under
the half group of translations over τe with Re(τ) ≥ 0. If K ⊂ Ω is compact and
measurable, then K +

√
−1R≥0e is as a subset of Ω complete and of finite volume.

More precisely, if Ko is a compact ball in a hyperplane section of Ω that is not
parallel to e and S(R) ⊂ C is the set of τ ∈ C with Re(τ) ≥ 0, | Im(τ)| ≤ R, then

(w, τ) ∈ Ko × S(R) 	→ w + τe0 ∈ Ω

is an embedding and the pull-back of the complex hyperbolic metric of Ω is for
Re(τ) ≥ 1 comparable to the ‘warped’ metric (Re τ)−1(gΩ|Ko) + (Re τ)−2|dτ |2.
In particular, the pull-back of the volume element of Ω is there comparable to
Re(τ)− dim ΩdvolKodvolC.

Proof. This well-known result is straightforward to verify. We first check the in-
variance of Ω under the half group. Let e1 ∈ W be another isotropic vector such
that H(e, e1) = 1, and denote by U the orthogonal complement of the span of
e, e1. So if we write ω = we +w1e1 + u with u ∈ U , then Ω is defined by w1 = −1
and Re(w) > 1

2H(w′, w′). This shows in particular that Ω is invariant under trans-
lation by τe, when Re(τ) ≥ 0. The other assertions follow easily from an explicit
description of the metric on Ω in terms of the coordinates (w, z): a calculation
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shows that it is on Ω at (wo, uo) given by

|dw −H(du, uo)|2
(Rewo − 1

2H(uo, uo))2
+ c

H(du, du)
Rewo − 1

2H(uo, uo)

for some positive constant c (which we did not bother to work out). �
It follows from Proposition 2.5 that Qst

μ ⊂ Qf
μ and that the Schwarz map

PF : Q̃st
μ → Bn−1 is a local isomorphism. So Qst

μ inherits a metric from Bn−1. We
need to show that Qst

μ is complete and has finite volume. The crucial step toward
this is:

Lemma 3.4. Let 0 < r < n be such that μ0 + · · ·+μr = 1. Denote by D◦ the set of
(z0, . . . , zn) ∈ Cn+1 satisfying z0 = 0 < |z1| < · · · < |zr| ≤ 1

2 , zr+1 = 1 < |zr+2| <
· · · < |zn|. Then D◦ embeds in Q◦

μ and its closure D in Qst
μ is complete and of

finite volume.

Proof. First notice that D◦ is contained in the affine space defined by z0 = 0,
zr+1 = 1. This affine space embeds in P(Vn) with image the complement of the
hyperplane defined by Z0 = Zr+1. It is clear that under this embedding, D◦ lands
in Q◦

μ. Let D′ ⊂ D◦ be the open-dense subset of z ∈ D◦ for which none of zk,
k = 1, . . . , n is real ≤ 0. This subset of D◦ is simply connected and there is a
natural isotopy class of L-slits δ for every z ∈ D′ characterized by the property
that δk never crosses the negative real axis and |δk| is monotonous. This defines a
lift D̃′ of D′ to Q̃st

μ . We denote its closure by D̃ so that is defined F : D̃ → Cn.
Notice that the image of D̃ in Qst

μ equals D.
Let D′

o the part of D′ for which zr = 1
2 . It is easy to see that D′

o has compact
closure in Qst

μ and so the closure of its preimage in D̃ (which we shall denote by
D̃o) is compact as well. We parametrize D̃ by D̃o×S(π) with the help of the map
introduced in Equation (1.5):

Φ : (z̃, τ) ∈ D̃o × S(π) 	→ (e−τ z̃0, . . . , e
−τ z̃r, z̃r+1, . . . , z̃n),

where we recall that S(π) is the set of τ ∈ C with Re τ ≥ 0 and | Im τ | ≤ π.
Since μ0 + · · ·+ μr = 1, Lemma 1.9 applies here. As in that lemma, we put F̂ :=
z
−μr+1
r+1 · · · z−μn

n F . According to that lemma we have
∑r

k=1 Im(wk)F̂k(z) = 0. This
amounts to saying that H(F̂ , er+1) = −π, where er+1 denotes the (r + 1)-st basis
vector of Cn. (For H(F,G) =

∑
1≤j<k≤n+1 Im(wjw̄k)ḠjFk and so H(er+1, G) =∑

1≤j≤r Im(wj)Ḡj .) We also notice that H(er+1, er+1) = 0. So F̂ maps to the
Siegel domain Ω defined in Lemma 3.4 if we take e := π−1er+1. From Lemma 1.9
we see that the coordinates F̂kΦ stay bounded for all k �= r + 1. Since F̂k is holo-
morphic, the same is true for its derivatives. On the other hand, τ−1F̂r+1Φ(z, τ)
has a limit for Re(τ)→∞. From Lemma 3.4 we then learn that the image of F̂Φ is
complete and that the volume element of Ω pulled back by ΦF̂ is comparable with
Re(τ)1−n times the volume element of a Euclidean product volume element on
D̃o × S(π). These properties imply that D is complete and has finite volume. �
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Proof of Theorem 3.1. The GIT compactificationQsst
μ ofQst

μ adds a point for every
permutation σ of {0, . . . , n} for which μσ(0) + · · ·+ μσ(r) = 1 for some 0 < r < n.
If σ is such a permutation, then we have defined an open subset Dσ ⊂ Q◦

μ as in
Lemma 3.4 and according to that Lemma, the closure of Dσ in Qst

μ is complete and
of finite volume. The complement in Qst

μ of the union of these closures is easily
seen to be compact. Hence Qst

μ is complete and of finite volume. The theorem
now follows from Lemma 2.6 (bearing in mind that Qsst

μ = Qst
μ if and only if no

subsequence of μ has weight 1). �
3.2. Extending the range of applicability

We begin with stating a partial converse to Theorem 3.1, the hyperbolic counter-
part of Proposition 2.9:

Proposition 3.5. Suppose that 1 < |μ| < 2, n > 1 and Γ acts on Bn−1 as a
discrete group. Then Γ has finite covolume and the Schwarz map descends to a
finite morphism Qst

μ → Γ\Bn−1.

Proof. It follows from Lemma 2.8 that the Schwarz map is defined over Qst
μ and

hence descends to a map Qst
μ → Γ\Bn−1. It follows from Lemma 3.4 (by arguing

as in the proof of Theorem 3.1) that Qst
μ is complete as a metric orbifold and of

finite volume. This implies that Qst
μ → Γ\Bn−1 is a finite morphism. �

This immediately raises the question which weight systems μ satisfy the hy-
potheses of Proposition 3.5. The first step toward the answer was taken by Mostow
himself [12], who observed that if some of the weights μk coincide, then the con-
ditions of Theorem 2.4, Proposition 2.7 and Theorem 3.1 may be relaxed, while
still ensuring that Γ is a discrete subgroup of the relevant Lie group. The idea
is this: if Sμ denotes the group of permutations of {0, . . . , n + 1} which preserve
the weights, then we should regard the Lauricella map F as being multivalued on
Sμ\V ◦

n , rather than on V ◦
n . This can make a difference, for the monodromy cover

of Sμ\V ◦
n need not factor through V ◦

n . We get the following variant of Lemma 2.3

Lemma 3.6. Suppose that in Lemma 2.3 we have μk = μl ∈ Q − { 1
2}. Then the

Lauricella map (the Schwarz map if |μ| = 1) extends over the image in Dk,l in
Sμ\V ◦

n as a local isomorphism if and only if 1
2 − μk is the reciprocal of a positive

integer.

Definition 3.7. We say that μ satisfies the half integrality conditions if whenever
for 0 ≤ k < l ≤ n + 1 we have μk + μl < 1, then (1 − μk − μl)−1 is an integer or
in case μk = μl, just half an integer.

This notion is a priori weaker than Mostow’s ΣINT condition, but in the end
it leads to the same set of weight systems. Now Proposition 2.5 takes the following
form.

Proposition 3.8. If μ satisfies the half integrality conditions, then V st
n ⊂ V f

n ,

S̃μ\V st
n is nonsingular, and the Lauricella map extends holomorphically to S̃μ\V st

n .
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This extension has the same regularity properties as the map it extends: it is a local
isomorphism when we are not in the parabolic case, whereas in the parabolic case,
the Schwarz map defines a local isomorphism to An−1.

This leads to the theorem stated below (see [12] and for the present version,
[7]).

Theorem 3.9. Suppose that μ satisfies the half integrality conditions.

ell: If |μ| < 1, then Γ is a finite complex reflection group in GL(n,C) and

F : S̃μ\V n → Cn is a Γ-equivariant isomorphism which descends to an iso-
morphism Sμ\Vn → Γ\Cn.

par: If |μ| = 1, then Γ acts as a complex Bieberbach group in An−1, V f
n = Vn−{0}

and PF : P(S̃μ\V n)→ An−1 is a Γ-equivariant isomorphism which descends
to an isomorphism P(Sμ\Vn)→ Γ\An−1.

hyp: If 1 < |μ| < 2, then the monodromy covering S̃μ\Q◦
μ → Sμ\Q◦

μ extends

to a ramified covering S̃μ\Qst
μ → Sμ\Qst

μ and F extends to a Γ-equivariant

isomorphism S̃μ\Qst
μ → Bn−1. Moreover Γ acts discretely in Bm and with

finite covolume.

Example. Let us take n ≤ 10 and μk = 1
6 for k = 0, . . . , n. So we have μn+1 = 11−n

6 .
The half integrality conditions are fulfilled for all n ≤ 10 with 1 ≤ n ≤ 4, n = 5,
6 ≤ n ≤ 11 yielding an elliptic, parabolic and hyperbolic case, respectively and
Sμ is the permutation group of {0, . . . , n} for n ≤ 9 and the one of {0, . . . , 11} for
n = 10.

Mostow subsequently showed that in the hyperbolic range with n ≥ 3 we
thus find all but ten of the discrete monodromy groups of finite covolume: one
is missed for n = 4 (namely ( 1

12 ,
3
12 ,

5
12 ,

5
12 ,

5
12 ,

5
12 )) and nine for n = 3 (see [13],

(5.1)). He conjectured that in these nine cases Γ is always commensurable with
a group obtained from Theorem 3.9. This was proved by his student Sauter [14].
It is perhaps no surprise that things are a bit different when n = 2 (so that we
are dealing with discrete groups of automorphism of the unit disk): indeed, the
exceptions then make up a number of infinite series ([13], Theorem 3.8). It turns
out that for n > 10 the monodromy group is never discrete and that for n = 10
this happens only when μk = 1

6 for k = 0, . . . , 10.
Other examples of discrete complex reflection groups of finite covolume have

been found (among others) by Barthel–Hirzebruch–Höfer [3], Allcock [1], [2] and
Couwenberg–Heckman–Looijenga [7]. A particular interesting example (acting on
the complex ball of dimension 13) is described by Allcock in [2]. No higher dimen-
sional example seems to be known. A piece of the family tree of such ball quotients
is given by Doran in his thesis [10].
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4. Modular interpretation

We assume here that we are in the Q-hyperbolic case: μk ∈ (0, 1) and rational for
k = 0, . . . , n + 1 (where we recall that μn+1 = 2−

∑n
k=0 μk).

4.1. Cyclic covers of P1

We will show that the Schwarz map can be interpreted as a ‘fractional period’
map. This comes about by passing to a cyclic cover of P1 on which the Lauricella
integrand becomes a regular differential. Concretely, write μk = dk/m with dk,m
positive integers such that the dk’s have no common divisor, and write mk for the
denominator of the reduced fraction μk. Consider the cyclic cover C → P1 of order
m which has ramification over zk of order mk. In affine coordinates, C is given as
the normalization of the curve defined by

wm =
n∏

k=0

(zk − ζ)dk .

This is a cyclic covering which has the group Gm of mth roots of unity as its Galois
group: g∗(w, z) = (χ(g)w, z), where χ : Gm ⊂ C× stands for the tautological
character. The Lauricella integrand pulls back to a single-valued differential η̃ on
C, represented by w−1dζ so that g∗(η̃) = χ̄(g)η̃. Hence, if we let Gm act on forms in
the usual manner (g ∈ Gm acts as (g−1)∗), then η̃ is an eigenvector with character
χ. It is easily checked that η̃ is regular everywhere.

In order to put this in a period setting, we recall some generalities concern-
ing the Hodge decomposition of C: its space of holomorphic differentials, Ω(C),
has dimension equal to the genus g of C and H1(C; C) is canonically represented
on the form level by the direct sum Ω(C) ⊕ Ω(C) (complex conjugation on forms
corresponds to complex conjugation in H1(C; C) with respect to H1(C; R)). The
intersection product on H1(C; Z) defined by (α, β) 	→ (α∪β)[C] (where the funda-
mental class [C] ∈ H2(C,Z) is specified by the complex orientation of C), is on the
level of forms given by

∫
C
α ∧ β. The associated Hermitian form on H1(C; C) de-

fined by h(α, β) :=
√−1

2 (α∪ β̄)[C] =
√−1

2

∫
C α∧ β̄ has signature (g, g). The Hodge

decomposition H1(C; R) = Ω(C) ⊕ Ω(C) is h-orthogonal with the first summand
positive definite and the second negative definite. The Hodge decomposition, the
intersection product and (hence) the Hermitian form h are all left invariant by the
action of Gm.

Proposition 4.1. The eigenspace Ω(C)χ is of dimension one and spanned by η̃
and the eigenspace Ω(C)χ is of dimension n − 1. The eigenspace H1(C,C)χ has
signature (1, n− 1) and we have h(η̃, η̃) = −mN(z).

Lemma 4.2. Let r ∈ {0, 1, . . . ,m− 1}. Then the eigenspace Ω(C)χr

is spanned by
the forms w−rf(ζ)dζ where f runs over the polynomials of degree < −1+r

∑n
k=0 μk

that have a zero of order ≥ 'rμk( at zk, k = 0, . . . , n. In particular, if r is relatively
prime to m, then dimΩ(C)χr

= −1 +
∑n+1

k=0{rμk} (recall that {a} := a− 'a().
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Proof. Any meromorphic differential on C which transforms according to the char-
acter χr, r = 0, 1, . . . ,m−1, is of the form w−rf(ζ)dζ with f meromorphic. A local
computation shows that in order that such a differential be regular, it is necessary
and sufficient that f be a polynomial of degree < −1 + r

∑n
k=0 μk which has a

zero of order > −1+ rμk at zk, that is, of order ≥ 'rμk(. Hence dimΩ(C)χr

is the
largest integer smaller than

∑n
k=0{rμk}. Suppose now that r is relatively prime

to m. Then rμk /∈ Z for every k. Since
∑n+1

k=0 rμk = 2r it follows that the largest
integer smaller than

∑n
k=0{rμk} is −1 +

∑n+1
k=0{rμk}. �

Proof of Proposition 4.1. If we apply Lemma 4.2 to the case r = 1, then we find
that f must have degree < −1 +

∑n
k=0 μk = 1 − μn+1 and as μn+1 ∈ (0, 1), this

means that f is constant. So η̃ spans Ω(C)χ.
For r = m − 1, we find that dimΩ(C)χ̄ = −1 +

∑n+1
k=0{(m − 1)μk} = −1 +∑n+1

k=0(1−μk) = n+1−
∑n+1

k=0 μk = n−1. Since Ω(C)χ is the complex conjugate of
Ω(C)χ̄, it follows that this space has dimension n−1 also. The fact that H1(C,C)χ

has signature (1, n− 1) is now a consequence of its orthogonal decomposition into
Ω(C)χ and Ω(C)χ. Finally,

h(η̃, η̃) =
√
−1
2

∫
C

η̃ ∧ η̃ =
m
√
−1

2

∫
C

η ∧ η̄ = −mN(z)(> 0). �

Thus the Schwarz map PF : Q̃st
μ → Bn−1 can now be understood as associ-

ating to the curve C with its Gm-action the Hodge decomposition of H1(C; C)χ.

4.2. Arithmeticity

The above computation leads to an arithmeticity criterion for Γ:

Theorem 4.3. The monodromy group Γ is arithmetic if and only if for every r ∈
(Z/m)× − {±1} we have

∑n+1
k=0{rμk} ∈ {1, n+ 1}.

We need the following density lemma.

Lemma 4.4. The Zariski closure of Γ in GL(H1(C,C)χ ⊕ H1(C,C)χ̄) is defined
over R and the image of its group of real points in the general linear group of
H1(C,C)χ contains the special unitary group of H1(C,C)χ.

The proof amounts to exhibiting sufficiently many complex reflections in Γ.
It is somewhat technical and we therefore omit it.

Proof of Theorem 4.3. Let us abbreviate H1(C,C)χr

by Hr. The smallest subspace
of H1(C,C) which contains H1 and is defined over Q is the sum of the eigenspaces
H := ⊕r∈(Z/m)×Hr. We may identify H with the quotient of H1(C,C) by the span
of the images of the maps H1(Gk\C,C)→ H1(C,C), where k runs over the divisors
�= 1 of m. In particular, H(Z) := H1(C,Z)∩H spans H . The monodromy group Γ
may be regarded as a subgroup of GL(HZ). On the other hand, Γ preserves each
summand Hr. So if we denote by G the Q-Zariski closure of Γ in GL(H), then Γ ⊂
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G(Z) and G(C) decomposes as G(C) =
∏

r∈(Z/m)× Gr(C) with Gr(C) ⊂ GL(Hr).
To say that Γ is arithmetic is to say that Γ is of finite index in G(Z).

Since Hr ⊕ H−r is defined over R, so is Gr,−r := Gr × G−r. According to
Lemma 4.4, the image of G1,−1(R) in Gr(C) contains the special unitary group
of H1. For r ∈ (Z/m)×, the summand Hr with its Hermitian form is a Galois
conjugate of H1 and so the image of Gr,−r(R) in Gr(C) then contains the special
unitary group of Hr.

Suppose now that Γ is arithmetic. The projection G(R) → G1,−1(R) is in-
jective on Γ and so the kernel of this projection must be anisotropic: Gr,−r(R)
is compact for r �= ±1. This means that the Hermitian form on Hr is definite
for r �= ±1. Since Hr = Ω(C)χr ⊕ Ω(C)χ−r with the first summand positive and
the second summand negative, this means that for every r ∈ (Z/m)× − {±1}
(at least) one of the two summands must be trivial. Following Lemma 4.2 this
amounts to

∑n+1
k=0{rμk} = 1 or

∑n+1
k=0{−rμk} = 1. The last identity is equivalent

to
∑n+1

k=0{rμk} = n + 1.
Suppose conversely, that for all r ∈ (Z/m)×−{±1} we have

∑n
k=0{rμk} < 1

or
∑n

k=0{−rμk} < 1. As we have just seen, this amounts to Gr,−r(R) being com-
pact for all r ∈ (Z/m)× − {±1}. In other words, the projection, G(R)→ G1,−1(R)
has compact kernel. Since G(Z) is discrete in G(R), it follows that its image in
G1,−1(R) is discrete as well. In particular, Γ is discrete in GL(H1). Following Propo-
sition 3.5 this implies that Γ has finite covolume in G1,−1(R). Hence it also has
finite covolume in G(R). This implies that Γ has finite index in G(Z). �
Example. The case for which n = 3, (μ0, μ1, μ2, μ3) = ( 3

12 ,
3
12 ,

3
12 ,

7
12 ) (so that

μ4 = 8
12 ) satisfies the hypotheses of Theorem 3.1, hence yields a monodromy

group which operates on B2 discretely with compact fundamental domain. But
the group is not arithmetic since

∑4
k=0{5μk} = 2 /∈ {1, 4}.

4.3. Working over a ring of cyclotomic integers

If we are given an L-slit δ, then C → P1 comes with a section (continuous outside
δ) in much the same way we found a branch of ηz: for ζ in a left half plane,∏n

k=0(zk − ζ)dk has argument < π/2 in absolute value and so it has there a
natural mth root (with argument < π/2m in absolute value); the resulting section
we find there is then extended in the obvious way. We identify δk with its image
in C under the section and thus regard it as a chain on C. For k = 1, . . . , n, we
introduce a Z[ζm]-valued 1-chain on C:

εk := w̄k

∑
g∈Gm

χ(g)g∗δk.

Notice that the coefficient w̄k is an mth root of unity and so a unit of Z[ζm]. We
put it in, in order to maintain the connection with the Lauricella map. It will also
have the effect of keeping some of the formulae simple.

Lemma 4.5. The element εk is a 1-cycle on C with values in Z[ζm] and has the
property that g∗εk = χ̄(g)εk (and hence defines an element of H1(C,Z[ζm])χ̄).
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We have
∫

εk
η̃ = mFk(z, δ). Moreover, H1(C,Z[ζm])χ̄ is as a Z[ζm]-module freely

generated by ε1, . . . , εn.

Proof. The identity involving integrals is verified by∫
εk

η̃ = w̄k

∑
g∈Gm

χ(g)
∫

g∗δk

η̃ = w̄k

∑
g∈Gm

χ(g)
∫

δk

g∗η̃

= w̄k

∑
g∈Gm

χ(g)
∫

δk

χ̄(g)η = mw̄k

∫
δk

η = mFk(z, δ).

Give P1 the structure of a finite cell complex by taking the singletons {z0, . . . , zn}
as 0-cells, the intervals δ1, . . . , δn minus their end points as 1-cells and P1−

⋃n
i=k δk

as 2-cell. The connected components of the preimages of cells in C give the latter
the structure of a finite cell complex as well (over the 2-cell we have one point of
ramification, namely ∞, and so connected components of its preimage are indeed
2-cells). The resulting cellular chain complex of C,

0→ C2 → C1 → C0 → 0,

comes with a Gm-action. Notice that C1 is the free Z[Gm]-module generated by
δ1, . . . , δn. On the other hand, C0

∼=
⊕n

k=0 Z[Gm/Gmk
] (see Subsection 4.1 for

the definition of mk) and C2
∼= Z[Gm/Gmn+1], so that (C0)χ̄ = (C2)χ̄ = 0. The

remaining assertions of the lemma follow from this. �

We describe the Hermitian form on the free Z[ζm]-module H1(C,Z[ζm])χ̄:

Proposition 4.6. The Hermitian form H = − 1
mh is given in the basis (ε1, . . . , εn)

as follows: for 1 ≤ l ≤ k ≤ n we have

H(εk, εl) =

⎧⎪⎨⎪⎩
0 if l < k − 1,
− 1

4 sin(π/m)−1 if l = k − 1,
1
4 (cot(π/mk−1) + cot(π/mk)) if l = k.

It is perhaps noteworthy that this proposition shows that the matrix of H on
ε1, . . . , εn only involves the denominators of the weigths μ0, . . . , μn. The proof relies
on a local computation of intersection multiplicities with values in Z[ζm]. The basic
situation is the following. Consider the Gm-covering X over the complex unit disk
Δ defined by wm = zd, where d ∈ {1, . . . ,m−1} and g ∈ Gm acts as g∗w = χ(g)w.
The normalization X̃ of X consists of e := gcd(d,m) copies Δ, {Δk}k∈Z/e, as
follows: if we write m = em̄ and d = ed̄ and tk is the coordinate of Δk, then
Δk → X is given by z = tm̄k and w = ζk

mtd̄k, so that on Δk, wm̄ = ζkm̄
m td̄m̄

k = ζk
e z

d̄.
If g1 ∈ Gm is such that χ(g1) = ζm, then g∗1(tk+1) = tk, k = 0, 1 . . . , e − 1 and
g∗1t0 = ζmte−1 (because w|Δk+1 = ζk+1

m td̄k+1 and (g∗1w)|Δk = ζmw|Δk = ζk+1
m td̄k).

Choose θ ∈ (0, 2π) and let δ resp. δ′ be the ray on Δ0 defined by t0 = r
(resp. t0 = r exp(

√
−1θ/m̄) with 0 ≤ r < 1). We regard both as chains with closed
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support. Notice that z maps δ (resp. δ′) onto [0, 1) (resp.onto a ray �= [0, 1)).
Consider the Z[ζm]-valued chains with closed support

δ̃ :=
∑

g∈Gm

χ(g)g∗δ, δ̃′ :=
∑

g∈Gm

χ(g)g∗δ′.

These are in fact 1-cycles with closed support which only meet in the preimage of
the origin (a finite set). So they have a well-defined intersection number.

Lemma 4.7. We have δ̃ · δ̃′ = mζm(ζm − 1)−1 = 1
2m(1 −

√
−1 cot(π/m̄)).

Proof. This intersection product gets a contribution from each connected com-
ponent Δk. Because of the Gm-equivariance these contributions are the same
and so it is enough to show that the contribution coming from one of them is
(m/2e)(1+

√
−1 cot(π/2m̄)) = 1

2m̄(1+
√
−1 cot(π/2m̄)). This means that there is

no loss in generality in assuming that d and m are relative prime. Assuming that
this is the case, then we can compute the intersection product if we write δ̃ and δ̃′

as a sum of closed 1-cycles with coefficients in Z[ζm]. This is accomplished by

δ̃ =
∑

g∈Gm

χ(g)g∗δ

=
m∑

k=1

(1 + ζm + · · ·+ ζk−1
m )(gk−1

1∗ δ − gk
1∗δ) =

m∑
k=1

1− ζk
m

1− ζm
(gk−1

1∗ δ − gk
1∗δ),

(notice that gk−1
1∗ δ− gk

1∗δ is closed, indeed) and likewise for δ̃′. We thus reduce our
task to computing the intersection numbers (gk−1

1∗ δ − gk
1∗δ) · (gl−1

1∗ δ′ − gl
1∗δ

′). This
is easy: we find that this equals 1 if l = k, −1 if l = k − 1 and 0 otherwise. Thus

δ̃ · δ̃′ =
m∑

k=1

1− ζk
m

1− ζm
ζ̄k−1
m =

mζm

ζm − 1
=

mζ2m

ζ2m − ζ̄2m
= 1

2m(1−
√
−1 cot(π/m)). �

Proof of 4.6. We may of course assume that each zk is real: zk = xk ∈ R with
with x0 < x1 < · · · < xn and that δk = [xk−1, xk]. Let us put δ̃k := wkεk =∑

g∈Gm
χ(g)g∗δk and compute δ̃k · δ̃l for 1 ≤ l ≤ k ≤ n. It is clear that this is zero

in case l < k−1. For l = k, we let δ′k go along a straight line from xk−1 to a point in
the upper half plane (with real part 1

2xk−1 + 1
2xk, say) and then straight to xk. We

have a naturally defined Z[ζm]-valued 1-chain δ̃′k on C homologous to δ̃k and with
support lying over δk. So δ̃k · δ̃k = δ̃k · δ̃′k. The latter is computed with the help of
Lemma 4.7: the contribution over xk−1 is 1

2m(1−
√
−1 cot(π/mk−1)) and over xk

it is − 1
2m(1−

√
−1 cot(π/mk)) and so εk ·εk = δ̃k · δ̃′k = − 1

2m
√
−1 cot(π/mk−1))+

1
2m
√
−1 cot(π/mk). We now do the case l = k−1. The 1-chains on C given by δk−1

and δk make an angle over xk−1 of πμk−1 = πdk−1/m. In terms of the local picture
of Lemma 4.7 this means that the pair (δk, δk−1) corresponds to (δ,−ζ̄dk−1−1

2m δ′).
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It follows that

δ̃k · δ̃k−1 = δ̃ · −ζ̄dk−1−1
2m δ̃′ = −ζdk−1−1

2m δ̃ · δ̃′

= −ζdk−1−1
2m mζm(ζm − 1)−1 = −m(ζ2m − ζ̄2m)−1e

√−1πμk−1 .

Hence εk · εk−1 = −m(ζ2m − ζ̄2m)−1 and so H(εk, εk−1) = − 1
2m

√−1
εk · εk−1 =

(2
√
−1(ζ2m − ζ̄2m))−1 = − 1

4 (sin(π/m))−1 is as asserted. �

5. Generalizations and other view points

5.1. Higher dimensional integrals

This refers to the situation where P1 and the subset {z0, . . . , zn+1} are replaced
by a projective arrangement; such generalizations were considered by Deligne,
Varchenko [17] and others. To be specific, fix an integer N ≥ 1, a finite set K with
at least N + 2 elements and a weight function μ : k ∈ K 	→ μk ∈ (0, 1). Given
an injective map z : k ∈ K 	→ zk ∈ P̌N , choose for every k ∈ K a linear form
Zk : CN+1 → C whose zero set is the hyperplane Hzk

defined by zk and put

ηz = ResPN

(∏
k∈K

Zk(ζ)−μk

)
dζ0 ∧ · · · ∧ dζN .

This is a multivalued holomorphic N -form on Uz := PN −
⋃

k∈K Hzk
. If σ is a

sufficiently regular relative N -chain of the pair (PN ,PN − Uz) and we are given
a branch of η over σ, then η is integrable over σ so that

∫
σ η is defined. Here it

pays however to take the more cohomological approach that we briefly described
in Subsection 1.7. So we let Lz be the rank one local system on Uz such that its
monodromy around Hzk

is multiplication by exp(2πμk

√
−1) and endow it with a

flat Hermitian metric. Then after the choice of a multivalued section of Lz of unit
norm, ηz can be interpreted as a section of ΩN

Uz
⊗CLz . It thus determines an element

[ηz] ∈ HN (Lz). Similarly, σ plus the branch of ηz over σ defines an element [σ] ∈
HN (PN ,PN − Uz; L∨

z ). The latter space is dual to HN(Lz) by Alexander duality
in such a manner that

∫
σ ηz is the value of the Alexander pairing on ([ηz ], [σ]). In

order for ηz to be square integrable it is necessary and sufficient that for every
nonempty intersection L of hyperplanes Hzk

we have
∑

{k |Hzk
⊃L} μk < codim(L).

Assume that this is the case. Then ηz defines in a class in the intersection homology
space IHm(PN ,Lz). This space comes with a natural hermitian form h for which
h(ηz, ηz) > 0. (It is clear that the line spanned by ηz only depends z; Hodge theory
tells us that the image of that line is FNIHN (PN ,L).) In order for the situation
to be like the one we studied, we would want the orthogonal complement of ηz in
IHN (PN ,Lz) to be negative. Unfortunately this seems rarely to be the case when
N > 1. When that is so, then we might vary z over the connected constructible
set S of injective maps K → P̌N for which the topological type of the arrangement
it defines stays constant. Then over S we have a local system HS whose stalk at
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z ∈ S is IHN (PN ,Lz) and the Schwarz map which assigns to z the line in Hz

defined by ηz will take values in a ball. The first order of business should be to
determine the cases for which the associated monodromy group is discrete, but we
do not know whether that has been done yet.

5.2. Geometric structures on arrangement complements

A generalization of the Deligne–Mostow theory based on a different point of view
(and going in a different direction) was developed by Couwenberg, Heckman and
the author in [7]. The point of departure is here a finite dimensional complex inner
product space V , a finite collectionH of linear hyperplanes in V and a map κ which
assigns to every H ∈ H a positive real number κH . These data define a connection
∇κ on the tangent bundle of the arrangement complement V ◦ := V − ∪h∈HH as
follows. For H ∈ H denote by πH ∈ End(V ) the orthogonal projection with kernel
H and by ωH the logarithmic differential on V defined by φ−1

H dφH , where φH is a
linear form on V with kernel H . Form Ωκ :=

∑
H∈H κHπH ⊗ ωH and regard it as

a differential on V ◦ which takes values in the tangent bundle of V ◦, or rather, as
a connection form on this tangent bundle: a connection is defined by

∇κ := ∇0 − Ωκ,

where ∇0 stands for the usual affine connection on V restricted to V ◦. This con-
nection is easily verified to be torsion free. It is well-known that such a connection
defines an affine structure (that is, it defines an atlas of charts whose transition
maps are affine-linear) precisely when the connection is flat; the sheaf of affine-
linear functions is then the sheaf of holomorphic functions whose differential is flat
for the connection (conversely, an affine structure is always given by a flat torsion
free connection on the tangent bundle). There is a simple criterion for the flatness
of ∇κ in terms of linear algebra. Let L(H) denote the collection of subspaces of
V that are intersections of members of H and, for L ∈ L(H), let HL be the set of
H ∈ H containing L. Then the following properties are equivalent:

(i) ∇ is flat,
(ii) Ω ∧ Ω = 0,
(iii) for every pair L,M ∈ L(H) with L ⊂M , the endomorphisms

∑
H∈HL

κHπH

and
∑

H∈HM
κHπH commute,

(iv) for every L ∈ L(H) of codimension 2, the sum
∑

H∈HL
κHπH commutes with

each of its terms.
If these mutually equivalent conditions are satisfied we call the triple (V,H, κ) a
Dunkl system.

Suppose that (V,H, κ) is such a system so that V ◦ comes with an affine
structure. If L ∈ L(H) is irreducible (in the sense that there is no nontrivial
decomposition of HL such that the corresponding intersections are perpendicular),
then the fact that

∑
H∈HL

κHπH commutes with each of its terms implies that this
sum must be proportional to the orthogonal projection πL with kernel L. A trace
computation shows that the scalar factor must be κL := codim(L)−1

∑
H∈HL

κH .
Let us now assume that the whole system is irreducible in the sense that the
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intersection of all members of H is reduced to the origin and that this intersection
is irreducible. We then have defined κ0 = dim(V )−1

∑
H∈H κH . The connection is

invariant under scalar multiplication by et ∈ C× and one verifies that for t close
to 0, the corresponding affine-linear transformation is like scalar multiplication by
e(1−κ0)t if κ0 �= 1 and by a translation if κ0 = 1. This means that if κ0 �= 1, the
affine structure on V ◦ is in fact a linear structure and that this determines a (new)
projective structure on P(V ◦), whereas when κ0 = 1 (the parabolic case), P(V ◦)
inherits an affine structure which makes the projection V ◦ → P(V ◦) affine-linear.
Notice that (V,H, tκ) will be a Dunkl system for every t > 0. The behavior of that
system (such as its monodromy) may change dramatically if we vary t.

Before we proceed, let us show how a weight system μ that gives rise to the
Lauricella differential also gives rise to such an irreducible Dunkl system: we take
V = Vn = Cn+1/main diagonal, H to be the collection of diagonal hyperplanes
Hk,l := (zk = zl), 0 ≤ k < l ≤ n, and κ(Hk,l) = μk + μl. The inner product on
Vn comes from the inner product on Cn+1 for which 〈ek, el〉 = μkδk,l and is the
one which makes the projection Cn+1 → Vn self-adjoint. It is an amusing exercise
to verify that the connection is flat indeed and that the space of affine-linear
functions at z ∈ V ◦

n is precisely the space of solutions of the system of differential
equations we encountered in part (c) of Proposition 1.2. So the Schwarz map is
now understood as a multivalued chart (in standard terminology, a developing
map) for the new projective structure on P(V ◦

n ). We also find that κ0 = |μ|; more
generally, an irreducible member L ∈ L(H) is given by a subset I ⊂ {0, . . . , n}
with at least two elements (so that L = L(I) is the locus where all zk, k ∈ I
coincide) and κL(I) =

∑
k∈I μk.

Another interesting class of examples is provided by the finite complex re-
flection groups: let G be a finite complex reflection group operating irreducibly
and unitarily in a complex inner product space V , H the collection of complex
hyperplanes of G and H ∈ H 	→ κH constant on the G-orbits. Then (V,H, κ) is a
Dunkl system.

It turns out that in many cases of interest (including the examples mentioned
above), one can show that there exists a ∇κ-flat Hermitian form h on V ◦ with the
following properties

ell. if 0 < κ0 < 1, then h is positive definite,
par. if κ0 = 1, then h is positive semidefinite with kernel the tangent spaces to

the C×-orbits,
hyp. if 1 < κ0 < mhyp for some mhyp > 1, then h is nondegenerate hyperbolic

and such that the tangent spaces to the C×-orbits are negative.

This implies that P(V ◦) acquires a geometric structure which is respectively mod-
eled on Fubini–Study space, flat complex Euclidean space and complex hyperbolic
space. A suitable combination of rationality and symmetry conditions which gen-
eralizes the half integrality condition 3.7 (and is called the Schwarz condition),
yields a generalization of Theorem 3.9. We thus obtain new examples of groups
operating discretely and with finite covolume on a complex ball (see the tables at
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the end of [7]). For the real finite reflection arrangements, all groups thus obtained
are arithmetic.
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Abstract. We survey our construction of invariant functions on the real 3-
dimensional hyperbolic space H3 for the Whitehead-link-complement group
W ⊂ GL2(Z[i]) and for a few groups commensurable with W . We make use
of theta functions on the bounded symmetric domain D of type I2,2 and an
embedding ı : H3 → D. The quotient spaces of H3 by these groups are realized
by these invariant functions. We review classical results on the λ-function, the
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1. Introduction

The ratio of solutions of the Gauss hypergeometric differential equation

E(α, β, γ) : x(1 − x)
d2f

dx2
+ {γ − (α + β + 1)x} df

dx
− αβf = 0

for (α, β, γ) = (1/2, 1/2, 1) induces an isomorphism

ψ : C− {0, 1} → H/M

where H is the upper half space {τ ∈ C | Im(τ) > 0} and M is the monodromy
group of E(1/2, 1/2, 1). Note that M is the level 2 principal congruence subgroup
of SL2(Z), which can be identified with the fundamental group π1(C−{0, 1}). The
inverse of ψ is the λ-function, which is a modular function on H with respect to
M . In particular, the real and imaginary parts of the λ-function are real analytic
on the real 2-dimensional hyperbolic space H and invariant under the action of M .

In this lecture note, I explain the construction of real analytic functions on
the real 3-dimensional hyperbolic space H3 = {(z, t) ∈ C × R | t > 0} in [MNY]
and [MY], which are invariant under the action of some discrete subgroups of the
isometry group GLT

2 (C) of H3. We use theta functions Θ
(
a
b

)
on the symmetric

domain D of type I2,2 over the ring Z[i] discussed in [F] and [M1], and an em-
bedding ı : H3 → D. We are interested in the Whitehead link L, see Figure 1;
its complement S3 − L is known to admit a hyperbolic structure: there is a finite

Figure 1. Whitehead link

index subgroup W ⊂ GL2(Z[i]) isomorphic to π1(S3 − L) and a homeomorphism

ϕ : H3/W
∼=−→ S3 − L.

Note that the situation is quite similar to the isomorphism

λ : H/M
∼=−→C− {0, 1}.
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We explain our construction of the homeomorphism ϕ in [MNY]; it is given in
terms of invariant functions on H3 with respect to W , and its image is explicitly
presented as part of a real algebraic set (we need some inequalities) in R13.

Since our construction of invariant functions is based on classical results on
the λ-function, the j-function and theta constants ϑ

(
a
b

)
on H, we review them in

Sections 2 and 3. In Section 4, fundamental properties of Θ
(
a
b

)
on D are given. In

these sections, some important facts are proved. In the rest sections, an outline of
[MNY] is given; proofs of theorems, and details are omitted.

It is known that the Borromean-rings-complement S3 − R also admits a
hyperbolic structure: there is a discrete group B in GL2(C) isomorphic to the
fundamental group of S3 − R such that the quotient H3/B is homeomorphic to
S3−R. This homeomorphism is explicitly given in [M3] by invariant functions for
B.

2. The λ-function and the j-function

In this section, I explain the λ-function and the j-function, which help us under-
stand results in Sections 10 and 11.

The group SL2(Z) acts on the upper half space H as linear fractional trans-
formations:

g · τ =
aτ + b

cτ + d
, τ ∈ H, g =

(
a b
c d

)
∈ SL2(Z).

Fundamental domains of SL2(Z) and the level 2 principal congruence subgroup

M =
{(

a b
c d

)
∈ SL2(Z) | a− 1, b, c, d− 1 ≡ 0 mod 2

}
are given in Figure 2. The elements patching their boundaries give generators of
these groups

SL2(Z) :
(

1 1
0 1

)
: �1 → �2,

(
0 −1
1 0

)
: �3 → �4,

M :
(

1 2
0 1

)
: m1 → m2,

(
1 0
2 1

)
: m3 → m4,

where �j and mj are drawn in Figure 2. The sequence

1 −→M −→ SL2(Z) −→ SL2(F2) −→ 1

is exact and SL2(F2) is isomorphic to the symmetric group S3. Thus the quo-
tient group SL2(Z)/M is isomorphic to S3, and the quotient space H/M is an S3

covering of H/SL2(Z) with two branching points i and ω = −1+
√

3i
2 .

On the other hand, the monodromy representation of the hypergeometric
differential equation E(α, β, γ) is well known.
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Re(τ)

Im(τ)

10−1

i

−ω2ω

m4m3

�2�1

�4�3

m1 m2

Figure 2. Fundamental domains of SL2(Z) and M

Fact 1 (Theorem 6.1 in [K]). If none of α, β, γ−α and γ−β is an integer, then there
exists a fundamental system of solutions of E(α, β, γ) such that the monodromy
group with respect to this system is generated by

ρ1 =
(

1 0
−1 + exp(−2πiβ) exp(−2πiγ)

)
, ρ2 =

(
1 1− exp(−2πiα)
0 exp(−2πi(α + β − γ))

)
.

Remark 2.1. When one of α, β, γ − α and γ − β is an integer, the fundamental
system of E(α, β, γ) in Fact 1 degenerates. The monodromy groups of E(α, β, γ)
for such parameters are studied in Section 2.4 in [IKSY].

We have

ρ1 =
(

1 0
−2 1

)
, ρ2 =

(
1 2
0 1

)
for the parameter (α, β, γ) = (1/2, 1/2, 1), and

P−1ρ1P =
(

1 1
0 1

)
, P−1ρ2P = i

(
0 1
−1 0

)
for the parameter (α, β, γ) = (1/12, 5/12, 1), where

P =
(

0 (
√

3− 1)iω
1 + i 1− i

)
.



Invariant Functions with Respect to the Whitehead-Link 249

The group M is isomorphic to the fundamental group π1(C−{0, 1}), which is the
free group generated by two elements.

The ratio of the fundamental system of solutions E(1/2, 1/2, 1) induces an
isomorphism from C − {0, 1} to H/M , and that of E(1/12, 5/12, 1) induces an
isomorphism from C− {0, 1} to H/SL2(Z). Their inverses are the λ-function and
the j-function. The j-function can be expressed by the λ-function:

j(τ) =
4
27

(λ(τ)2 − λ(τ) + 1)3

λ(τ)2(1 − λ(τ))2
.

We can regard this expression as the 6-fold branched covering of P1. The branching
information of this covering is given as

λ-space j-space
0, 1,∞ 	→ ∞
−1, 2, 1

2 	→ 1
−ω,−ω2 	→ 0,

and the covering transformation group consists of the projective transformations
keeping the set {0, 1,∞} invariant, which is isomorphic to S3. We have the diagram:

H/M
λ−→ C− {0, 1}

S3 ↓ ↘j ↓ S3

H/SL2(Z)
j−→ C− {0, 1}.

In the next section, we give an expression of the λ-function in terms of theta
constants, which shows the compatibility of the S3-actions in this diagram.

3. Theta constants

The theta constant with characteristics a, b ∈ Q is defined as

ϑ

(
a

b

)
(τ) =

∑
n∈Z

e[(n + a)2τ + 2(n + a)b],

where τ ∈ H and e[x] = exp(πix). Since this series converges absolutely and uni-
formly on any compact set in H, ϑ

(
a
b

)
(τ) is holomorphic on H. We denote ϑ

(
a
b

)
(τ)

by ϑ
[

2a
2b

]
(τ) for a, b ∈ 1

2Z. We give some fundamental properties of ϑ
(
a
b

)
(τ).

1. ϑ
(−a
−b

)
(τ) = ϑ

(
a
b

)
(τ), and if a, b ∈ 1

2Z, then ϑ
(−a

b

)
(τ) = ϑ

(
a
b

)
(τ);

2. ϑ
(
a+m
b+n

)
(τ) = e[2an]ϑ

(
a
b

)
(τ) for m,n ∈ Z;

3. if 2ab /∈ Z for a, b ∈ 1
2Z, then ϑ

(
a
b

)
(τ) = 0;

4. ϑ
(
a
b

)
(τ + 1) = e[−a2 − a]ϑ

(
a

b+a+1/2

)
(τ);

5. ϑ
(
a
b

)
(−τ−1) = e[−2ab]

√
τ
i ϑ
(−b

a

)
(τ).
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The identities 1–4 can be seen easily by the definition of the theta constants. In
order to show the last one, we use Poisson’s summation formula∑

n∈Z

f(n) =
∑
n∈Z

f̃(n),

where f goes to zero fast enough at ±∞, and f̃ is the Fourier transform of f

f̃(n) =
∫ ∞

−∞
f(x)e−2πixndx.

For τ = it (t > 0) and f(n) = exp[−π(n + a)2t + 2πi(n + a)b],∫ ∞

−∞
f(x)e−2πixndx =

e[2ab]√
t

e[− 1
it

(n− b)2 + 2(n− b)a]

which implies the identity 5.
A holomorphic function f on H is called a modular form of weight k for a

subgroup G ⊂ SL2(Z) if f satisfies

f((aτ + b)/(cτ + d)) = (cτ + d)kf(τ)

and some boundedness conditions around the cusps.

Fact 2. The functions ϑ
[

0
0

]
(τ)4, ϑ

[
0
1

]
(τ)4, ϑ

[
1
0

]
(τ)4 are modular forms of weight

2 for M .

There is a linear relation among them:

Fact 3 (Jacobi’s identity).

ϑ

[
0
0

]
(τ)4 = ϑ

[
0
1

]
(τ)4 + ϑ

[
1
0

]
(τ)4.

Proof. We give a proof which can be generalized to that of quadratic relations
among theta functions on the symmetric domain D of type I2,2 in Section 4. Let
L1 = Z4, L2 = Z4A, and L be the lattice 〈L1, L2〉 generated by L1 and L2, where

A =
1
2

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠ .

Note that tA = A, A2 = I4 and that the lattices L and L2 are expressed as

L = {(n1, . . . , n4) ∈
1
2

Z4 | nj − nk ∈ Z},

L2 = {(n1, . . . , n4) ∈ L | n1 + n2 + n3 + n4 ∈ 2Z}.
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By definition,

ϑ

[
0
0

]
(τ)4 =

∑
n1,...,n4∈Z

e[(n2
1 + · · ·+ n2

4)τ ],

ϑ

[
0
1

]
(τ)4 =

∑
n1,...,n4∈Z

e[(n2
1 + · · ·+ n2

4)τ ]e[n1 + · · ·+ n4],

ϑ

[
1
0

]
(τ)4 =

∑
n1,...,n4∈Z

e[(m2
1 + · · ·+ m2

4)τ ],

ϑ

[
1
1

]
(τ)4 =

∑
n1,...,n4∈Z

e[(m2
1 + · · ·+ m2

4)τ ]e[m1 + · · ·+ m4],

where mj = nj + 1
2 . Since we have [L,L1] = [L1, L1 ∩ L2] = 2 for L = 〈L1, L2〉,

e[n1 + · · ·+ n4] is the non-trivial character on L/L2. The summation of the four
right-hand sides of the above can be regarded as the summation over L and

e[n1 + · · ·+ n4] =
{

1 if (n1, . . . , n4) ∈ L2,
−1 if (n1, . . . , n4) /∈ L2.

Thus it becomes

2
∑

(m1,...,m4)∈L2

e[(m2
1 + · · ·+ m2

4)τ ]

= 2
∑

(n1,...,n4)∈L1

e[(n1, . . . , n4)A t((n1, . . . , n4)A)τ ]

= 2
∑

(n1,...,n4)∈L1

e[(n1, . . . , n4) t(n1, . . . , n4)τ ] = 2ϑ
[
0
0

]
(τ)4.

Since ϑ
[
1
1

]
(τ) = 0, we have Jacobi’s identity. �

The λ-function can be expressed as

λ(τ) =
ϑ
[

0
1

]
(τ)4

ϑ
[

0
0

]
(τ)4

;

we can easily see that this functions is invariant under the action of M by Fact 2:

λ(
aτ + b

cτ + d
) =

ϑ
[
0
1

]
(aτ+b

cτ+d )4

ϑ
[
0
0

]
(aτ+b

cτ+d )4
=

(cτ + d)2ϑ
[
0
1

]
(τ)4

(cτ + d)2ϑ
[
0
0

]
(τ)4

= λ(τ)

for any
(
a b
c d

)
∈M .

The group SL2(Z) acts on the vector space of modular forms f of weight k
for M by

fγ(τ) =
1

(cτ + d)k
f((aτ + b)/(cτ + d)),
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where γ =
(
a b
c d

)
∈ SL2(Z). By the actions of the generators γ1 =

(
1 1
0 1

)
and

γ2 =
(

0 −1
1 0

)
of SL2(Z), the vector

(ϑ
[
0
0

]
(τ)4, ϑ

[
0
1

]
(τ)4, ϑ

[
1
0

]
(τ)4)

is multiplied the matrix γ̃1 and γ̃2 from the right, respectively, where

γ̃1 =

⎛⎝ 1
1

−1

⎞⎠ , γ̃2 =

⎛⎝−1
−1

−1

⎞⎠ .

The group generated by γ̃1 and γ̃2 is isomorphic to S3, since they satisfy

γ̃2
1 = γ̃2

2 = I3, γ̃1γ̃2γ̃1 = γ̃2γ̃1γ̃2.

By Jacobi’s identity, the lambda function λ(τ) changes into
1

λ(τ)
, 1− λ(τ),

by the actions of γ1 and γ2, respectively.

Remark 3.1. In order to see the S3-action on the λ-function, it is convenient to
regard it as the map

H/M ! τ 	→
[
ϑ

[
0
0

]
(τ)4, ϑ

[
0
1

]
(τ)4, ϑ

[
1
0

]
(τ)4

]
∈ Y,

where Y = {[t0, t1, t2] ∈ P2 | t0 − t1 − t2 = 0, t0t1t2 �= 0} is isomorphic to
C− {0, 1}.

Since the group SL2(Z) acts on the set {ϑ
[
0
0

]
(τ)8, ϑ

[
0
1

]
(τ)8, ϑ

[
1
0

]
(τ)8} as

permutations, their fundamental symmetric polynomials

ϑ

[
0
0

]
(τ)8 + ϑ

[
0
1

]
(τ)8 + ϑ

[
1
0

]
(τ)8,

ϑ

[
0
1

]
(τ)8ϑ

[
1
0

]
(τ)8 + ϑ

[
0
0

]
(τ)8ϑ

[
1
0

]
(τ)8 + ϑ

[
0
0

]
(τ)8ϑ

[
0
1

]
(τ)8,

ϑ

[
0
0

]
(τ)8ϑ

[
0
1

]
(τ)8ϑ

[
1
0

]
(τ)8,

are invariants under the action of SL2(Z). By Jacobi’s identity, the j-function can
be expressed as the following ratio of the symmetric polynomials of ϑ

[
0
0

]
(τ)8,

ϑ
[
0
1

]
(τ)8 and ϑ

[
1
0

]
(τ)8:

j(τ) =
4
27

(ϑ
[

0
0

]
(τ)8 + ϑ

[
0
1

]
(τ)8 + ϑ

[
1
0

]
(τ)8)3

ϑ
[

0
0

]
(τ)8ϑ

[
0
1

]
(τ)8ϑ

[
1
0

]
(τ)8

.

It is clear that j(τ) is invariant under the action of SL2(Z).
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Remark 3.2. By Jacobi’s identity, every symmetric polynomial of ϑ
[

0
0

]
(τ)8,

ϑ
[
0
1

]
(τ)8 and ϑ

[
1
0

]
(τ)8 of 2nd order is a constant multiple of (ϑ

[
0
0

]
(τ)8 +

ϑ
[
0
1

]
(τ)8 + ϑ

[
1
0

]
(τ)8)2.

4. Theta functions on D

The symmetric domain D of type I2,2 is defined as

D =
{
τ ∈M2,2(C) | τ − τ∗

2i
is positive definite

}
,

where τ∗ = tτ̄ . The group

U2,2(C) =
{
h ∈ GL4(C) | gJg∗ = J =

(
O −I2
I2 O

)}
and an involution T act on D as

h · τ = (h11τ + h12)(h21τ + h22)−1, T · τ = tτ,

where h =
(
h11 h12

h21 h22

)
∈ U2,2(C), and hjk are 2 × 2 matrices. We define some

discrete subgroups of U2,2(C):

U2,2(Z[i]) = U2,2(C) ∩GL4(Z[i]),
U2,2(1+i) = {h ∈ U2,2(Z[i]) | h ≡ I4 mod (1+i)}.

The theta function with characteristics a, b is defined as

Θ
(
a

b

)
(τ) =

∑
n∈Z[i]2

e[(n + a)τ(n + a)∗ + 2Re(nb∗)],

where τ ∈ D, a, b ∈ Q[i]2, and n, a, b are represented by row vectors. Since this
series converges absolutely and uniformly on any compact set in D, Θ

(
a
b

)
(τ) is

holomorphic on D. By the definition, we have the following fundamental properties.

Fact 4. 1. If b ∈ 1
1+iZ[i]2, then Θ

(
a
ib

)
(τ) = Θ

(
a
b

)
(τ).

If b ∈ 1
2Z[i]2, then Θ

(
a
−b

)
(τ) = Θ

(
a
b

)
(τ).

2. For k ∈ Z and m,n ∈ Z[i]2, we have

Θ
(
ika

ikb

)
(τ) = Θ

(
a

b

)
(τ),

Θ
(
a + m

b + n

)
(τ) = e[−2Re(mb∗)]Θ

(
a

b

)
(τ).

3. If (1+i)ab∗ /∈ Z[i] for a, b ∈ 1
1+iZ[i]2, then Θ

(
a
b

)
(τ) = 0.

It is known that any element of U2,2(Z[i]) on τ ∈ D is a composition of the
following transformations:

1. τ 	→ τ + s, where s = (sjk) is a 2× 2 matrix over Z[i] satisfying s∗ = s;
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2. τ 	→ gτg∗, where g ∈ GL2(Z[i]);
3. τ 	→ −τ−1.

Fact 5. By T and these actions, Θ
(
a
b

)
(τ) changes into as follows:

Θ
(
a

b

)
(T · τ) = Θ

(
ā

b̄

)
(τ),

Θ
(
a

b

)
(τ + s) = e[asa∗]Θ

(
a

b + as + 1+i
2 (s11, s22)

)
(τ),

Θ
(
a

b

)
(gτg∗) = Θ

(
ag

b(g∗)−1

)
(τ) for g ∈ GL2(Z[i]),

Θ
(
a

b

)
(−τ−1) = − det(τ)e[2Re(ab∗)]Θ

(
−b
a

)
(τ).

Proof. We can show the first and second equalities by the definition. We can show
the last equality by the multi-variable version of Poisson’s summation formula. We
here show the 3rd equality, which will be used. We have

Θ
(
a

b

)
(gτg∗)

=
∑

n∈Z[i]2

e[(n + a)(gτg∗)(n + a)∗ + 2Re(n(gg−1)b∗)]

=
∑

n∈Z[i]2

e[(ng + ag)τ(ng + ag)∗ + 2Re(ng(b(g∗)−1)∗)]

= Θ
(

ag

b(g∗)−1

)
(τ),

since m = ng runs over Z[i]2 for any g ∈ GL2(Z[i]). �

These transformation formulas imply the following.

Proposition 4.1. If a, b ∈ 1
1+iZ[i]2, then Θ2

(
a
b

)
(τ) is a modular from of weight 2

with character det for U2,2(1+i), i.e., it is holomorphic on D and it satisfies

Θ2

(
a

b

)
(T · τ) = Θ2

(
a

b

)
(τ),

Θ2

(
a

b

)
(h · τ) = det(h) det(h21τ + h22)2Θ2

(
a

b

)
(τ),

for any h = (hjk) ∈ U2,2(1+i).

Remark 4.2. We assumed some boundedness conditions around the cusps in the
definition of a modular form on the upper half space H. We do not need this kind
of hypothesis in the definition of a modular form on D by the Koecher principle.
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By following the proof of Jacobi’ identity for lattices L1 = M2,2(Z[i]), L2 =
L1A, L = 〈L1, L2〉, where

A =
1 + i

2

(
1 1
1 −1

)
, AA∗ = I2, A2 = iI2,

we have quadratic relations among theta functions Θ
(
a
b

)
(τ).

Theorem 4.3 (Theorem 1 in [M2]). We have quadratic relations among theta func-
tions for any a, b ∈ Q[i]2:

4Θ
(
a

b

)
(τ)2

=
∑

e,f∈ 1+i
2 Z[i]2/Z[i]2

e[2Re((1+i)be∗)]Θ
(
e + (1+i)a
f + (1+i)b

)
(τ)Θ

(
e

f

)
(τ).

For a, b ∈ (Z[i]
1+i /Z[i])2, there are ten Θ

(
a
b

)
(τ) which do not vanish identically.

Corollary 4.4. The ten Θ
(
a
b

)
(τ)2 satisfy the same linear relations as the Plücker

relations for the (3, 6)-Grassmann manifold, which is the linear relations among
the ten products Dijk(X)Dlmn(X) of the Plücker coordinates, where

X =

⎛⎝x11 . . . x16

x21 . . . x26

x31 . . . x36

⎞⎠ , Dijk(X) = det

⎛⎝x1i x1j x1k

x2i x2j x2k

x3i x3j x3k

⎞⎠
and {i, j, k, l,m, n} = {1, . . . , 6}. There are five linearly independent Θ

(
a
b

)
(τ)2.

Remark 4.5. The element τ ∈ D can be regarded as the periods of the K3-surface
coming from the double cover of P2 branching along 6 lines given by the 6 columns
of X , refer to [MSY].

5. A hyperbolic structure on the complement of the Whitehead
link

Let H3 be the upper half space model

H3 = {(z, t) ∈ C× R | t > 0}
of the 3-dimensional real hyperbolic space. The group GL2(C) and an involution
T act on H3 as

g · (z, t) =

(
g11ḡ21t

2+(g11z+g12)(g21z+g22)
|g21|2t2+(g21z+g22)(g21z+g22)

,
| det(g)|t

|g21|2t2+(g21z+g22)(g21z+g22)

)
,

T · (z, t) = (z̄, t),
where

g =
(
g11 g12

g21 g22

)
∈ GL2(C).
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Let GLT
2 (C) be the group generated by GL2(C) and T with relations

T · g = ḡ · T
for any g ∈ GL2(C).

The Whitehead-link-complement S3 − L admits a hyperbolic structure. We
have a homeomorphism

ϕ : H3/W
∼=−→ S3 − L,

where

W := 〈g1, g2〉, g1 =
(

1 i
0 1

)
, g2 =

(
1 0

1+i 1

)
.

We call W the Whitehead-link-complement group. A fundamental domain FD for
W in H3 is the union of two pyramids given in Figure 3 (cf. [W]). Put the two pic-
tures very close to your eyes and gradually move them away. At a certain distance
you will see the third picture, which should be 3-dimensional. The group W has

−1 + i
i

0−1
1

1− i

Re(z)

Im(z)

−i

#1

#5

#9

#7 #3

#4 #8 #10

#6

#2

Figure 3. Stereographic figures of fundamental domain FD of
W in H3

two cusps. They are represented by the vertices of the pyramids:

(z, t) = (∗,+∞), (0, 0) ∼ (±i, 0) ∼ (±1, 0) ∼ (∓1± i, 0).



Invariant Functions with Respect to the Whitehead-Link 257

Remark 5.1. The monodromy groups of E(α, β, γ) for parameters satisfying

cos(2πα) =
1+i

2
, β = −α, γ ∈ Z

are conjugate to W . In fact, under this condition for α, β, γ, we have

P−1ρ1P =
(

1 0
−i(−1 + exp(−2πiβ))(1− exp(−2πiα)) exp(−2πiγ)

)
= g2,

P−1ρ2P =
(

1 i
0 exp(−2πi(α + β − γ))

)
= g1,

for

P =
(

1 0
0 i(1− exp(−2πiα))−1

)
by Fact 1.

6. Discrete subgroups of GL2(C), in particular Λ

We define some discrete subgroups of GL2(C) :

Γ = GL2(Z[i]),
SΓ0(1+i) = {g = (gjk) ∈ Γ | det(g) = ±1, g21 ∈ (1+i)Z[i]},
SΓ(1+i) = {g ∈ SΓ0(1+i) | g12 ∈ (1+i)Z[i]},

Γ(2) = {g ∈ Γ | g11 − g22, g12, g21 ∈ 2Z[i]},
W = TWT = {ḡ | g ∈ W},
Ŵ = W ∩W,

W̆ = 〈W,W 〉.

Convention. 1. We regard these groups as subgroups of the projective group
PGL2(C); in other words, every element of the groups represented by a scalar
matrix is regarded as the identity. Note that each center of the groups Γ,
SΓ0(1+i), SΓ(1+i) and Γ(2) is {±I2,±iI2}. For an element g of these groups
with det(g) = −1, we have det(ig) = 1.

2. For any subgroup G of Γ, we denote GT the group 〈G, T 〉 generated by G
and T in GLT

2 (C).

The group ΓT (2) is a Coxeter group generated by the eight reflections, whose
mirrors form an octahedron in H3, see Figure 4.

Let Λ be the group 〈ΓT (2),W 〉 generated by ΓT (2) and W . So far we defined
many subgroups of ΓT = GLT

2 (Z[i]); their inclusion relation can be depicted as
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−1 + i i

0−1

Im(z)

Re(z)

Figure 4. Stereographic figures of a Weyl chamber of ΓT (2)

follows
Λ = SΓT

0 (1+i)
� |

SΓT (1+i) SΓ0(1+i)
| |
∗ W̆ = 〈W,W 〉
| � 	

ΓT (2) W W
| 	 �

Γ(2) Ŵ = W ∩W

When two groups are connected by a segment, the one below is a subgroup of the
one above of index 2.



Invariant Functions with Respect to the Whitehead-Link 259

Lemma 6.1. 1. The group ΓT (2) is normal in Λ;
the quotient Λ/ΓT (2) is isomorphic to the dihedral group D8 of order 8.

2. We have [Λ,W ] = 8, W is not normal in Λ: TWT = W .
3. The domain bounded by the four walls

a : Im(z) = 0, b : Re(z) = 0,

c : Im(z) =
1
2
, d : Re(z) = −1

2
,

and by the hemisphere

#9 : |z − −1 + i

2
| = 1√

2
.

is a fundamental domain of Λ, see Figure 5.

Re(z)

Im(z)
i
2

−1
2

0

−1+i
2

Figure 5. Stereographic figures of fundamental domain of Λ

4. The group Λ coincides with SΓT
0 (1+i), and [SΓ0(1+i),W ] = 4.

(We will see SΓ0(1+i)/W = (Z/2Z)2.)
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Our strategy for the rest of this paper is as follows. At first, we realize the
quotient space H3/ΓT (2) by using theta functions Θ

(
a
b

)
(τ) on D in Section 10. Next

we construct D8-invariant functions which realize H3/Λ in Section 11. This is a
generalization of the construction of the j-function from the λ-function. Finally,
we construct the 3 double covers in the right line step by step. In order to know
the branch locus of each of double covers, we investigate the symmetry of the
Whitehead link.

H3/ΓT (2) H3/W

\ |Z/(2Z)

H3/〈W,W 〉

\D8 |Z/(2Z)

H3/SΓ0(1+i)

\ /Z/(2Z)

H3/Λ

7. Symmetry of the Whitehead link

The π-rotations with axes F1, F2 and F3 in Figure 6 are orientation preserving
homeomorphisms of S3 keeping L fixed; they form a group (Z/2Z)2. These ro-
tations can be represent as elements of Λ. We give the axes in the fundamental
domain of H3/W .

Proposition 7.1. The three π-rotations with axes F1, F2 and F3 are represented by
the transformations

γ1 :
(
−1 1
0 1

)
, γ2 :

(
1 1
0 1

)
, γ3 :

(
−1 0
0 1

)
,

respectively, of H3 modulo W . The fixed loci in FD, as well as in H3/W , of the
rotations γ1, γ2 and γ3 are also called the axes F1, F2 and F3. The axis F1 consists
of the geodesics in FD given by the inverse images of z = ± 1

2 and z = ± 1−i
2 under

the projection p : H3 ! (z, t) 	→ z ∈ C, F2 consists of the geodesic in FD joining
points (0, 0) and (i, 0) in ∂H3 and the geodesic joining (−1, 0), (i, 0) ∈ ∂H3, F3

consists of the geodesics in FD given by the inverse images of z = 0,−1, i
2 , and

−1 + i
2 under the projection p and the geodesic joining (0, 0), (−1 + i, 0) ∈ ∂H3.

They are depicted in FD as in Figure 7, where � = (−1+i
2 , 1√

2
) © = ( i

2 ,
1
2 ) are

points of H3, a bullet • stands for a vertical line: the inverse image of the point
under the projection p, and a thick segment stands for a geodesic curve in H3
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F3

F1 F2

L0

L∞

Figure 6. The Whitehead link with its symmetry axes

joining its terminal points in ∂H3, which is the vertical semicircle with the given
segment as its diameter; its image under p is the given segment.

Figure 7. The fixed loci of γ1, γ2, γ3

8. Orbit spaces under W̆ , SΓ0(1 + i) and Λ

We give fundamental domains for W̆ , SΓ0(1 + i) and Λ, and the orbifolds H3/W̆ ,
H3/SΓ0(1 + i) and H3/Λ in Figures 8, 9, 11 and 10.
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2

L∞
L0

F3F2

F1

Figure 8. A fundamental domain for W̆ and the orbifold H3/W̆

2

2
2

L∞ L0

F3

F1

F2

Figure 9. A fundamental domain for SΓ0(1+i) and the orbifold
H3/SΓ0(1 + i)

Proposition 8.1. 1. The branch locus of the double cover H3/SΓ0(1+i) of H3/Λ
is the union of the walls a, b, c, d given in Lemma 6.1.

2. That of the double cover H3/W̆ of H3/SΓ0(1+i) is the union of the axes F2

and F3 (the axes F2 and F3 are equivalent in the space H3/W̆ ).
3. That of the double cover H3/W of H3/W̆ is the axis F1.

9. Embedding of H3 into D

We embed H3 into D by

ı : H3 ! (z, t) 	→ i

t

(
t2 + |z|2 z

z̄ 1

)
∈ D;
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∞

0

F1

F2

F3

a

b

c

d

Figure 10. A better picture of the fundamental domain for
SΓ0(1 + i) corresponding to the left figure in Figure 9

∞

0

a

c

d b a

b

c

d

Figure 11. A fundamental domain for Λ and the boundary of
H3/Λ

we define a homomorphism

j : GL2(C) ! g 	→
(
g/
√
| det(g)| O

O (g∗/
√
| det(g)|)−1

)
∈ U2,2(C).

They satisfy

ı(g · (z, t)) = j(g) · ı(z, t) for any g ∈ GL2(C),
ı(T · (z, t)) = T · ı(z, t),

−(ı(z, t))−1 =
(
j

(
0 −1
1 0

)
· T
)
· ı(z, t).
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We denote the pull back of Θ
(
a
b

)
(τ) under the embedding ı : H3 → D by Θ

(
a
b

)
(z, t).

By definition, we have the following.

Fact 6. 1. For a, b ∈ 1
2Z[i]2, each Θ

(
a
b

)
(z, t) is real valued. If 2Re(ab∗)+2Im(ab∗)

/∈ Z, then Θ
(
a
b

)
(z, t) ≡ 0.

2. For a, b ∈ 1
1+iZ[i]2, each Θ

(
a
b

)
(z, t) is invariant under the action of ΓT (2).

3. The function Θ = Θ
(
00
00

)
(z, t) is positive and invariant under the action of

ΓT .

10. Invariant functions for ΓT (2) and an embedding of H3/ΓT (2)

For theta functions with characteristics p
2 ,

q
2 ∈

1
2Z[i]2 on H3, we set

Θ
[
p

q

]
= Θ

[
p

q

]
(z, t) = Θ

(p
2
q
2

)
(z, t), p, q ∈ Z[i]2

and

x0 = Θ
[
0, 0
0, 0

]
, x1 = Θ

[
1+i, 1+i

1+i, 1+i

]
, x2 = Θ

[
1+i, 0
0, 1+i

]
, x3 = Θ

[
0, 1+i

1+i, 0

]
.

Theorem 10.1 (Corollary 3.1 in [MY]). The map

H3 ! (z, t) 	→ 1
x0

(x1, x2, x3) ∈ R3

induces an isomorphism between H3/ΓT (2) and the octahedron

Oct = {(t1, t2, t3) ∈ R3 | |t1|+ |t2|+ |t3| ≤ 1}
minus the six vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1). The restriction of this iso-
morphism to the complement of the union of the mirrors of reflections in ΓT (2) is
a real analytic diffeomorphism to the interior of Oct.

We can regard the map in this theorem as a generalization of the λ-function.

11. Invariant functions for Λ and an embedding of H3/Λ

Once an embedding of H3/ΓT (2) is obtained, in terms of xj , for a supergroup Λ of
ΓT (2), an embedding of H3/Λ can be obtained by polynomials of the xj ’s invariant
under the finite group Λ/ΓT (2) isomorphic to the dihedral group D8 of order 8.

Proposition 11.1. By the actions of the generators g1 and g2 of W , the functions
x1, x2, x3 are transformed into as follows:

(x1, x2, x3) · g1 = (x1, x2, x3)

⎛⎝ −1
−1

1

⎞⎠ ,
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(x1, x2, x3) · g2 = (x1, x2, x3)

⎛⎝−1
1
−1

⎞⎠ .

The group generated by these matrices is isomorphic to the dihedral group D8.

Theorem 11.2. The functions x2
1 + x2

2, x2
1x

2
2, x2

3, x1x2x3 are Λ-invariant. The
map

λ : H3 ! (z, t) 	−→ (λ1, λ2, λ3, λ4) = (ξ2
1 + ξ2

2 , ξ2
1ξ

2
2 , ξ2

3 , ξ1ξ2ξ3) ∈ R4

induces an embedding of H3/Λ into the subdomain of the variety λ2λ3 = λ2
4, where

ξj = xj/x0.

We can regard the map in this theorem as a generalization of the j-function
expressed in terms of symmetric polynomials of three theta constants.

12. Invariant functions for W

In this section, we construct invariant functions Φ1,Φ2 and Φ3 for W by utilizing
theta functions with characteristics a, b ∈ 1

2Z[i]2. Set

y1 = Θ
[

0, 1
1+i, 0

]
, y2 = Θ

[
1+i, 1
1+i, 0

]
, z1 = Θ

[
0, 1
1, 0

]
, z2 = Θ

[
1+i, 1
1, 1+i

]
.

We define functions as

Φ1 = x3z1z2,

Φ2 = (x2 − x1)y1 + (x2 + x1)y2,

Φ3 = (x2
1 − x2

2)y1y2.

Theorem 12.1. The functions Φ1,Φ2 and Φ3 are W -invariant. By the actions

g = I2 + 2
(
p q
r s

)
∈ Γ(2) and T , we have

Φ1 · g = e[Re((1+i)p + (1−i)s)]Φ1,

Φ2 · g = e[Re(r(1 − i))]Φ2,

Φ3 · g = Φ3.

Φ1 · T = Φ1, Φ3 · T = −Φ3.

Remark 12.2. We have Φ2 · T = (x2 − x1)y1 − (x2 + x1)y2. This is not invariant
under W but invariant under W .

Let Isoj be the isotropy subgroup of Λ = SΓT
0 (1 + i) for Φj .

Theorem 12.3. We have

SΓ0(1 + i) = Iso3, W̆ = Iso1 ∩ Iso3, W = Iso1 ∩ Iso2 ∩ Iso3.

This theorem implies the isomorphism SΓ0(1+i)/W � (Z/2Z)2 and the fol-
lowing arithmetical characterizations for W̆ , W and Ŵ = W ∩ W̄ .



266 Keiji Matsumoto

Theorem 12.4. An element g =
(
p q
r s

)
∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2

belongs to W̆ if and only if

Re(p) + Im(s)− (−1)Re(q)+Im(q)(Im(p) + Re(s))
2

≡ ((−1)Re(r) + 1)Im(q) + (Re(q) + Im(q))(Re(r) + Im(r))
2

mod 2.

The element g ∈ W̆ belongs to W if and only if

Re(p + q) +
Re(r) − (−1)Re(q)+Im(q)Im(r)

2
≡ 1 mod 2.

The element g ∈W belongs to Ŵ if and only if r ∈ 2Z[i].

13. Embeddings of the quotient spaces

In order to embed the quotient spaces H3/SΓ0(1+i), H3/W̆ and H3/W , we con-
struct, for each j = 1, 2, 3, invariant functions fj1, fj2, . . . for W such that their
common zero is Fk ∪ Fl, where {j, k, l} = {1, 2, 3}. We use W -invariant functions
as follows:

f00 = (x2
2 − x2

1)y1y2 = Φ3,

f01 = (x2
2 − x2

1)z1z2z3z4,

f11 = x3z1z2 = Φ1,

f12 = x1x2z1z2,

f13 = x3(x2
2 − x2

1)z3z4,

f14 = x1x2(x2
2 − x2

1)z3z4,

f20 = (x2 − x1)z2z3 + (x2 + x1)z1z4,

f21 = z1z2{(x2 − x1)z1z3 + (x2 + x1)z2z4},
f22 = (x2

2 − x2
1){(x2 − x1)z1z4 + (x2 + x1)z2z3},

f30 = (x2 − x1)y1 + (x2 + x1)y2 = Φ2,

f31 = (x2 − x1)z1z3 − (x2 + x1)z2z4,

f32 = z3z4{−(x2 − x1)z1z4 + (x2 + x1)z2z3},

where

z1 = Θ
[
0, 1
1, 0

]
, z2 = Θ

[
1+i, 1
1, 1+i

]
, z3 = Θ

[
0, i
1, 0

]
, z4 = Θ

[
1+i, i

1, 1+i

]
.
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Proposition 13.1. We have

4z2
1 = (x0 + x1 + x2 + x3)(x0 − x1 − x2 + x3),

4z2
2 = (x0 + x1 − x2 − x3)(x0 − x1 + x2 − x3),

4z2
3 = (x0 + x1 − x2 + x3)(x0 − x1 + x2 + x3),

4z2
4 = (x0 + x1 + x2 − x3)(x0 − x1 − x2 − x3).

Proposition 13.2. The functions fjp are W -invariant. These change the signs by
the actions of γ1, γ2 and γ3 as in the table

γ1 γ2 γ3

f0j + + +
f1j + − −
f2j − + −
f3j − − +

Theorem 13.3. The analytic sets V1, V2, V3 of the ideals

I1 = 〈f11, f12, f13, f14〉, I2 = 〈f21, f22〉, I3 = 〈f31, f32〉

are F2 ∪ F3, F1 ∪ F3, F1 ∪ F2.

Corollary 13.4. The analytic set Vjk of the ideals 〈Ij , Ik〉 is Fl for {j, k, l} =
{1, 2, 3}.

Theorem 13.5. The map

ϕ0 : H3/SΓ0(1+i) ! (z, t) 	→ (λ1, . . . , λ4, η01) ∈ R5

is injective, where η01 = f01/x
6
0. Its image Image(ϕ0) is determined by the image

Image(λ) under λ : H3 ! (z, t) 	→ (λ1, . . . , λ4) and the relation

256f2
01

= (λ2
1 − 4λ2)

∏
ε3=±1

(λ2
3 − 2(x2

0 + λ1)λ3 + ε38x0λ4 + x4
0 − 2x2

0λ1 + λ2
1 − 4λ2),

as a double cover of Image(λ) branching along its boundary.

The axes F1, F2 and F3 can be illustrated as in Figure 12. Each of the two
cusps ∞̄ and 0̄ is shown as a hole. These holes can be deformed into sausages as
in Figure 13.

Theorem 13.6. The map

ϕ1 : H3/W̆ ! (z, t) 	→ (ϕ0, η11, . . . , η14) ∈ R9

is injective, where η1j = f1j/x
deg(f1j)
0 . The products f1pf1q (1 ≤ p ≤ q ≤ 4) can be

expressed as polynomials of x0, λ1, . . . , λ4 and f01. The image Image(ϕ0) together
with these relations determines the image Image(ϕ1) under the map ϕ1.
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F1

F1

F3
F3

F3

F2

F2

∞̄

0̄

Figure 12. Orbifold singularities in Image(ϕ0) and the cusps ∞̄
and 0̄

L∞
L0

F3

F1

F2

Figure 13. The cusp-holes are deformed into two sausages

The boundary of a small neighborhood of the cusp ϕ1(0) is a torus, which is
the double cover of that of the cusp ϕ0(0); note that two F2-curves and two F3-
curves stick into ϕ0(0). The boundary of a small neighborhood of the cusp ϕ1(∞)
remains to be a 2-sphere; note that two F1-curves and two F3-curves stick into
ϕ0(∞), and that four F1-curves stick into ϕ1(∞), see Figures 13, 14. Note also
that the sausage and the doughnut in Figure 14 are obtained by the two sausages
in Figure 13 and their copies by the π-rotation with axis F3.

Theorem 13.7. The map

ϕ : H3/W ! (z, t) 	→ (ϕ1, η21, η22, η31, η32) ∈ R13
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F2 F3

F1

2

ϕ1(0)

ϕ1(∞)

Figure 14. The double covers of the cusp holes in Figure 13

is injective, where ηij = fij/x
deg(fij)
0 . The products f2qf2r f3qf3r and f1pf2qf3r

(p = 1, . . . , 4, q, r = 1, 2) can be expressed as polynomials of x0, λ1, . . . , λ4 and f01.
The image Image(ϕ1) together with these relations determines the image Image(ϕ)
under the map ϕ.

The boundary of a small neighborhood of the cusp ϕ(∞) is a torus, which is
the double cover of that of the cusp ϕ1(∞); recall that four F1-curves stick into
ϕ1(∞). The boundary of a small neighborhood of the cusp ϕ(0) is a torus, which
is the unbranched double cover of that of the cusp ϕ1(0), a torus. Note that the
boundary of a small neighborhood of the cusp ϕ(∞) and that of the cusp ϕ(0) are
obtained by the sausage and the doughnut in Figure 14 and their copies by the
π-rotation with axis F1.

Ultimately, the sausage and the doughnut in Figure 14 are covered by two
linked doughnuts, tubular neighborhoods of the curves L0 and L∞ of the White-
head link.
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F3

F1 F2

L0

L∞
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On the Construction of Class Fields
by Picard Modular Forms

Thorsten Riedel

Abstract. The goal of this article is to construct modular functions living
on the complex ball of dimension two such that the values in special points
— similar to the elliptic modular function — generate class fields. For this
purpose we are well prepared by the papers [5] and [6]. The first one classifies
the moduli space of abelian 3-folds with a multiplication by Q(i) of type (2, 1)
as projective surface. Via Jacobians we connect this Shimura surface with the
moduli space of a family of curves of Shimura equation type. Thus we are
able to continue the construction of the inverse period map of the family by
theta constants given in [6]. Knowing the action of the modular group we
reach a modular function j by modular forms with respect to the congruence
subgroup of level (1 + i) of the full Picard modular group of Gauß numbers.
If τ is the period of a (Jacobian of a) curve with complex multiplication the
corresponding moduli field is generated over the rational numbers by j(τ ).
Hence the values in CM points of this function generate abelian extensions of
the associated reflex field.

Mathematics Subject Classification (2000). 11G15, 14D05, 14H10, 14H42.

Keywords. Please provide some keywords.

1. Introduction

Every abelian extension of the rational numbers is contained in a cyclotomic field.
This famous result is the statement of the Theorem of Kronecker and Weber.
Cyclotomic fields are generated by roots of the unity, i.e., by special values of the
exponential function. The corresponding assertion for imaginary quadratic number
fields, known as Kronecker’s Jugendtraum and proved by Takagi, says that in the
imaginary quadratic case Hilbert class fields are obtained by adjoining values of the
elliptic modular function in moduli of elliptic curves with complex multiplication.
The idea of generating abelian extensions of number fields by special values of

I am grateful to Professor Rolf-Peter Holzapfel for his support and advice.
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analytic functions Hilbert took up in his twelth problem: Find those functions
that play the role of the exponential function and the j-function whatever is laid
down as field of rationality.

If we want to generalize the imaginary quadratic case we have to replace
elliptic curves by abelian varieties of higher dimension. The moduli τ of an abelian
g-fold Aτ with fixed (principally) polarization belongs to a quotient of the Siegel
upper halfspace Hg of degree g by a certain discrete subgroup Γ ⊂ Sp(2g,R)
commensurable with Sp(2g,Z). We have to find a Γ-invariant map j from Hg into
a projective space such that the field of moduli of Aτ is generated over Q by
the coordinates of j(τ). If Aτ is a variety with multiplication by a CM field k of
absolute degree 2g then k∗(j(τ)) is a class field of the corresponding reflex field
k∗.

For the family of Picard curves C(ζ) : w3 = z(z− ζ0)(z− ζ1)(z− ζ2) this was
done by R.-P. Holzapfel [2] and H. Shiga [7]. Here the two-dimensional complex
ball serves as space of periods and the modular group acting on the ball is the
Picard modular group of Eisenstein numbers.

In this article we will give a similar result for a second family F of smooth
projective curves C̃(x, y) of genus three with model

C(x, y) : w4 = z2(z − 1)2(z − x)(z − y)

and parameters (x, y) ∈ Λ := C2\{(x, y) | xy(x− 1)(y − 1)(x− y) = 0}.
Fortunately, the main problems leading to the announced modular function

are solved by K. Matsumoto [6] and R.-P. Holzapfel [5]. In [6] we find the inverse
period map explicitely given by products of theta constants. These products are
modular forms with respect to the monodromy group of the family which is an
index-2 subgroup of the congruence subgroup of level (1 + i) of the Picard modu-
lar group Γ = SU(H,Z[i]), H =

(
0 −i 0
i 0 0
0 0 1

)
, of Gauß numbers. The latter group is

not only the modular group of our family but the modular group of principally
polarized abelian 3-folds with multiplication by Q(i) of type (2, 1) too, and the
Jacobians Jac(C̃), C̃ ∈ F , are of this type. The (Baily–Borel compactified) quo-
tients of the ball BH : tzHz̄ < 0 by the congruence subgroup Γ(1 + i) and by
the Picard modular group Γ, are P2 respectively P2/S3 with concrete given ram-
ification data of the uniformizing morphism, see [5]. Using these properties, we
are able to continue Matsumoto’s construction to get a Picard modular function
j = (j1 : j2 : j3) from the ball into P2 by Γ(1 + i)-modular forms. The resulting
map induces a birational transformation of the moduli space Γ\BH and P2/S3

such that the moduli field of an abelian variety is generated by the coordinates
of the modular function (outside a certain set). So we apply Shimura–Taniyama’s
theory to deduce that the j-values of CM-points generate abelian extensions of
the associated reflex field.

First let us give an informal definition of the kind of modular forms we want
to construct in the sequel.



On the Construction of Class Fields by Picard Modular Forms 275

Definition 1.1. Let F be a family of curves with moduli space M , modular group
Γ, and let Γ′ denote a congruence subgroup of Γ.

(i) By Schottky forms with respect to Γ′ we understand Γ′-modular forms leading
for a given period to an equation for a curve with this period;

(ii) Taniyama forms with respect to Γ′ are defined as Γ′-modular forms which
serve for the construction of class fields;

(iii) Schottky–Taniyama forms of the family are Γ′-modular forms that are both,
Schottky forms and Taniyama forms;

(iv) Schottky, Taniyama or Schottky–Taniyama rings are defined as graduate
rings generated by Schottky, Taniyama respectively Schottky–Taniyama
forms.

This definition is motivated by the Eisenstein series in the elliptic case. So
we take a look at some results about the arithmetic of elliptic curves.

Example 1.2. The family of elliptic curves defined over C consists of all smooth
algebraic curves defined over the complex numbers of genus one. The periods
are parametrized by the symmetric space H = {τ ∈ C | Im(τ) > 0}, and the
compactified space of moduli is the modular curve X(1) := Γ̂\H ∼= P1, where
the arithmetic group Γ = PSl2(Z) denotes the (full) elliptic modular group. The
Eisenstein series g2, g3 : H −→ C,

g2(τ) := 60
∑

0�=λ∈Lτ

1
λ4

, g3(τ) := 140
∑

0�=λ∈Lτ

1
λ6

, Lτ = Z + τZ,

are known to be Γ-modular forms which have the following properties:
(i) g2, g3 are Schottky forms; each isomorphism class of curves is represented by

a curve Cτ with period point τ defined by a Weierstraß equation

Cτ : y2z = 4x3 − g2(τ)xz2 − g3(τ)z3, Δ(τ) = g3
2(τ) − 27g2

3(τ) �= 0;

(ii) the ring of modular forms R[Γ] = C[g2, g3] is generated by g2, g3;
(iii) the elliptic modular function j := 123g3

2/Δ : H −→ P1 induces an isomor-
phism X(1) ∼= P1. It holds that

Cτ
∼= Cσ ⇐⇒ σ ∈ Γτ ⇐⇒ j(τ) = j(σ);

(iv) g2, g3 are Taniyama forms; let τ be a CM-point, M(Cτ ) the moduli field.
M(Cτ ) = Q(j(τ)) is an abelian extension (class field) of the imaginary qua-
dratic number field Q(τ);

(v) the field Mer(X(1)) of meromorphic functions on X(1) is C(j); each modular
function is a quotient of polynomials in g3

2 , g
2
3 homogeneous of same degree.

In the next section we mainly summarize known results about the family F
most of them obtained by K. Matsumoto, cf. [6]. The culminating point is the
arithmetic description of the monodromy group that forms the bridge to arith-
metic properties of (Jacobians of) our curves and enables us to go further in the
construction of Schottky-Taniyama forms. That will be done in the last section.
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2. Monodromy and arithmetic groups

The aim of this section is the arithmetic description of the monodromy group of the
family F (Proposition 2.3). Before we are able to do that, we have to collect some
results most of them obtained by K. Matsumoto. Hence we reduce our explanations
and refer to [6]. The arithmetic description is presented there too, but we will give
a different proof using R.-P. Holzapfel’s classification of ball quotients, see [5].

Let us consider the family F consisting of smooth hyperelliptic curves C̃(x, y)
of genus three with model

C(x, y) : w4 = z2(z − 1)2(z − x)(z − y) ⊂ P1 × P1

and parameters (x, y) ∈ Λ := C2\{(x, y) | xy(x− 1)(y− 1)(x− y) = 0} ⊂ P1× P1.
First we notice that the projective balls

P2 ⊃ B : |z1|2 + |z2|2 − |z0|2 < 0 resp. BH : tzHz̄ < 0, H =
(

0 −i 0
i 0 0
0 0 1

)
,

serve as spaces of periods of the family F .
To see this, we consider the automorphism ρ : (z, w) 	→ (z, iw) ∈ Aut(C̃(x, y))

and define generators of the space of holomorphic differential forms η1 = dz/w,
η2 = z(z − 1)dz/w3, η3 = zη2. For fixed (x0, y0) ∈ Λ, we can choose cycles
A1, A3, B1 on C̃(x0, y0) such that b0 = {A1, ρA1, A3, B1, ρB1, ρA3} forms a ba-
sis of the homology group H1(C̃(x0, y0),Z) with intersection matrix in canonical
form, see [6]. For a general curve C̃(x, y) ∈ F , we take a path s in Λ starting
in (x0, y0) and ending in (x, y). Define a basis b(x, y) = {A1(x, y), . . . , ρA3(x, y)}
for H1(C̃(x, y),Z) by continuation of b0 along s. A straightforward calculation —
using the relations between the cycles and Riemann period relations — shows that
the resulting period matrix Ω(x, y) ∈ H3 = {Ω ∈ M3(C) | tΩ = Ω, Im(Ω) > 0}
depends only on the chosen path s and on integrals

∫
Z(x,y)

η1 with Z(x, y) ∈
{A1(x, y), A3(x, y), B1(x, y)}.

On this way we get the multivalued map, cf. [6], Proposition 1.2,

Ψ : Λ −→ H3, (x, y) 	→ Ω(x, y) =

⎛⎝u + i
2v

2 − 1
2v

2 −iv
− 1

2v
2 u− i

2v
2 v

−iv v i

⎞⎠ (2.1)

with u := u(x, y) :=
∫

B1(x,y) η1/
∫

A1(x,y) η1, v :=
∫

A3(x,y) η1/
∫

A1(x,y) η1.
We define an embedding μ : BH ↪→ H3 by

μ(ζ0 : ζ1 : ζ2) :=

⎛⎝u + i
2v

2 − 1
2v

2 −iv
− 1

2v
2 u− i

2v
2 v

−iv v i

⎞⎠ , u =
ζ1
ζ0

, v =
ζ2
ζ0

. (2.2)

We have Ψ(Λ) ⊂ μ(BH), thus

Ψ̃ := μ−1 ◦Ψ : Λ −→ BH , (x, y) 	→ (μ−1 ◦Ψ)(x, y)

defines a multivalued (period) map.
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In a certain sense there is a Z2×S3-action on the parameter space preserving
isomorphism classes of curves, where Z2 is cyclic of order two and S3 denotes
the symmetric group of three letters. To be more precise, let K be a subgroup
of Aut(P1 × P1) generated by k1(x, y) = (y, x), k2(x, y) = (1 − x, 1 − y) and
k3(x, y) = ( 1

x ,
1
y ). A. Piñeiro proved the following

Proposition 2.1. (see [4], Appendix 1) The (compactified) space of moduli of the
family F is given by Λ/K ⊂ P1 × P1/K, K ∼= Z2 × S3.

The next goal is to compare monodromy and arithmetic groups. For this
purpose we recall from Deligne and Mostow [1] or Yoshida [11] that curves of
a special equation type and parameter space Λ are connected with systems of
hypergeometric differential equations.

Let μ = (μ0, μ1, μ2, μ3, μ4) ∈ Q5, 0 < μj < 1 with
∑4

j=0 μj = 2 and let
d denote the least common denominator of the μj . Consider projective smooth
curves C̃μ(x, y) with affine model

Cμ(x, y) : wd = zdμ0(z − 1)dμ1(z − x)dμ2(z − y)dμ3

and parameter (x, y) ∈ Λ. On each of these curves η = dz/w = z−μ0(z−1)−μ1(z−
x)−μ2(z − y)−μ3 defines a holomorphic differential form. As function in x, y the
period

∫
Z(x,y)

η of Cμ(x, y) satisfies the system E(a, b, b′, c) of linear partial differ-
ential equations

x(1 − x)
∂2u

∂x2
+ y(1− x)

∂2u

∂x∂y
+ (c− (a + b + 1)x)

∂u

∂x
− by

∂u

∂y
− abu = 0,

y(1− y)
∂2u

∂y2
+ x(1− y)

∂2u

∂y∂x
+ (c− (a + b′ + 1)y)

∂u

∂y
− b′x

∂u

∂x
− ab′u = 0,

where μ0 = c − b − b′, μ1 = 1 + a − c, μ2 = b, μ3 = b′. This is the system
for the Appell hypergeometric function F1(a, b, b′, c;x, y). Given a fundamental
solution for (x, y) ∈ Λ — the system is non-singular and the space of solutions has
dimension three on Λ — by analytic continuation along paths δ ∈ π1(Λ, (x, y)) we
reach a representation of the fundamental group in Gl(V ) ∼= Gl3(C). The image of
π1(Λ, (x, y)) under this representation is called monodromy group of the system,
the projective monodromy group is the image of the monodromy group under the
projection Gl3(C)→ PGl3(C).

In our case the associated system has values μ0 = μ1 = μ4 = 1/2 and
μ2 = μ3 = 1/4 and therefore E(a, b, b′, c) = E(1

2 ,
1
4 ,

1
4 , 1). The μj are positive

rational numbers less than one and sum equal two satisfying the condition

(INT) for i �= j: (1− μi − μj)−1 ∈ Z ∪ {∞}.
Taking into account that the period points (

∫
A1(x,y)

η1 :
∫

B1(x,y)
η1 :

∫
A3(x,y)

η1)
yield projective solutions of the system, we know from [1], Theorem 11.4 and
List 14.4, see also [11], PTMD-Theorem, that the projective monodromy group
PMon =: Γ′

2 is an arithmetic lattice in Aut(BH), and that Ψ̃ induces an injective
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map from Λ to Γ′
2\BH . Up to compactification, Ψ̃−1 (continued over the ramifi-

cation and into the cusps) coincides with the quotient map BH −→ Γ′
2\BH and

leads to a biholomorphic map between Γ′
2\BH and P1×P1\{(0, 0), (1, 1), (∞,∞)}.

Let us identify the latter objects. The compactified branch locus S of the quo-
tient map consists of seven lines x = 0, 1,∞, y = 0, 1,∞, x = y with ramification
numbers two over the diagonal and four over the remaining lines outside the triple
points. If we define a weight map b : P1 × P1 −→ N ∪ {∞} by b(P ) = ∞ for
all P ∈ {(0, 0), (1, 1), (∞,∞)} =: S∞ and b(P ) equal to the ramification number
of Ψ̃−1 at Q, where Q ∈ BH is a point in the preimage of P , P �∈ S∞, then
(P1 × P1, S, b) is an orbifold uniformized by the ball BH in Yoshida’s sense [11].

To describe the monodromy explicitly Matsumoto fixes again a pair of pa-
rameters (x0, y0) and chooses a basis of π1(Λ, (x0, y0)). Deformation of the curve
C̃(x0, y0) along the loops leads to symplectic transformations of the Siegel do-
main and finally to automorphisms of the ball. This can be done — with a slight
modification — for the map Ψ̄ : Λ/K −→ BH too. Let us denote the resulting
transformation groups by Mon(Ψ̃) and Mon(Ψ̄). The calculation leads to (see [6],
(2.5) and (2.7))1

Mon(Ψ̃) =< γ1, . . . , γ5 > ⊂Mon(Ψ̄) =< γ1, . . . , γ8 >, where

γ1 =

⎛⎝ 1 0 0
1 + i 1 1− i
−1− i 0 i

⎞⎠ , γ2 =

⎛⎝2 + i −1− i −1− i
1 + i −i −1− i
1− i −1 + i i

⎞⎠ ,

γ3 =

⎛⎝1 0 0
0 1 0
0 0 −1

⎞⎠ , γ4 =

⎛⎝i 1− i 1− i
0 i 0
0 −1− i −1

⎞⎠ ,

γ5 =

⎛⎝ 2 + i −1− i 1− 1
1 + i −i 1− i
−1− i 1 + i i

⎞⎠ , γ6 =

⎛⎝1 0 0
0 1 0
0 0 i

⎞⎠ ,

γ7 =

⎛⎝1 −1 0
0 1 0
0 0 1

⎞⎠ , γ8 =

⎛⎝−1 0 0
−1 −1 0
0 0 −1

⎞⎠ .

Let Z be the center of the unitary group U(H,Z[i]) = {g ∈ Gl3(Z[i]); tḡHg = H}.
We identify the factor group U(H,Z[i])/Z with the Picard modular group of Gauß
numbers Γ := SU(H,Z[i]) ∼= PU(H,Z[i]) acting effectively on BH . The congruence
subgroup Γ(1+ i) = P{g ∈ U(H,Z[i]); g ≡ I3 mod (1+ i)} will play an important
role in the following considerations.

We want to connect the (extended) projective monodromy groups

Γ′
2 := PMon(Ψ̃) ⊂ Γ′

1 := P < γ1, . . . , γ6 > ⊂ Γ′ := PMon(Ψ̄)

1For a better comparison with Matsumoto’s article we should mention that γ5 given below differs

from Matsumoto’s g(δ5). Looking at the corresponding symplectic matrix N(δ5), see [6], (2.4),
it is easy to check that g(δ5) is provided with a typing error.
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with the arithmetic groups

Γ1 := Γ(1 + i) ⊂ Γ = PU(H,Z[i]).

Given a ball lattice G ⊂ Aut(BH) the corresponding quotient surface is denoted
by XG = G\BH . For the Baily–Borel compactification of XG, that is a projective
surface obtained by adding finitely many points to XG, we write X̂G. In the sequel
we will make extensive use of the following facts proved by R.-P. Holzapfel and N.
Vladov.

Theorem 2.2. (see [5], Chapter 8 and 9) The Baily–Borel compactification X̂Γ1 ,
Γ1 = Γ(1 + i), of Γ1\BH is equal to P2. The compactified branch locus of the
quotient map pΓ1 : BH −→ XΓ1 consists of a plane Apollonius configuration, i.e.,
a quadric Ĉ0 and three tangents Ĉj, j = 1, 2, 3. Γ1 has three inequivalent cusps
κ1, κ2, κ3 ∈ ∂BH which correspond to the intersection points Ĉ0 ∩ Ĉj, j = 1, 2, 3.

Outside the images of the cusps the weight attached to each curve Ĉj is four,
so we have Apoll-3 in the notation of [5]. Knowing these results we are able to
verify the following

Proposition 2.3. (cf. [6], Prop. 2.2) Arithmetic description of the monodromy.

(i) Γ′
1 = Γ1, (ii) Γ′ = Γ, (iii) [Γ1 : Γ′

2] = 2.

Proof. (i) Looking at the generators it is easy to check that Γ′
1 ⊂ Γ1, hence we have

a projection π̂1 : X̂Γ′
1
−→ X̂Γ1 = P2. We will show that the covering is unramified

outside of finitely many points. Since P2 remains simply connected if we remove a
finite number of points, this implies that π̂1 is of degree one.

The Γ1-inequivalent cusps are represented by κ1 = (1 : 0 : 0), κ2 = (0 : 1 : 0),
κ3 = (1 : 1 : 0). The calculation of the isotropy groups of κ2 yields Γ1,κ2 = Γ′

1,κ2
,

see [6], proof of Proposition 2.2. Hence we conclude from the properly discontinu-
ous action of the transformation groups that π̂1 is locally unramified around this
cusp, and it is unramified around all cusps because isotropy groups of cusps are
conjugated.

Suppose π̂1 ramifies over an irreducible curve Ĉ ⊂ X̂Γ1 . Then Ĉ has to be a
curve of the branch locus of the projection pΓ1 : BH → XΓ1 too. In other words Ĉ
belongs to the Apollonius configuration. But on each such component there is a
cusp and therefore a non-singular point over which π̂1 is unramified. So we deduce
that π̂1 is unramified over the curve outside of singularities.

We have obtained that only a subset of the singular locus Sg(X̂Γ1) may
remain as branch locus. But Sg(X̂Γ1) consists of a finite number of points. So the
restriction to X̂Γ′

1
\π̂−1

1 (Sg(X̂Γ1)) −→ X̂Γ1\Sg(X̂Γ1) = P2\{finitely many points}
is an unramified cover of a simply connected domain, therefore of degree one and
that has to be the degree of π̂1 too.

(ii) Γ′/Γ1 is a subgroup of Γ/Γ1. The latter quotient is isomorphic to the
orthogonal group O(3,F2) and therefore isomorphic to the symmetric group S3.
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Γ′/Γ1 is generated by two non-commuting elements γ7Γ1 �= γ8Γ1 of order two. It
follows Γ′/Γ1 = Γ/Γ1.

(iii) γ6 �∈ Γ′
2, because X̂Γ′

2
= P1 × P1 −→ P2 = X̂Γ1 cannot have degree one.

But γ2
6 = γ3 ∈ Γ′

2, hence Γ′
2 has index two in Γ1. �

3. Schottky–Taniyama forms

3.1. Schottky forms

The construction of Schottky forms goes essentially back to the given connection
between ball quotients and an expression of Ψ̃−1 by Mon(Ψ̃)-modular forms. Via
the composition of Ψ̃−1 with the Segre embedding and a suitable projection we
will describe the uniformizing morphism pΓ1 : BH −→ P2 by Γ1-modular forms.
The Schottky property follows immediately from the construction of the modular
forms.

Let us recall the definition of theta constants. For p, q in (1
2Z)g theta constants

with characteristic
[

tp
tq

]
are defined by

Θ
[

tp
tq

]
(Ω) :=

∑
n∈Zg exp(πi t(n + p)Ω(n + p) + 2πi t(n + p)q), Ω ∈ Hg.

Looking back at the embedding μ : BH ↪→ H3 (see 2.2) we define theta constants
on the ball by

Θ
[

tp
tq

]
(τ) := Θ

[
tp
tq

]
(μ(τ)).

By (1 : u : v :) 	→ (u, v) we may identify BH with the unrestricted complex domain
{(u, v) ∈ C2; 2Im(u)− |v|2 > 0}. The action of Γ on BH is given by

g = (gij) : (u, v) 	→
(
g21 + g22u + g23v

g11 + g12u + g13v
,
g31 + g32u + g33v

g11 + g12u + g13v

)
.

Let G ⊂ Γ be an arithmetic subgroup. A holomorphic function φ on BH is called
modular form with respect to G or G-modular form of weight k if

φ(g(u, v)) = (g11 + g12u + g13v)kφ(u, v) ∀g = (gij) ∈ G.

Matsumoto has shown the following

Theorem 3.1. (see [6], Theorems 3.4 and 4.1) Ψ̃−1 : BH −→ P1 × P1 has a repre-
sentation

Ψ̃−1(u, v) =
(
φ1

φ0
(u, v),

φ3

φ2
(u, v)

)
= (x, y)
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with

φ0 :=
(
Θ
[

0 1
2

1
2

0 1
2

1
2

]
Θ
[

1
2 0 0

0 1
2 0

]
Θ
[

0 1
2

1
2

1
2 0 0

]
Θ
[

1
2 0 0

0 1
2

1
2

])2

,

φ1 :=
(
Θ
[

0 1
2

1
2

1
2

1
2

1
2

]
Θ
[

1
2 0 0
0 0 0

]
Θ
[

1
2 0 0

0 0 1
2

]
Θ
[

0 1
2

1
2

0 0 0

])2

,

φ2 :=
(
Θ
[

0 1
2

1
2

0 1
2

1
2

]
Θ
[

1
2 0 0

0 1
2 0

]
Θ
[

0 1
2 0

1
2 0 1

2

]
Θ
[

1
2 0 1

2
0 1

2 0

])2

,

φ3 :=
(
Θ
[

0 1
2

1
2

1
2

1
2

1
2

]
Θ
[

1
2 0 0
0 0 0

]
Θ
[

0 1
2 0

0 0 1
2

]
Θ
[

1
2 0 1

2
0 0 0

])2

,

where Θ
[

tp
tq

]
:= Θ

[
tp
tq

]
(μ(u, v)).

Moreover, the functions φj, j = 0, . . . , 3, are Mon(Ψ̃)-modular forms of weight 8.

Let v : P1 × P1 → P3, (x1
x0
, y1

y0
) 	→ (x0y0 : x0y1 : x1y0 : x1y1) be the Segre

embedding. We denote the image (Segre quadric) by P3 ⊃ V : Z0Z3 = Z1Z2. Thus
v ◦ Ψ̃−1 : BH −→ V sends τ to (χ0(τ) : χ1(τ) : χ2(τ) : χ3(τ)) with

χ0 = φ0φ2, χ1 = φ0φ3, χ2 = φ1φ2, χ3 = φ1φ3.

We remember Proposition 2.3 and the connections between ball quotients

X̂Γ′
2

= P1 × P1 = V
↓ ↓ ↓

X̂Γ1 = (P1 × P1)/<k1> = P2

↓ ↓ ↓
X̂Γ = (P1 × P1)/K = P2/S3.

Next we want to describe the vertical maps. The map from the Segre quadric V
into P2 corresponding to the projection P1 × P1 −→ P1 × P1/< k1 > is given by
pr : (z0 : z1 : z2 : z3) 	→ (z0 : z1 + z2 : z3). To realize this one has to find the
group 2Σ3 ⊂ Aut(V ) such that the operation on V corresponds to the K-action
on P1 × P1. This group has generators S,R, T ∈ PGl4(C) represented by

S =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ , R =

⎛⎜⎜⎝
1 0 0 0
1 −1 0 0
1 0 −1 0
1 −1 −1 1

⎞⎟⎟⎠ , T =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ ,

since v ◦ k1 = S ◦ v, v ◦ k2 = R ◦ v, v ◦ k3 = T ◦ v. So the projection by the cyclic
group < k1 > leads to V/<S> which is isomorphic to P2, and an isomorphism is
induced by the map pr. That can be seen if one considers the extended action of S
on C[χ0, χ1, χ2, χ3] =: C[χ] changing χ1 and χ2. We have ker(S − id) = (χ1 − χ2)
and ker(S + id) = (χ0, χ1 + χ2, χ3). Setting t0 := χ0, t1 := χ1 + χ2, t2 := χ3 we
get C[χ]<S> = C[t0, t1, t2] and C[χ] = C[t0, t1, t2] + C[t0, t1, t2](χ1 − χ2). Thus

pr ◦ v ◦ Ψ̃−1 = (t0 : t1 : t2) : BH −→ P2 = Proj(C[t0, t1, t2]). (3.1)

We know already — or check it in a minute — that the branch locus, i.e., the
pr◦v-image of the seven lines x = 0, 1,∞, y = 0, 1,∞, x = y, is a plane Apollonius
configuration. But the configuration is not in S3-normalized form yet, that means
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that the branch tangent lines at the branch quadric do not coincide with the
coordinate axes, or in other words, the action of the modular group doesn’t lead
to the canonical S3-permutation of projective coordinates. To achieve this we have
to transform the projective coordinates in a suitable manner. If one takes a look
at the equations defining the (non-normalized) configuration or alternatively on
the Σ3-action on P2 coming from the <R, T >-action on V one easily concludes
that this is done by sending (t0 : t1 : t2) to (t0 : t0 − t1 + t2 : t2). Altogether we
have

Proposition 3.2. Set pΓ1 = (g0 : g1 : g2) : BH −→ P2, g0 = t0, g1 = t0 − t1 + t2,
g2 = t2 and let τ ∈ BH be outside of the ramification locus of pΓ1 . It holds that

(i) g0, g1, g2 are Γ(1 + i) = Γ1-modular forms of weight 16;
(ii) the curve C̃τ defined by the equation

Cτ : w4 = z2(z − 1)2
(
z2 − g0(τ) − g1(τ) + g2(τ)

g0(τ)
z +

g2(τ)
g0(τ)

)
has period point τ , i.e., g0, g1, g2 are Γ1-Schottky forms;

(iii) C̃τ
∼= C̃τ ′ ⇐⇒ (g0(τ ′) : g1(τ ′) : g2(τ ′)) ∼S3 (g0(τ) : g1(τ) : g2(τ)), where S3

acts by permutation of the coordinates.

Proof. To prove the Γ1-modularity one has to write down the tj in terms of theta
constants and to apply Lemma 4.2 in [6]. Weight 16 of the tj is trivial, because
they are products of two forms of weight 8. Thus modularity and weight of the gj

are clear. The Schottky property and the last statement follow immediately from
Theorem 3.1 and the construction of the gj . �

For a group G ⊂ Γ of finite index let R[G]k be the space of G-modular forms
of weight k, R[G]k0 the space of cusp forms, i.e., modular forms which vanish in the
cusps, of weight k. R[G] = ⊕k≥0R[G]k denotes the graduate ring of G-modular
forms. Consider the graduate subrings C[χ] ⊂ R[Γ′

2] and C[t] ⊂ R[Γ1] generated
by χ0, χ1, χ2, χ3 respectively t0, t1, t2. Let C[χ]d := C[χ]∩R[Γ′

2]
16d, C[t]d := C[t]∩

R[Γ1]16d be the space of modular forms of weight 16d in C[χ] and C[t], C[χ]d0, C[t]d0
the subspaces of cusp forms. C[t]d consists of the homogeneous elements of degree
d in C[t] (cf. 3.1) and therefore it has dimension

(
d+2
2

)
. Taking into account that

the condition to vanish in the cusps yields three additional linearly independent
conditions on a modular form, that we have a decomposition in S-eigenspaces
C[χ] = C[t] + C[t](χ1 − χ2) (thus dim C[χ]d = dim C[t]d + dim C[t]d−1) and that
χ1 − χ2 is a cusp form, we conclude

dim C[t]d = d2/2 + 3d/2 + 1, dim C[t]d0 = d2/2 + 3d/2− 2,
dim C[χ]d = d2 + 2d + 1, dim C[χ]d0 = d2 + 2d− 2.

For the ring of 2Σ3-invariants we obtain

C[χ]2Σ3 = C[t]Σ3 = C[g0, g1, g2]S3 = C[s1, s2, s3],

where s1 = t0 + t2 +(t0− t1 + t2), s2 = (t0 + t2)(t0− t1 + t2), s2 = t0t2(t0− t1 + t2).



On the Construction of Class Fields by Picard Modular Forms 283

3.2. Taniyama forms

Via the quotient map pΓ1 = (g0 : g1 : g2) : BH −→ P2 given by Γ1-Schottky
forms we want to define a Picard modular function j = (j1 : j2 : j3) : BH −→ P2

such that the values classify the curves up to isomorphism and such that the
field of moduli (for τ outside a certain subset) of the corresponding Jacobian is
Q
(

j1
j3

(τ), j2
j3

(τ)
)
. Since the (principally polarized) Jacobians are abelian 3-folds

with multiplication by Q(i) of type (2, 1), and these varieties are parametrized by
the Shimura surface X̂Γ, the values of j in periods of CM-curves can be used to
generate class fields. We will follow the construction given in [4].

In order to clarify notations we recall some definitions and facts about com-
plex multiplication of abelian varieties, cf. [10].

Let A be a principally polarized abelian variety, k a number field. We say that
A has multiplication by k if there is a Q-algebra embedding of k into the algebra
of endomorphisms EndQ(A) := End(A) ⊗ Q. If k is a CM field, i.e., a totally
imaginary quadratic extension of a totally real number field, of absolute degree
[k : Q] = 2 · dimA, we call A a variety with complex multiplication or CM-variety
for short. Curves Cτ and period points τ are called CM-curves respectively CM-
points if the corresponding varieties Aτ = Jac(Cτ ) are CM-varieties. An abelian
variety with decomposed complex multiplication or DCM is defined as variety which
splits up to isogeny into simple abelian varieties with complex multiplication.

Each endomorphism f of an abelian g-fold A lifts to a linear map lf on the
tangent space T0(A) ∼= Cg of A at O. Let RC : EndQ(A) −→Mg(C), f 	→ lf , be the
complex representation, k a CM field of absolute degree 2g and A a CM-variety
with multiplication by k ∼= EndQ(A). The diagonalized complex representation
diag(ϕ1, . . . , ϕg) yields a CM-type Φ = {ϕ1, . . . , ϕg} for k, that means that the
complete set of complex embeddings of k is given by the ϕj and their complex
conjugated ϕ̄j , j = 1, . . . , g. The reflex field k∗ of k is defined as the field generated
over Q by the Φ-traces TrΦ(f) = ϕ1(f) + . . . + ϕg(f), f ∈ k.

It is known that each abelian CM-variety has a model defined over a number
field L. Let GQ = Gal(Q̄/Q) denote the group of automorphisms of the alge-
braic closure Q̄ of Q fixing Q. We consider a model A/L defined by finitely many
polynomials Fj(X) ∈ L[X ], X = (X1, . . . , Xn). For σ ∈ GQ the σ-transformed
variety Aσ is defined by equations F σ

j (X) = 0, where σ acts on the coefficients
of the polynomials. We set Stab(A) := {σ ∈ GQ; Aσ ∼= A}. The moduli field
M(A) := Q̄Stab(A) of A is the subfield of Q̄ fixed by Stab(A). For a CM-variety A
with k-multiplication the k∗-extended moduli field M(A)k∗ is an abelian extension
(Shimura class field) of k∗, see [10].

Let us return to our genus three curves. We saw already that the moduli
space of the family F — and hence the moduli space of the principally polarized
Jacobians by Torelli’s Theorem — is equal to X̂Γ = P2/S3. On the other hand
this object is the moduli space of principally polarized abelian 3-folds with Q(i)-
multiplication of type (2,1), see [9]. Obviously, the Jacobians Jac(C̃) of curves
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C̃ ∈ F are abelian 3-folds. The automorphism of order four ρ(z, w) = (z, iw) ∈
Aut(C̃) induces an embedding Q(i) ↪→ EndQ(Jac(C̃)) coming from the (dual)
basis of differential-1-forms {η1 = dz/w, η2 = z(z − 1)dz/w3, η3 = zη2}. Since the
restriction of the complex representation of EndQ(Jac(C̃)) to Q(i) is diag(id, id, īd)
we have type (2, 1).

Applying a Theorem of H. Shiga and J. Wolfart, Aτ has decomposed complex
multiplication if and only if τ and pΓ1(τ) have algebraic coordinates, see [8]. In our
situation a DCM-variety Aτ is a CM-variety if and only if K(τ) has degree 3 over
K = Q(i). Moreover it holds that pΓ1 -images of CM-points do not belong to the
Apollonius configuration. This follows from the fact that the ramification locus of
pΓ1 consists of four Γ1-reflection discs which are Q(i)-discs, i.e., intersections of BH

with a projective line on P2 through two different points P1, P2 ∈ P2(Q(i)). But
ball points belonging to Q(i)-discs cannot correspond to simple abelian varieties,
see [3] or [4].

Now we are prepared for the construction of the modular function. Remember
that the branch locus of pΓ1 = (g0 : g1 : g2) : BH −→ P2, τ 	→ (z0 : z1 : z2) consists
of a S3-normalized Apollonius configuration. Let si be the elementary symmetric
functions in z0, z1, z2 of degree i = 1, 2, 3. We define

H1 := s1s2 − 3s3, H2 := s3
1 − s1s2 + 3s3, H3 := s1s2 − s3

and rational functions Hi/s3, i = 1, 2, 3. The map

J :=
(
H1

s3
,
H2

s3

)
: P2 −→ P2

is (well-)defined outside of three points Q1 = (0 : 1 : −1), Q2 = (1 : 0 : −1),
Q3 = (1 : −1 : 0) belonging to the Apollonius configuration, and J factors over
P2/S3. Hence

j := (j1 : j2 : j3) := J ◦ pΓ1 : BH −→ P2,

ji := Hi ◦ pΓ1 , i = 1, 2, j3 := s3 ◦ pΓ1 , is well-defined outside the pΓ1-preimage of
the three points. Especially, j is defined in all CM-points, since they do not belong
to the preimage of the Apollonious configuration. We repeat the proof of

Proposition 3.3. (see [4], Proposition 9.4) Let pΓ1(τ) = (z0 : z1 : z2) =: ζ be
outside the Apollonius configuration, ζ �∈ L : Z0 +Z1 +Z2 = 0 and z = (z0, z1, z2).
It holds that M(C̃τ ) := M(Jac(C̃)) = Q

(
j1
j3

(τ), j2
j3

(τ)
)

=: Q(j(τ)).

Proof. Consider σ ∈ Gal(Q̄/Q). By Torelli’s Theorem, it holds that C̃τ
∼= C̃σ

τ if
and only if Jac(C̃τ ) ∼= Jac(C̃σ

τ ).

C̃τ
∼= C̃σ

τ ⇐⇒ σ permutes z0, z1, z2

⇐⇒ σ fixes W 3 − H1
s3

(z)W 2 + H2
s3

(z)W − H3
s3

(z) ∈ Q̄[W ]
⇐⇒ σ|Q(J(ζ)) = id. �

Summarizing the above we have proved
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Theorem 3.4. Let g0, g1, g2 be as in Proposition 3.2, j := J ◦pΓ1 defined as above,
L : Z0 + Z1 + Z2, kτ = Q(i, τ) with reflex field k∗τ . Then g0, g1, g2 are Schottky-
Taniyama forms for Γ1 = Γ(1+ i). For CM-points τ �∈ p−1

Γ1
(L) the extended moduli

field M(Aτ )k∗τ = Q(j(τ))k∗τ is a class field of the reflex field k∗τ . Outside the
preimage of the Apollonius configuration it holds that C̃τ

∼= C̃τ ′ if and only if
j(τ) = j(τ ′). The field of Γ-modular functions is generated by j, C(j) = Mer(X̂Γ).
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Algebraic Values of Schwarz Triangle Functions

Hironori Shiga and Jürgen Wolfart

Abstract. We consider Schwarz maps for triangles whose angles are rather
general rational multiples of π . Under which conditions can they have alge-
braic values at algebraic arguments? The answer is based mainly on consid-
erations of complex multiplication of certain Prym varieties in Jacobians of
hypergeometric curves. The paper can serve as an introduction to transcen-
dence techniques for hypergeometric functions, but contains also new results
and examples.
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values, transcendence, complex multiplication.

Hypergeometric functions have many interesting relations to arithmetics, for
example to modular forms, diophantine approximation, continued fractions and so
on. In the following contribution we will concentrate on transcendence questions
and explain the relevant techniques in the framework of a question concerning the
classical Schwarz triangle functions.

These triangle functions D(ν0, ν1, ν∞; z) are defined as quotients of two lin-
early independent solutions of Gauss’ hypergeometric differential equations. If their
angular parameters ν0, ν1, ν∞ are real and have absolute value in the open inter-
val ]0, 1[ , they define biholomorphic mappings of the complex upper half plane
H onto triangles in the Riemann sphere bounded by circular arcs. The singular
points 0, 1,∞ of the differential equation are sent by D to the vertices of the
triangle including there angles π|ν0|, π|ν1|, π|ν∞| , respectively. Particularly inter-
esting special cases are those where ν0, ν1, ν∞ are the inverses of positive integers
p, q, r because then D is the inverse function of an automorphic function for the
triangle group with signature 〈p, q, r〉 , isomorphic to the (projective) monodromy
group of the hypergeometric differential equation.

The present paper considers the question if Schwarz triangle functions can
have algebraic values at algebraic arguments. The problem has its origins in the
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natural general question if or under which conditions (suitably normalized) tran-
scendental functions have transcendental values at algebraic arguments, and in this
special context it is related to automorphic functions and periods of abelian vari-
eties. For a general survey about algebraic and transcendental periods in number
theory see Waldschmidt’s recent article [20]. In the cases related to automorphic
functions mentioned above the problem is treated already in our previous paper
[16, Cor. 5]. It turned out that a positive answer is directly related to the condition
if certain Prym varieties are of complex multiplication (CM) type, the Pryms being
defined in a natural way via the integral representation of the associated hyperge-
ometric functions. Now we generalize the setting and consider arbitrary rational
angular parameters ν0, ν1, ν∞ , restricted only by some mild technical condition
excluding logarithmic singularities and some other very special situations. The
main results will show that we have still ‘CM’ as necessary condition for ‘algebraic
values at algebraic arguments’, but that even under the CM condition this alge-
braicity is rather exceptional. However, we will give examples that such exceptions
occur.

This more general type of triangle functions has still images of H bounded
by parts of circles but they are in general not globally biholomorphic — the image
domains may overlap with themselves. We treated in [15] an analogous problem
admitting apparent singularities in the associate Fuchsian differential equations. In
many cases, the triangle functions of the present paper may in fact be considered
as limit cases of those of [15], and many techniques developed there are useful also
for the problem treated in the present paper. Therefore we collect in Section 1 some
known material mainly from [15], [16], [21]. Section 2 presents the necessary tools
from transcendence theory, and in Section 3 we state and prove the main results.
The methods rely in part on the classical theory of hypergeometric functions, in
part on the consideration of families of abelian varieties, and in part on Wüstholz’
transcendence techniques [24]. Sections 4 and 5 present instructive examples.

Notation: we will call Propositions the statements we took from the literature
and Theorems the new results presented here even if they might be less important
than the Propositions.

1. Families of Prym varieties and associate functions

1.1. Integral representation by the periods on curves

Throughout this paper we will suppose that the angular parameters satisfy

ν0, ν1, ν∞ ∈ Q− Z , ν0 ± ν1 ± ν∞ �∈ Z . (1.1)

We will use the integral representation of the Gauss hypergeometric function
F (a, b, c; z) — omitting the usual normalizing Beta factor and some algebraic
nonzero factors, see Section 5 of [15] for a careful discussion — in the form∫

γ

ua−c(u− 1)c−b−1(u− z)−adu =
∫

γ

u−μ0(u− 1)−μ1(u− z)−μzdu =
∫

γ

η(z)
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with the (rational) exponents

μ0 =
1
2
(1 − ν0 + ν1 − ν∞)

μ1 =
1
2
(1 + ν0 − ν1 − ν∞)

μz =
1
2
(1 − ν0 − ν1 + ν∞)

μ∞ =
1
2
(1 + ν0 + ν1 + ν∞)

μ0 + μ1 + μz + μ∞ = 2

for some Pochhammer cycle γ around two of the singularities 0, 1, z,∞ . As al-
ready remarked by Klein [10, §19], analytic continuation of F (a, b, c; z) means
only to replace γ by another cycle of integration, and a basis of solutions of the
corresponding hypergeometric differential equation will be obtained by taking two
Pochhammer cycles around different pairs of singularities: remark that our hy-
pothesis on the sums of the angular parameters guarantees that no exponent μj is
an integer, whence all singularities are nontrivial. For fixed arguments z �= 0, 1,∞
this integral representation can be seen as a period integral on a nonsingular pro-
jective model X(k, z) of the algebraic curve

yk = ukμ0 (u− 1)kμ1 (u− z)kμz (1.2)

where k is the least common denominator of the μj , γ some homology cycle on
X(k, z) , and η a differential given on the singular model as

η = η(z) =
du

y
.

It is a second kind differential what can be seen using appropriate local variables
([21]; N. Archinard [1] explains in more detail the desingularization procedure).
Our Schwarz triangle map is a multivalued analytic function on C−{0, 1} defined
by

D(ν0, ν1, ν∞; z) = D(η; z) = D(z) =

∫
γ1

η(z)∫
γ2

η(z)
(1.3)

for some independent cycles γ1, γ2 on X(k, z) .
In the next subsection we will give a precise definition of independence for

these cycles, for the moment we can assume that they come from Pochhammer
cycles around different pairs of singularities and are locally independent of z �=
0, 1,∞ . The triangle functions extend continuously to the arguments excluded
here, and our normalization guarantees that D(0), D(1), D(∞) become algebraic
or ∞ , see [15, Section 3.1]. For later use recall the relation between angular and
exponential parameters and a, b, c .

ν0 = 1− c = 1− μ0 − μz = μ1 + μ∞ − 1
ν1 = c− a− b = 1− μ1 − μz = μ0 + μ∞ − 1
ν∞ = a− b = μz + μ∞ − 1 = 1− μ0 − μ1 .

(1.4)
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1.2. The family of Prym varieties

The family of Prym varieties in question can be described as follows. For all proper
divisors d of k there is an obvious morphism of the curve X(k, z) onto the curve
X(d, z) in whose definition (1.2) we keep fixed the exponential parameters kμi on
the right hand side and replace k by d as exponent of y . These morphisms induce
epimorphisms

JacX(k, z) → JacX(d, z) .
Let T (k, z) be the connected component of 0 in the intersection of all kernels
of these epimorphisms. Then it is known by [21], [1] that T (k, z) is an abelian
variety of dimension ϕ(k) where ϕ denotes Euler’s function. T (k, z) has a special
endomorphism structure called generalized complex multiplication (complex mul-
tiplication in the narrow sense will be treated in Subsection 2.3) by the cyclotomic
field

Q(ζk) ⊆ End 0T (k, z) := Q⊗Z EndT (k, z)
induced by an automorphism of the curve X(k, z) described on its singular model
by

σ : (u, y) 	→ (u, ζ−1
k y) , ζk = e

2πi
k .

If 〈s〉 denotes the fractional part s− [s] of s ∈ Q , the CM type of T (k, z) can be
easily calculated in terms of the μj by

rn = dimWn = −1 +
∑

j

〈μjn〉 , (1.5)

where Wn denotes the eigenspace for the eigenvalue ζn
k for the action of σ on the

vector space H0(T (k, z),Ω) of the first kind differentials, see, e.g., [16] (on p. 23
use formula (4) with N = 2 ) or [3]. Note that rn can take the values 0, 1, 2 only
and satisfies rn + r−n = 2 for all n .

In the following we will consider the second kind differentials η always as dif-
ferentials on T (k, z) and the cycles γ1, γ2 as cycles of the homology in T (k, z) .
This homology H1(T (k, z),Z) is a Z[ζk]-module of rank two, and independence of
the cycles in the definition of the normalized Schwarz triangle function D(z) =∫

γ1
η(z)/

∫
γ2

η(z) means now Q(ζk)-linear independence in the Q(ζk)-module
H1(T (k, z),Q) = Q ⊗Z H1(T (k, z),Z) . Note that for algebraic z the curve, its
Jacobian, its Prym variety T (k, z) and the differential η(z) are all defined over
number fields.

1.3. Associate functions

As common in the literature about hypergeometric functions, we call two hyper-
geometric functions F (a, b, c; z), F (a′, b′, c′; z) associate if

a ≡ a′ , b ≡ b′ , c ≡ c′ mod Z

or equivalently, if the respective angular parameters satisfy

ν0 ≡ ν′0 , ν1 ≡ ν′1 , ν∞ ≡ ν′∞ mod Z and
ν0 + ν1 + ν∞ ≡ ν′0 + ν′1 + ν′∞ mod 2Z
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or if the respective exponential parameters satisfy

μj ≡ μ′
j mod Z for all j = 0, 1, z,∞ and

∑
j

μj =
∑

j

μ′
j = 2 .

All functions associate to F (a, b, c; z) generate a vector space of dimension two
over the field of rational functions C(z) , and since our parameters are supposed
to be rational, between any three associate functions there is a linear relation
with coefficients in Q(z) . These relations can explicitely produced by means of
Gauss’ relations between contiguous functions, see [8]. Any two associate hyper-
geometric functions generate the vector space over C(z) (obvious exceptions like
F (a, a+1, c; z) , F (a+1, a, c; z) are excluded by our assumptions about the angular
parameters). The congruences for the exponential parameters imply that the differ-
entials η, η′ differ only by factors which are rational functions R(u, z) ∈ Q(u, z) .
As second kind differentials on the Prym variety T (k, z) they belong therefore to
the same Q(ζk)-eigenspace V1 in its de Rham cohomology. In our normalization, the
differentials of this eigenspace are characterized by η ◦ σ = ζkη . The intersection
of V1 with H0(T (k, z),Ω) gives the eigenspace W1 mentioned in the definition of
the CM type. This observation extends to the other eigenspaces Vn, n ∈ (Z/kZ)∗ ,
and the fact that all associate hypergeometric functions generate a 2-dimensional
vector space over C(z) has an obvious interpretation for the eigenspaces Vn in the
de Rham cohomology:

Lemma 1.1. dim Vn = 2 for all n ∈ (Z/kZ)∗ .

Dimension means here the dimension over C , but for algebraic z we can
give another useful interpretation: as already mentioned, T (k, z) is then defined
over Q , all differentials η in the integral representation are defined over Q as well
whence we consider the vector spaces

H0(T (k, z),Ω) , H1
DR(T (k, z)) , Vn

of differentials of the first and second kind defined over Q as vector spaces over Q .
In this sense, the Lemma remains true as a statement about Q-dimensions. For
z ∈ Q we will follow this interpretation.
In the proof of Lemma 1.1 there is only one point which is not obvious: even
if associate differentials η(z) generate a 2-dimensional C(z)-vector space modulo
exact differentials, it could be possible that for some fixed value z = τ the C-
dimension would be smaller if, e.g., all differentials in question vanish for z = τ .
This breakdown of the dimension can be seen to be impossible for τ �= 0, 1,∞
either by a careful analysis of the possible relations between contiguous functions
or by the fact that the genus of X(k, z) is the same for all z �= 0, 1,∞ , hence also
dimHDR(X(k, z)) is independent of z , see [9, Ch. 3.5].
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1.4. Shimura varieties, monodromy groups, and modular groups

In general, our Prym varieties T (k, z) are only special cases of principally po-
larized complex abelian varieties A of dimension ϕ(k) , with period lattice iso-
morphic to Z[ζk]2 , and with an action of Q(ζk) ⊆ End 0A of (generalized) CM
type (rn)n∈(Z/kZ)∗ , see (1.5). This CM type encodes the complex representation
of Q(ζk) on the space of holomorphic differentials H0(A,Ω) such that rn is the
dimension of the eigenspace on which ζk acts via

ζk : ω 	→ ζn
k · ω .

If we denote the family of all these abelian varieties by A , we know by work of
Shimura [17] and Siegel [18]:

Proposition 1.2. The family A is parametrized by the product Hr of upper half
planes H with dimension

r =
1
2

∑
n∈(Z/kZ)∗

rnr−n .

Since 0 ≤ rn ≤ 2 and rn+r−n = 2 for all n , we may rephrase this statement
by saying that the dimension r is half of the number of the one-dimensional Q(ζk)-
eigenspaces in H0(A,Ω) . For the special case of the Prym varieties A = T (k, z) in
question, we may take generators ωj , j = 1, . . . , r of one-dimensional eigenspaces
Wn ⊂ H0(T (k, z),Ω), n ∈ (Z/kZ)∗/{±1} . Then — up to linear fractional trans-
formations — the values of the triangle functions D(ωj ; z) defined by period quo-
tients in (1.3) serve as coordinates of the point in Hr corresponding to T (k, z) .

Two points in Hr correspond to isomorphic abelian varieties in A if and
only if they belong to one Γ-orbit where Γ denotes the (arithmetically defined)
modular group acting discontinuously onHr . The quotient space Γ\Hr is therefore
a classifying space for A , the Shimura variety of A. In the case r = 1 we call it a
Shimura curve, of course (we neglect many interesting questions about algebraic
or arithmetic stucture of these spaces). One subgroup of Γ is well known in the
context of hypergeometric functions:

Proposition 1.3. Let ω1(z) be a generator of a one-dimensional Q(ζk)-eigenspace
of H0(T (k, z),Ω) and let Δ be the (projective) monodromy group of the hyper-
geometric functions

∫
γ1

ω1(z) ,
∫

γ2
ω1(z) used in Definition (1.3). Then Δ has a

natural embedding into the modular group Γ of A.

As already explained in Section 1.1, the monodromy group — defined by
analytic continuation of the hypergeometric functions — acts on the homology
of X(k, z) without changing the curve, hence leaving fixed the isomorphism class
of its Jacobian and of the Prym variety. By consequence they embed into the
modular group of the family, acting by fractional linear transformations on the
coordinates of Hr . For a more detailed explanation and a much stronger version
of this proposition see [4]; in fact, there is even a holomorphic modular embedding
of H into Hr compatible with the actions of Δ and Γ .
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One extreme case of Proposition 1.2 will be very useful in Proposition 2.8
below. It can happen that the dimension of the family A is r = 0 . This is the
case if and only if the modular group and a fortiori the monodromy group Δ is
finite. By the classical reasoning of H.A. Schwarz [14], the fact that the hyperge-
ometric functions and their triangle functions have only finitely many branches is
equivalent to state that they are algebraic functions: just observe that the elemen-
tary symmetric functions of their branches are single-valued meromorphic, hence
rational functions, and note that by the hypotheses (1.1) our hypergeometric dif-
ferential equations are irreducible. For other arguments in that direction and their
generalization to hypergeometric functions in several variables see [5].

The next interesting case is that of Shimura curves, i.e., the case r = 1 . Then
the modular group Γ and a fortiori the monodromy group Δ act as arithmetically
defined Fuchsian groups. In Section 3 it will become clear why the arithmeticity
of Δ is so important for our question, and Sections 4 and 5 will discuss in great
detail one example, i.e., the family of hypergeometric curves (4.2) with angular
parameters ν0 = −ν1 = ν∞ = 1/5 and

k = 5 , r1 = 0 , r2 = r3 = 1 , r4 = 2 , r = 1 .

Caution. On the other hand, there are arithmetically defined monodromy
groups for which r > 1 . In these cases the T (k, z) belong to some subfamily
of Hodge type of A, i.e., to a Shimura subvariety described by a special splitting
behaviour of T (k, z) or — equivalently — by the fact that the common endo-
morphism algebra of all T (k, z) is strictly larger than Q(ζk) . As an example,
take

ν0 =
1
2
, ν1 =

1
3
, ν∞ =

1
10

. (1.6)

An obvious calculation leads to k = 30 and r = 2 . We have W±1,W±11 as one-
dimensional eigenspaces in H0(T (k, z)Ω) . The generators of W1 and W11 lead
with (1.3) to triangle functions

D(
1
2
,
1
3
,

1
10

; z) and D(
1
2
,−1

3
,

1
10

; z)

which are constant multiples of each other, see [21, (16)]. Recall that these triangle
functions give the coordinates of the point in H2 corresponding to T (k, z) . There-
fore these Pryms are parametrized by an upper half plane H linearly embedded
in H2, and a more detailed analysis shows that they split into two factors, both
isogenous to the Pryms of the family (4.2); this is not surprising since the mon-
odromy group for the example (1.6) is the triangle group of signature 〈2, 3, 10〉 ,
an index 6 extension of that one in (4.2) of signature 〈5, 5, 5〉 .



294 Hironori Shiga and Jürgen Wolfart

2. Tools from transcendence

2.1. The analytic subgroup theorem

The main instrument to obtain transcendence results for hypergeometric functions
is Wüstholz’ analytic subgroup theorem, see [23] and [24].

Proposition 2.1. Let G be a connected commutative algebraic group defined over
Q of dimension dimG > r > 0 and

ϕ : Cr → G

an analytic homomorphism whose tangential map dϕ is an homomorphism of Q-
vectorspaces. If the image contains a nontrivial algebraic point, i.e., if ϕ(Cr)(Q) �=
{0} , there is an algebraic subgroup H ⊆ ϕ(Cr) defined over Q with dimH > 0 .

The unexperienced reader may wonder why this is a theorem about tran-
scendental numbers. Let us explain it first with a classical example: Let G be the
product C∗ ×C of the multiplicative and the additive group of complex numbers
and observe that {1}×C and C∗×{0} are the only nontrivial connected algebraic
subgroups of G . As analytic homomorphism take the exponential map

ϕ : (z, w) 	→ (ez , w) ,

restricted to the one-dimensional subspace z = bw of the tangent space C2 of
G . Now suppose there were an algebraic number a �= 0, 1 with an algebraic
logarithm b = log a . Then dϕ and our one-dimensional subspace are defined over
Q and the ϕ-image contains and algebraic point (a, 1) . On the other hand, it does
not contain any proper algebraic subgroup of G in contradiction to Proposition
2.1. So we obtain the Lindemann–Weierstrass theorem that eb is transcendental
for all algebraic b �= 0 . With b = iπ we get the transcendence of π as well.

2.2. Application to periods

The application of Proposition 2.1 needed for the values of the Schwarz maps
is a powerful theorem about linear independence of periods over Q first stated as
Theorem 5 of [23]. The proof has been worked out by Paula Cohen in the appendix
of [15].

Proposition 2.2. Let A be an abelian variety isogenous over Q to the direct product
Ak1

1 × . . .×AkN

N of simple, pairwise non-isogenous abelian varieties Aν defined over
Q, with Aν of dimension nν , ν = 1, . . . , N . Then the Q-vector space V̂A generated
by 1, 2πi together with all periods of differentials, defined over Q , of the first and
the second kind on A , has dimension

dim
Q
V̂A = 2 + 4

N∑
ν=1

n2
ν

dimQ End0Aν
.

We will not repeat the proof here. To give an impression how linear inde-
pendence of periods follows from Wüstholz’ analytic subgroup theorem, we will
however state and prove a simpler and very special case, see also [22, Satz 1].
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Proposition 2.3. Let A be a simple abelian variety defined over Q , ω1, . . . , ωn ∈
H0(A,Ω) a basis of holomorphic differentials on A , also defined over Q , and let
γ ∈ H1(A,Z) be a nonzero cycle on A . Then the periods∫

γ

ω1 , . . . ,

∫
γ

ωn

are linearly independent over Q .

Assume the statement to be wrong. Then there is a linear relation

a1

∫
γ

ω1 + . . . + an

∫
γ

ωn = 0

with algebraic coefficients ai not all = 0 . Consider the exponential map

ϕ : Cn → A ∼= Cn/Λ

where Λ denotes the period lattice {(
∫

δ ω1, . . . ,
∫

δ ωn) | δ ∈ H1(A,Z)} and restrict
ϕ to the (n− 1)-dimensional subspace S given by

a1z1 + . . . + anzn = 0 .

This subspace S and dϕ are defined over Q . By our assumption, the nonzero vector

v := (
∫

γ

ω1, . . . ,

∫
γ

ωn)

belongs to the kernel of ϕ and ϕ(Qv) consists of torsion points of A , hence belongs
to A(Q) . Therefore Proposition 2.1 applies, but A is simple and has no proper
algebraic subgroup of positive dimension, contradiction.

2.3. Complex multiplication

Proposition 2.2 indicates that the splitting of T (k, z) and the endomorphism alge-
bra of its simple components will be very important for the understanding of linear
dependence or independence of periods. An extreme case is the situation that the
abelian variety A has complex multiplication or CM in short. This means that there
is a number field K ⊆ End 0A of the (maximal possible) degree [K : Q] = 2 dimA .
For the convenience of the reader, we collect here some facts well known from the
literature (see, e.g., [13]).

The field K is necessarily a CM field, that is a totally imaginary quadratic
extension of some totally real number field F of degree g = dimA . The space
HDR(A) of all first and second kind differentials splits into 2 dimA one-dimen-
sional subspaces Vσ where σ runs over all embeddings K → C and every α ∈ K
acts on Vσ by multiplication with σ(α) . The subspace H0(A,Ω) of first kind
differentials splits under the action of K into g one-dimensional eigenspaces Wσ =
Vσ among them for which σ runs over a system of representatives of all embeddings
K → C modulo complex conjugation. (In the case of a cyclotomic field Q(ζk) we
may caracterize the embeddings σ as usual by representatives of prime residue
classes in Z/kZ modulo ±1 .) The collection of these representatives σ are called
the CM type of A and determine A uniquely up to isogeny. The abelian varieties
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with this endomorphism structure form a zero-dimensional Shimura variety, and
A is defined over a (particularly interesting!) number field.

It can happen that A with CM is not simple: it may be isogeneous to some
power Bm of a simple abelian variety B with CM by a subfield L of K of degree
[L : Q] = 1

m [K : Q] . The CM type of A arises from that of B by extending the
embeddings of L to K . Therefore symmetries of the CM type of A show whether
A is simple or not.

An abelian variety T is called of CM type if it is isogenous to a direct product
of factors with complex multiplication. The corresponding points in a Shimura
variety are called CM points or special points. In the easiest example where the
upper half plane H parametrizes the family of all elliptic curves, the imaginary
quadratic points give the CM points if we pass to the Shimura variety Γ\H , Γ
denoting the elliptic modular group.

2.4. The splitting pattern of the Pryms

We come back to the Prym varieties defined in Section 1.2 and collect results of
[21, Satz 4] and [2, Exemple 3, Thm. 1, Lemme 1].

Proposition 2.4. Let C be the subalgebra of End 0T (k, z) of elements commuting
with Q(ζk) ⊆ End 0T (k, z) . This subalgebra belongs to one of the following three
types.

1. C = Q(ζk) . Then T (k, z) is isogenous to a power Dm of a simple abelian
variety D whose endomorphism algebra S is a subfield S ⊆ Q(ζk) with

m = [Q(ζk) : S] and dimD = [S : Q] .

In particular, no simple factor of T (k, z) has complex multiplication.
2. C = K is a quadratic extension of Q(ζk) . The Prym variety has complex

multiplication by K and is isogenous to a power Bm of a simple abelian
variety with CM by a subfield L ⊆ K with m = [K : L] .

3. C has zero divisors. Then T (k, z) is isogenous to A1 ⊕A2 with two abelian
varieties Ai of dimension 1

2ϕ(k) and with endomorphism algebra End 0Ai ⊆
Q(ζk) . Both Ai have complex multiplication by Q(ζk) .

The proof can be sketched as follows. If C has a zero divisor, its image of
T (k, z) gives a proper Q(ζk)-invariant abelian subvariety A1 and a Q(ζk)-invariant
complement A2 . It is well known that for such abelian varieties [Q(ζk) : Q]
divides 2 dimAi , therefore we have equality, hence CM — the third case of the
classification.

If C has no zero divisors, it is a (commutative) field by [2, Lemme 1] and
by reasons of divisibility again, it is either Q(ζk) or a quadratic extension of it. If
C = Q(ζk) , [2, Exemple 3] applies to give the first case of our classification. The
second case is now obvious by the information given in the last subsection.
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2.5. Pryms not of CM type

Now we suppose z = τ ∈ Q and consider all eigenspaces Vn as vector spaces over
Q . Proposition 2.2 implies in particular

Lemma 2.5. Suppose τ ∈ Q, �= 0, 1 , and suppose that T (k, τ) is an abelian variety
not of CM type, see Proposition 2.4.1. Then all periods∫

γ

η , γ ∈ H1(T (k, τ),Z)

of a fixed nonzero η ∈ Vn ⊂ H1
DR(T (k, τ)) generate a Q-vector space Πη of

dimension 2 .

The upper bound ≤ 2 for this dimension follows directly from the facts that
H1(T (k, τ),Z) is a Z[ζk]-module of rank 2 and that η is an eigendifferential. On the
other hand, dimension = 1 would lead to a contradiction as follows. Recall that by
Proposition 2.4.1, T (k, z) has only one simple factor D of dimension g = ϕ(k)/m
and with End 0D = S , S a number field of degree g . Complete η to a basis of
HDR(D) consisting of 2g eigendifferentials for the action of Q(ζk) . As η , all of
them have their periods in an at most 2-dimensional Q-vector space. On the other
hand, this upper bound is attained because Proposition 2.2 shows that all periods
on T (k, z) together with 1 and π generate a Q-vector space of dimension 2+4g 1.

2.6. Pryms of CM type

Next we consider case 2 of Proposition 2.4.

Lemma 2.6. Suppose τ ∈ Q, �= 0, 1 and suppose that T (k, τ) has complex multi-
plication by a CM field K, [K : Q(ζk)] = 2 . All periods∫

γ

η , γ ∈ H1(T (k, τ),Z)

of a nonzero second kind Q(ζk)-eigendifferential η ∈ Vn ⊂ H1
DR(T (k, τ)) generate

a Q-vector space Πη of dimension
• 1 if η is a K-eigendifferential,
• 2 if not.

The first case happens in precisely two onedimensional subspaces of Vn .

For the proof recall that T (k, τ) is isogenous to a power Bm of a simple
abelian variety with complex multiplication by some subfield L of K , and Vn

splits into two L-eigenspaces for factors B but for different eigenvalues. Then the
result follows again from Proposition 2.2.

The last possibility is case 3 of Proposition 2.4.

1In [15, Prop. 4.1] we treated only the case that T (k, z) is simple without CM, i.e., we overlooked
the possibility that it can be isogenous to Dm with m > 1 as described in Proposition 2.4.1.

However, the result remains true (see Lemma 2.5) also in the non-simple case, so all consequences
drawn in [15] are correct.
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Lemma 2.7. Suppose τ ∈ Q, �= 0, 1 and that T (k, τ) is isogenous to A1 ⊕A2 for
two abelian varieties of Ai dimension 1

2ϕ(k) and with complex multiplication by
Q(ζk) .

1. If A1 and A2 have the same CM type, all periods∫
γ

η , γ ∈ H1(T (k, τ),Z) , η ∈ Vn

of any eigenspace Vn ⊂ H1
DR(T (k, τ)) generate a Q-vector space Πn of di-

mension 1 , and Πn = Πη for all nonzero η ∈ Vn .
2. If A1 and A2 have different CM types, we have dimΠn = 2 , and the periods

of every fixed 0 �= η ∈ Vn generate a 2-dimensional vector space Πη over Q ,
except in the case that η belongs to one of the factors in the decomposition

H1
DR(T (k, τ)) = H1

DR(k,A1)⊕H1
DR(k,A2) .

In this case (happening in precisely two onedimensional subspaces of Vn) Πη

is of dimension 1 .

In both cases the Ai are isogenous to pure powers Bmi

i of simple abelian
varieties Bi with complex multiplication. In the first case, B1 and B2 are isogenous,
and in the second case not. Then the result follows again by Wüstholz’ analytic
subgroup theorem in the version of Proposition 2.2, similar to Lemma 2.6. For
more details the reader my consult also the proof of [15, Prop. 4.4]. Finally we
give precise conditions under which the first case of Lemma 2.7 occurs. Note that
these conditions do not depend on the algebraicity of z .

Proposition 2.8. The following statements are equivalent.

• The Shimura family A in Proposition 1.2 has dimension r = 0 .
• For one (hence for all) z �= 0, 1, the CM type of T (k, z) satisfies

rn = 0 or 2 for all n ∈ (Z/kZ)∗ .

• For one (hence for all) z �= 0, 1 , the abelian variety T (k, z) is isogenous
to A1 ⊕ A2 , both Ai have dimension 1

2ϕ(k) and complex multiplication by
Q(ζk) with equal CM type.
• The monodromy group of the corresponding hypergeometric differential equa-

tion is finite.
• The corresponding triangle function D(ν0, ν1, ν∞; z) is an algebraic function

of z .

The equivalence between the first and the second point follows from Propo-
sition 1.2. The equivalence between the second and the third is known by work of
Shimura [17, Thm. 5, Prop. 14], the equivalence between the first and the last two
points has been discussed already in Subsection 1.4. The equivalence between the
last two points is classical, of course, see, e.g., [10, §57].



Algebraic Values of Schwarz Triangle Functions 299

3. Special values of Schwarz triangle functions

3.1. The role of complex multiplication

We work still under the hypothesis z = τ ∈ Q and recall that the cycles γ1, γ2 in
the definition D(ν0, ν1, ν∞; τ) = D(τ) =

∫
γ1

η(τ)/
∫

γ2
η(τ) are generators of the 2-

dimensional Q(ζk)-module H1(T (k, τ),Q) = Q⊗ZH1(T (k, τ),Z) . Numerator and
denominator generate the period vector space Πη discussed in the last section. We
conclude from Lemmata 2.5, 2.6 and 2.7:

Theorem 3.1. Suppose τ ∈ Q, �= 0, 1 .

D(ν0, ν1, ν∞; τ) = D(τ) =

∫
γ1

η(τ)∫
γ2

η(τ)

is algebraic or ∞ if and only if T (k, τ) is of CM type and dimQ Πη(τ) = 1 , i.e.,
if η(τ) is a
• K-eigendifferential under the hypotheses of Proposition 2.4.2, or a
• Q(ζk)-eigendifferential on one of the factors A1, A2 under the hypotheses of

Proposition 2.4.3.

In two special situations we can give more explicit conditions. The first is
obvious by Proposition 2.8 and Lemma 2.7.1

Theorem 3.2. If the monodromy group Δ of the corresponding differential equation
is finite, all values D(τ) of the triangle function at algebraic arguments τ are
algebraic or ∞ .

In the following we will therefore restrict our attention to infinite monodromy
groups Δ . In these cases, we know by Proposition 2.8 that at least one rn = 1 ,
in other words one Wn = Vn ∩ H0(T (k, τ),Ω) contains a nonzero differential
η = ω of the first kind, unique up to multiples. For periods of the first kind we
can apply a sharper version of Wüstholz’ theorem giving a period vector space
Πω of dimension 1 if the abelian variety has CM type. Another way to prove
dimΠω = 1 is a second look on Lemma 2.6 and Lemma 2.7: in Lemma 2.6,
H0(T (k, τ),Ω) is K-invariant, therefore Wn is one of the onedimensional subspaces
of K-eigendifferentials. In Lemma 2.7, Wn belongs to precisely one of the homology
factors H0(Ai,Ω) since only one of them contains eigendifferentials ω with ω◦σ =
ζn
k ω , otherwise we would have dimWn = 2 . Summing up we get (see also [16,

Cor. 5] for a different argument)

Theorem 3.3. Suppose τ ∈ Q, �= 0, 1 , and that T (k, τ) is of CM type, let Wn be a
one-dimensional Q(ζk)-eigenspace in H0(T (k, τ),Ω) . If 0 �= ω = η(τ) ∈ Wn , the
value of the corresponding triangle function D(τ) =

∫
γ1

η(τ)/
∫

γ2
η(τ) is algebraic.

The first natural question is now: how to control that η is of first kind? For
simplicity, take n = 1 . There η = du/y — see Section 1.1 — is of first kind if
and only if the exponential parameters μj are all < 1 . The second question is
already much more difficult: for which τ ∈ Q is T (k, τ) of CM type? The answer
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depends on the nature of the monodromy group Δ and, unfortunately, does not
give a general explicit criterion for the distinction between CM and non-CM cases.

1. If Δ is finite, T (k, z) is of CM type for every z , see Proposition 2.8.
2. If Δ is an arithmetic group, there is an infinity of T (k, τ) of CM type and an

infinity of T (k, τ) not of CM type. In these cases — classified by Takeuchi [19]
— Δ is commensurable to the modular group for a complex onedimensional
family of polarized abelian varieties with a certain endomorphism structure.
Our T (k, z), z �= 0, 1 , form a dense subset of this family, and the Schwarz tri-
angle function D is the inverse function of an arithmetic automorphic function
for this modular group, possibly up to composition with an algebraic func-
tion. See also our remarks about Shimura curves in Section 1.4 and about
CM points in Section 2.3.

3. If Δ is infinite and non-arithmetic, the T (k, z) form a subfamily not of Hodge
type in the Shimura variety of all polarized abelian varieties of their endo-
morphism structure. In this case, the André–Oort conjecture predicts that
there are only finitely many T (k, τ) of CM type. This conjecture is proven
by Edixhoven and Yafeev [7] for those CM types discussed in Proposition
2.4.3, but it is open in general. For more information and applications to
other hypergeometric questions see [6].

3.2. Other algebraic values at algebraic arguments

The aim of this part is to show that Theorems 3.2 and 3.3 describe very exceptional
situations, i.e., that in general for τ ∈ Q− {0, 1}

D(ν; τ) = D(ν0, ν1, ν∞; τ) �∈ Q

even if the necessary condition given by Theorem 3.1 is satisfied that T (k, τ) is of
CM type. We used here an abbreviated notation ν := (ν0, ν1, ν∞) for the rational
triplets of angular parameters (always under the restriction (1.1)). We call two
such triplets ν, ν′ associate if they belong to associate hypergeometric functions,
see the conditions on their components given in Section 1.3. Observe that triangle
functions with associate angular parameters belong to the same monodromy group.

Theorem 3.4. Let P be a finite set of associate rational angular parameter triplets
ν , belonging to an infinite monodromy group Δ . There is a finite set EP ⊂ Q
of exceptional arguments such that for all other τ ∈ Q − EP at most two of the
values D(ν; τ), ν ∈ P , are algebraic or ∞ .

We may assume that P contains more than two elements and that 0, 1 ∈ EP ,
and for the proof we may assume moreover that T (k, τ) is of CM type since we
know by Theorem 3.1 that otherwise all values in question are transcendental.
Theorem 3.4 uses Lemma 1.1 and classical facts about associate hypergeometric
functions: denote the differentials in the integral representation of D(ν; z), ν ∈ P ,
by η(ν; z) and observe that all these η(ν; z), ν ∈ P , belong to one eigenspace
Vn . By Gauss’ relations among contiguous hypergeometric functions, any two of
them generate Vn as a C(z)-vector space. The only obstacle is mentioned already
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in Section 1.3 that for a fixed value z = τ they may fail to be a basis over C or Q .
A closer look into Gauss’ relations [8] shows that this can happen only at finitely
many algebraic points since the relations always have coefficients in Q(z) : For any
three different fixed associate η(ν; z), η(ν′; z), η(ν′′; z) we get a representation

η(ν; z) = r′(z)η(ν′; z) + r′′(z)η(ν′′; z)

with nonvanishing rational functions r′, r′′ ∈ Q(z) . We can use these relations in
all special points τ ∈ Q as relations over Q , except for the (algebraic) poles of
r′, r′′ . For ν, ν′, ν′′ ∈ P we obtain finitely many such poles and also finitely many
algebraic zeros of all such r, r′ . If we include these finitely many exceptions in
our exceptional set EP , in all other points τ ∈ Q the η(ν, τ), ν ∈ P , generate
pairwise different one-dimensional subspaces of Vn . Lemma 2.6 and Lemma 2.7.2
show that in only two such one-dimensional subspaces the period vector spaces Πη

are of dimension 1 , and this is equivalent to the algebraicity of the period quotient
D(ν; τ) .

It seems to be very likely that EP ⊇ {0, 1} is finite even for infinite sets P
of associate parameter triplets because in exceptional points τ �= 0, 1 three quite
different conditions have to be satisfied. First,
• two η(ν; τ), η(ν′; τ), ν, ν′ ∈ P , have to be multiples of each other.

As an example that this can happen take relation (28) on p. 103 of [8]

(c− a)F (a− 1, b, c; z) + (2a− c− az + bz)F (a, b, c; z)
+ a(z − 1)F (a + 1, b, c; z) = 0 .

Translated to the language of differentials and angular parameters it says that in
the special point τ = (2a− c)/(a− b) = (ν∞ − ν1)/ν∞ the associate differentials

η(ν0, ν1 + 1, ν∞ + 1; τ) , η(ν0, ν1 − 1, ν∞ − 1; τ)

are Q-linearly dependent and give there the same period quotient D(τ) . Whether
or not this value is really algebraic depends of course on two further conditions,
namely
• if T (k, τ) is of CM type and
• if η(ν; τ) generates one of the two one-dimensional eigenspaces mentioned in

Lemma 2.6 or Lemma 2.7.2 .
In general, the second and the third condition are difficult to verify, for exam-

ples see the next Sections. In the case treated in Theorem 3.3 we can better localize
at least one of these one-dimensional eigenspaces: it is the subspace of differentials
of the first kind but containing no other η(ν; τ) , if we have no coincidences coming
from the degeneration of Gauss’ relations discussed in the proof of Theorem 3.4.
Therefore we get the following sharper result.

Theorem 3.5. Let P be a finite set of associate rational angular parameter triplets
ν , belonging to an infinite monodromy group Δ , and suppose further that there is
precisely one first kind differential ω = η(ν′; z) associate to these η(ν; z), ν ∈ P ,
but with ν′ �∈ P . Then there is a finite set EP ⊂ Q of exceptional arguments such
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that for all τ ∈ Q−EP at most one of the values D(ν; τ), ν ∈ P , is algebraic or
∞ .

4. Examples of algebraic values: Pryms of CM type

As for the special values of the Schwarz map D(z) for a differential η(z) on a family
of hypergeometric curves, we have established the general properties in preceding
sections. Here we consider examples explaining the situation in question. They all
arise from specializations of a family of curves studied in the framework of ball
quotients and Appell–Lauricella hypergeometric functions in two variables.

4.1. Pentagonal curves and their degeneration

Let us consider a family of hypergeometric curves given by (1.2):

X(p, z) = X(z) :

yp = xpμ0 (x− 1)pμ1(x− z)pμz (z ∈ C− {0, 1}) , (4.1)
where we suppose p to be a prime and μ0, μ1, μz, μ∞ �∈ 1

2Z , equivalent to the non-
integrality condition (1.1). We defined the Prym variety T (p, z) for X(z) induced
from the Jacobi variety Jac(X(z)). Since k = p is prime, T (p, z) coincides with
Jac(X(z)). So in our case the field Q(ζp) acts on the space of holomorphic dif-
ferentials H0(Jac(X(z)),Ω) ∼= H0(X(z),Ω) with parameter z. We note also that
the Q(ζp)-action on X(z) induces a Q(ζp) module structure on H1(X(z),Q) of
rank two. Let γ1, γ2 be two 1-cycles on X(z) independent over Q(ζp) and let as in
Subsection 1.1

η(z) = x−μ0(x− 1)−μ1(x− z)−μzdx

be a differential of second kind on X(z). Then the corresponding Schwarz map
is defined by (1.3). Let P (λ1, λ2) be a projective nonsingular model of the affine
curve

y5 = x(x − 1)(x− λ1)(x − λ2) , (λ1, λ2, λ1/λ2,∈ C− {0, 1}) .
P (λ1, λ2) is a curve of genus 6 and is called a pentagonal curve. There are many
articles concerned with this family. We cite here just one by K. Koike [12]. We
have a basis of H0(P (λ1, λ2),Ω):

ϕ1 =
dx

y2
, ϕ2 =

dx

y3
, ϕ3 =

xdx

y3
, ϕ4 =

dx

y4
, ϕ5 =

xdx

y4
, ϕ6 =

x2dx

y4
.

Let DegP (z) be the compact nonsingular model of

y5 = x2(x− 1)(x− z) (z ∈ C− {0, 1}) . (4.2)

It is a degenerate pentagonal curve of genus 4. There is a natural ζ5-action

σ : (x, y) 	→ (x, ζ−1
5 y) .

So we have
Q(ζ5) ⊆ End0(Jac (DegP (z))) .



Algebraic Values of Schwarz Triangle Functions 303

We have a basis of H0(DegP (z),Ω) :

ω1 =
dx

y2
, ω2 =

xdx

y3
, ω3 =

xdx

y4
, ω4 =

x2dx

y4
(4.3)

consisting of eigendifferentials for the action of Q(ζ5).

Remark 4.1. We note that ω3 and ω4 are mutually associate.

In general we have a solution for the Gauss hypergeometric differential equa-
tion

E(a, b, c) : z(1− z)f ′′ + (c− (1 + a + b)z)f ′ − abf = 0

given by the integrals

e−πi(−c+b+1−a)

∫ ∞

1

xa−c(x− 1)c−b−1(x− z)−adx

= e−πi(−c+b+1−a)

∫ 1

0

ub−1(1− u)c−b−1(1− zu)−adu

=
∫ ∞

1

xa−c(1− x)c−b−1(z − x)−adx = F1∞(a, b, c; z)

with
ux = 1 , 1− x = e−πi(x− 1) , z − x = eπi(x− z) .

That solution is single valued holomorphic at z = 0 and

F (a, b, c; z) = eπi(1−c+b−a) Γ(c)
Γ(b)Γ(c− b)

F1∞(a, b, c;x) .

Then the integral ∫ ∞

1

ω1(z)

is a holomorphic solution of E(2/5, 3/5, 6/5) at z = 0 . The absolute values of the
angular parameters are given by

(|1− c|, |c− a− b|, |a− b|) = (
1
5
,
1
5
,
1
5
) .

By putting x = 1/x1, y = z1/5y1/x1, z = 1/z1 in (4.2) we obtain an isomorphic
nonsingular curve given by

y5
1 = x1(x1 − 1)(x1 − z1) ,

the integral
∫
dx1/y

2
1 gives a solution for E(2/5, 1/5, 4/5) with the same angular

parameters in absolute values. So the inverse of the Schwarz map becomes an auto-
morphic function on the upper half plane with respect to a cocompact arithmetic
triangle group Δ(5, 5, 5). An explicit expression of this automorphic function is
given by Koike [12, Theorem 6.3].
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4.2. First example

Theorem 4.2. In the family of curves (4.2), T (5,−ζ3) has complex multiplica-
tion by the field Q(ζ15) . For the differentials (4.3), the value of the Schwarz map
D(ω3,−ζ3) = D(− 2

5 ,−
3
5 ,−

2
5 ;−ζ3) is transcendental, but

D(ω1,−ζ3) = D(−1
5
,
1
5
,−1

5
;−ζ3)

D(ω2,−ζ3) = D(
1
5
,−1

5
,
1
5
;−ζ3)

D(ω4,−ζ3) = D(
3
5
,−3

5
,
3
5
;−ζ3)

are algebraic numbers.

Proof. Define
Σ : w5 = t2(t3 − 1) .

It is a singular model of a curve of genus 4 and we have on this model a basis of
the space of holomorphic differentials:

ϕ1 =
dt

w2
, ϕ2 =

tdt

w3
, ϕ3 =

tdt

w4
, ϕ4 =

t2dt

w4
.

There are actions of ζ3 and ζ5 :

t′ = ζ3t , w
′ = ζ3w ,

t′ = t , w′ = ζ5w

on Σ. They generate a cyclic group of automorphisms on Σ generated by a single
action

t′ = ζ5
15t , w

′ = ζ2
15w

and induces an action of Q(ζ15) on the space of holomorphic differentials. Any
ϕi (i = 1, 2, 3, 4) is an eigendifferential for this action, and Q(ζ15) acts faithfully
on the space of holomorphic differentials. We have

[Q(ζ15) : Q] = 8 = 2 · genus of Σ .

It means End0Jac(Σ) = Q(ζ15) and that Jac(Σ) is an abelian variety with complex
multiplication by Q(ζ15) . A more detailed analysis of its CM type shows that it
is simple and that the ϕi generate the eigenspaces in H0(Σ,Ω) .

Defining

T : t(x) =
x

ζ3 (−1 + ζ3 + x)
, w(x, y) =

(−1)
1
10 3

3
10 y

−1 + ζ3 + x
,

the CM curve Σ is transformed to the degenerated pentagonal hypergeometric
curve

DegP (−ζ3) : y5 = x2(x− 1)(x + ζ3)
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whose Prym variety T (5,−ζ3) (here it is just the Jacobian) belongs therefore to
those discussed in case 2 of Proposition 2.4.

The converse transformation T−1 is given by

x(t) =
(1− ζ3) t

−ζ2
3 + t

, y(t, w) =
3

1
5 (ζ3)

1
5 w

−1 + ζ3 t
.

The pullback of the differentials under the transformation T is

T ∗(ω1) =

(
−
(

1
3

)) 2
5
(
−1 + (−1)

2
3

)
w2

dt

T ∗(ω2) =
(−1)

23
30

(
−1 + (−1)

2
3

)
t

3
1
10 w3

dt

T ∗(ω3) =
(−1)

19
30

(
−1 + (−1)

2
3

)
t
(
−1 + (−1)

2
3 t
)

3
3
10 w4

dt

T ∗(ω4) = −

⎛⎝(−1)
2
15 3

1
5

(
−1 + (−1)

2
3

)
t2

w4

⎞⎠ dt .

So via the transformation T , ω1, ω2 and ω4 are equal to ϕ1, ϕ2 and ϕ4 up to a
constant factor, respectively. But ω3 is a linear combination of ϕ3 and ϕ4 and it
is not an eigendifferential for the action of the CM field Q(ζ15).

If we consider the Schwarz map

D(ωj , z) =

∫
γ1

ωj∫
γ2

ωj
(j = 1, 2, 3, 4)

for the family {DegP (z)} with respect to the differentials ωj , Theorem 4.2 follows
directly from Theorem 3.1 and Lemma 2.6. �

4.3. Second example

Now we study the same family of curves at the point τ = −1

DegP (−1) = Σ′ : y5 = x2(x2 − 1)

and show that its Jacobian belongs to those studied in case 3 of Proposition 2.4.

Theorem 4.3.

Jac(Σ′) = T (5,−1) is isogenous to A1 ⊕A2

with End 0(Ai) = Q(ζ5) . For all differentials in (4.3) the Schwarz maps have
algebraic values D(ωi,−1) (i = 1, 2, 3, 4) .

Consider
HypE : y5 = u(u− 1) .

We have a natural map
Σ′ → HypE
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by x 	→ u = x2 . It shows that Jac(Σ′) is not simple and A1 = Jac(HypE) is a
component. The differentials

ω2 =
xdx

y3
, ω3 =

xdx

y4

are the lifts from those on HypE . The action of ζ5 is given by σ : (x, y) 	→
(x, ζ−1

5 y). So

σ(ω2) = σ(
xdx

y3
) = ζ3

5ω2 , σ(ω3) = σ(
xdx

y4
) = ζ4

5ω3 .

Hence A1 is an abelian variety of CM type with the field Q(ζ5) and simple CM
type (3, 4) . As we see later the cofactor A2 is of CM type (4, 2) . By the change
of a primitive 5-th root of unity A1 and A2 are isogenous. We will see below by a
period matrix calculation that we have even an isomorphism.

We consider the special values of the Schwarz maps D(ω2,−1) and D(ω3,−1) .
They are reduced to consider the periods∫ ∞

1

du

y3
,

∫ 1

0

du

y3

and ∫ ∞

1

du

y4
,

∫ 1

0

du

y4

on the CM hyperelliptic curve y5 = u(u − 1) . The differentials du/y3 and du/y4

are eigendifferentials for the action of the corresponding CM field Q(ζ5) on the
factor A1 . According to Theorems 3.1, 3.3 and Lemma 2.7.2 the values D(ω2,−1)
and D(ω3,−1) are algebraic. Theorem 3.3 shows the algebraicity of D(ω1,−1) as
well. Only ω4 cannot be seen directly to be a differential on A2.

We have to consider the following question: are the two associate differentials
ω3, ω4 (see Remark 4.1) just those two differentials of Theorem 3.4 generating
the two one-dimensional eigenspaces in V4 needed according to Lemma 2.7? The
answer will be “yes” by explicit calculation of the period matrix of Σ′ : y5 =
x2(x2 − 1) . Set

x =
1
x1

, y = − y1

x1
.

So we get an isomorphic curve Σ1 : y5
1 = x1(x2

1 − 1). We have the expression of
the basis {ω1, ω2, ω3, ω4} on Σ1 :

ω1 = −dx1

y2
1

, ω2 =
dx1

y3
1

, ω3 = −x1dx1

y4
1

, ω4 = −dx1

y4
1

.

Let r, r′ be arcs on Σ1 given by the oriented lines [0, 1], [−1, 0] with real negative
and real positive value y1, respectively. Remember that σ denotes the change of
sheets induced by y1 	→ ζ−1

5 y1 and let r(i) be the arc σ1−ir (i = 1, 2, 3, 4). Set
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α(i) = r(i) − r(i+1) and β(i) = r′(i) − r′(i+1). Set

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 1 0 1
0 −1 0 0 0 1 0 0
0 −1 0 0 0 0 0 0
0 −1 0 1 0 0 0 0
1 −1 0 1 0 1 0 0
0 0 0 0 1 0 0 −1
0 −1 1 1 0 0 0 0
0 0 0 1 1 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then

(A2, A3, A5, A6, B2, B3, B5, B6) = (α(1), . . . , α(4), β(1), . . . , β(4))M1

is a homology basis of Σ1 with the intersection matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

These cycles A2, A3, A5, A6, B2, B3, B5, B6 are the same ones as those given by K.
Koike in [12] on the general pentagonal curve going to the limit

lim
λ→−∞

y5
1 = x1(x1 − 1)(x1 + 1)(x1 + λ) .

Put

pi =
∫

α(1)
ωi , qi =

∫
β(1)

ωi (i = 1, 2, 3, 4) ,

then we have
q1 = −p1 , q2 = p2 , q3 = p3 , q4 = −p4 .

Setting ω′
i = ωi/p1 (i = 1, 2, 3, 4), we have the period matrix of ω′

i for the cycles
(α(1), . . . , α(4), β(1), . . . , β(4)) .

The period matrix of Σ1 : y5
1 = x1(x2

1−1) with respect to the basis {ω′
1 . . . , ω

′
4}

of H0(Σ1,Ω) and the basis

{α(1), . . . , α(4), β(1), . . . , β(4)}
of H1(Σ1,Z) is given by⎛⎜⎜⎝

1 ζ3
5 ζ1

5 ζ4
5 −1 −ζ3

5 −ζ1
5 −ζ4

5

1 ζ2
5 ζ4

5 ζ1
5 1 ζ2

5 ζ4
5 ζ1

5

1 ζ5 ζ2
5 ζ3

5 1 ζ5 ζ2
5 ζ3

5

1 ζ5 ζ2
5 ζ3

5 −1 −ζ5 −ζ2
5 −ζ3

5

⎞⎟⎟⎠ .
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By changing the Q-homology basis to

{α(1) + β(1), . . . , α(4) + β(4), α(1) − β(1), . . . , α(4) + β(4)}
we know that Jac(Σ1) = T (5,−1) is isogenous to the direct sum

C2/

(
Z
(

1
1

)
+ Z

(
ζ2
5

ζ5

)
+ Z

(
ζ4
5

ζ2
5

)
+ Z

(
ζ5
ζ3
5

))
+ C2/

(
Z
(

1
1

)
+ Z

(
ζ3
5

ζ5

)
+ Z

(
ζ5
ζ2
5

)
+ Z

(
ζ4
5

ζ3
5

))
.

That means Jac(Σ′) is Q-isogenous to a direct sum of two 2-dimensional abelian
varieties of CM type with the CM field Q(ζ5) of type (3, 4) and of type (4, 2), and
these types are the same under the isomorphism ζ5 	→ ζ3

5 .

5. Examples of algebraic values: symmetry and degeneration

The results in Theorems 4.2 and 4.3 concerning D(ω1; τ) and D(ω2; τ) in the
points τ = −ζ3, −1 are not at all surprising since they are easily proved with
Theorem 3.3 provided we know that T (5, τ) is of CM type. Even if we know that
fact, the results of the preceding section concerning ω3 and ω4 needed much more
effort since they do not generate a one-dimensional eigenspace of holomorphic
differentials Wn (hypothesis of Theorem 3.3). For them it is quite remarkable that
ω4 was a K-eigendifferential for Lemma 2.6 in the case τ = −ζ3 or that even both
belonged to the two factors in Lemma 2.7.2 in the case τ = −1 . In this section,
we will shed some further light on these phenomena, extend parts of the previous
results and explain why both τ in question are exceptional arguments in the sense
of Theorems 3.4 and 3.5.

Theorem 5.1. 1. Suppose ρ = ν0 = ν1 = ν∞ ∈ Q− 1
3Z . Then

D(ρ, ρ, ρ;−ζ3) is algebraic or ∞ .
2. Suppose ν1 and ρ = ν0 = ν∞ ∈ Q − Z satisfy the non-integrality condition

(1.1). Then D(ν0, ρ, ρ;−1) is algebraic or ∞ .

5.1. Symmetry arguments

To prove the first statement, observe that in this case ρ ∈ Q− 1
3Z is a restatement

of the non-integrality condition. The corresponding hypergeometric differential
equation is invariant under the fractional linear transformation

z 	→ z − 1
z

inducing a cyclic permutation of the singularities 0, 1,∞ ; fixed points are ζ6 and
−ζ3 . The image of the lower half plane has therefore a symmetry of order 3,
hence its vertices D(0), D(1), D(∞) under the Schwarz map D have a midpoint
D(−ζ3) , i.e., a fixed point of an order 3 PSL2(C)-transformation μ providing an
automorphism of the D-image and a cyclic permutation of the vertices. (To see
that it is really a fractional linear transformation, observe that μ extends to either a
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disc or the Riemann sphere if one considers all analytic continuations of D .) These
vertices are algebraic or ∞ what can be seen either by direct calculation as in [21,
(15)] or by the fact that in these points the Prym varieties T (k, z) degenerate
to abelian varieties of dimension 1

2ϕ(k) with complex multiplication by Q(ζk) .
Therefore the midpoint also has to be algebraic or ∞ . The same argument works
also for ζ6 , but the analytic continuation of D to the upper half plane changes at
least one of the three vertices.

The second statement can be proved similarly but with the anticonformal
transformation

z 	→ z−1

exchanging 0 and∞ and fixing the unit circle, in particular the point −1 which can
be considered as the midpoint of the border edge D(]∞, 0[) . The triangle function
D maps the unit circle to a symmetry axis of the D-images of upper and lower
half plane and again the algebraicity of the vertices implies D(−1) ∈ Q ∪ {∞} .

Another version of these symmetry arguments has been indicated for the
special case ρ = 1

5 already in the end of Subsection 1.4: by nonlinear relations, D
is related to other triangle functions for the parameter triplets 1

2 ,
1
3 ,

ρ
2 (first part)

or 1
2 ,

ν0
2 , ρ (second part). In both cases, the D-values in question belong to the

(algebraic!) vertices of the new image triangles.

5.2. Corollaries and Remarks

1. By the “only if” part of Theorem 3.1, Theorem 5.1 implies that the respective
Pryms T (k,−ζ3), T (k,−1) are of CM type — but without the precise information
given in the last section, of course.

2. The same kind of symmetry arguments as in the second part of Theorem
5.1 works for the argument τ = 1

2 if ν0 = ν1 and for τ = 2 if ν1 = ν∞ .
3. Sign changes of the angular parameters change the triangle functions at

most by fractional linear transformations defined over Q , see [21, (16)–(18)], so
Theorem 5.1 covers the algebraicity results of the last section.

4. For Theorem 5.1 it does not matter whether the underlying differential is
of first kind or only of second kind. For example, the parameter triplets

(2
5 ,

3
5 ,

2
5 ) , (2

5 ,−
2
5 ,

2
5 )

belong to generators of the eigenspace V1 for the curve family (4.2), both of second
kind but the algebraicity of their values are covered by Theorem 5.1.

5. As already explained in the end of subsection 3.1, we expect only finitely
many T (k, τ) to be of CM type if the corresponding monodromy group is non-
arithmetic. Apparently τ = −1, 1

2 , 2, ζ6, −ζ3 lead to these cases if suitable sym-
metry conditions are satisfied, independently of the arithmeticity of the mon-
odromy group.

5.3. Degeneration of contiguity

As we explained in Subsection 3.2, associate differentials η(ν; z) generate one-
dimensional subspaces of Vn which are generically pairwise different. Therefore —
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if the monodromy group is infinite — at most two of them give algebraic values
D(ν; τ) , see Theorems 3.4 and 3.5, if the argument τ is not an “exceptional” one
where several η(ν; τ) are multiples of each other. Theorem 5.1 gives examples for
such exceptional arguments because arbitrarily many associate angular parameters
lead to algebraic values.

Theorem 5.2. 1. Suppose ρ ∈ Q − 1
3Z and let P be a set of associate angular

parameter triplets

(ρ + 2k, ρ + 2k, ρ + 2k) , k ∈ Z .

Then τ = ζ6 and −ζ3 are exceptional arguments.
2. Suppose ν1 and ρ = ν0 = ν∞ ∈ Q − Z satisfy the non-integrality condition

(1.1) and let P be a set of associate parameter triplets

(ρ + k, ν1, ρ + k) , k ∈ Z .

Then τ = −1 is an exceptional argument.

The truth of Theorem 5.2 follows from Theorems 3.4 and 5.1. As we ex-
plained in the proof of Theorem 3.4, the statement implies in particular that the
corresponding differentials in these exceptional points are multiples of each other.
This is in turn equivalent to a degeneration of contiguity relations: generically,
any two different associate differentials generate their two-dimensional eigenspace
because any other can be written as a C(z)-linear combination of them. But for a
fixed argument z = τ this may fail if the coefficient functions have poles. These
relations can be produced explicitely using Gauss’ relations between contiguous
hypergeometric functions. We illustrate this degeneration phenomenon in the sec-
ond case. From the contiguity relations in [8, (28)–(45)] one may deduce with
MathematicaTR the relation

(1 + c) (c + z(1− a + b))F (a, b + 1, c + 1; z)
= c(1 + c)F (a, b, c; z) + z(1 + b)(1 − a + c)F (a, b + 2, c + 2; z) .

In the case ν0 = ν∞ = ρ �∈ Z we have 1 − a + b = c �= −1 , and the left-hand
side coefficient vanishes precisely for z = −1 . Passing to the angular parameters
and to the differentials, it means that η(ρ, ν1, ρ;−1) and η(ρ − 2, ν1, ρ − 2;−1)
are multiples of each other. By induction, we see that for τ = −1 in this family
of associate differentials all elements with even k are multiples of each other, and
similarly all elements with k odd.

An analogous argument for the first case of Theorem 5.2 should be possible,
but would need explicit relations between associate hypergeometric functions

F (a, b, c; z) , F (a + k, b + 3k, c+ 2k; z) and F (a + 2k, b + 6k, c+ 4k; z) ,

an extremely difficult task. In several easier cases we expect to be able to perform
the calculation with computer support.
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5.4. Gamma values

Finally another access to Theorem 5.1 has to be mentioned. In the symmetric
situations discussed here, special values of hypergeometric functions in the fixed
points of the symmetries are known, see, e.g., [8, (46)–(56)]. One may use them
— often together with Kummer’s relations between different representations of
hypergeometric functions — to produce explicit formulas describing D(−1) or
D(ζ6) in terms of products of values of the Gamma function at rational arguments.
For the normalization of D used in the present paper compare also [15, Thm. 5.3
and p. 649]. Take, e.g., ω3 in (4.3); we know already by different reasons (Theorems
4.3 and 5.1) that the corresponding value of the triangle function in −1 is algebraic.
Up to algebraic nonzero factors (indicated by “∼”) we can write it as

D(−2
5
,−3

5
,−2

5
;−1) ∼

Γ(4
5 )Γ( 1

10 )
Γ(1

5 )Γ( 3
10 )

and verify that this quotient is algebraic. This verification can be done either
explicitely using functional equation, parity relation and Gauss–Legendre’s dis-
tribution relations (see, e.g., [22, p. 6]; Serge Lang conjectures moreover that all
algebraic relations between Gamma values at rational arguments follow from these
classical relations), but this requires patience and luck. However there is an easy
criterion due to Koblitz and Ogus ([11] or [22, Prop. 1]) to decide whether the
algebraicity of such a product follows from classical Gamma relations. This crite-
rion applies here and leads as well to the result; we leave it as an exercise for the
reader.
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GKZ Hypergeometric Structures

Jan Stienstra

Abstract. This text is based on lectures by the author in the Summer School
Algebraic Geometry and Hypergeometric Functions in Istanbul in June 2005.
It gives a review of some of the basic aspects of the theory of hypergeometric
structures of Gelfand, Kapranov and Zelevinsky, including Differential Equa-
tions, Integrals and Series, with emphasis on the latter. The Secondary Fan is
constructed and subsequently used to describe the ‘geography’ of the domains
of convergence of the Γ-series. A solution to certain Resonance Problems is
presented and applied in the context of Mirror Symmetry. Many examples
and some exercises are given throughout the paper.

Mathematics Subject Classification (2000). Primary 33C70, 14M25; Secondary
14N35.

Keywords. GKZ hypergeometric, Γ-series, secondary fan, resonant, mirror
symmetry.

1. Introduction

GKZ stands for Gelfand, Kapranov and Zelevinsky, who discovered fascinating
generalizations of the classical hypergeometric structures of Euler, Gauss, Appell,
Lauricella, Horn [10, 12, 14]. The main ingredient for these new hypergeomet-
ric structures is a finite subset A ⊂ Zk+1 which generates Zk+1 as an abelian
group and for which there exists a group homomorphism h : Zk+1 → Z such that
h(A) = {1}. The latter condition means that A lies in a k-dimensional affine hy-
perplane in Zk+1. Figure 1 shows A (the black dots) sitting in this hyperplane
for some classical hypergeometric structures. In [12, 14] these new structures were
called A-hypergeometric systems. Nowadays many authors call them GKZ hyperge-
ometric systems. The original name indeed seems somewhat unfortunate, since A-
hypergeometric sounds negative, like ′αγεoμετριτoς μη ′εισιτω (a non-geometer
should not enter), written over the entrance of Plato’s academy and in the logo of
the American Mathematical Society. Besides the set A the construction of GKZ
hypergeometric structures requires a vector c ∈ Ck+1.
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Figure 1.

In these notes we report on the basic theory of GKZ hypergeometric struc-
tures and show how the traditional aspects differential equations, integrals, series
are attached to the data A, c. In Section 2 we introduce the GKZ differential equa-
tions and give examples of GKZ hypergeometric integrals. In Section 3 we discuss
GKZ hypergeometric series (so-called Γ-series). We have put details of the GKZ
theory for Lauricella’s FD together in Section 7, so that the reader can compare
results and view-points on FD for various lectures in this School (e.g., [19]).

The beautiful insight of Gelfand, Kapranov and Zelevinsky was that hyperge-
ometric structures greatly simplify if one introduces extra variables and balances
this with an appropriate torus action. More precisely the variables in GKZ theory
are the natural coordinates on the space CA := Maps(A,C) of maps from A to
C. The torus Tk+1 := Hom(Zk+1,C∗) of group homomorphisms from Zk+1 to C∗,
acts naturally on CA and on functions on CA: for σ ∈ Tk+1 and Φ : CA → C

(σ · u)(a) = σ(a)u(a) , (Φ · σ)(u) = Φ(σ · u) , ∀a ∈ A, ∀u ∈ CA . (1)

The GKZ hypergeometric functions associated with A and c are defined on open
domains in CA, but they are not invariant under the action of Tk+1, unless c = 0.
Rather, for c ∈ Zk+1 they transform according to the character of Tk+1 given
by c. For c �∈ Zk+1 there is only an infinitesimal analogue of this transformation
behavior, encoded in one part of the GKZ system of differential equations (see
(20)). On the other hand, the quotient of any two GKZ hypergeometric functions
with a common domain of definition associated with A and c is always Tk+1-
invariant (see (21)).

The important role of the Tk+1-action in GKZ hypergeometric structures
motivates a study of the orbit space. Without going into details, this can be
described as follows. First take the complement of the coordinate hyperplanes
(C∗)A := Maps(A,C∗) = {u ∈ CA | u(a) �= 0, ∀a ∈ A}. The above action of Tk+1

preserves this set. In fact (C∗)A is a complex torus and Tk+1 can be identified
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with a subtorus, acting by left multiplication. The quotient is the torus

(C∗)A /Tk+1 = Hom (L,C∗), (2)

where L is the lattice (= free abelian group) of linear relations in A. It is often
convenient to fix a numbering for the elements of A, i.e., A = {a1, . . . ,aN}. Then
L can be described as

L := {(�1, . . . , �N ) ∈ ZN | �1a1 + . . . + �NaN = 0} . (3)

The rank of L and the dimension of the torus in (2) are d := N − k − 1. In order
to obtain the natural space on which the GKZ hypergeometric structures live one
must compactify the complex torus in (2). For this purpose Gelfand, Kapranov
and Zelevinsky developed the theory of the Secondary Fan. This is a complete fan
of rational polyhedral cones in the real vector space L∨

R := Hom (L,R). Sections
4 and 5 give full details about the Secondary Fan and the associated toric variety
VA. Since the Secondary Fan has interesting applications outside the theory of
hypergeometric systems Sections 4 and 5 are written so that they can be read in-
dependently of other sections. The toric variety VA provides a very clear picture of
the ‘geography’ for the domains of convergence of the various GKZ hypergeometric
series, since these match exactly with discs about the special points of VA coming
from the maximal cones in the secondary fan (see Proposition 7). For the examples
in Figure 1 the toric varieties and special points associated with the maximal cones
in the secondary fan are: for Gauss the projective line P1 with points [1, 0], [0, 1],
for F4 the projective plane P2 with points [1, 0, 0], [0, 1, 0], [0, 0, 1], for F1 the pro-
jective plane blown up in the three points [1, 0, 0], [0, 1, 0], [0, 0, 1] equiped with
the six points of intersection of the exceptional divisors and the proper transforms
of the coordinate axes in P2.

For most A the dimension of local solution spaces for the GKZ differential
equations equals the volume of the k-dimensional polytope ΔA := convex hull of A
(see Section 2.7); here the volume is normalized as k!× the Euclidean volume. Thus
for the examples in Figure 1 the local solution spaces have dimension 2, 3, 4, re-
spectively. For generic A and c the Γ-series provide bases of local solutions for the
GKZ differential equations. However, in some exceptional, but very important,
cases there are not enough Γ-series, due to a phenomenon called resonance. In
Section 6 we discuss resonance and demonstrate how one sometimes can obtain
enough solutions by considering infinitesimal deformations of Γ-series. Sometimes
here means under the severe restrictions that c = 0 and that one works in the
neighborhood of a point on VA which corresponds to a unimodular triangulation
of the polytope ΔA. Very recently Borisov and Horja [5] found a way to obtain
enough solutions for any c ∈ Zk+1 and any triangulation. Their method is close in
spirit to the method in Section 6 and [5] gives an up-to-date presentation of this
aspect of GKZ hypergeometric structures.

In the 1980s, while Gelfand, Kapranov and Zelevinsky were working on
new hypergeometric structures, physicists discovered fascinating new structures
in string theory: the so-called string dualities. One of these string dualities, known
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as Mirror Symmetry, soon attracted the attention of mathematicians, because it
claimed very striking consequences for enumerative geometry. Especially the paper
[7] of Candelas, de la Ossa, Green and Parkes with a detailed study of the quintic
in P4 played a pivotal role. Batyrev [1] pointed out that many examples of the
Mirror Symmetry phenomenon dealt with pairs of families of Calabi–Yau hyper-
surfaces in toric varieties coming from dual polytopes. In [3] Batyrev and Borisov
extended this kind of Mirror Symmetry to Calabi–Yau complete intersections in
toric varieties. Batyrev ([2], Thm. 14.2) also noticed that the solutions to the dif-
ferential equations which appeared in Mirror Symmetry, were solutions to GKZ
hypergeometric systems constructed from the same data as the toric varieties. The
converse is, however, not true: the GKZ system can have solutions which are not
solutions to the system of differential equations in Mirror Symmetry. This means
that the latter system contains extra differential equations in addition to those
of the underlying GKZ system (see [16] §3.3). On the other hand, the solutions
to the differential equations which one encounters in Mirror Symmetry, can all
be obtained by a few differentiations from solutions to extremely resonant GKZ
hypergeometric systems with c = 0. Thus we do not need those extended GKZ
systems. In Section 8 we discuss some examples of this intriguing application of
GKZ hypergeometric structures to String Theory.

The quotient of two solutions of a GKZ system of differential equations as-
sociated with A and c is Tk+1-invariant. So one can define (at least locally) a
Schwarz map from the toric variety VA to the projectivization of the vector space
of (local) solutions. For Gauss’s system, and more generally for Lauricella’s FD,
the toric variety VA and the projectivized solution space have the same dimension,
equal to the rank of L. The Schwarz map for Gauss’s system and Lauricella’s FD

is discussed extensively in other lectures in this school, e.g., [19]. Quite in contrast
with FD is the situation for GKZ systems associated with families of Calabi–Yau
threefolds. For these the toric variety VA has dimension equal to rankL, but the
projectivized local solution space has dimension 1+2 rankL. The discussion about
the canonical coordinates and the pre-potential in Section 8.5 can be seen as a de-
scription of the image of the (local) Schwarz map. This is closely related to what
in the (physics) literature is called Special Kähler Geometry.

All this basically concerns only local aspects of GKZ systems of differential
equations. About singularities, global solutions or global monodromy of the system
not much seems to be known, except for classically studied systems like Gauss’s
and Lauricella’s FD.

Since these notes are intended as an introduction to GKZ hypergeometric
structures, we have included throughout the text many examples and a few ex-
ercises. On the other hand we had to omit many topics. One of these omissions
concerns A-discriminants. These come up when one identifies CA with the space
of Laurent polynomials in k + 1 variables with exponents in A,

u ∈ CA ↔
∑
a∈A

uaxa ,
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and then wonders about the Laurent polynomials with singularities, i.e., for which
there is a point at which all partial derivatives vanish. For the A-discriminant and
its relation to the secondary fan we refer to [13]. Another omission concerns sym-
plectic geometry in connection with the secondary fan. We recommend Guillemin’s
book [15] for further reading on this topic.

Acknowledgments. This text is an expanded version of the notes for my lectures in
the summer school on Arithmetic and Geometry around Hypergeometric Functions
at Galatasaray University in Istanbul, june 2005. I want to thank the organizers,
in particular Prof. Uludag, for the hospitality and for the opportunity to lecture
in this summer school. I am also much indebted to the authors of the many papers
on hypergeometric structures, triangulations and mirror symmetry from which I
myself learnt this subject.

Contents

1. Introduction 313
2. GKZ systems via examples 318
2.1. Roots of polynomial equations 318
2.2. Integral with polynomial integrand 319
2.3. Integral with k-variable Laurent polynomial integrand 320
2.4. Generalized Euler integrals 321
2.5. General GKZ systems of differential equations 321
2.6. Gauss’s hypergeometric differential equation as a GKZ system 322
2.7. Dimension of the solution space of a GKZ system 323
3. Γ-series 324
3.1. The Γ-function 324
3.2. Examples of Γ-series 325
3.2.1. Gauss’s hypergeometric series 325
3.2.2. The hypergeometric series pFp−1 325
3.2.3. The case 1F0. 326
3.2.4. The Appell–Lauricella hypergeometric series 326
3.3. Growth of coefficients of Γ-series 327
3.4. Γ-series and power series 328
3.5. Fourier Γ-series 329
3.6. Γ-series and GKZ differential equations 329
4. The Secondary Fan 330
4.1. Construction of the secondary fan 331
4.2. Alternative descriptions for secondary fan constructions 333
4.2.1. Piecewise linear functions associated with A 334
4.2.2. Regular triangulations 335
4.3. The Secondary Polytope 337
5. The toric variety associated with the Secondary Fan 338
5.1. Construction of the toric variety for the secondary fan 338



318 Jan Stienstra

5.2. Convergence of Fourier Γ-series and the secondary fan 341
5.3. Solutions of GKZ differential equations and the secondary fan 342
6. Extreme resonance in GKZ systems 344
7. GKZ for Lauricella’s FD 350
7.1. Series, L, A and the primary polytope ΔA 350
7.2. Integrals and differential equations for FD 351
7.3. Triangulations of ΔA, secondary polytope and fan for FD 353
8. A glimpse of Mirror Symmetry 355
8.1. GKZ data from Calabi–Yau varieties 355
8.2. The quintic in P4 357
8.3. The intersection of two cubics in P5 360
8.4. The hypersurface of degree (3, 3) in P2 × P2 362
8.5. The Schwarz map for some extended GKZ systems 364
8.6. Manifestations of Mirror Symmetry 368
References 369

2. GKZ systems via examples

2.1. Roots of polynomial equations

It is clear that in general the zeros of a polynomial

Pu(x) := u0 + u1x + u2x
2 + . . . + unx

n (4)

are functions of the coefficients u = (u0, . . . , un). One wonders: What kind of
functions? For instance, it has been known since ancient times that the zeros of a
quadratic polynomial ax2 + bx+ c are 1

2a (−b±
√
b2 − 4ac). Similar formulas exist

for polynomials of degrees 3 and 4, but, according to Galois theory, the zeros of
a general polynomial of degree ≥ 5 can not be obtained from the polynomial’s
coefficients by a finite number of algebraic operations. Changing the point of view
K. Mayr proved that the roots of polynomials are solutions of certain systems of
differential equations:

Theorem 1. (Mayr [20]) If all roots of the equation Pu(ξ) = 0 are simple, then a
root ξ satisfies the differential equations: for i1 + . . . + ir = j1 + . . . + jr:

∂rξ

∂ui1 . . . ∂uir

=
∂rξ

∂uj1 . . . ∂ujr

.

Proof. By differentiating the equation Pu(ξ) = 0 with respect to ui we find
P ′

u(ξ) ∂ξ
∂ui

+ ξi = 0. This implies ∂ξ
∂ui

= ξi ∂ξ
∂u0

= 1
1+i

∂ξ1+i

∂u0
. Induction now gives

∂rξ

∂ui1 . . . ∂uir

=
1

1 + i1 + . . . + ir

∂rξ1+i1+...+ir

∂ur
0

. �
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It obviously suffices to use only those Mayr’s differential equations for which
{i1, . . . , ir} ∩ {j1, . . . , jr} = ∅. These can also be written as

∏
�i<0

(
∂

∂ui

)−�i

ξ =
∏
�i>0

(
∂

∂ui

)�i

ξ if
n∑

i=0

�i

[
1
i

]
=
[

0
0

]
. (5)

A second system of differential equations, satisfied by the roots of polynomi-
als, follows from the easily checked fact that for all s ∈ C∗:

ξ(su0, su1, . . . , sun) = ξ(u0, . . . , un) , ξ(u0, su1, . . . , s
nun) = s−1ξ(u0, . . . , un) .

When we differentiate this with respect to s and set s = 1, we find:

u0
∂ξ

∂u0
+ u1

∂ξ

∂u1
+ u2

∂ξ

∂u2
+ . . . + un

∂ξ

∂un
= 0 ,

0 u0
∂ξ

∂u0
+ 1 u1

∂ξ

∂u1
+ 2 u2

∂ξ

∂u2
+ . . . + nun

∂ξ

∂un
= −ξ ,

This can be written more transparently as:

ξ(tu0, tsu1, ts
2u2 . . . , ts

nun) = s−1ξ(u0, . . . , un) for (t, s) ∈ (C∗)2 , (6)
n∑

i=0

[
1
i

]
ui

∂ξ

∂ui
=

[
0
−1

]
ξ . (7)

For more on zeros of 1-variable polynomials and hypergeometric functions see [21].

2.2. Integral with polynomial integrand

Consider the integral

I(m)
σ = I(m)

σ (u0, . . . , un) :=
∫

σ

Pu(x)m dx

x

with m ∈ Z, Pu(x) as in (4) and σ a circle in C, with radius > 0, centred at 0,
independent of u0, . . . , un, not passing through any zero of Pu(x).

By differentiating under the integral sign we see

∂I
(m)
σ

∂ui
= m

∫
σ

xiPu(x)m−1 dx

x

and hence, if i1 + . . . + ir = j1 + . . . + jr, then

∂rI
(m)
σ

∂ui1 . . . ∂uir

=
∂rI

(m)
σ

∂uj1 . . . ∂ujr

.

As before this can also be written as∏
�i<0

(
∂

∂ui

)−�i

I(m)
σ =

∏
�i>0

(
∂

∂ui

)�i

I(m)
σ if

n∑
i=0

�i

[
1
i

]
=
[

0
0

]
. (8)
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For s ∈ C∗ close to 1 one checks: I(m)
σ (su0, . . . , sun) = smI

(m)
σ (u0, . . . , un) and

I(m)
σ (u0, su1, . . . , s

nun) =
∫

σ

Pu(sx)m dx

x
=
∫

sσ

Pu(x)m dx

x
= I(m)

σ (u0, . . . , un) .

More transparently: for (t, s) ∈ (C∗)2 sufficiently close to (1, 1)

I(m)
σ (tu0, tsu1, ts

2u2 . . . , ts
nun) = tmI(m)

σ (u0, . . . , un) . (9)

By differentating (9) with respect to t and s and setting t = s = 1 we find, similar
to (7),

n∑
i=0

[
1
i

]
ui

∂I
(m)
σ

∂ui
=
[
m
0

]
I(m)
σ . (10)

Note the fundamental role of the set A =
{[

1
i

]
| i = 0, 1, . . . , n

}
in (5)–(10).

Notice also the torus action (1) on the left-hand sides of (6) and (9).

2.3. Integral with k-variable Laurent polynomial integrand

Let us take a Laurent polynomial in k variables

Pu(x1, x2, . . . , xk) :=
∑
a∈A

ua x
a1
1 xa2

2 · · ·xak

k (11)

where a = (a1, a2, . . . , ak) and A = {a1, . . . , aN} is a finite subset of Zk. Consider
the integral

I(m)
σ (u) :=

∫
σ

Pu(x1, . . . , xk)m dx1

x1
· · · dxk

xk
(12)

with u = (ua)a∈A, m ∈ Z and with σ = σ1 × . . . × σk a product of k circles
σ1, . . . , σk in C, centred at 0, independent of u, so that Pu(x1, . . . , xk) �= 0 for all
(x1, . . . , xk) ∈ σ1 × . . .× σk.

By differentiating under the integral sign we see, for a = (a1, . . . , ak),

∂I
(m)
σ (u)
∂ua

= m

∫
σ

xa1
1 · · ·x

ak

k Pu(x1, . . . , xk)m−1 dx1

x1
· · · dxk

xk
.

From this one derives that for every vector (�1, . . . , �N) ∈ ZN which satisfies

�1 + . . . + �N = 0 , �1a1 + . . . + �NaN = 0 , (13)

the following differential equation holds:∏
�i<0

(
∂

∂ui

)−�i

I(m)
σ (u) =

∏
�i>0

(
∂

∂ui

)�i

I(m)
σ (u) ; (14)

for simplicity of notation we write here and henceforth ui instead of uai.
For s ∈ C∗ sufficiently close to 1 and for i = 1, . . . , k one calculates:

I(m)
σ (sai1u1, s

ai2u2, . . . , s
aiNuN) =

∫
σ

Pu(x1, . . . , sxi, . . . , xk)m ω

=
∫

σ1×...×sσi×...×σk

Pu(x1, . . . , xk)m ω =
∫

σ1×...×σi×...×σk

Pu(x1, . . . , xk)m ω = I(m)
σ (u1, . . . , uN ) ;
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here aij denotes the i-th coordinate of the vector aj and ω = dx1
x1
· · · dxk

xk
. This

together with I
(m)
σ (su1, . . . , suN ) = smI

(m)
σ (u1, . . . , uN ) can also be written as:

I(m)
σ (tsa11

1 sa21
2 · · · sak1

k u1, . . . , ts
a1N
1 sa2N

2 · · · sakN

k uN) = tmI(m)
σ (u0, . . . , un) (15)

for (t, s1, . . . , sk) ∈ (C∗)k+1 close to (1, . . . , 1). By differentiating with respect to
t, s1, . . . , sk and setting t = s1 = . . . = sk = 1 we find[

1
a1

]
u1

∂I
(m)
σ (u)
∂u1

+ . . . +
[

1
aN

]
uN

∂I
(m)
σ (u)
∂uN

=
[
m
0

]
I(m)
σ (u) . (16)

Note the appearance of the set A =
{[

1
a

]
∈ Zk+1 | a ∈ A

}
in (13) and (16).

Notice also the torus action (1) on the left hand side of (15).

Remark. For m > 0 one can evaluate I
(m)
σ (u) using the multinomial and residue

theorems. One finds that I
(m)
σ (u) is actually a polynomial:

1
(2πi)k

I(m)
σ (u) =

∑
(m1,...,mN )

m!
(m1)! · · · (mN )!

um1
1 · · ·umN

N (17)

where the sum runs over all N -tuples of non-negative integers (m1, . . . ,mN ) sat-
isfying m1 + . . . + mN = m and m1a1 + . . . + mNaN = 0.

In Section 8 one can find explicit examples of these integrals with m = −1.

2.4. Generalized Euler integrals

In [12, 14] Gelfand, Kapranov and Zelevinsky investigate integrals of the form∫
σ

∏
i

Pi(x1, . . . , xk)αi xβ1
1 · · ·x

βk

k dx1 · · · dxk , (18)

which they call generalized Euler integrals. Here the Pi are Laurent polynomials,
αi and βj are complex numbers and σ is a k-cycle. Since the integrand can be
multivalued and can have singularities one must carefully give the precise meaning
of Formula (18) (see [12] §2.2). Having dealt with the technicalities of the precise
definition Gelfand, Kapranov and Zelevinsky view the integrals (18) as functions
of the coefficients of the Laurent polynomials Pi. Using the same arguments as
we used in Section 2.3 they then verify that these functions satisfy a system of
differential equations (19)–(20) for the appropriate data A and c. Examples can
be found in Sections 7.2 and 8.3.

2.5. General GKZ systems of differential equations

The systems of differential equations (5)–(7), (8)–(10) and (14)–(16) found in the
preceding examples are special cases of systems of differential equations discovered
by Gelfand, Kapranov and Zelevinsky [10, 12, 14]. The general GKZ system for
functions Φ of N variables u1, . . . , uN is constructed from a vector c ∈ Ck+1 and an
N -element subset A = {a1, . . . ,aN} ⊂ Zk+1 which generates Zk+1 as an abelian
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group and for which there exists a group homomorphism h : Zk+1 → Z such that
h(a) = 1 for all a ∈ A. Let L ⊂ ZN denote the lattice of relations in A:

L := {(�1, . . . , �N ) ∈ ZN | �1a1 + . . . + �NaN = 0} .
Note that the condition h(a) = 1 for all a ∈ A, implies that �1 + . . . + �N = 0 for
every (�1, . . . , �N) ∈ L.

Definition 1. The GKZ system associated with A and c consists of
• for every (�1, . . . , �N) ∈ L one differential equation∏

�i<0

(
∂

∂ui

)−�i

Φ =
∏
�i>0

(
∂

∂ui

)�i

Φ , (19)

• the system of k + 1 differential equations

a1 u1
∂Φ
∂u1

+ . . . + aN uN
∂Φ
∂uN

= cΦ . (20)

Remark. It is natural to view u1, . . . , uN as coordinates on the space CA :=
Maps(A,C). Then the left-hand side of the equation (20) is the infinitesimal ver-
sion of the torus action (1). If Φ1 and Φ2 are two solutions of (20) on some open
set U ⊂ CA, their quotient satisfies

a1 u1
∂

∂u1

(
Φ1

Φ2

)
+ . . . + aN uN

∂

∂uN

(
Φ1

Φ2

)
= 0 (21)

and is therefore constant on the intersections of U with the Tk+1-orbits.
Thus a basis Φ1, . . . ,Φr of the solution space of (19)–(20) induces map from the
orbit space Tk+1 · U /Tk+1 into the projective space Pr−1, like the Schwarz map
for Gauss’s hypergeometric systems.

Another simple, but nevertheless quite useful, consequence of the GKZ dif-
ferential equations is:

Proposition 1. If function Φ satisfies the differential equations (19)–(20) for A
and c, then ∂Φ

∂uj
satisfies the differential equations (19)–(20) for A and c− aj.

Proof. The derivation ∂
∂uj

commutes with all derivations involved in (19). On the
other hand, by applying ∂

∂uj
to both sides of (20) we get

a1 u1
∂

∂u1

(
∂Φ
∂uj

)
+ . . . + aN uN

∂

∂uN

(
∂Φ
∂uj

)
+ aj

∂Φ
∂uj

= c
∂Φ
∂uj

. �

2.6. Gauss’s hypergeometric differential equation as a GKZ system

The most classical hypergeometric differential equation, due to Euler and Gauss,
is:

z(z − 1)F ′′ + ((a + b + 1)z − c)F ′ + abF = 0 . (22)
Here F is a function of one variable z, ′ = d

dz and a, b, c are additional complex
parameters. It is reproduced in the GKZ formalism by c = (1− c,−a,−b) and
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A =

⎧⎨⎩
⎡⎣ 1

1
1

⎤⎦ ,

⎡⎣−1
0
0

⎤⎦ ,

⎡⎣ 0
1
0

⎤⎦ ,

⎡⎣ 0
0
1

⎤⎦⎫⎬⎭ ⊂ Z3

� �

� �

and, hence, L = Z(1, 1,−1,−1) ⊂ Z4. Indeed, for these data the GKZ system
boils down to the following four differential equations for a function Φ of four
variables (u1, u2, u3, u4):

∂2Φ
∂u1∂u2

=
∂2Φ

∂u3∂u4

u1
∂Φ
∂u1

− u2
∂Φ
∂u2

= (1 − c) Φ

u1
∂Φ
∂u1

+ u3
∂Φ
∂u3

= −a Φ

u1
∂Φ
∂u1

+ u4
∂Φ
∂u4

= −b Φ.

From the second equation we get

∂2Φ
∂u1∂u2

= u−1
2

(
u1

∂2Φ
∂u2

1

+ c
∂Φ
∂u1

)
.

From the third and fourth equations we get

∂2Φ
∂u3∂u4

= u−1
3 u−1

4

(
−u1

∂

∂u1
− a

)(
−u1

∂

∂u1
− b

)
Φ.

Together with the first equation this yields

u−1
3 u−1

4

(
u2

1

∂2Φ
∂u2

1

+ (1 + a + b)u1
∂Φ
∂u1

+ abΦ
)

= u−1
2

(
u1

∂2Φ
∂u2

1

+ c
∂Φ
∂u1

)
.

Setting u2 = u3 = u4 = 1, u1 = z and F (z) = Φ(z, 1, 1, 1) we find that F satisfies
the differential equation (22).

2.7. Dimension of the solution space of a GKZ system

The spaces of (local) solutions of the GKZ differential equations (19)–(20) are
complex vector spaces. Theorems 2 and 5 in [10] state that the dimension of the
space of (local) solutions of (19)–(20) near a generic point is equal to the normalized
volume of the k-dimensional polytope ΔA := convex hull(A) ; here ‘normalized
volume’ means k! times the usual Euclidean volume. In [11] it is pointed out
that the proof in [10] requires an additional condition on A. Corollary 8.9 and
Proposition 13.15 in [25] show that this additional condition is satisfied if the
polytope ΔA admits a unimodular triangulation. Triangulations of ΔA and their
importance in GKZ hypergeometric structures are discussed in Section 4.2.2.
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3. Γ-series

As before we consider a subset A = {a1, . . . ,aN} ⊂ Zk+1 which generates Zk+1 as
an abelian group and for which there exists a group homomorphism h : Zk+1 → Z
such that h(a) = 1 for all a ∈ A. And, still as before, we write:

L := {(�1, . . . , �N ) ∈ ZN | �1a1 + . . . + �NaN = 0} .
The condition h(a) = 1 for all a ∈ A, implies that �1 + . . . + �N = 0 for every
(�1, . . . , �N) ∈ L. With L and a vector γ = (γ1, . . . , γN ) ∈ CN Gelfand, Kapranov
and Zelevinsky [10] associate what they call a Γ-series :

Definition 2. The Γ-series associated with L and γ = (γ1, . . . , γN) ∈ CN is

ΦL,γ(u1, . . . , uN ) =
∑

(�1,...,�N )∈L

N∏
j=1

u
γj+�j

j

Γ(γj + �j + 1)
. (23)

Here Γ is the Γ-function; its definition and main properties are recalled in Section
3.1. In Section 3.2 we demonstrate how the classical hypergeometric series of Gauss,
Appell and Lauricella appear in the Γ-series format. In Section 3.3 we give esti-
mates for the growth of the coefficients in (23). Formula (23) requires for γ �∈ Zk+1

choices of logarithms for u1, . . . , uN . By carefully manoeuvreing conditions on γ
and substitutions setting some uj equal to 1, we can avoid problems and show in
Section 3.6 how a Γ-series can be viewed as a power series in d = N − k − 1 vari-
ables with positive radii of convergence. Nevertheless, a formula avoiding choices
of logarithms is desirable. For that reason we introduce Fourier Γ-series in Section
3.5. In Section 3.6 we prove that ΦL,γ(u1, . . . , uN ) can be viewed as a function on
some domain in (u1, . . . , uN)-space and satisfies the GKZ differential equations.

3.1. The Γ-function

The Γ-function is defined for complex numbers s with .s > 0 by the integral

Γ(s) :=
∫ ∞

0

ts−1e−tdt . (24)

Using partial integration one immediately checks Γ(s+1) = sΓ(s) and, hence, for
n ∈ Z, n > 0

Γ(s + n) = s(s + 1) . . . (s + n− 1)Γ(s) . (25)

Formulas (24) and (25) imply in particular

Γ(1) = 1 , Γ(n + 1) = n! for n ∈ N . (26)

One can extend the Γ-function to a meromorphic function on all of C by setting

Γ(s) =
Γ(s + n)

s(s + 1) . . . (s + n− 1)
with n ∈ Z, n > −.s . (27)

The functional equation (25) shows that this does not depend on the choice of n.
Formula (24) shows Γ(s) �= 0 if .s > 1 and hence Formula (27) shows that the



GKZ Hypergeometric Structures 325

extended Γ-function is holomorphic on C \ Z≤0 and has at s = −m ∈ Z≤0 a first
order pole with residue

Ress=−mΓ(s) =
(−1)m

m!
. (28)

The function 1
Γ(s) is holomorphic on the whole complex plane. Its zero set is Z≤0

and its Taylor series at −m ∈ Z≤0 starts like

1
Γ(s−m)

= (−1)mm! s + . . . (29)

The coefficients of (classical) hypergeometric series are usually expressed in terms
of Pochhammer symbols (s)n. These are defined by (s)n = s(s+ 1) · · · (s+ n− 1)
and can be rewritten as quotients of Γ-values:

(s)n = s(s + 1) · · · (s + n− 1) =
Γ(s + n)

Γ(s)
= (−1)n Γ(1− s)

Γ(1− n− s)
. (30)

Note, however, that for integer values of s the Pochhammer symbol (s)n is perfectly
well defined, while some of the individual Γ-values in (30) may become ∞.

3.2. Examples of Γ-series

3.2.1. Gauss’s hypergeometric series. As in the example of Gauss’s hypergeomet-
ric differential equation (Section 2.6) we take L = Z(1, 1,−1,−1) in Z4 and
γ = (0, c− 1,−a,−b) ∈ C4. If c is not an integer ≤ 0, then, by (23) and (30),

ΦL,γ(u1, u2, u3, u4) =
∑
n∈Z

un
1u

c−1+n
2 u−a−n

3 u−b−n
4

Γ(1 + n)Γ(c + n)Γ(1 − n− a)Γ(1− n− b)

=
uc−1

2 u−a
3 u−b

4

Γ(c)Γ(1 − a)Γ(1− b)

∑
n≥0

(a)n(b)n

n!(c)n
(u1u2u

−1
3 u−1

4 )n

and, hence, ΦL,γ(z, 1, 1, 1) = 1
Γ(c)Γ(1−a)Γ(1−b)F (a, b, c|z) with

F (a, b, c|z) :=
∑
n≥0

(a)n(b)n

n!(c)n
zn .

The power series F (a, b, c|z) is Gauss’s hypergeometric series. Note that if a or b
is a positive integer, the Γ-series is 0, but Gauss’s hypergeometric series is not 0.

3.2.2. The hypergeometric series pFp−1. Quite old generalizations of Gauss’s hy-
pergeometric series are the series

pFp−1

(
a1 , . . . , ap

c1 , . . . , cp−1

∣∣∣∣ z) :=
∑
n≥0

(a1)n · · · (ap)n

n!(c1)n · · · (cp−1)n
zn .

Like for Gauss’s series one easily finds that the series pFp−1 match (up to a constant
factor) the Γ-series for L = Z(1, . . . , 1,−1, . . . ,−1) with p 1’s and p (−1)’s.
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3.2.3. The case 1F0. The simplest, yet not totally trivial, case of a Γ-series arises
for L = Z(1,−1) ⊂ Z2. The Γ-series with γ = (0, a), a ∈ C is

ΦZ(1,−1),(0,a)(u1, u2) =
∑
n∈Z

un
1u

a−n
2

Γ(1 + n)Γ(1 + a− n)
=

1
Γ(1 + a)

(u1 + u2)a ;

here we use the generalized binomial theorem and (30):(
a
n

)
=

a(a− 1) . . . (a− n + 1)
n!

=
Γ(1 + a)

Γ(1 + n)Γ(1 + a− n)
.

Remark. Note that L = Z(1,−1) implies that the two elements of A are equal. The
GKZ differential equations in this case imply that the hypergeometric functions
are in fact just functions of the single variable u1 + u2. This illustrates a general
fact: when setting up the theory of GKZ hypergeometric systems one could take
for A a list of vectors in Zk+1 instead of just a subset (i.e., the elements may occur
more than once). But any such apparently more general set up, arises from a case
with A a genuine set by simply replacing a variable by a sum of new variables. So
by allowing for A a list instead of a set one does not get a seriously more general
theory. Therefore we ignore this option in these notes.

3.2.4. The Appell–Lauricella hypergeometric series. These are generalizations of
Gauss’s series to n variables defined by Appell for n = 2 and Lauricella for
general n. With the notations zm := zm1

1 · · · zmn
n , (x)m := (x1)m1 · · · (xn)mn ,

m! := m1! · · ·mn!, |m| := m1 + . . . + mn for n-tuples of complex numbers z =
(z1, . . . , zn), x = (x1, . . . , xn) and of non-negative integers m = (m1, . . . ,mn),
the four Lauricella series are

FA(a,b, c|z) :=
∑
m

(a)|m|(b)m
(c)mm!

zm

FB(a,b, c|z) :=
∑
m

(a)m(b)m
(c)|m|m!

zm

FC(a, b, c|z) :=
∑
m

(a)|m|(b)|m|
(c)mm!

zm

FD(a,b, c|z) :=
∑
m

(a)|m|(b)m
(c)|m|m!

zm;

in the summations m runs over Zn
≥0 and the c-parameters are not integers ≤ 0. In

Appell’s notation (for n = 2) these series are called F2, F3, F4, F1 respectively.
One can use (30) to explore the relations between the Lauricella series and

Γ-series. For the coefficients in FD, for instance, we find

(a)|m|(b)m
(c)|m|m!

= Γ(1− a)Γ(c)
n∏

j=1

Γ(1− bj) ·
N∏

j=1

1
Γ(1 + γj + �j)
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with N = 2n + 2, γ = (γ1, . . . , γN) = (c− 1,−b1, . . . ,−bn,−a, 0, . . . , 0) ,

(�1, . . . , �N ) = (m1, . . . ,mn)

⎛⎜⎜⎜⎜⎝
1 −1 0 . . . 0 −1 1 0 . . . 0

1 0 −1
. . .

... −1 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . . . . 0
1 0 . . . 0 −1 −1 0 . . . 0 1

⎞⎟⎟⎟⎟⎠ .

So for L we take the lattice which is spanned by the rows of the above n×N -matrix.
Substituting uj = 1 for 1 ≤ j ≤ n + 2 and uj = zj−n−2 for n + 3 ≤ j ≤ 2n + 2
turns the Γ-series into a power series:

ΦL,γ(1, . . . , 1, z1, . . . , zn) =

⎛⎝n+2∏
j=1

Γ(1 + γj)−1

⎞⎠FD(a,b, c|z) .

Exercise. Note that the matrix describing L for Lauricella’s FD is (1n,−In,−1n, In)
where 1n is the column vector with n components 1 and In is the n × n-identity
matrix. Now find the lattice L for the Lauricella functions FA, FB and FC .

3.3. Growth of coefficients of Γ-series

Here is first a simple lemma about the growth behavior of the Γ-function.

Lemma 1. For every C ∈ C\Z there are real constants P, R, κ1, κ2 > 0 (depending
on C) such that for all M ∈ Z≥0 :

|Γ(C + M)| ≥ κ1R
MMM and |Γ(C −M)| ≥ κ2P

−MM−M . (31)

Proof. From (25) one derives

|Γ(C + M)| =
M∏

j=1

|C − 1 + j| · |Γ(C)| ≥ QM M ! |Γ(C)| ≥ κRM MM |Γ(C)| ,

|Γ(C −M)| ≥
M∏

j=1

(|C|+ j)−1 · |Γ(C)| ≥ |Γ(C)|
(|C| + M)M

≥ P−MM−M |Γ(C)|

with Q := mink∈N
|C−1+k|

k , R := Qe−1, P := 2(1 + |C|) and some constant κ
(from Stirling’s formula). �

Now consider the coefficient
∏N

j=1 Γ(γj + �j + 1)−1 in the Γ-series (23). Set
γ′

j = γj if γj �∈ Z and γ′
j = γj− 1

2 if γj ∈ Z. Note that Γ(k− 1
2 ) = (k− 3

2 ) · · · 12Γ(1
2 ) ≤

(k − 1)!Γ(1
2 ) = Γ(k)

√
π for k ∈ Z≥1. Then, using the above lemma, one sees that

there are real constants K,S > 0 such that∣∣∣∣∣∣
N∏

j=1

1
Γ(γj + �j + 1)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

N∏
j=1

√
π

Γ(γ′
j + �j + 1)

∣∣∣∣∣∣ ≤ KSD
N∏

j=1

|�j|−�j

with D := 1
2

∑N
j=1 |�j | =

∑
�j>0 �j = −

∑
�j<0 �j. Since

∏
�j<0 |�j |−�j ≤ DD

and
∏

�j>0 |�j|−�j ≤ NDD−D, our final estimate becomes:
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Proposition 2. There are real numbers K,T > 0, depending on γ = (γ1, . . . , γN ),
but independent of � = (�1, . . . , �N), such that∣∣∣∣∣∣

N∏
j=1

1
Γ(γj + �j + 1)

∣∣∣∣∣∣ ≤ K T
PN

j=1 |�j| . (32)

�

3.4. Γ-series and power series

Let J ⊂ {1, . . . , N} be a set with k+1 elements, such that the vectors aj with j ∈ J
are linearly independent. Write J ′ := {1, . . . , N}\J . Let γ = (γ1, . . . , γN ) ∈ CN be
such that γj ∈ Z for j ∈ J ′. Since 1

Γ(s) = 0 if s ∈ Z≤0, the Γ-series (23) constructed
with such a γ involves only terms from the set

LJ,γ := {(�1, . . . , �N) ∈ L | γj + �j ≥ 0 if j ∈ J ′} . (33)

The substitution

uj = zj if j ∈ J ′ , uj = 1 if j ∈ J (34)

therefore turns the Γ-series into the power series

∑
(�1,...,�N )∈LJ,γ

⎛⎝ N∏
j=1

1
Γ(γj + �j + 1)

⎞⎠ ∏
j∈J′

z
γj+�j

j . (35)

The following lemma is needed to convert (32) into estimates for the radii of
convergence of this power series.

Lemma 2. Let J ⊂ {1, . . . , N} be a set with k + 1 elements, such that the vectors
aj with j ∈ J are linearly independent. Write J ′ := {1, . . . , N} \ J . Then there is
a positive real constant β such that for every (�1, . . . , �N) ∈ L

|�1|+ . . . + |�N | ≤ β
∑
j∈J′
|�j| . (36)

Proof. Take any d×N -matrix B whose rows form a Z-basis of L. Let b1, . . . ,bN

be its columns. Let BJ′ denote the d × d-matrix with columns bj (j ∈ J ′). Then
the matrix BJ′ is invertible over Q; indeed, if it were not, its rows would be linearly
dependent and there would be a vector (�1, . . . , �N) ∈ L such that �j = 0 for j ∈ J ′;
the relation �1a1 + . . . + �NaN = 0 would contradict the linear independence of
the vectors aj with j ∈ J . Now we have the equality of row vectors for every
(�1, . . . , �N) ∈ L

(�1, . . . , �N) = (�)J′(BJ′ )−1B

where (�)J′ is the row vector with components �j (j ∈ J ′). So for β in (36) one can
take the maximum of the absolute values of the entries of the matrix (BJ′)−1B. �
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Proposition 3. Let J ⊂ {1, . . . , N} be a set with k + 1 elements, such that the
vectors aj with j ∈ J are linearly independent. Let γ = (γ1, . . . , γN ) ∈ CN be such
that γj ∈ Z for j ∈ J ′ := {1, . . . , N} \ J . Then there is an R ∈ R>0 such that the
power series (35) converges on the polydisc given by |zj | < R for j = 1, . . . , d.

Proof. This follows, with R = T−β, from Proposition 2 and Lemma 2. �

3.5. Fourier Γ-series

The substitutions in (34) depend too rigidly on the choice of the set J and make
it difficult to combine series constructed with different J ’s. In order to get a more
flexible framework we make in the Γ-series (23) the substitution of variables uj =
e2πiwj for j = 1, . . . , N . We write w = (w1, . . . , wN ), γ = (γ1, . . . , γN ) and � =
(�1, . . . , �N). We also use the dot-product:

w · � = w1�1 + w2�2 + . . . + wN �N .

With these new variables and notations the Γ-series (23) becomes

ΨL,γ(w) =
∑
�∈L

e2πiw·(γ+�)∏N
j=1 Γ(γj + �j + 1)

. (37)

As in Section 3.4 we take a set J ⊂ {1, . . . , N} with k+1 elements, such that
the vectors aj with j ∈ J are linearly independent and let γ = (γ1, . . . , γN ) ∈ CN

be such that γj ∈ Z for j ∈ J ′ := {1, . . . , N} \ J . The vector
∑

i∈J′ ai is a Z-linear
combination of the vectors aj with j ∈ J . Such a relation is an element of L. Thus
one sees that L contains an element � = (�1, . . . , �N ) with �j = 1 for all j ∈ J ′.
Since Γ-series do not change if one adds to γ an element of L, we can assume
without loss of generality that γ = (γ1, . . . , γN ) ∈ CN is such that γj ∈ Z≤0 for
j ∈ J ′ := {1, . . . , N} \J . Then the series ΨL,γ(w) in (23) involves only terms from
the set

LJ := {(�1, . . . , �N ) ∈ L | �j ≥ 0 if j ∈ J ′} . (38)
Using the estimates (32) we see that the series ΨL,γ(w) converges if the imaginary
part �w of w satisfies �w · � > log T

2π for every non-zero � ∈ LJ . We return to this
issue and put it an appropriate perspective in Section 5.2.

3.6. Γ-series and GKZ differential equations

As in the previous section we consider a k + 1-element subset J ⊂ {1, . . . , N}
such that the vectors aj with j ∈ J are linearly independent, and a vector γ =
(γ1, . . . , γN ) ∈ CN such that γj ∈ Z for j ∈ J ′ := {1, . . . , N} \ J . The Γ-series
constructed with such a γ involves only terms from the set LJ,γ (see (23), (33)).
For M ∈ N we define the M -th partial Γ-series ΦL,γ,M (u1, . . . , uN) to be the
subseries of (23) consisting of the terms with |�1| + . . . + |�N | ≤ M . Then it
follows, as in Proposition 3 from Proposition 2 and Lemma 2, that the sequence
{ΦL,γ,M (u1, . . . , uN )}M∈N converges for M → ∞ to ΦL,γ(u1, . . . , uN) if |uj | ≤
(2T )−β for j ∈ J ′ and 1

2 ≤ |uj | ≤ 2 for j ∈ J . So on this domain the Γ-series
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ΦL,γ(u1, . . . , uN) becomes a function of (u1, . . . , uN ) that can be differentiated
term by term. This shows
• for (λ1, . . . , λN ) ∈ L∏

λi<0

(
∂

∂ui

)−λi

ΦL,γ =
∑

(�1,...,�N )∈L

N∏
j=1

u
γj+�j+min(0,λj)
j

Γ(γj + �j + 1 + min(0, λj))

=
∑

(�1,...,�N )∈L

N∏
j=1

u
γj+�j+λj−max(0,λj)
j

Γ(γj + �j + λj + 1−max(0, λj))
=

∏
λi>0

(
∂

∂ui

)λi

ΦL,γ .

• for (a1, . . . , aN ) ∈ ZN such that
∑N

j=1 aj�j = 0 for every (�1, . . . , �N) ∈ L:

N∑
j=1

aj uj

∂ΦL,γ

∂uj
=

∑
(�1,...,�N )∈L

⎛⎝ N∑
j=1

aj(γj + �j)

⎞⎠ N∏
j=1

u
γj+�j

j

Γ(γj + �j + 1)

= (
N∑

j=1

ajγj)ΦL,γ

The latter system of differential equations is equivalent with the system (20) with
c =

∑N
j=1 γjaj . This shows:

Proposition 4. As a function on its domain of convergence ΦL,γ satisfies all dif-

ferential equations of the GKZ system associated with A and c =
∑N

j=1 γjaj. �
Note that the Γ-series ΦL,γ does not change if one adds to γ an element of L

whereas the differential equations (20) with c =
∑N

j=1 γjaj do not change if one
adds to γ an element of L⊗ C.

4. The Secondary Fan

As before we consider a subset A = {a1, . . . ,aN} ⊂ Zk+1 which generates Zk+1 as
an abelian group and for which there exists a group homomorphism h : Zk+1 → Z
such that h(a) = 1 for all a ∈ A. Still as before, we write

L := {(�1, . . . , �N ) ∈ ZN | �1a1 + . . . + �NaN = 0} ,
and note that �1 + . . .+ �N = 0 for every (�1, . . . , �N ) ∈ L. In order to better keep
track of the various spaces involved we write M instead of Zk+1. Thus the input
data is a short exact sequence

0 −→ L −→ ZN −→M −→ 0 . (39)

The vectors a1, . . . ,aN ∈ M are the images of the standard basis vectors of ZN .
We set d := rankL and k + 1 := rankM = N − d.

Apart from the common input data this section is independent of the sections
on GKZ-systems and Γ-series. It concentrates on geometric and combinatorial
structures associated with A (or equivalently L).
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4.1. Construction of the secondary fan

We write L∨
R := Hom(L,R), M∨

R := Hom(M,R) and identify Hom(ZN ,R) and RN

via the standard bases. The R-dual of the exact sequence (39) is

0 −→M∨
R −→ RN π−→ L∨

R −→ 0 . (40)

Let P := {(x1, . . . , xN ) ∈ RN | xi ≥ 0 , ∀i} be the positive orthant in RN and let

π̂ : P −→ L∨
R (41)

denote the restriction of π. Since the vector (1, 1, . . . , 1) lies in kerπ the map π̂ is
also surjective.
Example. Take L = Z(−2, 1, 1) ⊂ R3. Then π can be identified with the map

π : R3 −→ R , π(x1, x2, x3) = −2x1 + x2 + x3 .

For t ∈ R the polytope π̂−1(t) is the intersection of the positive octant and the
plane with equation −2x1 + x2 + x3 = t. Figure 2 illustrates this for t = 1 and
t = −1 (with the x1-axis drawn vertically).

� � � � � � � � � � � � � � �

π̂−1(1)

π̂−1(−1)

�������������������������

�
�

�
�

�
�

�
�

�

���������������

�
�

�
�

�
�

�
�

�

Figure 2. Fibres π̂−1(1) and π̂−1(−1) for L = Z(−2, 1, 1) ⊂ R3

Let b1, . . . ,bN ∈ L∨
R be the images of the standard basis vectors of RN under

the map π. Then, for t ∈ L∨
R ,

(x1, . . . , xN ) ∈ π̂−1(t) ⇐⇒ t = x1b1 + . . . + xNbN and xi ≥ 0 , ∀i .
We see that the fiber π̂−1(t) is a convex (unbounded) polyhedron.

Lemma 3. v = (v1, . . . , vN ) ∈ P is a vertex of π̂−1(t) if and only if t =
∑N

j=1 vjbj

and the vectors bj with vj �= 0 are linearly independent over R.
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Proof. Suppose t =
∑N

j=1 vjbj , all vj ≥ 0 and the vectors bj with vj �= 0 are
linearly dependent over R. Then there is a non-trivial relation

∑N
j=1 xjbj = 0 with

|xj | ≤ vj for all j and the whole interval {v+s(x1, . . . , xN ) | |s| ≤ 1} lies in π̂−1(t).
Therefore v, being the midpoint of this interval, can not be a vertex of π̂−1(t).

Suppose v = (v1, . . . , vN ) ∈ π̂−1(t) is not a vertex of π̂−1(t). Then there is a
non-zero vector x = (x1, . . . , xN ) ∈ RN such that the interval {v + sx | |s| ≤ 1}
lies in π̂−1(t) = P ∩ π−1(t). This implies |xj | ≤ vj for all j and

∑N
j=1 xjbj = 0.

Consequently, the vectors bj with vj �= 0 are linearly dependent over R. �

For a vertex v = (v1, . . . , vN ) of π̂−1(t) we set

Iv := {i | vi = 0} ⊂ {1, 2, . . . , N} . (42)

In this way every t ∈ L∨
R yields a list of subsets of {1, 2, . . . , N}:
Tt := {Iv | v vertex of π̂−1(t)}. (43)

Since π−1(t) has dimension N − d, the cardinality of each Iv must be at least
N − d.

The above lemma provides an alternative description of the list Tt:

Corollary 1. A subset I ⊂ {1, . . . , N} is on the list Tt if and only if the vectors bj

with j �∈ I are linearly independent over R and t =
∑
j �∈I

τjbj with all τj ∈ R>0. �

We now define an equivalence relation on L∨
R by: t ∼ t′ ⇐⇒ Tt = Tt′ .

From Corollary 1 one sees that the equivalence class containing t is

C =
⋂

I∈Tt

(positive span of {bi}i�∈I). (44)

So the equivalence classes are strongly convex polyhedral cones in L∨
R .

Definition 3. This collection of cones is called the secondary fan of A (or L).

For an equivalence class C we set TC := Tt for any t ∈ C. It follows from (44)
that an equivalence class C is an open cone of dimension d if and only if all sets
on the list TC have exactly N − d elements.

Example. In the example of L = Z(−2, 1, 1) ⊂ R3 (see Figure 2) the vertices are
given by the lists

Tt =

⎧⎨⎩ {{2, 3}} if t < 0
{{1, 2, 3}} if t = 0
{{1, 2}, {1, 3}} if t > 0.

Example. For Gauss’s hypergeometric structures L = Z(1, 1,−1,−1) ⊂ R4 and,
hence, b1 = b2 = 1, b3 = b4 = −1 in R. Corollary 1 now yields the lists

Tt =

⎧⎨⎩ {{1, 2, 3}, {1, 2, 4}} if t < 0
{{1, 2, 3, 4}} if t = 0
{{2, 3, 4}, {1, 3, 4}} if t > 0.
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Example. For Appell’s F1 the lattice L ⊂ Z6 has rank 2 and is generated by the
two vectors (1,−1, 0,−1, 1, 0) and (1, 0,−1,−1, 0, 1) which express that the three
vertical segments in Figure 1 are parallel. The vectors b1, . . . ,b6 ∈ Z2 are therefore

b1 =
[

1
1

]
, b2 =

[
−1
0

]
, b3 =

[
0
−1

]
, b4 =

[
−1
−1

]
, b5 =

[
1
0

]
, b6 =

[
0
1

]
.

Figure 3 shows the secondary fan for F1 and gives for each maximal cone C the
corresponding list TC according to Corollary 1.
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b5b2

b6

b3

b1

b4

{3, 4, 5, 6}
{1, 3, 4, 5}
{1, 2, 3, 5}

{2, 4, 5, 6}
{1, 2, 3, 6}
{1, 2, 4, 6}

{2, 4, 5, 6}
{1, 2, 3, 4}
{2, 3, 4, 6}

{1, 4, 5, 6}
{1, 2, 3, 5}
{1, 3, 5, 6}

{1, 4, 5, 6}
{1, 2, 5, 6}
{1, 2, 3, 6}

{3, 4, 5, 6}
{1, 2, 3, 4}
{2, 3, 4, 5}

Figure 3. Secondary fan for F1

Example. For Appell’s F4 the lattice L ⊂ Z6 has rank 2 and is generated by the
two vectors (1,−1, 1,−1, 0, 0) and (1, 0, 1, 0,−1,−1) which express that the three
diagonals in Figure 1 intersect at the centre. The vectors b1, . . . ,b6 ∈ Z2 are

b1 = b3 =
[

1
1

]
, b2 = b4 =

[
−1
0

]
, b5 = b6 =

[
0
−1

]
.

Figure 4 shows the secondary fan for F4 and gives for each maximal cone C the
corresponding list TC according to Corollary 1.

Example/Exercise. The reader is invited to apply the techniques demonstrated in
the previous examples to the examples in Section 8.1, Table 1.

4.2. Alternative descriptions for secondary fan constructions

We are going to present geometrically appealing alternative descriptions for the
polyhedra π̂−1(t) and for the lists TC associated with the maximal cones in the
secondary fan. Whereas the constructions in Section 4.1 were completely presented
in terms of L, the alternative descriptions use A only.
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b5 = b6

b2 = b4

b1 = b3{2, 3, 4, 6}
{2, 3, 4, 5}
{1, 2, 4, 6}
{1, 2, 4, 5}

{3, 4, 5, 6}
{2, 3, 5, 6}
{1, 4, 5, 6}
{1, 2, 5, 6}

{1, 3, 4, 6}
{1, 3, 4, 5}
{1, 2, 3, 5}
{1, 2, 3, 6}

Figure 4. Secondary fan for F4

4.2.1. Piecewise linear functions associated with A. The vectors a1, . . . ,aN ∈ M
are linear functions on the space M∨

R := Hom(M,R). Let MR := M⊗R and denote
the pairing between MR and M∨

R by 〈, 〉. The inclusion M∨
R ↪→ RN is then given by

M∨
R ↪→ RN , v 	→ (〈a1,v〉, . . . , 〈aN ,v〉) . (45)

For an N -tuple α = (α1, . . . , αN ) ∈ RN one has the polyhedron

Kα := {v ∈M∨
R | 〈aj ,v〉 ≥ −αj, ∀j} . (46)

Recall that b1, . . . ,bN ∈ L∨
R denote the images of the standard basis vectors of

RN under the map π.

Proposition 5. For α = (α1, . . . , αN ) ∈ RN set t = α1b1 + . . . + αNbN . Then

π̂−1(t) = α + Kα .

Proof. Since α is in π−1(t) a point x is in π−1(t) if and only if x−α is in kerπ = M∨
R .

By definition, a point x = (x1, . . . , xN ) ∈ π−1(t) lies in π̂−1(t) if and only if xj ≥ 0
for all j. Thus, in view of (45),

x ∈ π̂−1(t) ⇐⇒ v := x− α satisfies 〈aj ,v〉 + αj ≥ 0, ∀j . �

Recall that throughout these notes we assume the existence of a group ho-
momorphism h : Zk+1 → Z such that h(a) = 1 for all a ∈ A. In the present termi-
nology this amounts to the existence of an element h ∈ M∨

R such that 〈aj ,h〉 = 1
for j = 1, . . . , N . Now fix a direct sum decomposition of real vector spaces

M∨
R = M◦

R ⊕ Rh (47)

and consider the function

μα : M◦
R −→ R , μα(u) = min

j
(〈aj ,u〉+ αj) . (48)

Proposition 6. For every u ∈ M◦
R the vector u−μα(u)h lies in the boundary ∂Kα

of Kα. In other words ∂Kα is the graph of the function −μα on M◦
R.



GKZ Hypergeometric Structures 335

Proof. Take u ∈M◦
R. Then one checks for every j

〈aj ,u− μα(u)h〉 = 〈aj ,u〉 − μα(u) ≥ 〈aj ,u〉 − (〈aj ,u〉+ αj) = −αj .

So u − μα(u)h lies in Kα. If j is such that μα(u) = 〈aj ,u〉 + αj , then the above
computation shows 〈aj ,u−μα(u)h〉 = −αj . Therefore u−μα(u)h lies in ∂Kα. �

If μα(u) = 〈aj ,u〉+αj , then the point u−μα(u)h lies in the affine hyperplane

Hα
j := {v ∈ M∨

R | 〈aj ,v〉 = −αj} , j = 1, . . . , N . (49)

For generic u ∈ M◦
R (i.e., outside some codimension 1 closed subset) the minimum

in (48) is attained for exactly one j. Therefore each codimension 1 face of the
polyhedron Kα lies in some unique hyperplane Hα

j .

Remark. Kα can also be described as the closure of that connected component of
M∨

R \
⋃N

j=1H
α
j that contains the points th for sufficiently large t.

Example. Figure 5 shows (a piece of) the polyhedron Kα for

A =

⎧⎨⎩
⎡⎣ 1

0
1

⎤⎦ ,

⎡⎣ 1
1
1

⎤⎦ ,

⎡⎣ 1
−1
0

⎤⎦ ,

⎡⎣ 1
0
0

⎤⎦ ,

⎡⎣ 1
1
0

⎤⎦ ,

⎡⎣ 1
0
−1

⎤⎦⎫⎬⎭ (50)

and α = (21, 35, 35, 14, 21, 28). Matching the faces of Kα with the vectors in A one
checks that the list of vertices is {{1, 2, 5}, {1, 4, 5}, {1, 3, 4}, {4, 5, 6}, {3, 4, 6}}.

4.2.2. Regular triangulations. Assume α = (α1, . . . , αN ) ∈ RN with all αj > 0.
Then the dual of the polyhedron Kα in (46) is, by definition

K∨
α := {w ∈ MR | 〈w,v〉 > −1 , ∀v ∈ Kα} . (51)

Lemma 4. K∨
α = convex hull {0, 1

α1
a1, . . . ,

1
αN

aN}.

Proof. The inclusion ⊃ follows directly from the definition of Kα in (46). Now
suppose that the two polyhedra are not equal. Then there is a point p in K∨

α which
is separated by an affine hyperplane from 0, 1

α1
a1, . . . ,

1
αN

aN . That means that
there is a vector v ∈M∨

R , perpendicular to the hyperplane, such that 〈p,v〉 < −1
and 〈 1

αj
a1,v〉 > −1 for j = 1, . . . , N . The last N inequalities imply according

to (46) that v is in Kα, but then the first inequality contradicts p ∈ K∨
α . So we

conclude that the two polyhedra are equal. �

Next we use the projection from the point 0 to project K∨
α into the hyperplane

with equation 〈p,h〉 = 1. This maps K∨
α onto the polytope

ΔA := convex hull{a1, . . . ,aN}. (52)

The images of the codimension 1 faces of K∨
α which do not contain the vertex 0

induce a subdivision of ΔA by the polytopes

convex hull{ai}i∈I for I ∈ Tt , (53)
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Figure 5. Example of a polyhedron Kα for A as in (50).
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Figure 6. Triangulation corresponding with Figure 5

where t = α1b1 + . . .+ αNbN as in Proposition 5 and Tt is the corresponding list
of vertices of π̂−1(t) as in (43).

If the point t lies in some maximal cone C of the secondary fan, all members
of the list Tt = TC have N − d = k + 1 elements. The polytopal subdivision of ΔA
is then a triangulation; i.e., all polytopes in the subdivision (53) are k-dimensional
simplices.
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Definition 4. The triangulations of ΔA obtained in this way are called regular
triangulations.

Definition 5. One defines the volume of a k-dimensional simplex with vertex set
{ai}i∈I to be

volume({ai}i∈I) = | det ((ai)i∈I) | . (54)
A regular triangulation of ΔA is said to be unimodular if all k-dimensional sim-
plices in the triangulation have volume equal to 1.

By abuse of language we will just say “the triangulation TC” instead of “the
triangulation corresponding with the maximal cone C”. Note that useful informa-
tion about distances between vertices of π̂−1(t) gets lost in the passage to the
(purely combinatorial) triangulation TC.

Remark. In general there can be triangulations of ΔA with vertices in {a1, . . . ,aN},
which do not arise from the above construction and are therefore not regular.

4.3. The Secondary Polytope

The k-dimensional polytope ΔA defined in (52) is sometimes called the primary
polytope associated with A. By definition, the regular triangulations of ΔA cor-
respond bijectively with the maximal cones of the secondary fan. To a regular
triangulation TC we assign the point qC ∈ RN with

jth-coordinate of qC =
∑

I∈TC s.t. j∈I

volume({ai}i∈I) ,

i.e., the sum of the volumes of the simplices in TC of which aj is a vertex.

Definition 6. The secondary polytope associated with A is

Sec(A) = convex hull {qC | TC regular triangulation of ΔA }.

The map RN → MR maps the j-th standard basis vector of RN to aj . Thus
the point qC is mapped to

N∑
j=1

∑
I∈TC s.t. j∈I

volume({ai}i∈I)aj =
∑
I∈TC

volume({ai}i∈I)

⎛⎝∑
j∈I

aj

⎞⎠
= (k + 1)× volume(ΔA)× barycenter(ΔA) .

So the whole secondary polytope is mapped to one point. Therefore, after some
translation in RN we find the secondary polytope in L:

Sec(A) ⊂ L⊗ R .

As for the relation between secondary fan and secondary polytope we mention
the following theorem, which is in a slightly different formulation proven in [13].

Theorem 2. ([13], p. 221, Thm. 1.7) The secondary fan, which lies in L∨
R , is in

fact the fan of outward pointing vectors perpendicular to the faces of Sec(A). �
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Example. In the example of L = Z(−2, 1, 1) ⊂ Z3 there are two maximal cones:
R>0 and R<0. The corresponding triangulations are:

t < 0
� �

2 3

t > 0
� � �

2 1 3
The secondary polytope is the line segment between the points (0, 2, 2) and (2, 1, 1)
in R3.

Example. For Gauss’s hypergeometric structures L = Z(1, 1,−1,−1) ⊂ Z4. From
this one sees that L∨

R � R and that there are two maximal cones: R>0 and R<0.
The corresponding triangulations are:

t < 0

�
�

�
�

� �

� �

1 3

4 2
t > 0

	
	

	
	

� �

� �

1 3

4 2

The secondary polytope is the line segment between the points (2, 2, 1, 1) and
(1, 1, 2, 2) in R4.

Example: For L = Z(−3 1 1 1) ⊂ Z4 we have L∨
R � R and b1 = −3, b2 = b3 =

b4 = 1. Corollary 1 shows for t ∈ L∨
R � R:

Tt =

⎧⎨⎩ { {1, 3, 4} , {1, 2, 4} , {1, 2, 3} } if t > 0
{ {1, 2, 3, 4} } if t = 0
{ {2, 3, 4} } if t < 0

So there are two maximal cones: R>0 and R<0. In terms of triangulations:

A =

⎧⎨⎩
⎡⎣ 1

0
0

⎤⎦ ,

⎡⎣ 1
1
1

⎤⎦ ,

⎡⎣ 1
−1
0

⎤⎦ ,

⎡⎣ 1
0
−1

⎤⎦⎫⎬⎭
t > 0

	
		

�

� �

�

�
��
�����
�

�
�

��

t < 0

	
		

�

� �

������
�

�
�

��

The secondary polytope is the line segment between the points (0, 3, 3, 3) and
(3, 2, 2, 2) in R4.

Example: Figure 7 shows the secondary polytope with at each vertex the corre-
sponding regular triangulation of ΔA for A as in (50).

5. The toric variety associated with the Secondary Fan

5.1. Construction of the toric variety for the secondary fan

The secondary fan is a complete fan of strongly convex polyhedral cones in L∨
R :=

Hom (L,R) which are generated by vectors from the lattice L∨
Z := Hom(L,Z). By

the general theory of toric varieties [9] this lattice-fan pair gives rise to a toric
variety. We are going to describe the construction of the toric variety for the case
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(2,3,2,4,1,3) (2,2,2,5,2,2)

(1,3,3,4,2,2)

(4,3,2,0,1,5)

(1,5,4,0,1,4) (1,3,5,0,4,2)
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Figure 7. The secondary polytope and all regular triangulations
for A as in (50).

of L∨
Z and the secondary fan. Before starting we must point out that [9] works

with a fan of closed cones, while the cones in our Definition 3 of the secondary fan
are not closed ; see also Formula (44). This difference, however, only affects a few
minor subtleties in the formulation at intermediate stages. The monoids (55) and
therefore also the resulting toric varieties are the same as in [9].

We denote the pairing between LR := L⊗Z R and L∨
R by 〈, 〉. For each cone C

in the secondary fan (see (44)) one considers the affine scheme UC := Spec Z[LC ]
associated with the monoid ring Z[LC ] of the monoid 1

LC := { � ∈ L | 〈ω, �〉 ≥ 0 for all ω ∈ C } . (55)

1Alternative terminology: monoid = semi-group
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In down-to-earth terms, a complex point of UC is just a homomorphism from the
additive monoid LC to the multiplicative monoid C, sending 0 ∈ LC to 1 ∈ C.

For cones C and C′ in the secondary fan such that C′ is contained in the
closure C of C, there are inclusions

C′ ⊂ C , LC′ ⊃ LC , Z[LC′ ] ⊃ Z[LC ] , UC′ ⊂ UC ;

more precisely, the following lemma shows that the inclusion UC′ ↪→ UC is an open
immersion associated with the inversion of an element in the ring Z[LC ].

Lemma 5. In the above situation LC′ = LC + Zλ for some λ ∈ LC .

Proof. If C′ = C, the result is trivial. So assume C′ �= C. Since C is a rational
polyhedral cone it is spanned by finitely many ω1, . . . , ωp ∈ L∨

Z , i.e., every point in
C is a linear combination with non-negative real coefficients of ω1, . . . , ωp. Moreover
since C′ ⊂ C there is a λ ∈ LC such that 〈ω′, λ〉 = 0 for all ω′ ∈ C′ and 〈ω, λ〉 > 0
for all ω ∈ C. Take μ ∈ R>0 such that for j = 1, . . . , p we have 〈ωj , λ〉 > μ if
ωj �∈ C′. For every � ∈ LC′ and every non-negative integer r > − 1

μ minj〈ωj , �〉, one
now easily checks that 〈ω, �+ rλ〉 ≥ 0 for every ω ∈ C, and hence �+ rλ ∈ LC . �

Definition 7. The toric variety associated with the secondary fan is the scheme
that results from glueing the affine schemes UC, where C ranges over all cones in
the secondary fan, using the open immersions UC′ ↪→ UC for C′ ⊂ C. We denote
this toric variety by VA.

For every cone C of the secondary fan the monoid LC splits as a disjoint union
LC = L0

C
∐

L+
C where L0

C (resp. L+
C ) is the set of elements which do (resp. do not)

have an inverse in the additive monoid LC . One easily checks that

L0
C := { � ∈ L | 〈ω, �〉 = 0 ∀ω ∈ C } , L+

C := { � ∈ L | 〈ω, �〉 > 0 ∀ω ∈ C } .
If C = {0}, then L0

C = LC and L+
C = ∅. If C �= {0}, the elements of L+

C generate a
proper ideal IC in the ring Z[LC ] and one has in UC the closed subscheme

BC := Spec Z[LC ]/IC .

Let us see what this amounts to for the complex points of UC , viewed as
homomorphisms from the additive monoid LC into the multiplicative monoid C.
Each such homomorphism has to send invertible elements to invertible elements,
i.e., L0

C into C∗. If C = {0}, the set of complex points of UC can therefore be
identified with the set (in fact, d-dimensional torus) of group homomorphisms
from L into C∗:

U{0}(C) = Hom(L, C∗) = L∨
Z ⊗Z C∗ . (56)

If C �= {0}, the complex points of BC are those monoid homomorphisms that send
all elements of L+

C to {0}. So, the set of complex points of BC can be identified
with the set of group homomorphisms from L0

C into C∗:

BC(C) = Hom (L0
C , C∗) .

This is a torus of dimension d− dim C.
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If C is a maximal cone, then L0
C = {0} and BC(C) is only one point, which we

denote as pC . For every positive real number r < 1 the homomorphisms LC → C
mapping L+

C into the disc of radius r centred at 0 in C form an open neighborhood
of pC , which we will also call the disc of radius r about pC in UC(C).

Example. For Gauss’s hypergeometric structures L = Z(1, 1,−1,−1) ⊂ R4. So,
L∨

R � R and the secondary fan has two maximal cones: R>0 and R<0. One can
easily see that the associated toric variety is the projective line P1 (see [9], p. 6).

Example. For Appell’s F4 the secondary fan is shown in Figure 4. One can easily
see that the associated toric variety is the projective plane P2 (see [9], p. 6–7).

Example. For Appell’s F1 the secondary fan is shown in Figure 3. One can easily
see that the associated toric variety is the projective plane P2 with three points
blown up (see [9]).

5.2. Convergence of Fourier Γ-series and the secondary fan

We want to use the toric variety associated with the secondary fan to put the
domains of convergence of the Fourier Γ-series (37) in the proper perspective.
Let us write ŵ ∈ L∨

C for the image of w ∈ CN under the natural projection
CN −→ L∨

C := Hom (L,C) (linear dual; cf. (40)). Then w · � = 〈ŵ, �〉 for all � ∈ L
and (37) can be rewritten as

ΨL,γ(w) = e2πiw·γ∑
�∈L

e2πi〈bw,�〉∏N
j=1 Γ(γj + �j + 1)

. (57)

A vector ŵ ∈ L∨
C defines a homomorphism

L→ C∗ , � 	→ e2πi〈bw,�〉

and, hence, a complex point of the toric variety VA. This point lies in the disc of
radius r < 1 about the special point pC corresponding to a maximal cone C of the
secondary fan if and only if 〈�ŵ, �〉 > − log r

2π for every non-zero � ∈ LC ; this means
that �ŵ should lie ‘sufficiently far’ inside the cone C.

Recall that a maximal cone C of the secondary fan corresponds to a regular
triangulation of the polytope ΔA. The index sets of the vertices of the maximal
simplices in this triangulation constitute a list TC of subsets of {1, . . . , N} with
N − d elements, and according to (44)

C =
⋂

J∈TC

(positive span of {bj}j �∈J). (58)

Now note that for � = (�1, . . . , �N ) ∈ L almost tautologically �j = 〈�,bj〉. This
shows that for LJ as defined in (38)

LJ ⊂ LC for every J ∈ TC . (59)

The above arguments together with those in Section 3.5 show:



342 Jan Stienstra

Proposition 7. Let C be a maximal cone of the secondary fan. Let J ∈ TC. Let
γ = (γ1, . . . , γN ) ∈ CN be such that γj ∈ Z≤0 for j �∈ J . Then there is a positive
real constant r < 1 (depending on γ) such that the Fourier Γ-series ΨL,γ(w) in
(57) converges for every w ∈ CN for which ŵ defines a point in the disc of radius
r about the special point pC in the toric variety VA. �
5.3. Solutions of GKZ differential equations and the secondary fan

Let us look for local solutions to the GKZ differential equations (19)–(20) associ-
ated with an N -element subset A = {a1, . . . ,aN} ⊂ Zk+1 and a vector c ∈ Ck+1.
Let C be a maximal cone in the secondary fan of A. According to Proposition 7,
every vector γ = (γ1, . . . , γN ) ∈ CN which satisfies

γ1a1 + . . . + γNaN = c , (60)
∃ J ∈ TC such that γj ∈ Z≤0 for j �∈ J , (61)

yields a Fourier Γ-series ΨL,γ(w) converging for every w ∈ CN for which ŵ defines
a point in a sufficiently small disc about the point pC in VA. According to Section
3.6 the corresponding Γ-series satisfies the GKZ differential equations (19)–(20) for
A and c. If γ ≡ γ′ mod L, then the two Fourier Γ-series are equal. Lemma 6 will
imply that the number of L-congruence classes of solutions to (60)–(61) is finite
and, hence, the Fourier Γ-series we obtain in this way have a common domain of
convergence.

Remark. Because of the factor e2πiw·γ in (57) the Fourier Γ-series ΨL,γ(w) will in
general not descend to a function on some disc about pC in VA. On the other hand,
if γ and γ′ both satisfy (60)–(61), then γ− γ′ ∈ LC and w · (γ− γ′) = 〈ŵ, γ− γ′〉
for every w ∈ CN . This means that the quotient ΨL,γ(w)Ψ−1

L,γ′(w) does descend
to a function on some disc about pC in VA.

Lemma 6. Fix c ∈ Ck+1 and a k + 1-element set J ⊂ {1, . . . , N} such that the
vectors aj with j ∈ J are linearly independent. Then the number of classes modulo
L of vectors γ = (γ1, . . . , γN ) ∈ CN which satisfy Equation (60) and γj ∈ Z for
j ∈ J ′ := {1, . . . , N} \ J , is equal to | det ((aj)j∈J ) |.
Proof. Since the vectors aj with j ∈ J are linearly independent, the equation∑N

j=1 γjaj = c can be solved in parametric form with the components γj for
j ∈ J ′ as free parameters. Every solution is the sum of one particular solution
of the inhomogeneous system (e.g., the solution with γj = 0 for j ∈ J ′) and a
solution of the homogeneous system. So it suffices to determine the number of
L-equivalence classes of solutions of the equation

∑N
j=1 γjaj = 0 with γj ∈ Z for

j ∈ J ′. The solutions themselves lie in L⊗Q.
Take any d×N -matrix B whose rows form a Z-basis of L. This amounts to

choosing an isomorphism L � Zd. Let BJ′ (resp. BJ) denote the submatrix of B
formed by the columns with index in J ′ (resp. in J). As in the proof of Lemma 2
one sees that the matrix BJ′ is invertible over Q and that the set of solutions of∑N

j=1 γjaj = 0 with γj ∈ Z for j ∈ J ′ is Zd(BJ′)−1 ⊂ Qd � L ⊗ Q; the notation



GKZ Hypergeometric Structures 343

Zd(BJ′)−1 refers to the fact that here Zd consists of row vectors. The number of
classes modulo L of such solutions is therefore

$
(

Zd(BJ′ )−1/Zd

)
= $

(
Zd /ZdBJ′

)
= | det(BJ′)| .

Thus we must prove:
| det(BJ′ )| = | det ((aj)j∈J ) | . (62)

Proof of (62): Let A (resp. AJ resp. AJ′) denote the matrix with columns aj with
j ∈ {1, . . . , N} (resp. j ∈ J resp. j ∈ J ′). Then ABt = 0 and hence

A−1
J AJ′ = −(B−1

J′ BJ )t . (63)

As in Cramer’s rule one sees that the matrix entries on the left hand side of (63)
are all of the form ±(detAJ)−1(detAI) with I ⊂ {1, . . . , N} such that $I = k + 1
and $(I ∩ J) = k. The corresponding matrix entries on the right-hand side of (63)
are ±(detBJ′)−1(det BI′) with I ′ := {1, . . . , N} \ I. Thus we see

| detAJ |−1| detAI | = | detBJ′ |−1| detBI′ | ,
first for every I ⊂ {1, . . . , N} such that $I = k + 1 and $(I ∩ J) = k and then, by
induction, for every k + 1-element subset I ⊂ {1, . . . , N}. Consequently there are
coprime positive integers a, b such that

b| detAI | = a| detBI′ | (64)

for every k + 1-element subset I ⊂ {1, . . . , N}. Now recall that the columns
a1, . . . ,aN of A generate Zk+1. This implies that the greatest common divisor
of the numbers detAI is 1. So a = 1 in (64). On the other hand, the rows of
B form a Z-basis of L. Therefore for every prime number p the rows the matrix
B mod pZ are linearly independent over the field Z/pZ and at least one of the
numbers det BI′ must be not divisible by p. This shows b = 1 in (64) and finishes
the proof of Formula (62). �

Lemma 7. Let C be a maximal cone of the secondary fan. Let γ1, . . . , γp be solutions
to the equations (60)–(61) such that γi �≡ γj mod L for i �= j. Then the Fourier
Γ-series ΨL,γ1(w), . . . ,ΨL,γp(w) are linearly independent over C.

Proof. Fix a positive real constant r < 1 such that all the given Fourier Γ-series
converge for every w ∈ CN for which ŵ defines a point in the disc of radius r
about the special point pC in the toric variety VA (cf. Proposition 7). Next choose
w ∈ CN such that ŵ defines a point in that disc and such that no two of the
numbers �w · (γj + �) with 1 ≤ j ≤ p and � ∈ LC such that the �-th term in the
Fourier Γ-series ΨL,γj (w) is not 0, are equal. For this w the set of those numbers
�w · (γj + �) assumes its minimum for a unique pair, say (γm, �m). This implies

lim
t→∞ e−2πitw·(γm+�m)ΨL,γj (tw) = 0 if j �= m, resp. �= 0 if j = m.

The linear independence claimed in the lemma now follows immediately. �
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It follows from Lemma 6 that the number of L-congruence classes of solutions
to the Equations (60)–(61) is less than or equal to∑

J∈TC

| det ((aj)j∈J ) | = volume ΔA .

Definition 8. Let C be a maximal cone of the secondary fan of A = {a1, . . . ,aN}
and let c ∈ Ck+1. One says that c is C-resonant if the number of L-congruence
classes of solutions to the equations (60)-(61) is less than volume ΔA.

This means that c is C-resonant if and only if there is a γ = (γ1, . . . , γN ) ∈ CN

which satisfies γ1a1 + . . . + γNaN = c, and for which there are two different sets
J1 and J2 on the list TC such that γj ∈ Z for j ∈ {1, . . . , N} \ (J1 ∩ J2).

Corollary 2. If c is not C-resonant, the Fourier Γ-series ΨL,γ(w) associated with
solutions γ of the equations (60)–(61) are linearly independent and span a space
of local solutions of the GKZ differential equations (19)–(20) of dimension equal
to volume ΔA. According to the discussion in Section 2.7 this is then the full
space of local solutions if (for instance) the polytope ΔA admits a unimodular
triangulation. �

6. Extreme resonance in GKZ systems

In this section C is a maximal cone of the secondary fan of A = {a1, . . . ,aN} for
which the corresponding regular triangulation of ΔA is unimodular, i.e.,

| det ((aj)j∈J ) | = 1 for every J ∈ TC .

This means that for every J ∈ TC the set {aj}j∈J is a Z-basis of Zk+1. Con-
sequently, for every c ∈ Zk+1 all solutions γ = (γ1, . . . , γN ) of the equations
(60)–(61) lie in ZN and are therefore congruent modulo L. So a vector c ∈ Zk+1 is
C-resonant, in an extreme way: all Fourier Γ-series coming from solutions of (60)–
(61) are equal! In this section we will demonstrate how one can obtain, locally near
the point pC on VA, more solutions of the GKZ differential equations (19)–(20)
from an ‘infinitesimal deformation’ of this Fourier Γ-series.

Definition 9. For A and C as above we define the ring

RA,C := Z[E1, . . . , EN ]/ (IA + IC) (65)

where Z[E1, . . . , EN ] is just the polynomial ring over Z in N variables,
IA is the ideal generated by the linear forms which are the components of the vector

E1a1 + . . . + ENaN , (66)

and IC is the ideal generated by the monomials

Ei1 · · ·Eis with {i1, . . . , is} �⊂ J for all J ∈ TC . (67)

We write εj for the image of Ej in RA,C .
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So in RA,C we have the relations

ε1a1 + . . . εNaN = 0 , (68)
εi1 · · · εis = 0 if {i1, . . . , is} �⊂ J for all J ∈ TC . (69)

Relation (68) means that the vector ε = (ε1, . . . , εN ) ∈ RN
A,C lies in L⊗Z RA,C .

Remark. The ideal IC is well known in combinatorial algebra [23], where it is called
the Stanley–Reisner ideal of the triangulation TC . The ring Z[E1, . . . , EN ]/IC is
called the Stanley–Reisner ring.

The following facts about the ring RA,C are proven in [24], §2.

Proposition 8. 1. RA,C is a free Z-module of rank equal to volume ΔA.
2. RA,C is a graded ring and each εj has degree 1.
3. Denoting the homogeneous part of degree i in RA,C by R(i)

A,C one has isomor-
phisms (see also §4.1)

R(0)
A,C = Z , R(1)

A,C � L∨
Z , εj 	→ bj . (70)

4. The Poincaré series of the graded ring RA,C is

∑
i≥0

(
rank R(i)

A,C
)
T i =

k+1∑
m=0

SC,m Tm(1− T )k+1−m , (71)

where SC,0 = 1 and SC,m, for m ≥ 1, is the number of simplices with m ver-
tices in the triangulation of ΔA corresponding with C. In particular R(i)

A,C = 0
for i ≥ k + 1 and the elements ε1, . . . , εN are nilpotent. �

For the examples at the end of Sections 4.3 and 4.1 (see also Figures 1, 3, 4) we
find:

Example. For L = Z(−2, 1, 1) ⊂ Z3 there is only one unimodular triangulation,
namely TC = {{1, 2}, {1, 3}}. One easily checks that in this case

RA,C = Z⊕ Zε , ε2 = 0 , (ε1, ε2, ε3) = (−2ε, ε, ε) .

Example. For Gauss, L = Z(1, 1,−1,−1) ⊂ Z4 and there are two unimodular
triangulations, which both lead to

RA,C = Z⊕ Zε , ε2 = 0 .

For one triangulation (ε1, ε2, ε3, ε4) is (−ε,−ε, ε, ε), for the other (ε, ε,−ε,−ε).

Example: For L = Z(−3 1 1 1) ⊂ Z4 there is only one unimodular triangulation,
namely TC = { {1, 3, 4} , {1, 2, 4} , {1, 2, 3} }. One easily checks that in this case

RA,C = Z⊕ Zε⊕ Zε2 , ε3 = 0 , (ε1, ε2, ε3, ε4) = (−3ε, ε, ε, ε) .
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Example. For Appell’s F1, L = Z(1,−1, 0,−1, 1, 0) ⊕ Z(1, 0,−1,−1, 0, 1). There
are six unimodular triangulations (see Figure 3). One can check that for the tri-
angulation TC = {{3, 4, 5, 6}, {1, 2, 3, 4}, {2, 3, 4, 5}} the relations (66)–(67) yield

(ε1, ε2, ε3, ε4, ε5, ε6) = ε(1,−1, 0,−1, 1, 0) + δ(1, 0,−1,−1, 0, 1) ,
ε1ε5 = ε1ε6 = ε2ε6 = 0 ,

and hence:
RA,C = Z⊕ Zε⊕ Zδ , ε2 = δ2 = εδ = 0 .

Example. For Appell’s F4, L = Z(1,−1, 1,−1, 0, 0)⊕ Z(1, 0, 1, 0, 0,−1,−1). There
are three unimodular triangulations (see Figure 4). One can check that for the tri-
angulation TC = {{1, 3, 4, 6}, {1, 3, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 6}} the relations (66)–
(67) yield

(ε1, ε2, ε3, ε4, ε5, ε6) = ε(1,−1, 1,−1, 0, 0) + δ(1, 0, 1, 0, 0,−1,−1) ,
ε2ε4 = ε5ε6 = 0 ,

and hence:
RA,C = Z⊕ Zε⊕ Zδ ⊕ Zεδ , ε2 = δ2 = 0 .

For z ∈ C and nilpotent ε one can define 1
Γ(z+ε) as an element of C[ε] by

using the Taylor expansion of the function 1
Γ at z:

1
Γ(z + ε)

:=
1

Γ(z)
+ ε

(
1
Γ

)′
(z) +

ε2

2

(
1
Γ

)′′
(z) +

ε3

3!

(
1
Γ

)′′′
(z) + . . . .

One defines similarly Γ(1 + ε). Thus for z ∈ C and nilpotent ε also Γ(1+ε)
Γ(z+1+ε) has

been defined. From (30) one sees that for m ∈ Z:

Γ(1 + ε)
Γ(m + 1 + ε)

=

⎧⎪⎪⎨⎪⎪⎩
1

(1 + ε)(2 + ε) · · · (m + ε)
if m > 0

1 if m = 0
ε(ε− 1)(ε− 2) · · · (ε + m + 1) if m < 0.

(72)

Finally, for z ∈ C, u ∈ C∗ (with a choice of a branch of log u) and nilpotent ε one
has naturally

eε z :=
∑
m≥0

1
m!

εm zm , uε := eε log u .

We are ready to present our deformation of the (Fourier) Γ-series:

Definition 10. For γ = (γ1, . . . , γN ) ∈ ZN and ε = (ε1, . . . , εN ) ∈ RN
A,C we define

ΨL,γ,ε(w) :=
∑
�∈L

N∏
j=1

Γ(1 + εj)
Γ(γj + �j + 1 + εj)

e2πiw·(γ+�+ε) , (73)

ΦL,γ,ε(u) :=
∑
�∈L

N∏
j=1

Γ(1 + εj) u
γj+�j+εj

j

Γ(γj + �j + 1 + εj)
. (74)
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Remark. From the point of view of deforming γ it seems more natural to consider

ΨL,γ+ε(w) :=
∑
�∈L

N∏
j=1

1
Γ(γj + �j + 1 + εj)

e2πiw·(γ+�+ε) , (75)

ΦL,γ+ε(u) :=
∑
�∈L

N∏
j=1

u
γj+�j+εj

j

Γ(γj + �j + 1 + εj)
; (76)

i.e.,

ΨL,γ+ε(w) =
ΨL,γ,ε(w)∏N
j=1 Γ(1 + εj)

, ΦL,γ+ε(u) =
ΦL,γ,ε(u)∏N

j=1 Γ(1 + εj)
.

Indeed, expanding these functions in coordinates with respect to a basis of RA,C
is for (75) and (76) essentially just Taylor expansion, if one views the expres-
sions as functions of γ, while the interpretation as (multi-valued) local solutions
of GKZ differential equations with values in RA,C ⊗ C (see below) are equally
true for (75)–(76) in place of (73)–(74). We prefer, however, the latter because
their coordinates are series with rational coefficients, whereas the coefficients of
the coordinate series of the former involve interesting, but mysterious non-rational
numbers like the Euler–Masceroni constant and values of Riemann’s zeta-function.
We can be slightly more informative about the coefficients in (75)–(76): there is
the well-known formula for the Γ-function due to Gauss

Γ(s) = lim
n→∞

[
n!ns

s(s + 1) · · · (s + n)

]
,

from which one easily derives the expansion

log Γ(1 + s) = −Υs +
∞∑

m=2

(−1)mζ(m)
sm

m

where Υ denotes the Euler–Masceroni constant and ζ is Riemann’s zeta-function.
By exponentiating and re-expanding one finds the Taylor expansion for Γ(1 + s)

and then eventually the expansion of
[∏N

j=1 Γ(1 + εj)
]−1

.

Lemma 8. There are finitely many �(1), . . . , �(r) ∈ LC (with LC as in (55)) such
that the series ΨL,γ,ε(w) and ΦL,γ,ε(u) involve only terms with

� ∈
r⋃

i=1

(−�(i) + LC) .

In particular for γ = 0 the series involve only terms with � ∈ LC.

Proof. It follows immediately from (72) and (67) that for the terms which appear
with non-zero coefficient, the set {j | γj + �j < 0} is contained in some J on the
list TC . Suppose {j | γj + �j < 0} ⊂ J ∈ TC . Then γj + �j ≥ 0 for every j ∈ J ′ :=
{1, . . . , N} \ J . The vector

∑
j∈J′ max(0, γj)aj is a Z-linear combination of the

vectors ai with i ∈ J , because the triangulation is unimodular. Such a relation is
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an element of L. Thus one sees that L contains an element �J = (�J
1 , . . . , �

J
N ) with

�J
j = max(0, γj) for all j ∈ J ′. So �J

j + �j ≥ 0 for every j ∈ J ′. In the notation
introduced in (38) this can be written as �J ∈ LJ and �J + � ∈ LJ . The lemma
now follows from (59). �

Partial sums (with finitely many terms) of the series (73) resp. (74) can be
evaluated as elements in the ring RA,C ⊗ C and be written in coordinates with
respect to a Z-basis of the finite rank Z-module RA,C . These coordinates are
again partial sums of series. In [24], §3 one finds estimates on the growth of the
coefficients of these series and on a common domain of convergence. Thus ΨL,γ,ε(w)
and ΦL,γ,ε(u) are functions with values in RA,C ⊗ C. The function ΨL,γ,ε(w) is
defined for w ∈ CN with �ŵ ‘sufficiently far’ inside the cone C (cf. §5.2). Because of
the appearance of logarithms ΦL,γ,ε(u) is actually a multi-valued function, defined
on some open disc about 0 in CA with the divisor u1 · · ·uN = 0 removed. The
multi-valuedness is easily described using the relation uj = e2πiwj which matches
wj with a choice of log uj. A different choice adds an integer to wj . Now note that
for m ∈ ZN

ΨL,γ,ε(w + m) = e2πim·ε ΨL,γ,ε(w) .

This formula can also be read as a precise expression for local monodromy. Since
{m · ε | m ∈ ZN} = R(1)

A,C , we can summarize our analysis of the multi-valuedness
of ΦL,γ,ε(u) as follows:

Proposition 9. ΦL,γ,ε(u) is a multi-valued function with values in RA,C ⊗ C. Dif-
ferent branches of this function are related by multiplication with an element e2πiω

with ω ∈ R(1)
A,C . �

The same arguments as those used in Section 3.6 show immediately

Proposition 10. The RA,C ⊗C-valued function ΦL,γ,ε(u) satisfies the GKZ system

of differential equations (19)–(20) for A and c =
∑N

j=1 γjaj.

The C-valued functions which arise as coordinates of ΦL,γ,ε(u) with respect
to a basis of RA,C satisfy the same GKZ system of differential equations. �

Example. For L = Z(−3, 1, 1, 1) and C the cone corresponding to the unimodular
triangulation TC = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}},

RA,C = Z⊕ Zε⊕ Zε2 , ε3 = 0 , (ε1, ε2, ε3, ε4) = (−3ε, ε, ε, ε) .
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For 0 = (0, 0, 0, 0) one then finds, using (72) and setting z = u−3
1 u2u3u4,

ΦL,0,ε(u) =
∑
m∈Z

Γ(1− 3ε)
Γ(1− 3m− 3ε)

(
Γ(1 + ε)

Γ(1 + m + ε)

)3

u−3m−3ε
1 um+ε

2 um+ε
3 um+ε

4

= zε

⎛⎝1 +
∑
m≥1

(−3ε)(−3ε− 1) · · · (−3ε− 3m + 1)
((1 + ε) · · · (m + ε))3

zm

⎞⎠
=

(
1 + ε log z +

ε2

2
log2 z

)(
1 + εG1(z) + ε2G2(z)

)
= 1 + (log z + G1(z))ε + (1

2 log2 z + G1(z) log z + G2(z))ε2

with

G1(z) = 3
∑
m≥1

(−1)m (3m− 1)!
(m!)3

zm

G2(z) = 9
∑
m≥1

(−1)m (3m− 1)!
(m!)3

⎛⎝ 3m−1∑
j=m+1

1
j

⎞⎠ zm .

Similarly, for γ = (−1, 0, 0, 0) we obtain

ΦL,γ,ε(u) =
∑
m∈Z

Γ(1− 3ε)
Γ(−3m− 3ε)

(
Γ(1 + ε)

Γ(m + 1 + ε)

)3

u−1−3m−3ε
1 um+ε

2 um+ε
3 um+ε

4

= u−1
1

∑
m≥0

(−3ε)(−3ε− 1) · · · (−3ε− 3m)
((1 + ε) · · · (m + ε))3

(u−3
1 u2u3u4)m+ε

= u−1
1

(
1 + ε log z +

ε2

2
log2 z

)(
εF1(z) + ε2F2(z)

)
= u−1

1 F1(z)ε + u−1
1 (F1(z) log z + F2(z))ε2

with

F1(z) = −3
∑
m≥0

(−1)m (3m)!

(m!)3
zm ,

F2(z) = −9
∑
m≥1

(−1)m (3m)!

(m!)3

⎛⎝ 3m∑
j=m+1

1
j

⎞⎠ zm .

Note that in agreement with Proposition 1

ΦL,γ,ε(u) =
∂

∂u1
ΦL,0,ε(u) = −3u−1

1 z
∂

∂z
ΦL,0,ε(u) .

The components of ΦL,0,ε(u) are three linearly independent solutions of the GKZ
system of differential equations with c = 0, whereas the components of ΦL,γ,ε(u)
yield only two linearly independent solutions of the GKZ system for c = −a1.
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Since in this case volume ΔA = 3 we find enough solutions for c = 0, but not
enough for c = −a1 (see Section 2.7).

The phenomenon observed at the end of the previous example — namely
that our method yields enough solutions if c = 0, but misses solutions if c �= 0
— occurs quite generally. Below, in Theorem 3, we quote [24] Theorem 5 and also
recall some conclusions (e.g., Proposition 9) found earlier in the present notes:

Theorem 3. Let C be a maximal cone of the secondary fan of A for which the
corresponding regular triangulation of ΔA is unimodular. Let 0 = (0, . . . , 0). Then
the coordinates of the RA,C ⊗ C-valued function ΦL,0,ε(u) with respect to a basis
of the free Z-module RA,C constitute a basis for the local solution space of the
GKZ system of differential equations (19)–(20) for A and c = 0. These multi-
valued functions are invariant under the action (1) of the torus Tk+1 and descend
therefore to multi-valued functions on a disc minus a divisor centered at the point
pC in the toric variety VA. The multi-valuedness of these functions is given by
multiplying ΦL,0,ε(u) with elements in the group {e2πiω | ω ∈ R(1)

A,C}. �

Remark. In [4] Anne de Boo carefully re-examined the preceding method and
improved it by also taking γ into account. In this way he obtained full local solution
spaces for GKZ systems of differential equations for many more instances of the
triangulation of ΔA and of the parameter c.

Very recently Borisov and Horja [5] found a way to obtain enough solutions
for any c ∈ Zk+1 and any triangulation. Their method is close in spirit to the
method in this Section 6. We recommend [5] for further reading on this aspect of
GKZ hypergeometric structures.

7. GKZ for Lauricella’s FD

Since Lauricella’s FD also plays an important role in other lectures in this School,
we put details of the GKZ theory for Lauricella’s FD together in this section.

7.1. Series, L, A and the primary polytope ΔA
Recall that in Section 3.2.4 we found, starting from the power series expansion of
Lauricella’s FD in k − 1 variables

FD(a,b, c|z) :=
∑
m

(a)|m|(b)m
(c)|m|m!

zm ,

that the lattice L is generated by the rows of the following (k − 1)× (2k)-matrix⎛⎜⎜⎜⎜⎝
1 −1 0 . . . 0 −1 1 0 . . . 0

1 0 −1
. . .

... −1 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . . . . 0
1 0 . . . 0 −1 −1 0 . . . 0 1

⎞⎟⎟⎟⎟⎠ . (77)
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So for A we can take the set of columns of the (k + 1)× (2k)-matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 1 1 1 . . . 1
1 0 0 . . . 0 1 0 0 . . . 0
0 1 0 . . . 0 0 1 0 . . . 0

0 0 1
. . .

... 0 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . . . . 0
0 0 . . . 0 1 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (78)

This notation is consistent with the main part of this text: A is a subset of Zk+1;
moreover N = 2k and d = rankL = k − 1.

The primary polytope ΔA is the direct product of a (k− 1)-simplex and a 1-
simplex and, for k = 3, looks like the prism in Figure 1. The vectors a1, . . . ,ak are
in the bottom face of the prism; ak+1, . . . ,a2k are in the top face. The numbering
is such that the difference vectors ak+j − aj , for j = 1, . . . , k are all equal.

7.2. Integrals and differential equations for FD

In [19] Lauricella’s FD in variables z0, . . . , zn is introduced via the integrals

Fα(z0, . . . , zn) :=
∫

α

(z0 − ζ)−μ0 · · · (zn − ζ)−μn dζ (79)

over suitable intervals α, with endpoints in {z0, . . . , zn,∞}. Note that because of
the translation invariance property

Fα(z0 + a, . . . , zn + a) = Fα(z0, . . . , zn) (80)

the integral (79) is in fact a function of just n variables: z1 − z0, . . . , zn − z0.
GKZ theory can deal efficiently with (multiplicative) torus actions on the

variables, but it can not accommodate for translation invariance like (80). So we
eliminate the translation invariance during the passage to GKZ and consider the
integrals (with the same μ0, . . . , μn)

Iσ(u1, . . . , u2n) =
∫

σ

(u1 + un+1ξ)−μ1 · · · (un + u2nξ)−μnξ−μ0 dξ , (81)

which are of the type considered in Section 2.4.
The GKZ differential equations satisfied by these integrals can be found with

the methods used in Section 2.3. For instance, for j = 1, . . . , n
∂Iσ

∂uj
= −μj

∫
σ

(u1 + un+1ξ)−μ1 · · · (un + u2nξ)−μnξ−μ0
dξ

uj + uj+nξ

∂Iσ

∂uj+n
= −μj

∫
σ

(u1 + un+1ξ)−μ1 · · · (un + u2nξ)−μnξ−μ0
ξdξ

uj + uj+nξ

and, hence, for i, j = 1, . . . , n

∂2Iσ

∂ui∂uj+n
=

∂2Iσ

∂uj∂ui+n
,

i.e., Iσ satisfies the differential equations (19) with L as in (77) and k = n.
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Similarly, for s ∈ C close to 1, we have

Iσ(u1, . . . , un, sun+1, . . . , su2n) = sμ0−1Iσ(u1, . . . , u2n) ,
Iσ(u1, . . . , uj−1, suj , uj+1, . . . , uj+n−1, suj+n, uj+n+1, . . . , u2n)

= s−μjIσ(u1, . . . , u2n) .

This leads to the differential equations (20) with k = n, A as in (78) and c =
(μ0 − 1,−μ1, . . . ,−μn)t.

As we have seen in Section 3.2.4 the power series FD(a,b, c|z) is, up to
a constant factor, the Γ-series associated with the above L and with γ =
(γ1, . . . , γN ) = (c− 1,−b1, . . . ,−bk−1,−a, 0, . . . , 0). The parameter c in the GKZ
differential equations (20) is therefore

c =
2k∑

j=1

γjaj = (−a, c− a− 1,−b1, . . . ,−bk−1)t =: (c0, c1, c2, . . . , ck)t.

The system of differential equations (20) can now be written as

∂Φ
∂uj+k

= −u−1
j+k

(
uj

∂Φ
∂uj
− cjΦ

)
for j = 1, . . . , k, (82)

u1
∂Φ
∂u1

+ . . . + uk
∂Φ
∂uk

= (−c0 + c1 + . . . + ck)Φ . (83)

The system (19) is equivalent with the following 1
2k(k − 1) differential equations

∂2Φ
∂ui∂uj+k

=
∂2Φ

∂uj∂ui+k
for 1 ≤ i < j ≤ k . (84)

Next we substitute (82) into (84) and set

uj = zj if 1 ≤ j ≤ k, uj = 1 if k + 1 ≤ j ≤ 2k .

The result is the system of 1
2k(k − 1) differential equations

(zi − zj)
∂2Φ

∂zi∂zj
= ci

∂Φ
∂zj
− cj

∂Φ
∂zi

for 1 ≤ i < j ≤ k . (85)

The above substitution turns (83) into

z1
∂Φ
∂z1

+ . . . + zk
∂Φ
∂zk

= (−c0 + c1 + . . . + ck)Φ . (86)

The system of differential equations (85)–(86) is then equivalent with the GKZ
system (19)–(20) for Lauricella’s FD. The Equations (85) appear in this form also
in [19], and (86) appears in loc.cit. in an ‘integrated’ form:

Φ(etz1, . . . , e
tzk) = e(−c0+c1+...+ck)tΦ(z1, . . . , zk) .

The match with [19] becomes exact, if one eliminates in loc. cit. the translation
invariance by setting z0 = 0 (like we did in passing from (79) to (81)).
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7.3. Triangulations of ΔA, secondary polytope and fan for FD

Consider a triangulation T of the prism ΔA by k-dimensional simplices with ver-
tices in the set A. Then the bottom (k − 1)-simplex [a1, . . . ,ak] must be a face of
exactly one k-simplex in the triangulation, say σ1. Let ak+s1 be the vertex of σ1

opposite to the face [a1, . . . ,ak]. So 1 ≤ s1 ≤ k. The face of σ1 opposite to the
vertex s1 has vertices ak+s1 and ai with 1 ≤ i ≤ k , i �= s1. This must be a face of
exactly one other k-dimensional simplex in the triangulation, say σ2. Let ak+s2 be
the remaining vertex of σ2. So 1 ≤ s2 ≤ k and s2 �= s1. The face of σ2 opposite to
the vertex as2 has vertices ak+s1 , ak+s2 and ai with 1 ≤ i ≤ k , i �= s1 , s2. This
must be a face of exactly one other k-dimensional simplex, say σ3 . Let ak+s3 be
the remaining vertex of σ3. So 1 ≤ s3 ≤ k and s3 �= s1 , s2. And so on. Thus the
triangulation T of ΔA determines a permutation τ of {1, . . . , k} with τ(i) = si .

There is an obvious converse to this procedure associating to a permutation
τ of {1, 2, 3, . . . , k} the triangulation with maximal simplices σ

(τ)
1 , . . . , σ

(τ)
k where

σ
(τ)
j := convex hull ({aτ(i) | j ≤ i ≤ k} ∪ {ak+τ(i) | 1 ≤ i ≤ j}) . (87)

These triangulations are unimodular; i.e., all k-simplices have volume 1. So
when constructing the secondary polytope one only has to count for every trian-
gulation how many simplices come together in the points a1, . . . ,aN . With the
above formula for the simplex σ

(τ)
j one easily finds that the vector associated with

the permutation τ is (τ−1(1), . . . , τ−1(k), k + 1− τ−1(1), . . . , k + 1− τ−1(k)).
The secondary polytope is the convex hull of these points as τ runs through

all permutations of {1, 2, 3, . . . , k}. By translating over the vector corresponding
to the identity permutation the secondary polytope moves to the convex hull of
the points (τ−1(1) − 1, . . . , τ−1(k) − k, 1 − τ−1(1), . . . , k − τ−1(k)) in the space
LR := L⊗ R.

Example/Exercise. The reader is invited to determine with the above algorithm
the permutations corresponding to the maximal cones of the secondary fan of
Appell’s F1 (= Lauricella’s FD with k = 3) shown in Figure 3.

Recall from Section 4.1 that the secondary fan is a partition of the real vector
space L∨

R = Hom(L,R) into rational cones, all with their apex in 0. Corollary 1
and Formula (44) describe these cones. The vectors b1, . . . ,bN are the images of
the standard basis vectors of RN under the natural surjection RN −→ L∨

R . In the
present situation we choose the rows of the matrix (77) as a basis for LR = L⊗R.
On L∨

R we use coordinates with respect to the dual basis. The columns of (77) then
represent the vectors b1, . . . ,bN in these coordinates.

Now consider a vector t = (t2, . . . , tk) in L∨
R . Put t1 = 0. Then t defines a

partial ordering <t on the set {1, 2, . . . , k} by

i <t j ⇔ ti < tj .
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Figure 8. Secondary polytope (left) and Secondary fan (right)
for FD with k = 4. All cones in the fan have their apex at the
centre of the cube. Shown are the intersections of the cones with
some faces of the cube. The reader is invited to label the maximal
cones with the permutations of {1, 2, 3, 4}.

The indexing and ordering is such that for h = 1, . . . , k

t =
∑
i>th

(ti − th)bi+k +
∑
i<th

(th − ti)bi . (88)

One also easily checks that these are the only expresssions for t as positive linear
combination of a linearly independent subset of {b1, . . . ,bN}. Corollary 1 and
Formula (44) now tell exactly in which cone of the secondary fan t lies. In partic-
ular, t lies in the interior of a maximal cone if and only if no two of the numbers
t1, t2, . . . , tk are equal. In that case, the ordering <t is a total ordering, or what
amounts to the same a permutation of {1, 2, . . . , k}. More precisely, if we associate
with t the permutation τ defined by

τ(1) <t τ(2) <t . . . <t τ(k − 1) <t τ(k) ,

then the index set which effectively appears in (88) is the complement of the index
set in (87) with h = τ(j).

Thus we have shown:

Corollary 3. The maximal cones in the secondary fan for FD are the connected
components of the complement in Rk−1 of the union of hyperplanes⋃

1≤i<j≤k

Hij , with equation for Hij : ti = tj ,

where on the right t2, t3, . . . , tk are coordinates on Rk−1 and t1 = 0. �
Remarks. Most GKZ systems do not have a secondary fan which is cut out by a
hyperplane arrangement. FD is something special.
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Exercise. In Looijenga’s lectures [19] the natural domain of definition for the
Schwarz map is P(V ◦

n ). The notations are: P(V ◦
n ) is (Cn+1)◦ modulo the natural

C∗-action with weights (1, 1, . . . , 1) and modulo translations over C(1, 1, . . . , 1),

(Cn+1)◦ := Cn+1 \
⋃
i<j

{hyperplane with equation zi = zj} .

How does P(V ◦
n ) relate to the toric variety VA?

8. A glimpse of Mirror Symmetry

8.1. GKZ data from Calabi–Yau varieties

One of the manifestations of the Mirror Symmetry phenomenon is a relation be-
tween two families of 3-dimensional Calabi–Yau varieties, matching complex geom-
etry on one family with symplectic geometry on the other. Our discussion of some
aspects of Mirror Symmetry in connection with GKZ hypergeometric functions is,
however, very asymmetric and biassed towards the complex geometry of one of
the partners in the mirror pair. In the language of complex geometry a smooth
Calabi–Yau variety is a compact smooth Kähler manifold X with trivial canonical
bundle, i.e., Ωdim X

X � OX , which also satisfies H0(X,Ωi
X) = 0 for 0 < i < dimX .

Not all definitions in the literature require this second condition. Moreover, there
are definitions which allow certain types of singularities. We will not deal with
general Calabi–Yau varieties, but focus on concrete examples.

A Calabi–Yau variety of dimension 1 is an elliptic curve. A Calabi–Yau variety
of dimension 2 is a K3 surface. A Calabi–Yau variety of dimension 3 is usually
called a Calabi–Yau threefold. Standard examples of Calabi–Yau varieties, all given
as complete intersections in a product of projective spaces, are shown in the second
column of Table 1. From the homogeneous degrees of the defining equations and
the coordinates of the ambient projective space one builds a lattice L for use in
GKZ context. This is shown in the third column of Table 1. The lattice L comes
naturally with an embedding into some ZN and the quotient M := ZN /L is torsion
free, isomorphic to Zk+1, k + 1 = N − d. As in Section 4 we let a1, . . . ,aN ∈ M
denote the images of the standard basis vectors of ZN and A = {a1, . . . ,aN}.

Behind the hypersurface cases in Table 1 one can see a pair of dual polytopes.
For instance, a general cubic curve in P2 is given by a homogeneous equation of
degree 3. Such an equation has 10 terms with exponents as shown in the left-hand
picture in Figure 9. The polygon dual to the convex hull of this exponent set is the
second from the left picture in Figure 9. This is the convex hull of the set A. The
other two pictures in Figure 9 show the exponents for the general homogeneous
equation of degree (2, 2) in P1 × P1 and its dual. This dual polytope description
works for all hypersurface cases in Table 1, but is not so easy to draw if the ambient
space has dimension > 2; cf. [1]. For complete intersections of codimension > 1
there is not such a simple formulation with dual polytopes; cf. [3].
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dim. Calabi–Yau variety B
1 cubic curve in P2 (−3, 1, 1, 1)
1

⋂
two quadrics in P3 (−2,−2, 1, 1, 1, 1)

1 curve of degree (2, 2) in P1 × P1

(
−2 1 0 1 0
−2 0 1 0 1

)
1

⋂
two surf. deg. (1, 1, 1) in (P1)3

⎛⎝ −1 −1 1 0 0 1 0 0
−1 −1 0 1 0 0 1 0
−1 −1 0 0 1 0 0 1

⎞⎠
2 quartic surface in P3 (−4, 1, 1, 1, 1)
2

⋂
quadric and cubic in P4 (−2,−3, 1, 1, 1, 1, 1)

2
⋂

three quadrics in P5 (−2,−2,−2, 1, 1, 1, 1, 1, 1)

2 surface of deg. (2, 2, 2) in (P1)3

⎛⎝ −2 1 0 0 1 0 0
−2 0 1 0 0 1 0
−2 0 0 1 0 0 1

⎞⎠
3 quintic hypersurface in P4 (−5, 1, 1, 1, 1, 1)
3

⋂
two cubics in P5 (−3,−3, 1, 1, 1, 1, 1, 1)

3 3-fold of deg. (3, 3) in P2 × P2

(
−3 1 0 1 0 1 0
−3 0 1 0 1 0 1

)
3

⋂
four quadrics in P7 (−2,−2,−2,−2, 1, 1, 1, 1, 1, 1, 1, 1)

3 3-fold of deg. (2, 2, 2, 2) in (P1)4

⎛⎜⎜⎝
−2 1 0 0 0 1 0 0 0
−2 0 1 0 0 0 1 0 0
−2 0 0 1 0 0 0 1 0
−2 0 0 0 1 0 0 0 1

⎞⎟⎟⎠
⋂

means ‘intersection of’. L = Z-span of rows of B

Table 1. Standard examples of Calabi–Yau varieties.
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cubic in P2 and its mirror (2, 2)-curve in P1 × P1 and its mirror

Figure 9. Polygons of exponents.

Using Corollary 1 and Formula (44) one checks that in these examples the
positive span of the last d columns of matrix B is a maximal cone C in the secondary
fan of L. Using (62) one checks that the triangulation of ΔA corresponding to C
is unimodular. Next one computes the ring RA,C in Definition 65 and one finds
that it is (isomorphic to) the cohomology ring of the ambient space in the second
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column of Table 1:

RA,C =

⎧⎪⎪⎨⎪⎪⎩
Z[ε]/(εr+1) if the ambient space is Pr

Z[δ1, . . . , δr]/(δ2
1 , . . . , δ

2
r ) if the ambient space is (P1)r

Z[δ1, δ2]/(δ3
1 , δ

3
2) if the ambient space is (P2)2.

Choosing a Z-basis for M we write aj = (a1j , . . . , a(k+1) j). With A one now
associates the Laurent polynomial in the variables x1, . . . , xk+1 with undetermined
coefficients uj = uaj (cf.(11)):

PA(x) = PA(x1, . . . , xk+1) =
∑
a∈A

uaxa =
N∑

j=1

uj

k+1∏
i=1

x
aij

i . (89)

Since for each aj the coordinates sum to 1, this Laurent polynomial is homoge-
neous: PA(tx) = tPA(x) for every t ∈ C∗. As the coefficients u vary the zero loci
of PA(x) sweep out a family of hypersurfaces in (C∗)k+1 /C∗ = (C∗)k. Both (C∗)k

and the hypersurfaces can be suitably compactified. This family of compactified
hypersurfaces is then the mirror in the sense of [3] of the family of Calabi–Yau
varieties in the second column in Table 1. The members of this mirror family are
Calabi–Yau varieties if the original Calabi–Yau varieties have codimension 1 in the
ambient space. In case of codimension > 1 the mirror family consists of generalized
Calabi–Yau varieties in the sense of [3].

We will now discuss details for the first three examples of Calabi–Yau three-
folds. Other examples can be treated in the same way. Our text tells exactly how
one obtains various tables of enumerative data in the literature, but it may read
like a cook book. In Section 8.5 we will explain that what is actually being cooked
is a kind of Schwarz map, which goes well with the menu of this summer school.
In Section 8.6 we discuss in an informal way some features of our hypergeometric
formulae which may be seen as manifestations of Mirror Symmetry.

8.2. The quintic in P4

This is the original example with which Mirror Symmetry entered the mathemat-
ical arena; see [7]. The matrix B in Table 1 is of the form B = (B̃ Id) , where Id is
the d× d-identity matrix. The matrix A = (IN−d − B̃t) then satisfies BAt = 0 and
its columns generate Zk+1. We apply row operations (i.e., a basis transformation
in Zk+1) so that the Laurent polynomial PA(x) in (89) assumes a pleasant form:

A =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 5
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎠ �

⎛⎜⎜⎜⎜⎝
1 1 1 1 1 1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎠ .

We let A = {a1, . . . ,aN} denote the columns of the right-hand matrix. Then

PA(x) = x1

(
u1 + u2x2 + u3x3 + u4x4 + u5x5 + u6(x2x3x4x5)−1

)
.



358 Jan Stienstra

Remark. The Laurent polynomial PA(x) can be dehomogenized by setting x1 = 1
and subsequently be homogenized to the degree 5 polynomial in 5 variables

P̃A(X) = u1X1X2X3X4X5 + u2X
2
2X3X4X5 + u3X2X

2
3X4X5+

+u4X2X3X
2
4X5 + u5X2X3X4X

2
5 + u6X

5
1 .

The polynomial P̃A(X) defines a family of special quintic hypersurfaces in P4, which
is the mirror of the family of general quintic hypersurfaces in P4. Traditionally the
mirror family is presented as a quotient of the hypersurface

Z5
1 + Z5

2 + Z5
3 + Z5

4 + Z5
5 − 5ψZ1Z2Z3Z4Z5 = 0

by a specific action of the group
(
Z/5Z

)3
(see [7] §2). The hypergeometric integrals

and series constructed from the periods of this ‘Fermat-like quintic’ are however
the same as those coming from P̃A(X).

The periods of the mirror Calabi–Yau hypersurfaces are given by integrals

I−σ (u) :=
1

(2πi)4

∫
σ

PA(1, x2, x3, x4, x5)−1 dx2

x2

dx3

x3

dx4

x4

dx5

x5
. (90)

As shown in Section 2.3, these integrals viewed as functions of u1, . . . , u6, satisfy
the GKZ system of differential equations (19)–(20) with A as above and c = −a1.

If the numbers
∣∣uju

−1
1

∣∣ for 2 ≤ j ≤ 6 are sufficiently small, the domain
of integration for one of the above period integrals I−σ (u) can be taken to be
σ = {|x2| = |x3| = |x4| = |x5| = 1}. Using geometric series, the binomial and
residue theorems, one obtains for this period integral the series expansion:

I−σ (u) = u−1
1

∑
n≥0

(−1)n (5n)!
(n!)5

zn with z = u−5
1 u2u3u4u5u6 . (91)

Now look at the series ΦL,γ,ε(u) for L = Z(−5, 1, 1, 1, 1, 1) and γ = (−1, 0, 0, 0, 0, 0)
defined in (74). In this case ε = (ε1, ε2, ε3, ε4, ε5, ε6) = (−5ε, ε, ε, ε, ε, ε). The
triangulation is given by the list TC consisting of the five sets one gets by deleting
from {1, 2, 3, 4, 5, 6} one number > 1. The minimal set not contained in a set on
the list TC is {2, 3, 4, 5, 6}. Thus we see

RA,C = Z⊕ Zε⊕ Zε2 ⊕ Zε3 ⊕ Zε4 , ε5 = 0 ,

and, with Pochhammer symbol notation (30) and z = u−5
1 u2u3u4u5u6,

ΦL,γ,ε(u) = −5εu−1
1

∑
n≥0

(−1)n (1 + 5ε)5n

((1 + ε)n)5
zn+ε . (92)

So, the function ΦL,γ,ε(u) takes values in the vector space εRA,C ⊗ C. Now let
Ann(ε) = {x ∈ RA,C | xε = 0} denote the annihilator ideal of ε and let RA,C :=
RA,C /Ann(ε). Then as a vector space εRA,C ⊗C is isomorphic to RA,C ⊗C. The
latter has, however, the advantage of being a ring. Let ε denote the class of ε in
RA,C . Then

RA,C = Z⊕ Zε⊕ Zε2 ⊕ Zε3 , ε4 = 0 .
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Moreover we can write

ΦL,γ,ε(u) = −5u−1
1 zε

∑
n≥0

(−1)n (1 + 5ε)5n

((1 + ε)n)5
zn , (93)

and view it as a function with values in the ringRA,C⊗C. We expand this function
with respect to the basis {1, ε, ε2, ε3}:

ΦL,γ,ε(u) = Φ0(u) + Φ1(u)ε + Φ2(u)ε2 + Φ3(u)ε3 . (94)

By-passing all motivations, justifications and interpretations from string theory
and Hodge theory (see, however, Section 8.5 and [8], p. 263) we define the canonical
coordinate

q := − exp
(

Φ1(u)
Φ0(u)

)
(95)

and the prepotential

F(q) =
5
2

(
Φ1(u)
Φ0(u)

Φ2(u)
Φ0(u)

− Φ3(u)
Φ0(u)

)
. (96)

Note that these are functions of z, because they are constructed from quotients of
solutions to the same GKZ system. In fact q = −z+O(z2) and we can invert this
relation so as to get z as a function z(q) of q. We then want to view the prepotential
as a function of q. The recipe for extracting results about the enumerative geometry
of the general quintic threefold is to take

F(q) = 5
6 log3 q +

∑
j≥1

Nj Li3(qj) , (97)

where Li3 is the trilogarithm function Li3(x) :=
∑

n≥1
xn

n3 . Then one of the mir-
acles of mirror symmetry is that all numbers Nj are positive integers and that
in fact Nj equals the number of rational curves of degree j on a general quintic
threefold [7, 8]. The first few of these Nj are shown in Table 2.

N1 = 2875
N2 = 609250
N3 = 317206375
N4 = 242467530000
N5 = 229305888887625
N6 = 248249742118022000
N7 = 295091050570845659250
N8 = 375632160937476603550000
N9 = 503840510416985243645106250

Table 2. The numbers Nj for the quintic threefold.
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Actual computations proceed as follows: compute F0, . . . , f3 from∑
n≥0

(−1)n (1 + 5ε)5n

((1 + ε)n)5
zn = F0(z) + F1(z)ε + F2(z)ε2 + F3(z)ε3

and fi(z) := Fi(z)
F0(z) . That implies

ΦL,γ,ε(u) = Φ0(u)zε
(
1 + f1(z)ε + f2(z)ε2 + f3(z)ε3

)
. (98)

Comparing the expansions of log ΦL,γ,ε(u) which result from (94) and (98), i.e.,

log ΦL,γ,ε(u) = log(Φ0(z)) +
Φ1(u)
Φ0(u)

ε +

(
−1

2

[
Φ1(u)
Φ0(u)

]2
+

Φ2(u)
Φ0(u)

)
ε2

+

(
1
3

[
Φ1(u)
Φ0(u)

]3
− Φ1(u)

Φ0(u)
Φ2(u)
Φ0(u)

+
Φ3(u)
Φ0(u)

)
ε3

= log(Φ0(z)) + (log z + f1(z)) ε + (− 1
2f1(z)2 + f2(z)) ε2

+ (1
3f1(z)3 − f1(z)f2(z) + f3(z)) ε3 ,

we see that q and F(q) can easily be computed from the already known f1, f2, f3:

q = −z exp(f1(z)) ,

F(q) = 5
2

(
1
3 log3(−q) −

(
1
3f1(z(q))3 − f1(z(q))f2(z(q)) + f3(z(q))

))
.

8.3. The intersection of two cubics in P5

This is one of the examples discussed in [18]. Here we treat it as a highly resonant
GKZ system. As in the case of the quintic the matrix B in Table 1 is of the form
B = (B̃ Id) and we apply row operations to the matrix (IN−d − B̃t) so that the
Laurent polynomial PA(x) in (89) assumes a pleasant form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 3
0 1 0 0 0 0 0 3
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 0 1
0 1 0 0 1 1 1 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 −1
0 0 0 0 −1 1 0 0
0 0 0 0 −1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We let A = {a1, . . . ,aN} denote the columns of the right-hand matrix. Then

PA(x) = x1 PA,1(x3, x4, x5) + x2 PA,2(x5, x6, x7)

with

PA,1(x3, x4, x5) = u1 + u3x3 + u4x4 + u8(x3x4x5)−1

PA,2(x5, x6, x7) = u2 + u5x5(x6x7)−1 + u6x6 + u7x7 .

This way of combining the two Laurent polynomials in five variables, PA,1 and
PA,2, to one Laurent polynomial in seven variables PA is known as Cayley’s trick
(see [12, 13, 14]). The two polynomials PA,1 and PA,2, suitably homogenized,
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define a family of Calabi–Yau complete intersection threefolds in P1 × P2 × P2.
The corresponding period integrals are (cf. Section 2.4 and [12, 14])

I−σ (u) :=
1

(2πi)5

∫
σ

PA,1(x3, x4, x5)−1 PA,2(x5, x6, x7)−1 dx3

x3

dx4

x4

dx5

x5

dx6

x6

dx7

x7
.

(99)
One can show as in Sections 2.3 and 2.4 that these integrals viewed as functions
of u1, . . . , u8, satisfy the GKZ system of differential equations (19)–(20) with A as
above and c = −a1 − a2.

If the numbers
∣∣u3u

−1
1

∣∣, ∣∣u4u
−1
1

∣∣, ∣∣u8u
−1
1

∣∣ and
∣∣u5u

−1
2

∣∣, ∣∣u6u
−1
2

∣∣, ∣∣u7u
−1
2

∣∣ are
sufficiently small, the domain of integration for one of the above period integrals
I−σ (u) can be taken to be σ = {|x3| = |x4| = |x5| = |x6| = |x7| = 1}. This period
integral admits the series expansion, with z = u−3

1 u−3
2 u3u4u5u6u7u8,

I−σ (u) = u−1
1 u−1

2

∑
n≥0

(
(3n)!
(n!)3

)2

zn . (100)

The series ΦL,γ,ε(u) for L = Z(−3,−3, 1, 1, 1, 1, 1, 1), γ = (−1,−1, 0, 0, 0, 0, 0, 0)
and ε = (ε1, . . . , ε8) = (−3ε,−3ε, ε, ε, ε, ε, ε, ε) reads

ΦL,γ,ε(u) = 9ε2u−1
1 u−1

2

∑
n≥0

(
(1 + 3ε)3n

((1 + ε)n)3

)2

zn+ε , (101)

and is evaluated in RA,C = Z⊕ Zε⊕ Zε2 ⊕ Zε3 ⊕ Zε4 ⊕ Zε5 , ε6 = 0 .
The function ΦL,γ,ε(u) actually takes values in the vector space ε2RA,C⊗C. As in
the case of the quintic, we replace this space by the isomorphic space RA,C ⊗ C,
where Ann(ε2) := {x ∈ RA,C | xε2 = 0} and RA,C := RA,C /Ann(ε2). Let ε

denote the class of ε in RA,C . Then

RA,C = Z⊕ Zε⊕ Zε2 ⊕ Zε3 , ε4 = 0 .

Proceeding as in the case of the quintic we write

ΦL,γ,ε(u) = 9u−1
1 u−1

2

∑
n≥0

(
(1 + 3ε)3n

((1 + ε)n)3

)2

zn+ε

= Φ0(u) + Φ1(u)ε + Φ2(u)ε2 + Φ3(u)ε3

= Φ0(u)zε
(
1 + f1(z)ε + f2(z)ε2 + f3(z)ε3

)
,

and almost exactly as for the quintic we extract from log ΦL,γ,ε(u) a canonical
coordinate and a prepotential :

q := z exp(f1(z)) = z + O(z2) , (102)

F(q) := 9
2

(
1
3 log3 q −

(
1
3f1(z(q))3 − f1(z(q))f2(z(q)) + f3(z(q))

))
. (103)

Finally we compute the numbers Nj from the expansion

F(q) = 3
2 log3 q +

∑
j≥1

Nj Li3(qj) . (104)
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The first few of the numbers Nj are shown in Table 3 and agree with those in [18].

N1 = 1053
N2 = 52812
N3 = 6424326
N4 = 1139448384
N5 = 249787892583
N6 = 62660964509532
N7 = 17256453900822009
N8 = 5088842568426162960
N9 = 1581250717976557887945

Table 3. The numbers Nj for the intersection of two cubics in P5.

8.4. The hypersurface of degree (3, 3) in P2 × P2

Again the matrix B in Table 1 is of the form B = (B̃ Id) , and we apply row
operations to the matrix (IN−d − B̃t):⎛⎜⎜⎜⎜⎝

1 0 0 0 0 3 3
0 1 0 0 0 −1 0
0 0 1 0 0 0 −1
0 0 0 1 0 −1 0
0 0 0 0 1 0 −1

⎞⎟⎟⎟⎟⎠ �

⎛⎜⎜⎜⎜⎝
1 1 1 1 1 1 1
0 1 0 0 0 −1 0
0 0 1 0 0 0 −1
0 0 0 1 0 −1 0
0 0 0 0 1 0 −1

⎞⎟⎟⎟⎟⎠ .

We let A = {a1, . . . ,aN} denote the columns of the right-hand matrix. Then

PA(x) = x1

(
u1 + u2x2 + u3x3 + u4x4 + u5x5 + u6(x2x4)−1 + u7(x3x5)−1

)
.

The periods of the mirror Calabi–Yau hypersurfaces are given by integrals

I−σ (u) :=
1

(2πi)4

∫
σ

PA(1, x2, x3, x4, x5)−1 dx2

x2

dx3

x3

dx4

x4

dx5

x5
. (105)

As shown in Section 2.3 these integrals viewed as functions of u1, . . . , u7, satisfy
the GKZ system of differential equations (19)–(20) with A as above and c = −a1.

If the numbers
∣∣uju

−1
1

∣∣ for 2 ≤ j ≤ 7 are sufficiently small, the domain
of integration for one of the above period integrals I−σ (u) can be taken to be
σ = {|x2| = |x3| = |x4| = |x5| = 1}. This integral admits the expansion:

I−σ (u) = u−1
1

∑
n1, n2≥0

(−1)n1+n2
(3n1 + 3n2)!
(n1!)3(n2!)3

zn1
1 zn2

2 (106)

with z1 = u−3
1 u2u4u6 and z2 = u−3

1 u3u5u7. Now look at the series ΦL,γ,ε(u) for
L = Z(−3, 1, 0, 1, 0, 1, 0)⊕ Z(−3, 0, 1, 0, 1, 0, 1), γ = (−1, 0, 0, 0, 0, 0, 0) and
ε = (ε1, ε2, ε3, ε4, ε5, ε6, ε7) = δ1(−3, 1, 0, 1, 0, 1, 0) + δ2(−3, 0, 1, 0, 1, 0, 1). Using
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Corollary 1 and the matrix B from Table 1 for this example one easily checks that
the triangulation is given by the list TC consisting of the nine sets one gets by
deleting from {1, 2, 3, 4, 5, 6, 7} one even and one odd number > 1. The minimal
sets not contained in a set on the list TC are {2, 4, 6} and {3, 5, 7}. Thus we see

RA,C = Z⊕ Zδ1 ⊕ Zδ2 ⊕ Zδ2
1 ⊕ Zδ1δ2 ⊕ Zδ2

2 ⊕ Zδ2
1δ2 ⊕ Zδ1δ2

2 ⊕ Zδ2
1δ

2
2 ,

δ3
1 = δ3

2 = 0 .

Thus, with z1 = u−3
1 u2u4u6 and z2 = u−3

1 u3u5u7,

ΦL,γ,ε(u) = −3(δ1+δ2)u−1
1

∑
n1, n2≥0

(−1)n1+n2
(1 + 3δ1 + 3δ2)3n1+3n2

((1 + δ1)n1(1 + δ2)n2)3
zn1+δ1
1 zn2+δ2

2 .

The function ΦL,γ,ε(u) takes values in the vector space (δ1 + δ2)RA,C ⊗ C. As in
the previous cases, we replace this space by the isomorphic one RA,C ⊗ C, where
Ann(δ1 + δ2) := {x ∈ RA,C | x(δ1 + δ2) = 0} and RA,C := RA,C /Ann(δ1 + δ2).
Let δ1 and δ2 denote the classes of δ1 and δ2, respectively, in RA,C . Then

RA,C = Z⊕ Zδ1 ⊕ Zδ2 ⊕ Zδ
2

2 ⊕ Zδ
2

1 ⊕ Zδ
2

1δ2 ,

δ1δ2 = δ
2

1 + δ
2

2 , δ
2

1δ2 = δ1δ
2

2 , δ
3

1 = δ
3

2 = δ
2

1δ
2

2 = 0 .

Proceeding as in the previous examples we write

ΦL,γ,ε(u) = −3u−1
1

∑
n1, n2≥0

(−1)n1+n2
(1 + 3δ1 + 3δ2)3n1+3n2

((1 + δ1)n1(1 + δ2)n2)3
zn1+δ1
1 zn2+δ2

2

= Φ0(u) + Φ1,1(u)δ1 + Φ1,2(u)δ2 + Φ2,1(u)δ
2

2 + Φ2,2(u)δ
2

1 + Φ3(u)δ
2

1δ2

= Φ0(u)zδ1
1 zδ2

2

(
1 + f1,1(z)δ1 + f1,2(z)δ2 + f2,1(z)δ

2

2 + f2,2(z)δ
2

1 + f3(z)δ
2

1δ2

)
.

Here z = (z1, z2). From the δ1 and δ2 components we construct two canonical
coordinates (cf. (111))

q1 := −z1 exp(f1,1(z)) , q2 := −z2 exp(f1,2(z)) . (107)

We view z1, z2 as functions of q1, q2 via the inverse of relation (107).
The prepotential in this case is (cf. (114))

F(q1, q2) =
3
2

(
Φ1,1(u)
Φ0(u)

Φ2,1(u)
Φ0(u)

+
Φ1,2(u)
Φ0(u)

Φ2,2(u)
Φ0(u)

− Φ3(u)
Φ0(u)

)
. (108)

The −-signs in (107) and the factor 3 in (108) are needed to match the calculations
below with the results in [16] Appendix B2.

We expand log ΦL,γ,ε(u) on the basis {1, δ1, δ2, δ
2

2, δ
2

1, δ
2

1δ2} of RA,C . The

δ
2

1δ2-coordinate is on the one hand

log(−q1) log(−q2) log(q1q2)− 2
3F(q1, q2)

and on the other hand it is

f1,1(z)2f1,2(z) + f1,1(z)f1,2(z)2 − f1,1(z)f2,1(z)− f1,2(z)f2,2(z) + f3(z).
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Computing the coefficients Nj1,j2 in the expansion

F(q1, q2) = 3
2 log(−q1) log(−q2) log(q1q2) +

∑
j1,j2≥0, j1+j2>0 Nj1,j2Li3(q

j1
1 qj2

2 )

is now somewhat more involved than in the previous examples. We leave it as an
exercise in Mathematica, Maple or PARI programming.
A table of the numbers Nj1,j2 for this example appears in [16] Appendix B2 under
the name X(3|3)(1, 1, 1|1, 1, 1). In [16] one finds many more 2-parameter models.

8.5. The Schwarz map for some extended GKZ systems

In this section we briefly discuss how the RA,C⊗C-valued function ΦL,γ,ε(u) which
we met in the preceding examples, can be viewed as a Schwarz map and what are
some special features of the image.

First note that, since dimRA,C ⊗ C < dimRA,C ⊗ C = volume ΔA, the
components of ΦL,γ,ε(u) with respect to some basis of RA,C ⊗ C can not suffice
as a basis for the solution space of the GKZ system. They do however constitute
a basis for the solution space of some extension of the GKZ system (see [16]). So,
strictly speaking we are not talking about the Schwarz map for the GKZ system,
but for an extension thereof. Since we do explicitly have all these basis solutions
for the extended system, we need not care about this system itself.

In the examples, coming from (families of) Calabi–Yau threefolds, the ring
RA,C is graded and splits in homogeneous pieces,

RA,C = R(0)

A,C ⊕R
(1)

A,C ⊕R
(2)

A,C ⊕R
(3)

A,C ,

with degrees 0, 1, 2, 3 and ranks 1, d, d, 1, respectively; recall d = rankL. We fix
a basis for RA,C by fixing bases for the homogeneous pieces

R(0)

A,C : e0 = 1 , R(1)

A,C : e1,1, . . . , e1,d , R(2)

A,C : e2,1, . . . , e2,d , R(3)

A,C : e3 ,

and expand ΦL,γ,ε(u) with respect to this basis

ΦL,γ,ε(u) = Φ0(u)e0 +
d∑

i=1

Φ1,i(u)e1,i +
d∑

i=1

Φ2,i(u)e2,i + Φ3(u)e3 . (109)

The Schwarz map lands in the projective space

P
(
RA,C ⊗ C

)
and Φ0(u), . . . ,Φ3(u) are homogeneous coordinates for the image points. Since
these functions are solutions of the same GKZ system their quotients, and hence
also the Schwarz map, are defined on some open set in VA near the special point
pC corresponding to the maximal cone C in the secondary fan. The map is multi-
valued and we do fully control the local monodromy.

The image of the Schwarz map has dimension equal to dimVA = rankL = d,
whereas the projective space P

(
RA,C ⊗ C

)
has dimension 1 + 2d. For the descrip-

tion of the image of the Schwarz map we want to profit from the description of
the moduli of Calabi–Yau threefolds by Bryant and Griffiths [6]. In the theory of
moduli of Calabi–Yau threefolds one writes the holomorphic 3-form in coordinates
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with respect to a basis of the third cohomology space given by topological 3-cycles.
These coordinates are the period integrals of the 3-form. We know Φ0(u) explicitly
as a period integral (see (90), (99), (105)), but we still need an argument for the
other coordinates in (109) to be periods. Such an argument may be that inspec-
tion of the local monodromy shows that the extended GKZ system of differential
equations satisfied by the known period integral Φ0(u) is irreducible, for then all
periods must be linear combinations of Φ0(u), . . . ,Φ3(u).

Having matched (109) with the coordinates (= periods) of the holomorphic
3-form with respect to a basis of topological 3-cycles, we must check that the basis
e0, . . . , e3 satisfies the requirements for application of the Bryant–Griffiths theory,
i.e., we need to know that with respect to the alternating bilinear form 〈, 〉 on the
third cohomology space of the Calabi–Yau threefold

〈e0, e3〉 = −〈e3, e0〉 = −〈e1,i, e2,i〉 = 〈e2,i, e1,i〉 = 1 for i = 1, . . . , d, (110)

and all other 〈er, es〉 = 0. In an example at the end of this section we show how
to derive (110) from the explicitly known local monodromy and logarithmic pieces
of ΦL,γ,ε(u).

We are now all set for applying [6]. First define the canonical coordinates

qi := exp
(

Φ1,i(u)
Φ0(u)

)
for i = 1, . . . d . (111)

The derivations qi
∂

∂qi
act on the cohomology spaces of the Calabi–Yau threefolds

in the family. Griffiths’ transversality and the Riemann bilinear relations imply〈
ΦL,γ,ε(u)

Φ0(u)
, qi

∂

∂qi

(
ΦL,γ,ε(u)

Φ0(u)

)〉
= 0 . (112)

Write ϕ3 := Φ3(u)
Φ0(u) and ϕa,j := Φa,j(u)

Φ0(u) for a = 1, 2, j = 1, . . . , d. These are
(multivalued) functions of q1, . . . , qd, and in fact ϕ1,j = log qj . Then the left hand
side of (112) evaluates to

qi
∂ϕ3

∂qi
−

d∑
j=1

(
ϕ1,jqi

∂ϕ2,j

∂qi

)
+ ϕ2,i = qi

∂

∂qi

⎛⎝ϕ3 −
d∑

j=1

ϕ1,jϕ2,j

⎞⎠ + 2ϕ2,i .

According to (112) this equals 0 and thus

ϕ2,i = qi
∂F
∂qi

(113)

where

F :=
1
2

⎛⎝−ϕ3 +
d∑

j=1

ϕ1,jϕ2,j

⎞⎠ (114)

is the so-called prepotential.

Example. Thus we recover the canonical coordinate (95) for the quintic in P4

up to a −-sign and the prepotential (96) up to a factor 5 (which is the degree
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of the quintic). And similarly for the intersection of two cubics in P5 and the
hypersurface of degree (3, 3) in P2×P2. The factors ‘sign’ and ‘degree’ are needed
to match the results of our calculations with the tables of enumerative data in the
literature. Moreover, if the wrong sign is used, the numbers Nj1,...,jd

are often even
not integers.

Conclusion. The above discussion shows that the canonical coordinates and the
prepotential act like a parametrization for the image of the Schwarz map: the image
points have coordinates (1, t1, . . . , t2d+1) with

tj = log qj for j = 1, . . . , d ,

td+j = qj
∂F
∂qj

for j = 1, . . . , d ,

t2d+1 = −2F +
∑d

j=1 tjtd+j .

Remark. On the graded ring RA,C there is an involution .∗ given for homogeneous

elements by x∗ = (−1)deg xx. We fix the linear map τ : RA,C
project−→ R(3)

A,C
�−→ Z.

Then, in the examples of Sections 8.2, 8.3, 8.4 the alternating bilinear form defined
by the ordered basis and the relations (110), is in fact

〈x, y〉 = τ(x∗y) . (115)

Moreover, in those examples the trick of expanding log ΦL,γ,ε(u) in two ways
showed that the prepotential is a polynomial of degree 3 in log q1, . . . , log qd plus
a power series in q1, . . . , qd.

Example. Let us check that (110) holds for the ordered basis

{e0, e1,1, e1,2, e2,1, e2,2, e3} := {1, δ1, δ2, δ
2

2, δ
2

1, δ
2

1δ2}

in the example of Section 8.4. The alternating bilinear form (on the third co-
homology space in a family of Calabi–Yau threefolds) is invariant under the local
monodromy operators, which in this case are given by multiplication by exp(2πiδ1)
and exp(2πiδ2). This means that the matrices for multiplication with δ1 and δ2

and the Gram matrix of the alternating bilinear form, everything with respect to
the above basis, must satisfy Gramt = −Gram and

mat(δa) ·Gram = −Gram ·mat(δa)t , a = 1, 2 . (116)

One easily checks

mat(δ1) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , mat(δ2) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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The general anti-symmetric matrix solution to (116) has, up to a non-zero scalar
factor, the form ⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 1 0 0 0 x
0 0 1 0 0 y
−1 0 0 −x −y 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

When we evaluate (112) using this Gram matrix, we find, for i = 1, 2,

qi
∂ϕ3

∂qi
− ϕ1,1qi

∂ϕ2,1

∂qi
− ϕ1,2qi

∂ϕ2,2

∂qi
+ ϕ2,i +

+ x

(
ϕ2,1qi

∂ϕ3

∂qi
− ϕ3qi

∂ϕ2,1

∂qi

)
+ y

(
ϕ2,2qi

∂ϕ3

∂qi
− ϕ3qi

∂ϕ2,2

∂qi

)
= 0 .

(117)

We want to estimate the growth of the various terms in this expression by looking
at the logarithmic pieces. So, recall that in this example

ΦL,γ,ε(u) = Φ0(u)zδ1
1 zδ2

2 × (power series in z1, z2)

and

zδ1
1 zδ2

2 = (1 + (log z1)δ1 + 1
2 (log z1)2δ

2

1)(1 + (log z2)δ2 + 1
2 (log z2)2δ

2

2)

= 1 + (log z1)δ1 + (log z2)δ2 +
(

1
2 (log z2)2 + (log z1)(log z2)

)
δ
2

2

+
(

1
2 (log z1)2 + (log z1)(log z2)

)
δ
2

1 + 1
2 (log z1)(log z2)(log z1z2)δ

2

1δ2 .

Moreover, up to addition of power series, log q1 1 log z1 and log q2 1 log z2. Thus
we see that the highest order logarithmic contributions are

−ϕ3q1
∂ϕ2,1

∂q1
+ ϕ2,1q1

∂ϕ3

∂q1
1 − 1

2 ((log q1)2(log q2) + (log q1)(log q2)2)(log q2)

+
(

1
2 (log q2)2 + (log q1)(log q2)

) (
(log q1)(log q2) + 1

2 (log q2)2
)

= 1
2 (log q1)2(log q2)2 + 1

2 (log q1)(log q2)3 + 1
4 (log q2)4

and

−ϕ3q1
∂ϕ2,2

∂q1
+ ϕ2,2q1

∂ϕ3

∂q1

1 − 1
2 ((log q1)2(log q2) + (log q1)(log q2)2)(log q1 + log q2)

+
(

1
2 (log q1)2 + (log q1)(log q2)

) (
(log q1)(log q2) + 1

2 (log q2)2
)

= 1
4 (log q1)2(log q2)2.

So if we consider (117) for i = 1 and q2 ↓ 0 the dominant 1
4 (log q2)4 term forces

x = 0. Having x = 0 we consider (117) for i = 1 and q1 = q2 ↓ 0. Once again there
is a dominant 1

4 (log q2)4, forcing y = 0.
This finishes the proof for the fact that in the example of Section 8.4 the ordered
basis {1, δ1, δ2, δ

2

2, δ
2

1, δ
2

1δ2} satisfies (110).
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Exercise. Apply the techniques of the preceding example and show that the basis
{1, ε, ε2, ε3} in Sections 8.2 and 8.3 satisfies (110).

8.6. Manifestations of Mirror Symmetry

In this section we discuss in an informal way some features of our hypergeometric
formulas which can be seen as manifestations of Mirror Symmetry. The objects in
the second and third columns of Table 1 should be considered as mirror partners.

The objects in the third column are given as zero loci of polynomials (89):

PA =
∑
a∈A

uaxa . (118)

The coefficients ua yield the complex structure of these varieties via period inte-
grals like (90), (99), (105). These periods express in cohomology the position of
the class of the holomorphic 3-form with respect to the classes of the topological 3-
cycles. They also show how this position varies as a function of the parameters ua.
These period functions satisfy an (extended) GKZ system of differential equations.
From the series ΦL,γ,ε(u) (cf. (92), (101), 109)) one can derive all solutions to these
(extended) GKZ differential equations as follows. The series ΦL,γ,ε(u) takes values
in the vector space RA,C ⊗ C. This vector space carries a non-degenerate bilinear
form 〈, 〉 (see (115)) and thus all solutions to the (extended) GKZ system can be
obtained by pairing ΦL,γ,ε(u) with the elements of of RA,C ⊗C. This should hold
in particular for the above period integrals. Thus given a non-trivial holomorphic
3-form Ω on the Calabi–Yau variety in the third column of Table 1 there should
for every topological 3-cycle ρ on this CY variety be an element αρ ∈ RA,C ⊗ C
such that ∫

ρ

Ω =
〈
ΦL,γ,ε(u), αρ

〉
. (119)

On the other hand, as we remarked before (see also [9], [24], Thm. 9) RA,C is
the cohomology ring of the ambient space in the second column of Table 1; better
even, it is the Chow ring of this ambient space [9]. The Chow ring is generated
by rational equivalence classes of algebraic subvarieties of this space, with product
structure coming from intersection theory. Thus evaluating the right-hand side of
(119) becomes a computation in the intersection theory of algebraic subvarieties
of the ambient space in the second column of Table 1.

This interpretation of the ring RA,C and of the right-hand side of (119) is
however not the only possible one, and probably not even optimal. Via Chern
characters one may want to lift things from cohomology or Chow ring to the
Grothendieck group K0 or the bounded derived category of coherent sheaves on
the ambient space in the second column of Table 1. In the latter setting one then
comes to Kontsevich’s Homological Mirror Symmetry Conjecture [17]. The reader
can find in [17] also the example of the quintic which we discussed in section 8.2.

In Section 3.5 we wrote the parameters ua in exponential form:

ua = e2πiwa .
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In Section 5.2 this was reinterpreted as taking coordinates on the toric variety
associated with the secondary fan. Tracing back through the interpretations of
the secondary fan one finds in (46) that with w = (wa)a∈A is associated the
polyhedron

Kw := {v ∈M∨
R | 〈a,v〉 ≥ −�wa, ∀a ∈ A} . (120)

With [15] Appendix 2 one can then view �w as moduli parameters for the Kähler
geometry on the ambient space in the second column of Table 1; there is here a
slight subtlety in that our Kw is not compact and actually corresponds to a vector
bundle over this ambient space, whereas in loc. cit. one has a compact polyhedron
which corresponds to the ambient space itself. This now raises the interesting
problem of interpreting the right-hand side of (119) directly as a pairing of Kähler
structure and algebraic cycles, or coherent sheaves, on the ambient space in the
second column of Table 1.

Let us now put also the variables x in (118) in exponential form:

xa = e2πi〈a,y〉 .

This gives the polynomial PA a new outfit:

PA =
∑
a∈A

e2πi(wa+〈a,y〉) (121)

and reinterprets Kw as a requirement that the individual terms of the sum PA
should have absolute value ≤ 1. This also suggests possible relations with the
developing new branch of geometry, called Tropical Geometry [22].

Since there is still a lot of activity in Mirror Symmetry and related fields,
with constant emergence of new ideas, I feel it is too early to formulate a final
conclusion. It may be clear, though, that hypergeometric objects like ΦL,γ,ε do play
a central role.
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Introduction

These notes aim to give an introduction to the theory of orbifolds and their uni-
formizations, along the lines settled in 1986 by M. Kato [13], with special emphasis
on complex 2-dimensional orbifolds (orbifaces).

An orbifold is a space locally modeled on a smooth manifold modulo a finite
group action, which is said to be uniformizable if it is a global quotient. They were
first studied in the 1950s by Satake under the name “V-manifold” and renamed by
Thurston in the 1970s. Orbifolds appear naturally in various fields of mathemat-
ics and physics and they are studied from several points of view. In these notes
we focus on the uniformization problem and consider almost exclusively orbifolds
with a smooth base space. In most cases this base will be a complex projective
space. From this perspective, orbifolds can be viewed as a refinement of the dou-
ble covering construction of algebraic varieties with special properties (for example
with given chern numbers, see [11]). The first steps in this refinement were taken
by Hirzebruch [9], culminating in the monograph [1] devoted to Kummer cover-
ings of P2 branched along line arrangements. Kobayashi [14] studied more general
coverings with non-linear branch loci with non-nodal singularities.

Many basic topological invariants such as the fundamental group has an orb-
ifold version, and the usual notion of Galois covering is extended to orbifolds in a
straightforward way. It was observed by Yoshida that orbifold germs are related
via covering maps. We elaborate on this observation and show that many interest-
ing orbifolds (e.g., the ball-quotient orbifolds) are related via covering maps. Note
that a covering relation between ball-quotient orbifolds is nothing but a commen-
surability among the corresponding lattices acting on the ball.

The plan of this paper is as follows: Section 1 gives some background on
branched coverings. Section 2 includes fundamental facts and definitions about
orbifolds. Section 3 is devoted to the local structure and singularities of orbifolds,
especially in dimension 2. Section 4 sketches the solutions of the global uniformiza-
tion problem for some special orbifolds. In particular, Section 4.1 includes a com-
plete classification of abelian finite smooth branched coverings of P2. This amounts
to the classification of algebraic surfaces with an abelian group action whose quo-
tient is isomorphic to P2. There are also many examples of non-abelian coverings.

These notes were typeset during my stay in IHES in August 2005 and are
based on talks delivered at the CIMPA Summer School Arithmetic and Geometry
around hypergeometric functions (2005) held in Istanbul and the EMS Summer
School Braid Groups and Related Topics (2005) held in Tiberias. I am grateful to
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Professor Mina Teicher and Dr. Tzachi Ben-Itzhak for their hospitality. Diagrams
of the paper were typeset by Paul Taylor’s Commutative Diagrams package.

1. Branched Coverings

Here we collect some facts about branched coverings which can mostly be found
in Namba’s book [17]. In what follows a variety is always irreducible, defined over
C and endowed with the strong topology.

A surjective finite holomorphic map ϕ : M → X of normal varieties is called
a branched covering. A topological finite covering map is a very special kind of
branched covering. Any non-constant map between compact Riemann surfaces
is a finite branched covering. If M ⊂ Pn is an irreducible hypersurface, then the
restriction onto M of a generic projection Pn → Pn−1 is a finite branched covering.
A blow-down is not a branched covering since it is not a finite map. An immersion
into a higher dimensional space is not a branched covering since it is not surjective.

Example 1.1. (Model branched coverings) The map ϕm : z ∈ C → zm ∈ C is a
branched covering. More generally, the map

ϕm : (z1, z2, . . . , zn) ∈ Cn → (zm
1 , z2, z3, . . . , zn) ∈ Cn

is a branched covering.

zm

z

Figure 1.1. A model branched covering

A morphism between branched coverings ϕ : M → X and ψ : N → X
is a surjective holomorphic map μ : M → N such that the following diagram
commutes:

M
μ � N

X

�

ψϕ
�

An isomorphism of branched covering spaces is a morphism that is a biholo-
morphism. The group Gϕ of all automorphisms of ϕ is finite and acts on every
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fiber of ϕ. A finite branched covering ϕ : M → X is called a finite branched Galois
covering if Gϕ acts transitively on every fiber of ϕ. In this case the orbit space
M/Gϕ is biholomorphic to X (see [4]).

The ramification locus of a finite branched covering ϕ : M → X is defined by

Rϕ := {p ∈M : ϕ is not biholomorphic around p}.
The image Bϕ := ϕ(Rϕ) is called the branch locus of ϕ and the map ϕ is said to be
branched along Bϕ. In case ϕ is a topological covering then both Rϕ and Bϕ are
empty, such ϕ is said to be unbranched. The restriction ϕ : M\Rϕ → X\Bϕ is an
unbranched covering. Conversely, the Grauert–Remmert theorem states (see [19]):

Theorem 1.1. Let X be a normal variety and B a finite union of proper subvarieties
of codimension 1. Given a topological unbranched finite covering ϕ′ : M ′ → X\B
with M ′ being connected, there exists an irreducible normal variety M with a finite
branched covering ϕ : M → X and a homeomorphism s : M ′ → ϕ−1(X\B) such
that ϕ(x) = ϕ′(s(x)) for all x ∈M ′.

By this theorem, there is a correspondence between subgroups of π1(X\B)
of finite index and finite coverings of X branched along B. If ϕ′ is Galois, then so
is ϕ ([8], Proposition I.2.8) and therefore the covering ϕ is Galois if and only if the
corresponding subgroup is normal.

Consider the model branched covering ϕm introduced in Example 1.1. Both
Rϕ and Bϕ are hypersurfaces in Cn defined by the equation z1 = 0. Let ϕ : M → X
be a branched covering. If X is singular, then Rϕ and Bϕ can be of codimension
> 1, even when ϕ is a non-trivial branched cover. If X is smooth, then by Zariski’s
“purity of the branch locus” theorem (see [26]), Rϕ is a hypersurface in M and
Bϕ is a hypersurface in X .

The ramification divisor of a finite branched covering ϕ : M → X of smooth
spaces is the divisor of its jacobian; for singular spaces it can be defined for the
restriction of ϕ to smooth parts of M and X and then extended. (If ϕ is ramified
only along a singular part then the ramification divisor is empty). The ramification
divisor lives on M . If ϕ : M → X is Galois, it is possible to define the branch divisor
on X as follows: let H1, . . . , Hk be the irreducible components of the branch locus
Bϕ. Let p ∈ Hi be a smooth point of Bϕ. Let U be a small neighborhood of p and
V be a connected component of ϕ−1(U). The degree mi of ϕ|V does not depend
on p and is called the branching index of ϕ along Hi. Then the branch divisor is
defined as

Dϕ :=
k∑

i=1

miHi.

Definition 1.2. Let X be a complex manifold and D = ΣmiHi be a divisor with
coefficients in Z>0. A Galois covering ϕ : M → X is said to be branched at D if
Dϕ = D.

Example 1.2. Let H ⊂ Cn be a hypersurface given by the reduced polynomial
f ∈ C[x1, . . . , xn] and let M ⊂ Cn+1 be the hypersurface defined by the polynomial
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zm − f ∈ C[z, x1, . . . , xn]. Let π be the projection

π : (z, x1, . . . , xn) ∈ Cn+1 → (x1, . . . , xn) ∈ Cn

Then the restriction π : M → Cn is a finite branched Galois covering with Z/(m)
as the Galois group. The branch locus of π is precisely the hypersurface H , and
the branch divisor is mH . Note that if the origin is a singular point of H then M
also has a singularity at the origin.

Let X be a normal variety and B = ∪Hi be a hypersurface with irreducible
components Hi. Take a base point % ∈ X\B and let p ∈ Hi be a smooth point of B.
A meridian of Hi in X\B is the homotopy class of a loop μp in X\B constructed
as follows: Take a small disc Δ intersecting B transversally at p. Let ω be a path
in X\B connecting % to a point of ∂Δ. Then μ := ω · δ · ω−1, where δ is the
path obtained by following ∂Δ in the positive sense. It is well known that any two
meridians of a fixed irreducible component Hi are conjugate elements in π1(X\B).

Let D = Σk
1miHi, where Hi are irreducible and take meridians μ1 of H1

. . .μk of Hk in X\ ∪ Hi. The orbifold fundamental group of the pair (X,D) is
defined as

πorb
1 (X,D) := π1(X\D, %)/〈〈μm1

1 , . . . , μmk

k 〉〉,

where 〈〈〉〉 denotes the normal closure. (Note that the definition of an orbifold will
wait till the next section.)

Figure 1.2. A meridian

Let D = Σk
1miHi and let K be a normal subgroup of finite index in π1(X\D).

The Galois covering corresponding to K is branched at D if and only if the fol-
lowing two conditions are satisfied:

Condition (i). K contains the elements μm1
1 , . . . , μmk

k .

Condition (ii). μm
i /∈ K for m < mi.

Condition (ii) will be called the Branching Condition in the sequel. Let G :=
π1(X\D)/K be the corresponding Galois group. Then Condition (i) amounts to
the existence of the factorization
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π1(X\D)
ϕ �� G

πorb
1 (X,D)

ψ
��

��

whereas the branching condition means that ϕ(μi) ∈ G is strictly of order mi. We
conclude that the coverings of X branched at D are really controlled by the group
πorb

1 (X,D), and there is a Galois correspondence between the Galois coverings of
X branched at D and normal subgroups of πorb

1 (X,D) satisfying the branching
condition. In particular a covering of X branched at D is simply connected if and
only if it is universal, i.e., the Galois group is the full group πorb

1 (X,D). Observe
that the group πorb

1 (X,D) may fail to satisfy the branching condition. In this case
there are no coverings of X branched at D (see Example 1.3 below).

The following lemma follows from ([7], §7).

Lemma 1.3. Let M → X be a Galois covering branched at D and with Galois
group G. We have the exact sequence

0→ π1(M)→ πorb
1 (X,D)→ G→ 0.

Example 1.3. Let X := Pn where n > 1 and let H0, . . . , Hk be k hyperplanes
in general position. Let m0,m1, . . . ,mk be k + 1 distinct prime numbers and put
D := Σk

0miHi. By a result of Zariski the group π1(Pn\D) is abelian and it admits
the presentation

π1(Pn\D) �
〈
μ0, . . . , μk

∣∣∣∑k
0miμi = 0

〉
,

where μi is a meridian of Hi for i ∈ [0, k]. Consequently, one has

πorb
1 (Pn, D) �

〈
μ0, . . . , μk

∣∣∣m0μ0 = · · · = mkμk =
∑k

0miμi = 0
〉

It is easy to see that this latter group is trivial, hence there are no coverings of Pn

branched at D. On the other hand, in case m0 = · · · = mk = m there is a covering
branched at D, since the group

πorb
1 (Pn, D) � Z/(m)⊕ . . .⊕ Z/(m) (k copies)

satisfies the Branching Condition. As we will see in the next section, the universal
covering branched at D is smooth if k ≥ n. In case k = n we can show this
immediately: The power map

ϕm : [z0 : · · · : zn] ∈ Pn → [zm
0 : · · · : zm

n ] ∈ Pn

is a Galois covering map branched at the divisor Σn
0mHi where Hi is the hy-

perplane {zi = 0} (the arrangement H0 ∪ · · · ∪ Hn is unique up to projective
transformations). Note that ϕm is the universal covering branched at D.
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1.1. Branched coverings of P1

Example 1.3 concerns projective spaces of dimension > 1. The situation is very
different in dimension 1. Let X = P1, take distinct points p0, . . . , pk in P1 and let
m0, . . . ,mk be integers > 1. Put D := Σk

0mipi. (According to the definition that
will be given in the next section, the pair (P1, D) will be an orbifold). One has the
presentation

π1(P1\{p0, . . . , pk}) �
〈
μ0, . . . , μk

∣∣∣μ0 . . . μk = 1
〉
,

which is a free group of rank k. For the orbifold fundamental group one has

πorb
1 (P1, D) =

〈
μ1, . . . , μk

∣∣∣μm0
0 = · · · = μmk

k = μ0 . . . μk = 1
〉

Let M → P1 be a covering branched at D with G as the Galois group. By the
Riemann–Hurwitz formula the euler number e(M) of M equals

e(M) = |G|
[
e(P1\{p0, . . . , pk}) +

∑k
0

1
mi

]
= |G|

[
1− k +

∑k
0

1
mi

]
(1.1)

Recall that by the Koebe–Poincaré theorem, up to biholomorphism there are only
three simply connected Riemann surfaces: the Riemann sphere P1, the affine plane
C, and the Poincaré disc Δ. If M is a compact Riemann surface, either e(M) > 0
and M � P1 (and therefore e(M) = 2), or e(M) = 0 and the universal cover of
M is C, or e(M) < 0 and the universal cover of M is Δ. Note that in (1.1) the
signature of e(M) is already determined by the data (P1, D) and no information
on G is needed. Accordingly, let us define the orbifold euler number of (P1, D) as

eorb(P1, D) = 1− k +
k∑
0

1
mi

⇒ e(M) = |G|eorb(P1, D). (1.2)

In particular, if M → P1 is a covering branched at D and with G as the Galois
group, then

|G| = e(M)
eorb(P1, D)

. (1.3)

For k = 0 one has eorb(P1, D) = 1+1/m0, which is positive. Hence if M → P1

is a covering branched at D, then e(M) > 0⇒M � P1. Suppose that this covering
exists and let G be the Galois group. By (1.3) one has |G| = 2/(1 + 1/m0), which
is not integral unless m0 = 1. Hence for k = 0 there are no coverings branched
at D, unless m0 = 1. We could also deduce this result by looking at the group
πorb

1 (P1, D). Indeed, for k = 0 this group is trivial and the Branching Condition
can not be satisfied.

In case k = 1 one has eorb(P1, D) = 1/m0 + 1/m1 > 0. Hence, if a covering
M → P1 branched at D exists, then M � P1. Suppose that it exists and let G
be its Galois group. By (1.3) one should have |G| = 2m0m1/(m0 + m1) ∈ Z>0.
By the Branching Condition G must contain elements of order m0 and m1, in
other words |G| must be divisible by m0 and m1. This is possible only if m :=
m0 = m1. In this case a covering branched at D exists, it is the power map
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Group (m0,m1,m2) order
Cyclic (1,m,m) m
Dihedral (2, 2,m) 2m
Tetrahedral (2, 3, 3) 12
Octahedral (2, 3, 4) 24
Icosahedral (2, 3, 5) 60

Table 1. Finite subgroups of PGL(2,C).

ϕm : [z0 : z1] ∈ P1 → [zm
0 : zm

1 ] ∈ P1. We could also deduce this result by looking
at the group πorb

1 (P1, D) as in the example above.
Now let us consider the case k = 2. Observe that a three-point set in P1

is projectively rigid, i.e., any two such sets can be mapped onto each other by a
projective transformation. Assume m0 ≤ m1 ≤ m2 and put ρ := 1/m0 + 1/m1 +
1/m2. The orbifold euler number is then ρ− 1.

If ρ−1 > 0, then the covering must be P1. Hence, if a covering branched at D
exists, the Galois group must be of order 2ρ−1. In this case, either m0 = m1 = 2
or (m0,m1,m2) is one of (2, 3, 3), (2, 3, 4) or (2, 3, 5), the corresponding Galois
groups must be of orders 2n, 12, 24 and 60 respectively. The group

πorb
1 (P1,m0p0 + m1p1 + m2p2) �

〈
μ0, μ1, μ2 |μm0

0 = μm1
1 = μm2

2 = μ0μ1μ2 = 1
〉

is called a triangle group, it turns out that it is finite of (the right) order 2ρ−1 if
ρ > 1 and satisfies the Branching Condition. Hence there exists Galois coverings
P1 → P1 branched at D. Historically this follows from Klein’s classification of finite
subgroups of PGL(2,C) � Aut(P1). Each group is the symmetry group of one of
the platonic solids inscribed in a sphere. An independent proof of this result will
be given in Section 2.6, except in the icosahedral case.

If ρ − 1 = 0, then the orbifold Euler number of (P1,m0p0 + m1p1 + m2p2)
vanishes, and (m0,m1,m2) is one of (2, 3, 6), (2, 4, 4) or (3, 3, 3) (one may also
add the triple (2, 2,∞)). In these cases, the abelianizations Ab

(
πorb

1 (X,D)
)

are
finite and satisfy the Branching Condition. Hence, they are covered by Riemann
surfaces of genus 1 (an elliptic curve), and their universal covering is C. The
groups πorb

1 (X,D) are infinite solvable. Similary, the Galois coverings branched at
the divisors D := 2m0 + 2m1 + 2m2 + 2m3 are also elliptic curves. Each one of
these coverings corresponds to a regular tessellation of the plane.

Any pair (P1, D) not considered above has negative orbifold euler character-
istic. The question of existence of finite coverings branched at D in this case is
known as Fenchel’s problem. It amounts to finding finite quotients of πorb

1 (P1, D)
satisfying the Branching Condition and is of combinatorial group theoretical in
nature. Fenchel’s problem has been solved by Bundgaard–Nielsen [2] and was gen-
eralized by Fox [6] to pairs (R,D) where R is a Riemann surface. These pairs
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are covered by Riemann surfaces of genus > 1 and their universal covering is the
Poincaré disc. Summing up, we have

Theorem 1.4 (Bundgaard–Nielsen, Fox). Let k ≥ 2 and let D := Σk
0mipi be a

divisor on P1. Then there exists a finite Galois covering M → P1 which is branched
at D; and M is

(i) (elliptic case) P1 if k = 1 and m0 = m1 or k = 2 and Σ2
01/mi > 1,

(ii) (parabolic case) a Riemann surface of genus 1 if k = 2 and Σ2
01/mi = 1 or

k = 3 and m0 = · · · = m3 = 2, and
(iii) (hyperbolic case) a Riemann surface of genus > 1 otherwise.

1.2. Fenchel’s problem

In the last part of this section we present some results on branched coverings,
which are of independent interest.

A natural generalization of Fenchel’s problem to higher dimensions is: given
a complex manifold X and a divisor with coefficients in Z>1 on X , decide whether
there exists a Galois covering M → X branched at D, regardless of the question
of desingularization. There is no hope for a complete solution of the generalized
Fenchel’s problem as in Theorem 1.4, since the group π1(X\supp(D)) does not
admit a simple presentation, and it can be trivial, abelian, finite non-abelian, or
infinite. However, there are some partial results obtained by several authors.

Theorem 1.5 (Kato). Let H := H0 ∪ · · · ∪ Hk be an arrangement of lines in P2

such that any line contains a point of multiplicity at least 3. Let m0, . . . ,mk ∈ Z>1

and put D := Σk
0miHi. Then there exists a finite Galois covering of P2 branched

at D.

Kato also describes the resolution of singularities of the covering surfaces, and
this resolution is compatible with the blowing-up of points of multiplicity > 2 of the
branch locus. There is a generalization of the Kato theorem to conic arrangements
given by Namba [17]. At the other extreme there is the following result concerning
irreducible curves. Recall that for p, q coprime integers Oka [18] constructed an
irreducible curve Cp,q of degree pq and with π1(P2\Cp,q) � Z/(p) % Z/(q). For a
proof of the following theorem see [24].

Theorem 1.6. If Cp,q is an Oka curve, then for any m ≥ 1 there exists a finite
Galois covering of P2 branched at mCp,q.

Given a projective manifold X , which groups can appear as the Galois group
of a branched covering of X? This question has the following solution.

Theorem 1.7 (Namba [16]). (i) For any projective manifold X and any finite
group G there is a finite branched Galois covering M → X with G as the
Galois group.

(ii) For n ≥ 2 there exists a covering of the germ (Cn, 0) with a given finite Galois
group.
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2. Orbifolds

In the previous section we studied branched Galois coverings of complex manifolds,
which are possibly singular. Under which conditions is a finite branched covering
of a complex manifold smooth? Loosely speaking, an orbifold is a pair (X,D) that
admits locally a branched covering by a smooth manifold.

2.1. Transformation groups

A transformation group is a pair (G,M) where M is a connected complex manifold
and G is a group of holomorphic automorphisms of M acting properly discontin-
uously, in particular for any z ∈M the isotropy group

Gz := {g ∈ G : gz = z}
is finite. The most important example of a transformation group is (G,M), where
M is a symmetric space such as the polydisc Δn or the n-ball Bn. Let (G,M) be
a transformation group and X its orbit space with the projection ϕ : M → X .
The orbit space X is an irreducible normal analytic space endowed with a b-map
defined as

bϕ : x ∈ X → |Gz | ∈ Z>0

where z ∈ ϕ−1(x). In dimension 1 the orbit space X is always smooth. In higher
dimensions X may have singularities of quotient type.

The product of two transformation groups (G1,M1) and (G2,M2) is the
transformation group (G1×G2,M1×M2) where G1×G2 acts in the obvious way.

Example 2.1. (The power map) The model example of a transformation group is
(Z/(m),C), where m ∈ Z>0 and the element [j] ∈ Z/(m) acts by

ψ[j] : z ∈ C→ ωjz ∈ C,

ω being a primitive m-th root of unity. The orbit space of (Z/(m),C) is C. The
orbit map is the power map ϕm : z ∈ C → zm ∈ C. The isotropy group of the
origin is the full group Z/(m), whereas the isotropy group of any other point is
trivial. Hence the b-map is

bϕ(x) =
{

m x = 0
1 x �= 0. (2.1)

More generally, consider the product transformation group (⊕n
i=1Z/(mi),Cn). Ob-

viously Cn is the orbit space of (⊕n
i=1Z/(mi),Cn), and the orbit map is ϕ�m :

(z1, . . . , zn) → (zm1
1 , . . . , zmn

n ). Let Hi be the hyperplane defined by zi = 0. The
b-map of ϕ�m is

bϕ�m
(p) =

∏
p∈Hi

mi

Example 2.2. (The projective power map) Let as above (G,Cn+1) be the product
of n + 1 copies of the transformation group (Z/(m),C), where G := ⊕n

i=0Z/(m).
Let ω be a primitive mth root of unity, the element ([j0], . . . [jn]) ∈ G acts by

ψ([j0],...,[jn]) : (z0, . . . , zn) ∈ Cn+1 → (ωj0z0, ω
j1z1 : · · · : ωjnzn) ∈ Cn+1.
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Projectivizing Cn+1, we get the projective space Pn. The diagonal Δ := {(g, . . . , g) |
g ∈ Z/(m)} of G acts trivially on Pn. The quotient G/Δ � (Z/(m))n acts faithfully
on Pn. The orbit space of (G/Δ,Pn) is Pn itself. The orbit map is

ϕm : [z0 : · · · : zn] ∈ Pn → [zm
0 : · · · : zm

n ] ∈ Pn

The map ϕm is called a polycyclic covering of Pn. Let Hi := {zi = 0}. For any
point p ∈ Pn denote by α(p) the number of hyperplanes Hi through p. Then the
b-map of ϕm is (see Figure 2.3 for the case n = 2).

b(p) = mα(p) (2.2)

2m

2m 2m

m m

m

1

Figure 2.3. The b-map of the bicyclic covering ϕ2 : P2 → P2

Example 2.3. (A singular orbit space) Consider the action of [j] ∈ Z/(m) on C2

by
ψ[j] : (x, y) ∈ C2 → (ωjx, ω−jy) ∈ C2

The orbit space of (Z/(m),C2) is the hypersurface in C3 defined by zm = xy,
since the quotient map is ψ : (x, y)→ (xm, ym, xy). This hypersurface has a cyclic
quotient singularity at the origin.

2.2. Transformation groups and branched coverings

A transformation group is a locally finite branched Galois covering, as we now
proceed to explain. Let (G,M) be transformation group with the orbit space X .
Let ϕ : M → X be the orbit map and put

Rϕ := {z ∈M : |Gz | > 1} and Bϕ := {x ∈ X | bϕ(x) > 1} (= ϕ(Rϕ)),

where Gz is the stabilizer of z. Let X̄ := X\Sing(X) be the smooth part of X .
(It can happen that a singularity of X lies on Bϕ.) Let x ∈ X̄ and z ∈ ϕ−1(x).
Let Mz be the germ of M at z and Xx the germ of X at x. Then Gz acts on Mz,
and the orbit space is Xx. Since |Gz | is finite and Xx is smooth, the orbit map of
germs

ϕz : Mz → Xx

is a finite Galois covering branched along Bϕ,x Therefore locally one can define
the branch divisor Dϕ,x, and the local branch divisors patch and yield a global
branch divisor Dϕ supported by Bϕ. Let Dϕ = ΣmiHi, where H1, H2 . . . are the
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irreducible components of Bϕ. The divisor Dϕ is always locally finite and in all of
the cases considered in this article, it is a finite sum. Thus Dϕ is defined on the
smooth part X̄ of X — in what follows its closure in X will be denoted by Dϕ

again.
Let us turn our attention to the covering-germ ϕz : Mz → Xx, which is a

finite Galois covering branched at Dϕ,x. Since Mz is a smooth germ, it is simply
connected. Hence ϕz must be the universal covering branched at Dϕ,x, in other
words the Galois group of ϕz is

Gz � πorb
1 (X,Dϕ)x,

where we denote the germ-pair (Xx, Dx) by (X,D)x. In particular, one has

b(x) = |Gx| = |πorb
1 (X,Dϕ)x|

which also shows that the latter groups must be finite.
What is said above is in fact true for a singular point x ∈ X . For simplicity,

assume that x /∈ Bϕ. Since Mz is a smooth germ it is simply connected and thus
the covering germ ϕz : Mz → Xx must be universal. In other words the Galois
group is Gz � π1(Xx). For example, if X ⊂ C3 is defined by zm = xy, then π1(XO)
is cyclic of order m, see Example 2.3.

2.3. b-spaces and orbifolds

Recall that a transformation group (G,M) induces a b-map on its orbit space X .
Conversely, let X be a normal complex space and b a map X → Z>0. The pair
(X, b) is called a b-space. The basic question related to a b-space is the uniformiza-
tion problem: Under which conditions does there exist a (finite) transformation
group (G,M) with X as the orbit space and with the quotient map ϕ : M → X
such that b = bϕ ? In case such a transformation group exist, it is called a uni-
formization of (X, b) and (X, b) is said to be uniformized by (G,M). Observe
that these definitions can be localized. Obviously, if (X, b) is uniformizable, then
it is locally finitely uniformizable, that is the germs (X, b)x must admit finite
uniformization.

Definition 2.1. A locally finite uniformizable b-space (X, b) is called an orbifold.
The space X is said to be the base space of (X, b), and (X, b) is said to be an
orbifold over X . The set {x ∈ X | b(x) > 1} is called the locus of the orbifold. An
orbifold with a two-dimensional base is called an orbiface.

Orbifolds (X, b) and (X ′, b′) are said to be equivalent if there is a biholomor-
phism ε : X → X ′ such that the following diagram commutes.

X
ε � X ′

Z>0

�

b

′b
�
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The product of two b-spaces (X1, b1) and (X2, b2) is the b-space (X1, b1) ×
(X2, b2) which is defined as (X1 ×X2, b) where b(x, y) := b1(x)b2(y). If (Xi, bi) is
an uniformized by (Gi,Mi) for i = 1, 2, then the product orbifold is uniformized
by (G1,M1)× (G2,M2).

Let (X, b) be an orbifold. Then by locally finite uniformizability its locus B
is a locally finite union of hypersurfaces H1, H2 . . . , and b must be constant along
Hi\(Sing(B) ∪ Sing(X)). Let mi be this number, and put Db := ΣmiHi (in most
cases of interest this will be a finite sum). The orbifold fundamental group of (X, b)
is defined that of the pair (X,Db).

Lemma 2.2. If (X, b) is an orbifold, then b(x) = |πorb
1 (X, b)x| for any x ∈ X.

Proof. Let x ∈ X . Since (X, b) is an orbifold, the germ (X, b)x admits a finite
uniformization. Hence there is a (unique) transformation group (Gz ,Mz) with
(X, b)x as the orbit space, such that bϕz = bx, where ϕz : Mz → (X, b)x is the
quotient map and ϕ−1

z (x) = {z} (in other words Gz stabilizes z). By Lemma 1.3
one has the exact sequence

0→ π1(Mz)→ πorb
1 (X, b)x → Gz → 0

Since Mz is smooth, it is simply connected, so that Gz � πorb
1 (X, b)x. Hence

b(x) = |Gz | = |πorb
1 (X, b)|. �

Let (X, b) be an orbifold and let Db := ΣmiHi be the associated divisor.
Since πorb

1 (X, b)x is defined as the group πorb
1 (X,Db)x, and since this latter group is

determined by Db, Lemma 2.2 implies that the b-function is completely determined
by Db. In other words the pair (X,Db) determines the pair (X, b). On the other
hand in dimensions ≥ 2 most pairs (X,D) do not come from an orbifold. The
local uniformizability condition puts an important restriction on the possible pairs
(X,D), in particular the local orbifold fundamental groups of (X,D) must be
finite. In dimension 2 this latter condition is sufficient for local uniformizability,
since by a theorem of Mumford a simply connected germ is smooth in dimension
2, see Theorem 3.1 below. This is no longer true in dimensions ≥ 3, see [3] for
counterexamples.

Example 2.4. Consider the orbifold (C, bm), where

bm(z) =
{

m z = 0
1 z �= 0.

This orbifold is uniformized by the transformation group (Z/(m),C), the uni-
formizing map is the power map. The (multivalued) inverse of a covering map is
called a developing map. In this case the developing map is ϕ−1

m : [x : y] ∈ P1 →
[x1/m : y1/m] ∈ P1.

Example 2.5. Let p0, . . . , pk be k + 1 distinct points in P1 and let m0, . . . ,mk be
positive integers. Let b : P1 → Z>0 be the function with b(pi) = mi for i ∈ [0, k]
and b(p) = 1 otherwise. Around the point pi the b-space (P1, b) is uniformized
by the transformation group (Z/(mi),C). Hence, (P1, b) is an orbifold, which can



386 A. Muhammed Uludağ

also be denoted by (P1,Σk
0mipi). Theorem 1.4 completely answers the question of

uniformizability of these orbifolds.

Example 2.6. (See Figure 2.4) Let p, q be two integers and consider the germ
(C2, b)0 where b(0, 0) = pq, b(x, 0) = q for x �= 0, b(0, y) = p for y �= 0 and
b(x, y) = 1 for xy �= 0. Put H1 := {x = 0} and H2 := {y = 0}. The group
π1(C2\(H1∪H2))0 is the free abelian group generated by the meridians of H1, H2

so that πorb
1 (C2, b)0 � Z/(p)⊕Z/(q) is finite. This is indeed an orbifold germ, the

map (x, y) ∈ C2 → (xp, yq) ∈ C is its uniformization. On the other hand, consider
the germ of the pair (C2, D) at the origin, where D = pH1 + qH2 + rH3 with
H1 := {x = 0}, H2 := {y = 0} and H3 := {x− y = 0}. One has

π1(C2\(H1 ∪H2 ∪H3)) �
〈
μ1, μ2, μ3 | [μi, μ1μ2μ3] = 1 (i ∈ [1, 3])

〉
where μi is a meridian of Hi for i ∈ [1, 3] (see [25]). The local orbifold fundamental
group admits the presentation

πorb
1 (C2, D)0 �

〈
μ1, μ2, μ3 | [μi, μ1μ2μ3] = μp

1 = μq
2 = μr

3 = 1 (i ∈ [1, 3])
〉
.

Obviously, adding the relation δ = 1 to this group gives a triangle group. Hence
this group is a central extension of the triangle group and is finite of order 4ρ−2

if ρ := 1/p + 1/q + 1/r − 1 > 0, infinite solvable when ρ = 0 and “big” otherwise.
(Here, “big” means that the group contains non-abelian free subgroups.) Hence
(C2, D)0 do not come from an orbifold germ if ρ < 0. For ρ > 0 it comes from an
orbifold germ, its uniformization will be described explicitly in Section 3.2.

q

p

p q

r

Figure 2.4. Some orbiface germs with a smooth base

2.4. A criterion for uniformizability

Let (X, b) be an orbifold and let Db be the associated divisor. Recall that the
group πorb

1 (X, b) is by definition the group πorb
1 (X,Db). If

ρ : πorb
1 (X, b) � G

is a surjection onto a finite group with Ker(ϕ) satisfying the branching condition,
then there exists a Galois covering ϕ : M → X branched at Db, where M is a
possibly singular normal space.
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Example 2.7. Let (X, b) = (C2, b) with b(0, 0) = m2, b(x, 0) = m = b(0, y) (x, y �=
0) and b(x, y) = 1 otherwise, where m ∈ Z>1. Then Db = mH1 + mH2, where
H1 := {x = 0} and H2 := {y = 0}. Consider the covering

ϕ : (x, y, z) ∈ {zm = xy} ⊂ C3 −→ (x, y) ∈ C2.

This is a Z/(m)-Galois covering branched at D with bϕ(0, 0) = bϕ(0, y) = bϕ(x, 0)=
m and bϕ(x, y) = 1 otherwise. The covering space is singular. Note that bϕ �= b.
On the other hand, the Galois covering ψ : (x, y) ∈ C2 → (xm, ym) ∈ C2 satisfies
bψ = b, and it is smooth.

Lemma 2.3. Let (X, b) be an orbifold, and ϕ : M → X a Galois covering branched
at Db. Then M is smooth if and only if bϕ ≡ b.

Proof. For any x ∈ X , there is the induced branched covering of germs ϕx : Mz →
Xx, where z ∈ ϕ−1(x). The stabilizer Gz is the Galois group of ϕx. The germ
Mz is smooth only if ϕx is the uniformization map of the germ (X, b)x, which is
the universal branched covering and has πorb

1 (X, b)x as its Galois group. In other
words, Mz is smooth if and only if Gz � πorb

1 (X, b)x, if and only if

bϕ(x) = |G(z)| = |πorb
1 (X, b)x| = b(x). �

For a point x ∈ X , there is a natural map

π1(X\Db)x −→ π1(X\Db)

and therefore a map ιx : πorb
1 (X, b)x → πorb

1 (X, b), induced by the inclusion. The
group Gz is the image of the composition map

ρ ◦ ιx : πorb
1 (X, b)x −→ πorb

1 (X, b)→ G.

Theorem 2.4. Let ρ : πorb
1 (X, b) � G be a surjection and let ϕ : M → X be

the corresponding Galois covering of X branched along Db. The pair (G,M) is a
uniformization of the orbifold (X, b) if and only if for any x ∈ X, the map

ρ ◦ ιx : πorb
1 (X, b)x → G

is an injection.

Proof. One has bϕ ≡ b if and only if for any x ∈ X and z ∈ ϕ−1(x) the image Gz

of ρ◦ ιx is the full group πorb
1 (X, b)x. The result then follows from Lemma 2.2. �

2.5. Sub-orbifolds and orbifold coverings

Let (X, b) be an orbifold. An orbifold (X, b′) is said to be a sub-orbifold of (X, b)
if b′(x) divides b(x) for any x ∈ X . Let ϕ : Y → X be a uniformization of (X, b′).
Define the function c : Y → Z>0 by

c(y) :=
b(ϕ(y))
b′(ϕ(y))

.

Then ϕ : (Y, c)→ (X, b) is called an orbifold covering, and (Y, c) is called the lifting
of (X, b) to the uniformization Y of (X, b′). The exact sequence of Lemma 1.3 can
be generalized to the following commutative diagram:



388 A. Muhammed Uludağ

0 0

0 � π1(Y )



� πorb
1 (X, b′)



� G � 0

0 � πorb
1 (Y, c)



� πorb
1 (X, b)



� G

�


� 0

Example 2.8. Let m,n ∈ Z>0 and consider the orbifold (C, bmn) defined in Ex-
ample 2.5. Then (C, bm) is a suborbifold of (C, bmn), which is uniformized via
ϕm : z ∈ C→ zm ∈ C. Hence ϕ is an orbifold covering (C, bn)→ (C, bmn).

Remark 2.5. If Y ⊂ X is an irreducible subvariety of positive codimension, then an
orbifold structure (X, b) on X induces an orbifold structure on the normalization
of Y as follows (note that Y may belong to the locus of (X, b)): Let y ∈ Y , and
take an irreducible branch Ỹy of the germ Yy . Since (X, b) is an orbifold, there
is a finite uniformization ϕz : Mz → Xy. The germ ϕ−1

z (Ỹy) may or may not
be irreducible. The restriction of ϕz to an irreducible component of ϕ−1

z (Ỹy) is a
branched Galois covering onto Ỹy. Let b′y be its b-map. The b-maps b′y for varying
y patch together and yield a b-map b′ on Y . Then (Y, b′) is the induced orbifold
structure on Y , which might also be called a suborbifold of (X, b). If ϕ : M → X
is a uniformization of (X, b), then its restriction to an irreducible component of
ϕ−1(Y ) is a uniformization of (Y, b′). The induced orbifold has a significance in
relative proportionality, if dim(X) = 2 and dim(Y ) = 1, then (Y, b′) is relatively
proportional only if and only if the natural map πorb

1 (Y, b′) → πorb
1 (X, b) is an

injection.

2.6. Covering relations among triangle orbifolds

Convention. In order to present an orbifold (X, b) one has to specify its b-map.
However, since by Lemma 2.2 the pair (X,Db) determines the orbifold (X, b),
an orbifold can be presented by a pair (X,D). Since the latter presentation is
sometimes more practical, we shall use it in the sequel. To be precise, in what
follows the expression “the orbifold (X,D)” refers to the pair (X, b), where the
b-map is defined by b(p) := |πorb

1 (X,D)p| (it is implicitly assumed that (X, b) is
indeed an orbifold, i.e., it is locally finite uniformizable).

Let us illustrate the notion of orbifold coverings in the simplest, one-dimen-
sional setting. In this subsection, we fix three points p0 = [1 : 0], p1 = [0 : 1], p2 :=
[1 : 1] in P1. Consider first the orbifold (P1, rm0p0 + rm1p1). Then (P1, rp0 + rp1)
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is a suborbifold, which is uniformized by (Z/(r),P1) via ϕr : [x : y] → [xr : yr].
Hence, there is an orbifold covering

ϕr : (P1,m0p0 + m1p1)→ (P1, rm0p0 + rm1p1).

Coverings of triangle orbifolds, elliptic case. Now consider the orbifold (P1, 2p0 +
2p1 + mp2). Then (P1, 2p0 + 2p1) is a suborbifold, which is uniformized by P1 via
ϕ2. Hence, there is a covering as in Figure 2.5, where q0 := [1 : 1], q1 := [1 : −1],

m

m

m
2

2
φ
2

Figure 2.5. The covering ϕ2 : (P1,mq0 + mq1)→ (P1, 2p0 + 2p1 + mp2)

so that {q0, q1} = ϕ−1
2 (p2). One can map (P1,mq0 +mq1) onto (P1,mp0 +mp1) by

a projective transformation. Since this latter orbifold is uniformized by ϕm, one
has a chain of coverings

P1 ϕm→ (P1,mq0 + mq1)
ϕ2→ (P1, 2p0 + 2p1 + mp2).

Then ϕ2 ◦ϕm is the uniformization of the dihedral orbifold (P1, 2p0 + 2p1 +mp2).
(The covering ϕ2 ◦ϕm is Galois since it is universal). Now consider the octahedral
orbifold (P1, 2p0 + 4p1 + 3p2). There is a covering

ϕ2 : (P1, 2p1 + 3q0 + 3q1)→ (P1, 2p0 + 4p1 + 3p2).

Since any set of three points can be mapped to any set of three points on P1, one
has (P1, 2p1 + 3q0 + 3q1) � (P1, 3p0 + 3p1 + 2p2). This latter orbifold admits the
covering

ϕ3 : (P1, 2r0 + 2r1 + 2r2)→ (P1, 3p0 + 3p1 + 2p2)

where r0 = [1 : 1], r1 := [1 : ω], r2 := [1 : ω2] and ω being a primitive cubic root
of unity, so that {r0, r1, r2} = ϕ−1

3 (p2).

Exercise 2.1. Write down the uniformizing map of the octahedral orbifold explic-
itly.

Coverings of triangle orbifolds, parabolic case. Consider the orbifold (P1,Σ2
03pi).

The orbifold (P1, 3p0 + 3p1) is a suborbifold uniformized by P1 via ϕ3, and
ϕ−1

3 (p2) = {r0, r1, r2} as above. Hence, there is an orbifold covering as in Fig-
ure 2.6:

Since any two set of three points on P1 are projectively equivalent, we see
that the orbifold (P1,Σ2

03pi) admits a self-covering. This is not very surprising,
since it is uniformized by the elliptic curve C which admits an automorphism of
order 3, whose quotient is C.
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3

3
φ
3

3

3 3 3

Figure 2.6. The covering ϕ3 : (P1,Σ2
03ri)→ (P1,Σ2

03pi)

Exercise 2.2. Discover the coverings of the remaining parabolic orbifolds with pa-
rameters (2, 4, 4), (2, 3, 6) and (2, 2, 2, 2) (one can also add the parameters (∞,∞)
and (2, 2,∞) to this list).

Coverings of triangle orbifolds, hyperbolic case. As an example, consider the orb-
ifold (P1, 5p0 + 5p1 + mp2), which is hyperbolic for any m ∈ Z>1. The orbifold
(P1, 5p0 + 5p1) is a suborbifold uniformized by P1 via ϕ5, and ϕ−1

5 (p2) = {si :=
[1, ξi] | i ∈ [0, 4]}, where ξ is a primitive fifth root of unity. Hence, there is an
orbifold covering as in Figure 2.7.

5

5
φ

m

5

m m

mm

m

Figure 2.7. The covering ϕ5 : (P1,Σ4
0msi)→ (P1, 5p0 + 5p1 + mp2)

Now (P1,ms0 +ms1) is a suborbifold of (P1,Σ4
0msi), and it is clear how one

can continue in this manner to get an infinite tower of hyperbolic orbifolds.

3. Orbifold Singularities

Recall that an orbifold germ (X, b)x is a germ that admits a finite uniformization
by a transformation group (Gz ,Mz), where Mz is a smooth germ and Gz is a finite
group acting on Mz and fixes z. According to a classical result of Cartan [4], any
orbifold germ (X, b)x is in fact equivalent to the quotient of the germ Cn

0 by finite
subgroup of GL(n,C). In other words, any orbifold germ (X, b)x admits a finite
uniformization by (G,Cn) where G is a finite subgroup of GL(n,C). Observe that
any finite group appears as a subgroup of GL(n,C) for sufficiently large n. For
small n these subgroups can be effectively classified.

Any finite subgroup of GL(C, 1) � C∗ is cyclic and is generated by a root
of unity, its orbit space is C and the quotient map is the power map. Hence in
dimension one, any orbifold germ (X, b)x is of the form (C,mO)O, where O ∈ C is
the origin. In higher dimensions, an orbifold germ (X, b)x may have singularities.
Resolution graphs of all orbiface singularities can be found in the appendix to [14].
Let us first consider orbifolds (X, b) with a smooth base space X .
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Let G ⊂ GL(n,C). Then G acts on the polynomial ring C[x1, . . . , xn] by

M(P )(x) := P (M−1x).

The ring of invariant polynomials under this action is denoted by C[x1, . . . , xn]G.
Recall that M ∈ GL(n,C) is called a reflection if one of its eigenvalues is a root
of unity ω �= 1 and the remaining eigenvalues are all 1. A group G ⊂ GL(n,C) is
called a reflection group if it is generated by reflections. By Chevalley’s theorem [5]
the ring C[x1, . . . , xn]G is generated by n algebraically independent homogeneous
invariants if and only if G is a reflection group. In geometrical terms, the quotient
Cn/G is isomorphic to Cn if and only if G is a reflection group. In other words,
germs (X, b)x with a smooth base are in a one-to-one correspondence with finite
reflection groups.

Irreducible finite reflection groups have been classified by Shepherd and Todd
[20]. A group G ⊂ GL(n,C) is called imprimitive if Cn can be decomposed as a
non-trivial direct sum of subspaces permuted by G, otherwise it is called primitive.
Matrices permuting the coordinates of GL(n,C) generate the symmetric group
Sn, which is primitive. Aside from Sn and an infinite family of imprimitive groups
G(m, p, n) there are only a finite number of primitive reflection groups, which are
called exceptional reflection groups. There are no exceptional reflection groups in
dimensions ≥ 9.

Observe that if G is a subgroup of GL(n,C), then its projectivization PG is
a subgroup of PGL(n,C). The extension G → PG is central, since its kernel is
generated by the multiples of the identity matrix I. If G is finite, then the kernel
of G→ PG is generated by ωI, where ω is a root of unity.

3.1. Orbiface singularities

The following theorem gives a topological characterization of orbiface germs.

Theorem 3.1. In dimension two, (X, b)x is an orbiface germ if and only its orbifold
fundamental group πorb

1 (X, b)x is finite.

Proof. We must show that (X, b)x admits a finite smooth uniformization. Since
πorb

1 (X, b)x is finite, its universal covering is a finite covering by a simply con-
nected germ. In dimension two, a simply connected germ is smooth by Mumford’s
theorem [15] (this is wrong in dimensions > 2, see [3] for a counterexample). The
other direction is clear. �

We will mostly consider orbifaces with a smooth base. The following result
characterizes their germs.

Theorem 3.2. All orbiface germs with a smooth base are given in the table below.
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qp
q

p
r

p

(n,m)
p q

(n)

p q

r
(n)

2

q
(2,n)

2
2

(2,3)

1 2 3 4 5 6 7

No. Equation Condition Order
1 xy −− pq

2 xy(x + y) 0 < ρ := 1
p + 1

q + 1
r − 1 4ρ−2

3 xn − ym (gcd(n,m) = 1) 0 < ρ := 1
n + 1

m + 1
p − 1 4

nmρ−2

4 x2 − y2n (n ≥ 2) 0 < ρ := 1
p + 1

q + 1
n − 1 4

nρ
−2

5 y(x2 − y2n) 0 < ρ := 1
p + 1

q + 1
nr − 1 4

nρ
−2

6 y(x2 − yn) (n odd) −− 2nq2

7 x(x2 − y3) −− 96

Table 2. Orbiface germs with a smooth base

In dimension 2, Yoshida observed the following facts (see [25]): If H ⊂
GL(2,C) is a reflection group with a non-abelian PG, then among the reflec-
tion groups with the same projectivization there is a maximal one G containing
H . Every reflection group K with PK = PG is a normal subgroup of this maximal
reflection group. In other words, the germ C2/K is a Galois covering of C2/G. If G
is maximal reflection group, then the quotient C2/G is familiar from Example 2.6;
it is the orbiface (C2, pX+qY +rZ) for some (p, q, r) with 1/p+1/q+1/r−1> 0,
where X , Y , Z are three lines meeting at the origin (recall our convention in 2.6).
Hence any orbiface germ (X, b)x with a smooth base Xx is a covering of the germ
(C2, pX + qY + rZ)0.

3.2. Covering relations among orbiface germs

Below we give some examples of covering relations among orbiface germs.
The abelian germs (C2, pX+qY )0. Abelian reflection groups are always reducible,
and therefore isomorphic to a Z/(p) ⊕ Z/(q) for some p, q. Let us study some
coverings of the quotient orbiface germ, which is equivalent to (C2, pX + qY )0
where X := {x = 0} and Y := {y = 0}. Any smooth sub-orbiface of this orbiface
is of the form (C2, rX + sY )0 where r|p and s|q and r, s ∈ Z≥1. This latter
orbiface germ is uniformized by C2

0 via the map ϕr,s : (x, y) ∈ C2 → (xr , ys) ∈ C2,
with Z/(r) ⊕ Z/(s) as the Galois group. The lifting of (C2, pX + qY )0 to this
uniformization is the orbiface (C2, p

rX, q
sY )0. In other words, Z/(r) ⊕ Z/(s) acts

on the orbiface germ (C2, p
rX, q

sY )0, and the quotient is (C2, pX + qY )0.
The dihedral germ (C2, 2X + 2Y + mZ)0. Here we discuss the case where m
is odd, the case of even m is left as an exercise. This orbiface has the sub-
orbifaces (C2, 2X)0, (C2, 2Y )0, (C2,mZ)0, (C2, 2X + 2Y )0, (C2, 2Y + mZ)0 and
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(C2,mZ + 2X)0. Each one of these suborbifaces is uniformized by C2
0 via a bi-

cyclic map ϕp,q, note that ϕr,s ◦ ϕp,q = ϕrp,sq. The uniformizer of (C2, 2X)0
is the map ϕ2,1. Denote the branch ϕ−1

2,1(Y ) = {y = 0} by Y and the branch
ϕ−1

2,1(Z) = {x2 − y = 0} by Z ′. Hence ϕ2,1 is an orbiface covering

(C2, 2Y + mZ ′)0 → (C2, 2X + 2Y + mZ)0.

Now ϕ1,2 is a covering of (C2, 2Y + mZ ′)0 and one has ϕ−1
1,3(Z

′) = {x2 − y2 = 0}.
Put U := {x + y = 0} and V := {x− y = 0}. There is an orbiface covering

(C2,mU + mV )0 → (C2, 2Y + mZ ′)0
which is related to the suborbiface (C2, 2X+2Y )0 of the initial orbiface (C2, 2X+
2Y + mZ)0. The germ (C2,mU + mV )0 is uniformized by C2 via ϕm,m. Hence
ϕ2,1 ◦ ϕm,m is the uniformization of the dihedral germ (C2, 2X + 2Y + mZ)0.
The icosahedral germ (C2, 2X + 3Y + 5Z)0. This orbiface has the suborbifaces
(C2, 2X)0, (C2, 3Y )0, (C2, 5Z)0, (C2, 2X + 3Y )0, (C2, 3Y + 5Z)0 and (C2, 5Z +
2X)0. Keeping the notations of the preceding paragraph, there is an orbiface cov-
ering

ϕ1,2 : (C2, 3Y + 5Z ′)0 → (C2, 2X + 3Y + 5Z)0.
Now ϕ1,3 is a covering of (C2, 3Y + 5Z ′)0, such that ϕ−1

1,3(Z
′) = {x2 − y3 = 0}, so

that there is an orbiface covering

(C2, 5Z ′′)0 → (C2, 3Y + 5Z ′)0
which is related to the suborbiface (C2, 2X+3Y )0 of the initial orbiface (C2, 2X+
3Y + 5Z)0. For coverings corresponding to other suborbifaces, see Figure 3.8.

The black dot on top of Figure 3.8 represents the isolated surface (Du Val)
singularity of type E8 given by the equation S := {(x, y, z) ∈ C3 |x2+y3+z5 = 0}.
It is clear how the projection (x, y, z)→ (x, y) defines a Z/(5)-orbiface covering by
this singularity of the the orbiface (C2, 5Z ′′)0. Other coordinate projections define
respectively Z/(2) and Z/(3)-coverings by the same singularity of the orbifaces
(C2, 2X ′′)0 (C2, 3Y ′′)0, defined in the same way as (C2, 5Z ′′). The germ of S at
the origin is the universal homology covering (i.e., the maximal abelian covering)
of the germ (C2, 2X+3Y +5Z)0. Notice that S0 is an orbiface germ with a singular
base space and empty branch divisor.

Exercise 3.1. Study the covering relations among other orbiface germs with a
smooth base. More generally, study the covering relation among orbiface germs
with a singular base and possibly with branch loci.

3.3. Orbifaces with cusps

Many transformation groups (G,M) encountered in practice are not cocompact. In
many cases, the orbit space M/G admits a “nice” compactification. It is possible
to incorporate the compactifications into the orbifold theory by considering pairs
(X, b) with extended b-functions with values in N∪{∞}, and by declaring that the
points with infinite b-value are added in the compactification process. Outside the
points with an infinite b-value, the pair (X, b) remains an orbifold. Let us consider
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Figure 3.8. Coverings of the icosahedral orbiface germ

the case where M is the 2-ball B2, and G is a finite volume discrete subgroup of
Aut(B2). Let (X, b) be the quotient orbifold. Then the germs (X, b)p with b(p) =∞
are called ball-cusp points. For smooth X , a classification of ball-cusp points was
given in [25]. It turns out that any such germ is a covering of one of the germs (i)
(C2, pH1+qH2+rH3)0 with ρ := 1/p+1/q+1/r = 1 and (ii) (C2, 2H1+2H2+2H3+
2H4)0 where H1, H2, H3 and H4 are smooth branches meeting transversally at the
origin. These germs are uniformized by a transformation group (Γ,C2), where Γ is a
parabolic subgroup of Aut(C2) generated by reflections. The orbifold fundamental
groups of these germs are infinite solvable. Note that many ball-cusp points (with
singular base and branch loci) are coverings of the germs (i) and (ii) above. For
example the germ at the origin of the isolated surface singularity z3 = xy(x − y)
is a triple covering of the germ (C2, 3H1 + 3H2 + 3H3)0 where H1, H2, H3 are
given by the polynomials x, y and x− y. This is called (somewhat paradoxically)
an elliptic singularity, since it is resolved by a blow up which replace the origin by
an elliptic curve.

In case M is the bidisc, the germs (X, b)p with b(p) = ∞ are called cusp
points. In [14] it was shown that the only cusp point with a smooth base is the
germ (C2, 2H1 + 2H2 + 2H3 + 2H4)0 where H1,H2, H3 and H4 are given by the
polynomials x, y and x − y and x − y2. This germ also has an infinite solvable
orbifold fundamental group, and admits several coverings by germs with a singular
base.
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4. Orbifaces

Let M be an algebraic surface and let K be its canonical class. The number

c21(M) := K ·K

is an important numerical invariant of M , and is called the first Chern number of
M . Let e(M) be the the Euler number of M (the Euler number is also called the
second Chern number of M and denoted by c2(M)). Hirzebruch proved in 1958
the celebrated proportionality theorem: If M is a quotient of the two-ball B2, then
one has

c1(M)2 = 3e(M).

Similarly, if M is a quotient of the bidisc Δ×Δ, then the proportionality c1(M)2 =
2e(M) holds. In 1977 Miyaoka and Yau proved the inequality c1(M)2 ≤ 3e(M)
for an arbitrary algebraic surface and the following converse to Hirzebruch’s pro-
portionality theorem: if M satisfies the c1(M)2 = 3e(M) > 0, then either M is
P2 or its universal covering is B2. The analogue of this result for surfaces with
c1(M)2 = 2e(M) > 0 is not correct.

Chern numbers are invariants of algebraic surfaces, but they have orbifold
versions. Below we introduce the Chern numbers for orbifolds over the base P2

only.

Definition 4.1. Let (P2, b) be an orbiface with the associated divisor Db = Σk
1miBi,

the curves Bi being irreducible of degree di for i ∈ [1, k]. The orbifold Chern
numbers of (P2, b) are defined as

c21(P
2, b) :=

[
−3 +

∑
i∈[1,k]

di

(
1− 1

mi

)]2

e(P2, b) := 3−
∑

i∈[1,k]

(
1− 1

mi

)
e(Bi\Sing(B)) −

∑
p∈Sing(B)

(
1− 1

b(p)
)
.

(If (P2, b) is an orbiface with cusp points set 1/b(p) = 0 whenever b(p) =∞.)

The orbifold Chern numbers have the following property: if M → (X, b) is a
finite uniformization with G as its Galois group, then

e(M) = |G|e(X, b) and c21(M) = |G|c21(X, b). (4.1)

The following orbiface analogue of the Miyaoka–Yau theorem was proved in
1989. We refer the reader to [14] for an introduction to metric uniformization
theory of algebraic surfaces.

Theorem 4.2 (Kobayashi, Nakamura, Sakai). Let (P2, b) be an orbiface of general
type, possibly with ball-cusp points. Then c21(P

2, b) ≤ 3e(P2, b), the equality holding
if and only if (P2, b) is uniformized by B2.
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4.1. Orbifaces (P2, D) with an abelian uniformization

Consider an orbifold (P2, D) where D = Σk
1miHi where Hi are irreducible and let

B := ∪k
1Hi be the support of D. Suppose (P2, D) admits a uniformization with an

abelian Galois group. Then for any point p, the local groups πorb
1 (P2, D)p must be

abelian since these groups inject into the Galois group. Nodes are the only orbifold
singularities with a smooth base and an abelian fundamental group. Hence B must
be a nodal curve. Then by the Zariski conjecture proved by Deligne and Fulton,
the group π1(P2\B) is abelian and admits the presentation

π1(P2\B) �
〈
μ1, . . . , μk

∣∣∣ k∑
1

diμi = 0
〉

where di := deg(Hi). Therefore the group πorb
1 (P2, D) is finite abelian and admits

the presentation

πorb
1 (P2, D) �

〈
μ1, . . . , μk

∣∣∣m1μ1 = · · · = mkμk =
k∑
1

diμi = 0
〉
.

Since the subgroup of the group 〈μ1, . . . , μk |m1μ1 = · · · = mkμk = 0〉 generated
by 〈Σk

1diμi〉 is of order lcm{mi/ gcd(mi, di) | i ∈ [1, k]}, we find that

|πorb
1 (P2, D)| =

∏k
1 mi

lcm{bi | i ∈ [1, k]} (4.2)

where bi := mi/ gcd(mi, di).
We claim that if (P2, D) admits a uniformization, then irreducible compo-

nents of B must be smooth: Assume the contrary; e.g., suppose that Hi has a
node at p ∈ P2. The local orbifold fundamental group of this node admits the
presentation

πorb
1 (P2, D)p � 〈μp, μ

′
p |miμp = miμ

′
p = 0〉 � Z/(mi)⊕ Z/(mi)

where μp and μ′
p are meridians of the branches of Hi meeting at p. Since Hi

is irreducible, μp and μ′
p are conjugate elements in πorb

1 (P2, D). Since this latter
group is abelian, one actually has μp = μ′

p. Hence, the subgroup of πorb
1 (P2, D)

generated by μp and μ′
p is at most Z/(mi) and can not be isomorphic to the local

orbifold fundamental group at p, which is Z/(mi)⊕ Z/(mi).
Suppose that (P2, D) is an orbiface with a nodal locus, whose irreducible com-

ponents are all smooth. Since the group πorb
1 (P2, D) is finite, either (P2, D) is not

uniformizable or there is a finite universal uniformization. Hence by Theorem 2.4,
(P2, D) is uniformizable if for every p ∈ P2, the image of the inclusion-induced
map

ρ ◦ ι∗ : πorb
1 (P2, D)p → πorb

1 (P2, D) (4.3)
is an injection.

For a point in P2\B the local orbifold fundamental group is trivial, so that
ρ◦ι∗ is always an injection. Now let p ∈ Hi\Sing(B). Then πorb

1 (P2, D)p � Z/(mi),
and ρ ◦ ι∗ is an injection only if the condition below is satisfied:
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Condition 1. For any i ∈ [1, k], the subgroup 〈μi〉 is of order mi in πorb
1 (P2, D).

(The notation 〈A〉 means the subgroup generated by the subset A). Finally, if p is
a point of intersection of Hi and Hj , i �= j, then

πorb
1 (P2, D)p = πorb

1 (P2,miHi + mjHj)p � Z/(mi)⊕ Z/(mj),

and ρ ◦ ι∗ is injective only if the following condition is satisfied:

Condition 2. For any pair of distinct integers i, j ∈ [1, k], the subgroup 〈μi, μj〉 is
of order mimj in πorb

1 (P2, D).

Obviously, Condition 2 implies Condition 1 (since any two curves intersects in P2).
Let D− (miHi +mjHj) be the divisor obtained from D by removing Hi and Hj .
Then Condition 2 is equivalent to

|πorb
1 (P2, D)| = |〈μi, μj〉||πorb

1 (P2, D − (miHi + mjHj))| ∀i, j ∈ [1, k], i �= j.

By (4.2), this is equivalent to the condition∏k
1 mi

lcm{bi | i ∈ [1, k]} =
∏k

1 mi

lcm{bi | i ∈ [1, k]\{i, j}} ∀i, j ∈ [1, k], i �= j

⇔ lcm{bi | i ∈ [1, k]} = lcm{bi | i ∈ [1, k]\{i, j}} ∀i, j ∈ [1, k], i �= j. (4.4)

Finally, one has the following condition, equivalent to Condition 2:

Condition 3. Any prime power dividing one of b1, . . . , bk must divide at least two
others.

We have proved the following theorem:

Theorem 4.3. Let D = Σk
1miHi where Hi are irreducible of degree di and let

B := ∪k
1Hi. Then (P2, D) is an orbiface with an abelian uniformization if and

only if B is a nodal curve whose irreducible components are all smooth, and the
numbers b1, . . . , bk satisfy Condition 3, where bi := mi/ gcd(mi, di).

Let p be a prime, α ∈ Z>0 and take numbers αi ∈ [0, α] for i ∈ [4, k]. Then
the vector

[pα, pα, pα, pα4 , pα5 , . . . , pαk ],

as well as any of its permutations, satisfies Condition 3. Any vector [b1, . . . , bk]
satisfying Condition 3 admits a unique factorization into a product of such vectors
with distinct p (where the product is taken component-wise).

For k ≤ 2, Condition 3 is satisfied only if b1 = b2 = 1, that is, when mi

divides di (i = 1, 2). For k = 3, it is satisfied only if b1 = b2 = b3. Some solutions
for k = 4 can be given as

[b1, b2, b3, b4] = [p3, p3, p3, p] � [q2, q6, q6, q6] � [r, r, r, r] . . .

where p, q, r are distinct primes and � is the operation of component-wise multi-
plication. In general, Condition 3 is always satisfied if k ≥ 2 and b1 = · · · = bk.
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Exercise 4.1. The study of algebraic surfaces from the point of view of possible
values of (c21, e) ∈ Z>0 ×Z>0 is called the surface geography. Study the geography
of abelian uniformizations of P2.

Orbifaces with a linear locus. Now suppose that B = ∪k
1Hi is a line arrangement.

By Theorem 4.3 the lines H1, . . . , Hk must be in general position. Then di = 1
for i ∈ [1, k], so that bi = mi. Obviously Condition 3 is not satisfied unless k ≥ 3,
except the trivial case b1 = b2 = 1. As we have already seen, in case k = 3 and
m1 = m2 = m3 =: m the uniformizing surface is P2 itself, with the polycyclic map

ϕm : [z1 : z2 : z3] ∈ P2 → [zm
1 : zm

2 : zm
3 ] ∈ P2

as the uniformizing map, where we assumed Hi = {zi = 0} for i = 1, 2, 3.
The orbifold (P2,Σ4

12Hi) is uniformized by P1 × P1. Indeed, (P2,Σ3
12Hi) is

a suborbifold which is uniformized by P2 via ϕ2, and the lifting of (P2,Σ4
12Hi)

to this uniformization is the orbifold (P2, 2Q), where Q � ϕ−1
2 (H4) is a smooth

quadric. This latter orbifold is uniformized by P1×P1 as we shall show below (see
Theorem 4.5).

Note that the orbifaces (P2, D) may admit intermediate uniformizations (e.g.,
uniformizations which are not universal). For example, consider the case D =
Σ6

12Hi. There is a surjection of degree 2

πorb
1 (P2, D) �

〈
μ1, . . . , μ6

∣∣∣ 2μ1 = · · · = 2μ6 =
6∑
1

2μi = 0
〉

�

〈
μ0, . . . , μ5

∣∣∣ 2μ1 = · · · = 2μ6 = μ1+μ2+μ3 = μ4+μ5+μ6 = 0
〉

Then the latter group G satisfies Condition 2, hence there is a uniformization with
G as the Galois group. The uniformizing surface is an Enriques surface N . As we
shall see below, the universal uniformization of (P2,Σ6

12Hi) is a K3 surface, which
is a double covering of N . Observe that the arrangement of hyperplanes ∪6

1Hi is
not projectively rigid, so that (P2,Σ6

12Hi) is in fact an orbiface family.

4.1.1. K3 orbifaces. A simply connected algebraic surface M with c21(M) = 0 is
called a K3 surface. It is known that all K3 surfaces have the same Euler number,
which is 24. An orbiface uniformized by a K3 surface M is called a K3 orbiface.
Since M is simply connected, this uniformization must be universal. Let (P2, D)
be a K3 orbiface uniformized by the K3 surface M , where D = Σk

1miHi and Hi is
an irreducible and reduced curve of degree di. Put B = ∪k

1Hi, then B is of degree
d = Σk

1di. Then

c21(P
2, D) =

c21(M)
|πorb

1 (P2, D)|
= 0 (4.5)

and

e(P2, D) =
e(M)

|πorb
1 (P2, D)|

=
24

|πorb
1 (P2, D)|

. (4.6)
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Equation 4.5 implies that∑
i∈[1,k]

di

(
1− 1

mi

)
= 3⇔

∑
i∈[1,k]

di

mi
= d− 3 (4.7)

which in turn implies that 4 ≤ d ≤ 6. Equation 4.6 implies that 24/e(P2, D) must
be an integer, which equals the order of the orbifold fundamental group. Under
the assumption that (P2, D) admits an abelian uniformization, this group order
can be computed easily. It is possible to classify all “abelian” K3 orbifaces in this
way, see [21] for details. Let us carry out this program for K3 orbifaces with a
linear support.
Abelian K3 orbifaces with a linear locus. Suppose k = 6. Equation (4.7) implies
Σ6

11/mi = 3, which forces m1 = · · · = m6 = 2. This orbifold satisfies the conditions
of Theorem 4.3 and is uniformizable. Hence, the universal uniformization is a K3
surface M1. The orbifold fundamental group

πorb
1 (P2, D) �

〈
μ1, . . . , μ6

∣∣∣ 2μ1 = · · · = 2μ6 = Σ6
0μi = 0

〉
is of order 32. Let us verify that e(M1) = 24. For any Hi, there are 5 singular points
of B lying on Hi � P1, so that e(Hi\Sing(B)) = e(Hi)−e(Sing(B)) = 2−5 = −3.
Since the local orbifold fundamental group at the point Hi ∩Hj is of order mimj ,
one has

e(P2, D) = 3 + 3
6∑
1

(1− 1
mi

)−
∑

1≤i�=j≤6

(1− 1
mimj

) =
3
4

so that e(M1) = 32e(P2, D) = 24.
For k = 5 there are no abelian K3 orbifaces with a linear support, this can

be proved by a case by case analysis. Suppose k = 4. Equation (4.7) implies
1
m1

+
1
m2

+
1
m3

+
1
m4

= 1. (4.8)

For any Hi, there are 3 singular points of B lying on Hi � P1, so that
e(Hi\Sing(B)) = e(Hi) − e(Sing(B)) = 2 − 3 = −1. Suppose without loss of
generality that m1 ≤ m2 ≤ m3 ≤ m4. There are finitely many 4-tuples satisfying
(4.8). It can be shown by case-by-case analysis that the only 4-tuples satisfying
Condition 3 are [4, 4, 4, 4] and [2, 6, 6, 6]. Hence, the universal uniformizations of
these orbifolds are K3 surfaces, say M2 and M3 respectively. On the other hand,
assumption (4.8) gives

e(P2, D) =
∑

1≤i�=j≤4

1
mimj

.

By using the formula |πorb
1 (P2, D)| =

∏4
1 mi/lcm(m1, . . . ,m4) one can verify that

e(M2) = e(M3) = 24.
Let us now prove that the surface M2 is the Fermat quartic surface, the

hypersurface in P3 defined by the equation M2 : z4
4 = z4

1 +z4
2 +z4

3 . Since any two 4-
line arrangements are projectively equivalent, one can assume that Hi = {zi = 0}
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for i ∈ [1, 3], and H4 = {z1 + z2 + z3 = 0}. The suborbifold (P2,Σ3
14Hi) is

uniformized by P2 via ϕ4. Lifting the initial orbifold yields the orbifold (P2, 4K),
where K is the Fermat quartic curve z4 + z4

2 + z4
3 = 0. Now it is easy to see that

the restriction of the projection [z1 : z2 : z3 : z4] ∈ P3 → [z1 : z2 : z3] ∈ P2 to M2

is a Galois covering branched at 4K.

Exercise 4.2. Classify the abelian K3 orbifaces and study the covering relations
between them.

4.2. Covering relations among orbifaces (P2, D) uniformized by P2

p

q

0

3

K

m1

m m2

m

Figure 4.9. The orbiface (P2,Σ3
0miHi)

Now let us consider the simplest orbiface with a non-abelian fundamental
group. Let H0 := {x = 0}, H1 := {y = 0}, H2 := {x = y} and H3 := {z =
0} be four lines in P2. Observe that the arrangement ∪3

0Hi is projectively rigid.
Consider the orbiface (P2, D) where D = Σ3

0miHi The point p := [0 : 0 : 1] is
an orbiface germ only if Σ2

01/mi > 1. Assume this is the case. Consider another
line K through p. Take a base point % ∈ K, a meridian μp ⊂ of p ∈ K and
a meridian μ3 ⊂ K of the point q := K ∩ H3 ∈ K (see Figure 4.9). Since K
is topologically a sphere, the loop μpμ3 is contractible in K\{p, q} and hence in
P2\(∪3

0Hi). Hence, μp = μ−1
3 in the group πorb

1 (P2, D). In particular, these two
meridians are of the same order. Now let mp be the order of μp, considered as an
element of πorb

1 (P2, D)p. If the orbiface is uniformizable, this latter group injects
into the global orbifold fundamental group. Hence, if (P2, D) is uniformizable, the
element μp, and therefore the element μ3 must be of order mp πorb

1 (P2, D) . In
other words, m3 = mp = 2(Σ2

0mi − 1)−1. Hence, (m0,m1,m2,m3) must be one of
(2, 2, r, 2r), (3, 3, 2, 12), (2, 4, 3, 24) or (2, 3, 5, 60).

Exercise 4.3. Compute the Chern numbers of these orbifolds and check that
c21(P

2, D) = 3e(P2, D).

The case (2, 2, r, 2r): Observe that (P2, 2H0 + 2H1 + 2H3) is a suborbiface of
(P2, 2H0 + 2H1 + rH2 + 2rH3). This suborbiface is uniformized by P2 via the
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bicyclic covering

ϕ2 : [x : y : z] ∈ P2 → [x2 : y2 : z2] ∈ P2.

The lifting ϕ−1
2 (H2) consists of two lines given by the equation x2 = y2, which

we denote by H1
2 and H2

2 . Denote ϕ−1
2 (H3) by H3 again. Hence ϕ2 is an orbiface

covering

ϕ2 : (P2, rH1
2 + rH2

2 + rH3)→ (P2, 2H0 + 2H1 + rH2 + 2rH3).

Obviously, the covering orbiface is uniformized by P2 via ϕr.

The case (2, 4, 3, 24): Observe that (P2, 2H0 + 2H1 + 2H3) is a suborbiface of
(P2, 2H0 + 4H1 + 3H2 + 24H3). Let ϕ2 be its uniformization, denote ϕ−1

2 (H1) by
H1 and ϕ−1

2 (H3) by H3. As in the previous case, denote the lines ϕ−1
2 (H2) by H1

2

and H2
2 . Hence there is an orbiface covering

ϕ2 : (P2, 3H1
1 + 3H2

1 + 2H2 + 12H3)→ (P2, 2H0 + 4H1 + 3H2 + 24H3).

Observe that the covering orbiface is equivalent to the orbiface (P2, 3H0 + 3H1 +
2H2 + 12H3).

The case (3, 3, 2, 12): Observe that (P2, 3H0 + 3H1 + 3H3) is a suborbiface of
(P2, 3H0 + 3H1 + 2H2 + 12H3). This suborbiface is uniformized by P2 via the
bicyclic covering

ϕ3 : [x : y : z] ∈ P2 → [x3 : y3 : z3] ∈ P2.

The lifting ϕ−1
3 (H2) consists of two lines given by the equation x3 = y3, which we

denote by H1
2 , H2

2 and H3
2 . Denote ϕ−1

2 (H3) by H3 again. Hence ϕ3 is an orbiface
covering

ϕ3 : (P2, 2H1
2 + 2H2

2 + 2H3
2 + 4H3)→ (P2, 3H0 + 3H1 + 2H2 + 12H3).

The covering orbiface appeared in the first case with r = 2 and is uniformized by
P2.

4.3. Orbifaces (P2, D) uniformized by P1 × P1, C× C and Δ×Δ
It is well known that the quotient of P1 × P1 under the obvious action of the
symmetric group Σ2 is the projective plane. To put in another way, one has the
following fact:

Lemma 4.4. Let Q ⊂ P2 be a smooth quadric. Then there is a uniformization
ψ : Q×Q → (P2, 2Q). Let p ∈ Q and put T v

p := {p} ×Q, T h
p := Q× {p}. Then

Tp := ψ(T h
p ) = ψ(T v

p ) ⊂ P2 is a line tangent to Q at the point p ∈ Q.

Proof. Since any two smooth quadrics are projectively equivalent, it suffices to
prove this for a special quadric. Consider the Z/(2)-action defined by (x, y) ∈
P1 × P1 → (y, x) ∈ P1 × P1. The diagonal Q = {(x, x) : x ∈ P1} is fixed under
this action. Let x = [a : b] ∈ P1 and y = [c : d], then the symmetric polynomials
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σ1([a : b], [c : d]) := ad + bc, σ2([a : b], [c, d]) := bd, σ3([a : b], [c : d]) := ac are
invariant under this action, and the Viéte map

ψ : (x, y) ∈ P1 × P1 −→ [σ1(x, y) : σ2(x, y) : σ3(x, y)] ∈ P2

is a branched covering map of degree 2. The branching locus ⊂ P2 can be found
as the image of Q. Note that the restriction of ψ to the diagonal Q is one-to-one,
so that one can denote ψ(Q) by the letter Q again. One has ψ(Q) = [2ab : b2 : a2]
([a : b] ∈ P1), so that Q is a quadric given by the equation 4yz = x2. One
can identify the surface P1 × P1 with Q × Q, via the projections of the diagonal
Q ⊂ P1 × P1. Let p ∈ Q, and put T h

p := Q × {p}, T v
p : {p} × Q. Then Tp :=

ψ(T h
p ) = ψ(T v

p ) ⊂ P2 is a line tangent to Q. Indeed, if p = [a : b], then ψ(T h
p )

is parametrized as [cb + da : db : ca] ([c : d] ∈ P1), and can be given by the
equation b2z + a2y − abx = 0, which shows that Tp is tangent to Q at the point
[2ab : b2 : a2]. �

Now let Q ⊂ P2 be a smooth quadric and T0, . . . , Tn tangents to Q at distinct
points pi := Q ∩ Ti, i ∈ [0, n]. The configuration Q ∪ T0 ∪ T1 ∪ T2 is called the
Apollonius configuration. Consider the orbiface (P2, aQ+Σn

0miTi). By Theorem 3.2
this is an orbiface provided 1/a + 1/mi ≥ 1/2. An immediate consequence of
Lemma 4.4 is the following result.

Proposition 4.5. There is an orbiface covering

(P1 × P1, aQ + Σn
0mi(T v

i + T h
i )) −→ (P2, 2aQ + Σn

0miTi)

m mm

m

m

m
m

m

m

a

2a

  1   2  0

  1

  0

  2

  1

  0

  2

Figure 4.10. The covering (P1 × P1, aQ+ Σn
0mi(T v

i + T h
i )) −→

(P2, 2aQ + Σn
0miTi)

In particular, when a = 1, there is an orbiface covering

(P1,Σn
0mipi)× (P1,Σn

0mipi) −→ (P2, 2Q + Σn
0miTi)

By Theorem 1.4, the covering orbiface above is uniformized by P1 × P1 if n = 1
and m0 = m1, or if n = 2 and Σ2

01/mi > 1. Hence the following orbifaces are
uniformized by P1 × P1.

Similarly, the orbifaces of the following Figure 4.3 are uniformized by C×C.

Otherwise, the orbifolds (P2, 2Q+ΣmiTi) are uniformized by the bidisc Δ×Δ.
The orbifaces in Figure 4.11 were first discovered in 1982 by Kaneko, Tokunaga and
Yoshida who also gave a complete classification of the orbifaces (P2, D) uniformized
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Figure 4.11. Orbifaces uniformized by P1 × P1
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Figure 4.12. Orbifaces A uniformized by C× C

by C × C (see [12]). Note that the Apollonius configuration is projectively rigid.
Except the first and the fifth orbifolds in Figure 4.11 these orbifolds admit liftings
to P2 and give rise to new orbifaces uniformized by C × C. Below we shall study
the coverings of the fourth orbiface in detail.
Coverings of the orbiface (P2, 2Q + 2T0 + 4T1 + 4T2). This orbiface has the sub-
orbifold (P2, 2T0 + 2T1 + 2T2), which is uniformized by P2 via ϕ2. We can assume
that in projective coordinates the tangent lines are given by Ti := {zi = 0}, in
these coordinates ϕ2 is the map [z0 : z1 : z2]→ [z2

0 : z2
1 : z2

2 ]. A quadric tangent to
both the lines z0z1z2 = 0 is given by the equation a

√
z0 + b

√
z1 + c

√
z2 = 0. Hence

ϕ−1
2 (Q) is given by ±az0 ± bz1 ± cz2 = 0, in other words the lifting of Q consists

of four lines ϕ−1
2 (Q) := Q1 ∪ Q2 ∪ Q3 ∪ Q4 which meet two by two on the lines

z0z1z2 = 0. The arrangement T1∪T2∪4
1Qi is known as the complete quadrilateral,

since it is the set of lines through two points among four points in general position
in P2 (see Figure 4.13).

Figure 4.13. The complete quadrilateral

Hence the lifting of (P2, 2Q+2T0+4T1 +4T2) is the orbifold (P2, 2T1 +2T2 +
Σ4

12Qi). Since any two sets of 4 points in general position in P2 are projectively
equivalent, the complete quadrilateral is projectively rigid. Hence there are projec-
tive coordinates in which the locus of (P2, 2T1 +2T2+Σ4

12Qi) is given by the equa-
tion z0z1z2(z0−z1)(z1−z2)(z2−z3) = 0, which is another equation for the complete
quadrilateral. Let us name these lines L1, . . . , L6 respectively. Now (P2,Σ3

12Li) is
a suborbifold of (P2,Σ6

12Li). This orbifold is uniformized by P2 via ϕ2. The liftings
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of L4, L5, L6 are given by the equation (z2
0 − z2

1)(z2
1 − z2

2)(z2
2 − z2

3) = 0. But this
is another equation for the complete quadrilateral. This shows that the orbiface
(P2, 2T1 + 2T2 + Σ4

12Qi) admits self coverings and proves the following result.

Lemma 4.6. The orbiface (P2, 2Q + 2T0 + 4T1 + 4T2) has an infinite tower of
coverings.

Observe the analogy with the one-dimensional case: The orbifold (P1, 2p0 +
3p1 + 6p2) is covered by (P1, 30 + 3p1 + 32), which admits self-coverings.

For a higher dimensional version of the results in this subsection, see [23].

4.4. Covering relations among ball-quotient orbifolds

The orbifaces (P2, aQ + Σ2
0miTi) supported by the Apollonius configuration were

throughly studied in [10] and [22]. The Chern numbers of (P2, aQ + Σ2
0miTi) are

given by

c21 =

[
2− 2

a
−

3∑
1

1
mi

]2

e = 1− 1
a
−

3∑
1

1
mi

+
∑

1≤i�=j≤3

1
mimj

+
1
2

3∑
1

[
1
mi

+
1
a
− 1

2

]2
.

One has

(3e− c21)(P
2, aQ + Σ2

0miTi) =
1
2

[
3∑
1

1
mi
− 1

a
− 1

2

]2

(4.9)

which vanishes for the following orbifaces:
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4 4 4

3

3

3
6 6

2

3
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3

3

Figure 4.14. Orbifolds A uniformized by B2

By Theorem 4.2 these orbifolds are uniformized by the 2-ball. Observe that
the orbiface (P2, 2Q + 2T0 + 4T1 + 4T2) is a suborbifold of the first orbiface in
Figure 4.14. By Lemma 4.6 this suborbifold admits an infinite tower of coverings.
The orbiface (P2, 4Q+4T0 +4T1 +4T2) can be lifted to these coverings, and these
liftings give an infinite tower of orbifaces uniformized by the 2-ball. Since the group
πorb

1 (P2, 4Q + 4T0 + 4T1 + 4T2) is Picard modular, this tower is called a Picard
modular tower.

Exercise 4.4. Find the first three steps of the Picard modular tower.

Exercise 4.5. Study the coverings of the ball-quotient orbifolds in Figure 4.14.
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Question 4.1. The orbifaces (P2, 3Q+3T0+4T1+2T2) and (P2, 6Q+2T0+3T1+3T2)
satisfy 2e− c21 = 0. What is their universal uniformization?
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1. Introduction

The hypergeometric function is a slight generalization of the power fucntion. We
will see this in several aspects.

1.1. Power series

The binomial theorem tells that the power function admits a power series expan-
sion as

(1− x)−a =
∞∑

n=0

(a, n)
(1, n)

xn,

where (a, n) = a(a+1) · · · (a+n−1), in particular, (1, n) = n! By putting the terms
like (∗, n) to the denominators and the numerators, one defines the hypergeometric
function by the power series

F (a, b, c;x) =
∞∑

n=0

(a, n)(b, n)
(c, n)(1, n)

xn.

1.2. Differential equations

If we set the coefficients of the binomial series as

An =
(a, n)
(1, n)

,

then they satisfy

An+1 = An
n + a

n + 1
.

This shows that the power function (1−x)−a solves the linear differential equation

(D + a)u = (D + 1)
1
x
u,
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where D = x d
dx . In fact, since Dxn = nxn, we have

(D + a)
∑

Anx
n =

∑
An(D + a)xn =

∑
An(n + a)xn =

∑
An+1(n + 1)xn

and
(D + 1)

1
x

∑
Anx

n =
∑

An(D + 1)xn−1 =
∑

Annx
n−1.

Note that the above equation is equivalent to

(1− x)u′ − au = 0, where u′ =
du

dx
.

This equation has singularity at x = 1 and ∞. By exactly the same way, we see
that the hypergeometric series F (a, b, c;x) solves the differential equation

(D + a)(D + b)u = (D + c)(D + 1)
1
x
u,

which is equivalent to

x(1 − x)u′′ + {c− (a + b + 1)x}u′ − abu = 0;

either of them is called the hypergeometric differential equation, and is denoted
by E(a, b, c). This equation has singularity at x = 0, 1 and ∞. It is linear and of
second order; these imply that
• at any point x0 �= 0, 1,∞, the local solutions at x0 (they are holomorphic)

form a 2-dimensional linear space over C, and
• any solution at x0 can be continued holomorphically along any curve starting

x0 not passing through 0, 1 or ∞.

1.3. The aim of this lecture

In this lecture, I would like to show that the map (often called the Schwarz map)

s : x 	−→ u0(x)/u1(x)

defined by linearly independent two solutions of E(a, b, c) is a slightly enriched
version of the map x 	→ xa defined by the power function xa.

2. Power functions

Since the power function is the prototype of the hypergeometric function, we study
it carefully. The reader will find that this seemingly simple function is in fact a
fairly complicated function. Recall first that the power function xa is by definition,
the composition of the three maps:

x
log−→ log x ×a−→ a log x

exp−→ exp(a log x) = xa.

We here recall the exponential function and the logarithmic function; see Figure
1. The upper half-plane Hx = {x ∈ C | �x > 0} in x-space is mapped under the
logarithmic function x 	→ expx onto a belt. The logarighmic function is the inverse
of the exponential function. So, in a sense, the map x 	→ xa is just conjugate to
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log

exp
1 00

πi

Figure 1. The logarithmic function and the exponential function

the multiplication ×a by a, which rotates and enlarges/shrinks the belt. Note that
the inverse function of a power function is again a power function.

2.1. When a is real

If the exponent a is real — for simplicity we assume a > 0 — the map x 	→ z = xa

takes the upper half-plane conformally onto the fan

{z ∈ C | 0 < arg z < πa},

with angle πa. If |a| ≤ 1 then this is also univalent. Note that a fan is considered
as a diangle; see Figure 2. The whole behavior of this map can be understood via

1 00

πi

log

1 00

πi

×a

aπi

0 1

aπ

x-space

z-space
exp

Figure 2. Power function with real exponent

repeated use of the Schwarz reflection principle along the intervals (−∞, 0) and
(0,+∞) in the x-space, and the two sides of the diangle in the z-space.
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If one travels around the origin in the x-space, the value changes from z to e2πiaz
since exp(a log x) changes into exp(a(log x + 2πi)). The group M(a) of transfor-
mations

z 	→ e2πianz, n ∈ Z

acts properly discontinuously on the z-space if and only if a is rational.

2.2. When a is purely imaginary

If the exponent a is purely imaginary, set a = iθ and assume for simplicity θ > 0.
Then the upper half-plane Hx covers the annulus {z ∈ C | e−πθ < |z| < 1}
infinitely many times. If we restrict the map to the hemi-annulus {x ∈ Hx | e−π <
|x| < 1}, it is mapped univalently onto the hemi-annulus {z ∈ Hz | e−πθ < |z| <
1}; see Figure 3.

00

πi

log

00

πi

x-space

exp

1

0

×iθ

eπ/θ π/θ

e−πθ 10

Hx

Hz

−πθ

iπ

Figure 3. Power function with purely imaginary exponent a =
iθ, θ > 0

The whole behavior of this map can be understood via repeated use of the Schwarz
reflection principle along the corresponding edges of the hemi-annulus. Note that
the arcs correspond to the intervals, and vice versa. So if one turns around zero in
the x-space then one approaches 0 or ∞ in the z-space, and vice versa.

The group M(a) of transformations z 	→ e2πθnz, n ∈ Z acts properly discontinu-
ously on the punctured z-space C×

z . Note that the quotient space C×
z /M(a) is an

elliptic curve, of which moduli is a bit special; I leave it to the reader.
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2.3. Otherwise

If the exponent a is not real or purely imaginary, the image will be a spiral-
ribbon. It may be interesting to draw the images of the images of the hemi-annulus
{x ∈ Hx | e−π < |x| < 1} for a = eit, 0 ≤ t ≤ 1/2. Figure 4 shows the half-way
model (when t = 1/4); one sees the 2-fold symmetry.

00

πi

log

00

πi

x-space

exp

1

Hx

×a

e−π −π

0

iπa
−πa1

Figure 4. Power function with complex exponent

The group M(a) of transformations z 	→ e2πianz, n ∈ Z acts properly discontin-
uously on the punctured z-space C×

z . Note that the quotient space C×
z /M(a) is a

(general) elliptic curve.

3. Some local properties of the hypergeometric differential
equation

3.1. At a regular point

At a regular point ξ �= 0, 1,∞, we have a unique solution of E(a, b, c) in the form

u0 = 1 + O((x − ξ)2),

and a unique solution in the form

u1 = x + O((x − ξ)2);

they form a basis of the space of the local solutions at x0. Here O((x− ξ)2) stands
for the product of (x− ξ)2 and a convergent power series in x− ξ.
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3.2. Around x = 0
Since we have D(xαu) = αxαu + xαDu = xα(α + D)u, regarding D and xα as
operators acting on functions, we have

Dxα = xα(α + D).

This can be remembered as ‘when xα passes through D from right to left, D gets
α’ or ‘when xα passes through D from left to right, D loses α.’
Recall that the series F (a, b, c;x) solves

(D + a)(D + b)u = (D + c)(D + 1)
1
x
u.

Multiply xc−1 to the both sides of this equation from the left, and let it move from
left to right. Then every D loses c− 1, and it changes into

(D + a− c + 1)(D + b− c + 1)(xc−1u) = (D + 1)(D − c + 2)
1
x

(xc−1u).

Since v = F (a− c + 1, b− c + 1,−c + 2;x) solves

(D + a− c + 1)(D + b− c + 1)v = (D + 1)(D − c + 2)
1
x
v,

we conclude that x1−cF (a−c+1, b−c+1,−c+2;x) is another solution to E(a, b, c)
at x = 0. But if c = 1, this gives just the series F (a, b, c;x); in such a case we must
work a little more.
Since the power function x1−c is not single-valued (in general), when we conceren
seriously its value, we must assign the argument of x.
Anyway, we call {0, 1− c} the set of local exponents of E(a, b, c) at x = 0.

3.3. Around x = 1 and ∞
Around other singular points x = 1 and ∞, one can use the so-called symmetry
of the hypergeometric equation. By the change x = 1− y, the equation

x(1 − x)u′′ + {c− (a + b + 1)x}u′ − abu = 0

changes into

y(1− y)u′′ + {−c+ a + b + 1− (a + b + 1)y − abu = 0,

which is just the hypergeometric equation E(a, b,−c + a + b + 1). So

F (a, b,−c+ a+ b+1; 1−x) and (1−x)c−a−bF (c− a, c− b, c+1− a− b; 1−x)

solve E(a, b, c). So {0, c− a− b} is the set of local exponents of E(a, b, c) at x = 1.

At infinity, one better makes use of the form

(D + a)(D + b)u = (D + c)(D + 1)
1
x
u.

The change x = 1/y will take this equation again to a hypergeometric equation,
and one will get {a, b} as the set of local exponents of E(a, b, c) at x =∞; here I
omit the details.
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Set the exponent differences as

λ = 1− c, μ = c− a− b, ν = a− b.

4. Some global properties of the hypergeometric differential
equation

4.1. Connection matrices

If we have two sets of bases of local solutions at a regular point (I mean the point
is not equal to 0, 1,∞), they are linearly related. The matrices representing these
linear relations are called connection matrices. For the hypergeometric equation
the connection matrices are known explicitly. Here we present one example. We
consider two sets of solutions

f0(0, x) = F (a, b, c;x), f0(λ, x) = xλF (a− c + 1, b− c + 1, 2− c;x),

and
f1(0, x) = F (a, b, a + b− c + 1; 1− x),
f1(μ, x) = (1− x)μF (c− a, c− b, c + 1− a− b; 1− x),

which we found in the previous section. We compare these solutions on the inter-
val (0, 1), where the real positive number x and 1 − x are assigned to have zero
argument. Then they are related as

(f0(0, x), f0(λ, x)) = (f1(0, x), f1(μ, x))P,

where

P =
(

D C
B A

)
for

D =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, C =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1 − b)
,

B =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
, A =

Γ(2− c)Γ(a + b− c)
Γ(a− c + 1)Γ(b− c + 1)

,

and Γ denotes the Gamma function. This has been found by Gauss. A proof can
be found in any textbook treating the hypergeometric function; see for example
[IKSY], where find many different proofs can be found.

4.2. A set of generators of the monodromy group

The fundamental group of C − {0, 1} with a base point, say x = 1/2, can be
generated by a loop ρ0 around 0, and a loop ρ1 around 1 as are shown in Figure
5. If one continues analytically the pair (f0(0, x), f0(λ, x)) along the loop ρ0, then
it changes into

(f0(0, x), f0(λ, x))
(

1 0
0 e2πiλ

)
,
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1
1
2

0

ρ0 ρ1

Figure 5. Loops ρ0 and ρ1

and if one continues analytically the pair (f1(0, x), f1(μ, x)) along the loop ρ1, then
it changes into

(f1(0, x), f1(μ, x))
(

1 0
0 e2πiμ

)
;

we here used the behavior of the power function, which we studied in §2. Since
the pairs (f0(0, x), f0(λ, x)) and (f1(0, x), f1(μ, x)) are related as in the previous
subsection, if one continues analytically the pair (f0(0, x), f0(μ, x)) along the loop
ρ1, then it changes into

(f0(0, x), f0(μ, x))P−1

(
1 0
0 e2πiμ

)
P.

The monodromy group of the differential equation E(a, b, c) (with respect to a
pair of linearly independent solutions (f0(0, x), f0(λ, x)) with base x = 1/2) is by
definition, the group generated by(

1 0
0 e2πiλ

)
, P−1

(
1 0
0 e2πiμ

)
P.

If one makes use of another pair of solutions at another base point, the resulting
group is conjugate in GL2(C) to this group. So the differential equation determines
a conjugacy class represented by this group. Any representative, or its conjugacy
class, is called the monodromy group of the equation.

Note that these two matrices are generators of the monodromy group of the
hypergeometric equation E(a, b, c). Well, there are many ways to define a group;
among others, giving just a set of generators by matrices is the worst way, I am
afraid. In most cases, these generators give almost no information about the group.

5. The Schwarz map of the hypergeometric differential equation
with real exponents

We are interested in the Schwarz map s : x → z = u0(x)/u1(x), where u0 and
u1 are linearly independent solutions of the hypergeometric equation E(a, b, c). In
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this section, we assume that the parameters a, b and c are real; so the coefficients
of the equation E(a, b, c) are real, if x is real. Along each of the three intervals

(−∞, 0), (0, 1), (1,+∞),

there are two linearly independent solutions which are real-valued on the interval.
Note that a real-valued solution along an interval may not be real valued along
another interval. Since the Schwarz map is in general multi-valued, we restrict it
on the upper half-plane Hx, and study the shape of its image in the target space
P1

z (∼= C∪ {∞}), the projective line with coordinate z. The Schwarz map depends
on the choice of the two linearly independent solutions; if we choose other two such
solutions then the new and the old Schwarz maps relate with a linear fractional
transformation, which is an automorphism of P1

z.

Recall the following fundamental fact: A linear fractional transformation takes a
circle to a circle, here a line is considered to be a circle which passes through ∞.

Around the singular points x = 0, 1 and ∞, the Schwarz map s is, after per-
forming suitable linear fractional transformations, near to the power functions
x → x|λ|, (1 − x)|μ| and x|ν|. Thus small hemi-disks with center x = 0, 1 and ∞
are mapped to horns with angle π|λ|, π|μ| and π|ν|. See Figure 6.

10

Hx

s

s(0)

s(1)

s(∞)

Figure 6. Schwarz triangle

Summing up, the image of Hx under s is bounded by three arcs (part of circles),
and the three arcs meet with angle π|λ|, π|μ| and π|ν|. If

|λ| < 1, |μ| < 1, |ν| < 1,

then the image is an arc-triangle, which is called the Schwarz triangle. In this
case, the Schwarz map gives a conformal equivalence between Hx and the Schwarz
triangle.
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5.1. Real but general exponents

If the condition above is not satisfied, though the image is indeed bounded by
three arcs, it might cover the target P1

z many times. I give some examples (for a
complete description, see [Yo3]). Suppose the three circles generated by the three
curves cut sphere P1

s into eight triangles A,B,C,D, Ā, . . . , D̄; see Figure 7. We

C̄

D

C

Ā

B A

B̄

s(1)

s(∞)

A

D̄

Ā

C B

B̄ C̄

s(0)

Figure 7. Eight triangles A, . . . , D̄ tessellating the s-sphere

draw in Hx the inverse images under s of these eight triangles; see Figure 8. To
make the pictures look nice, I transformed the half plane Hx into a disc. For the
condition |λ|, |μ|, |ν| < 1, there is only one triangle Hx itself colored in D.

5.2. Schwarz map

The global behavior of the Schwarz map can be seen by applying repeatedly the
Schwarz reflection principle to the three sides of the Schwarz triangle. For generic
parameters, the picture of the reflected triangles gradualy become caotic. For spe-
cial parameters, it can remain neat. For example, if

|λ| = 1
p
, |μ| = 1

q
, |ν| = 1

r
, p, q, r ∈ {2, 3, . . . ,∞},

then the whole image is nice; note that this is not a necessary condition. Paint
the original triangle black (since it is called the Schwarz triangle), adjacent ones
white, and so on. The picture of these black and white triangles thus obtained can
be roughly classified into three cases depending on whether

1
p

+
1
q

+
1
r

is bigger than or equal to or less than 1.

• In the first case, the number of the triangles is finite, and those cover the
whole sphere. The possible triples (p ≤ q ≤ r) are

(2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5).
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∞

0 1
Ā

C̄

AB

C

D̄

B̄

∞

0 1

D

D̄

Ā B̄

C̄

AB

C̄

D̄

∞

0

1

D
Ā

C̄ A

B

C

B

Figure 8. Inverse images of the eight triangles under different s

The monodromy groups are the dihedral, tetrahedral, octahedral and icosa-
hedral groups, respectively.
• In the second case, the three circles generated by the three sides of the tri-

angles pass through a common point. If you send this point to infinity, then
the triangles are bounded by (straight) lines, and they cover the whole plane.
The possible triples (p ≤ q ≤ r) are

(2, 2,∞), (3, 3, 3), (2, 4, 4), (2, 3, 6).

• In the third case, there is a unique circle which is perpendicular to all of the
circles generated by the sides of the triangles, and these triangles fill the disc
bounded by this circle. In particular, when

(p, q, r) = (2, 3,∞), (∞,∞,∞), (2, 3, 7),

one can find in many books nice pictures of the tessellation by these triangles;
we do not repeat them here.
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6. The Schwarz map of the hypergeometric differential equation
with purely imaginary exponent-differences

In this section, our exponent-differences will be purely imaginary. Before restricting
the exponents in this way, we recall an elementary but important transformation.

6.1. A projective change of the unknown

Since the Schwarz map s : x → z = u0(x)/u1(x) is defined by the ratio of the
solutions, the change of the unknown u by multiplying any (multivalued OK, with
any singularity or zero or pole OK, but not identically zero of course) function to u
does not affect the Schwarz map. Following is a very famous (considered to be the
origin of the Schwarzian derivative; if you do not know this derivative, just forget
it for a moment, we do not use this in this lecture) change: Consider in general an
equation of the form

u′′ + pu′ + qu = 0.

If we make a change from u to v by u = fv, then we have

v′′ +
(
p + 2

f ′

f

)
v′ +

(
q + p

f ′

f
+

f ′′

f

)
v = 0.

Choose f solving p + 2f ′/f = 0. Then the coefficient of v is given as

q − 1
2
p′ − 1

4
p2.

6.2. The image of each interval is a circle

If you make the transformation in the previous subsection for our E(a, b, c), we
get (we write u in place of v)

u′′ +
1
4

(
1− λ2

x2
+

1− μ2

(1 − x)2
+

1 + ν2 − λ2 − μ2

x(1 − x)

)
u = 0.

So if the exponent-differences λ, μ, ν are purely imaginary, the coefficient of the
above equation is real, if x is real. As in the previous section, along each of the
three intervals

(−∞, 0), (0, 1), (1,+∞),

there are two linearly independent solutions which are real-valued on the interval.
Therefore the image of the three intervals under the Schwarz map are circles.

We will study the behavior of the Schwarz map on the upper half x-plane.
Since this map takes the three real intervals to three circles, it is natural to ask for
the arrangement of the three circles. Note that, if the three circles do not intersect,
there are two ways topologically to put three disjoint circles on the sphere: like a
dartboard and like a pig-nose. See Figure 9. Please guess which is the case.
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Figure 9. A dartboard and a pig-nose

6.3. Around the origin, this map is very near to x 	→ xλ

Put
λ = iθ0, μ = iθ1, ν = iθ2,

(θ0, θ1, θ2 ∈ R), that is,

a =
1
2
− i

θ0 + θ1 + θ2

2
, b =

1
2
− i

θ0 + θ1 − θ2

2
, c = 1− iθ0.

We assume that the three purely imaginary exponents have positive imaginary
parts. (This assumption is made only to make figure-drawing easier.) We define
two Schwarz maps as

s0 =
f0(x;λ)
f0(x; 0)

and s1 =
f1(x;μ)
f1(x; 0)

,

which are related as

s0 =
As1 + C

Bs1 + D
and s1 =

Ds0 − C

−Bs0 + A
.

Note their local behavior:

s0 ≈ xλ around x = 0,
s1 ≈ (1 − x)μ around x = 1,

where ≈ stands for ‘is very near to’.
Recall that the images of the intervals (−∞, 0) and (0, 1) are circles.
In a sufficiently small neighborhood of x = 0 in the upper half-plane, the map
s0 can be approximated by the power function xλ as closely as we like. Recall
the local behavior of the power function studied in §2.2: For any n ∈ N , it gives
conformal equivalence between the hemi-annulus {x ∈ Hx | e−2n−1 < |x| < e−2n}
and the hemi-annulus {z ∈ Hz | e−πθ0 < |z| < 1}. In a very small neighborhood
(say, hemi-disc of radius ε) of x = 0, s is very near to the power function xλ, which
takes the interval (−ε, 0) and (0, ε) to the circle of radii 1 and e−πθ0 . On the other
hand we know in advance that s0 takes these intervals to circles. So we conclude
that s takes these interval exactly to these circles, and any small hemi-disk to the
annulus {z ∈ Cz | e−πθ0 < |z| < 1}.
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So we conclude that any sufficiently small neighborhood of x = 0 in the upper
half-plane is mapped under s0 onto the ring of radii exp(−θ0π) and 1; the unit
circle is the image of the interval (0, 1), and the smaller one is the image of the
interval (−∞, 0).

In the same way, any sufficiently small neighborhood of x = 1 of the upper half-
plane is mapped under s1 to the ring of radii 1 and exp(θ1π); the unit circle is the
image of the interval (0, 1). (This is because the variable 1 − x is real positive on
the interval (0, 1).) See Figure 10.

0 0

e−θ0π 1 1 eθ1π

s1-space

s0((0, 1))

s0((−∞, 0)) s1((0, 1))

s1((1,∞))

s0-space

Figure 10. A ring in s0-space and a ring in s1-space

6.4. Arrangement of the three circles

We would like to draw these two rings in the same plane, say in the s1-plane. The
connection matrix presented in §4.2 would make it possible. Then we will know
whether the three circles intersects, and if they do not intersects, whether they
form a dartbord or a pig nose. The correct answer is a pig nose; the three circles in
the s1-plane (a bit rotated, see below) are drawn in Figure 11. Precisely speaking,
it becomes

Proposition 6.1. Let the three exponent-differences be λ = iθ0, μ = iθ1, ν = iθ2,
(θ0, θ1, θ2 > 0). Then the image of the upper half x-plane under the Schwarz map
s1 = f1(x;μ)/f1(x; 0) is bounded by the three disjoint circles:
• the unit circle with center 0, the image of the interval (0, 1),
• the circle of radius exp(θ1π) with center 0, the image of the interval (1,∞),

and
• the circle of radius R with center K, the image of the interval (−∞, 0), where

the precise values of R and K are given in the next subsection.
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0

1
eθ1π|K|R

s1((0, 1))

s1((1,∞))
C

s1((−∞, 0))

Figure 11. Three circles showing the pig-nose PN in the s-space

The second one encircles the other two, making a pig-nose.

In Figure 11 we rotated the s1-plane so that the second circle has its center
on the negative real axis, that is, at −|K|. Or, we better define a new Schwarz
map s as

s : x 	−→ ξ̄

|ξ|s1(x),

so that the three circles are exactly as in Figure 11. Let us denote by PN the
complement of the two small discs in the big disc, and call it the pig-nose.

Do not hastily conclude that the image of the upper half-plane under s is PN ;
wait till §6.6.2.

The next subsection is devoted to a proof of this fact.

6.5. Proof

Note that, since a− 1/2, b− 1/2 and c− 1 are purely imaginary, we have

ā = 1− a, b̄ = 1− b, c̄ = 2− c

and that, since the Gamma function is a real function (I mean Γ(t̄) = Γ̄(t)), we
have

A = D̄, B = C̄.

Since s0 and s1 is related by a linear fractional way as in §6.3, a straightforward
computation leads to
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Lemma 6.2. If s0 moves along the circle of radius r, then s1 moves along the circle
with center K and radius R, where

K = −ξ(1− r2)
|ξ|2 − r2

, R =
r(1 − |ξ|2)
|ξ|2 − r2

, where ξ =
Ā

B
.

Thus the unit circle is mapped to the unit circle, and the circle in the s0-plane
of radius

r = exp(−θ0π)

is mapped to the circle in the s1-plane with the center and the radius given just
above. The following lemma will garantee that the circle in question lies gently
between the two other circles.

Lemma 6.3. |K| −R− 1 > 0, exp(θ1π)− |K| −R > 0.

To prove this, we first recall the well-known formula

Γ(z)Γ(1− z) =
π

sinπz
,

(for a geometric meaning of this formula, see [MY]) which implies in particular

|Γ(
1
2

+ iy)|2 =
π

coshπy
, y : real.

On the other hand, by the definition of ξ, we have

|ξ| =
∣∣∣∣ Γ(a)
Γ(a + iθ0)

Γ(b)
Γ(b + iθ0)

∣∣∣∣ .
Since the real parts of a and b are 1/2, we can apply the formula above to get

|ξ|2 =
cosh((−θ0 + θ1 + θ2)π/2) cosh((θ0 − θ1 + θ2)π/2)
cosh((θ0 + θ1 + θ2)π/2) cosh((θ0 + θ1 − θ2)π/2)

=
cosh θ2π + cosh(θ0 − θ1)π
cosh θ2π + cosh(θ0 + θ1)π

.

So we can conclude that |ξ|, as a function of θ2 ≥ 0, increases monotonically to 1
and that

1 > |ξ|θ2=0 =
exp(θ1 − θ0)π + 1

exp(−θ0π) + exp(θ1π)
> r (= e−θ0π).
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Now we are ready to prove the lemma by the identities:

|K| −R− 1 = {(1− r2)|ξ| − r|1 − |ξ|2| − ||ξ|2 − r2|}/||ξ|2 − r2|
= {(1− r2)|ξ| − r(1 − |ξ|2)− (|ξ|2 − r2)}/(|ξ|2 − r2)
= (1− r)(|ξ| − r)(1 − |ξ|)/(|ξ|2 − r2),

eθ1π − |K| −R = eθ1π − |ξ|(1 − r2)
|ξ|2 − r2

− r(1 − |ξ|2)
|ξ|2 − r2

= eθ1π − (1− r|ξ|)(|ξ| + r)
|ξ|2 − r2

=
eθ1π(|ξ| − r)− 1 + r|ξ|

|ξ| − r

=
(eθ1π + e−θ0π)|ξ| − (e(θ1−θ0)π + 1)

|ξ| − r
.

6.6. Global study of the Schwarz map

Our Schwarz map s, if we continue freely in C−{0, 1}, is doubly multivalued, that
is, ∞-to-∞. So we restricted this map on the upper half x-plane. But it is still
∞-to-one.

We define domains Fx in Hx and Fs in Hs so that the restriction of the Schwarz
map s on Fx gives a one-to-one correspondence between Fx and Fs, and that
the restricted map reproduces the whole Schwarz map by applying the reflection
principle. They are made as follows: Cut the pig-nose PN along the real axis.
The upper half part with two-arched bridge shape will be denoted by Fs, and its
inverse image will be denoted by Fx.

Though the domain Fs also has the shape of a two-arched bridge (see Figure 12), it
is a little distorted — bounded by three real intervals and three curves, which are
not arcs (part of circles). This fact is not surprising, because the inverse function
of a Schwarz map is not a Schwarz map of a hypergeometric equation.

Anyway, these two two-arched-bridge-shaped domains Fx and Fs will be called
fundamental domains for s. Recall that in §2.2.2 we got two single-arched bridges
for the purely imaginary exponent.

6.6.1. Analytic continuation I. We see what happens if we apply repeatedly
Schwarz’s reflection principle to the restricted map

s|Fx : Fx −→ Fs

through the three real intervals (the intersection of the real axis and the closure
of Fx) to the (complex conjugate) mirror image F̄x of Fx. Since the images of the
three intervals are hemi-circles, each image of F̄x can be known by the reflection
with respect to one of these circles. (See Figure 13.) Next we apply reflection
principle again through the three intervals, and so on. Eventually we get
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f 0 b 1 d

a c

e d

f
b

e a c

Fx

s
Fs

Figure 12. The fundamental domains Fx and Fs

Figure 13. Action of a Schottky group on Hs

Proposition 6.4. The whole image of the 2-connected domain Fx ∪ F̄x ∪ {the three
intervals} under s will cover the upper half s-plane Hs. The inverse map, defined
on Hs, is single-valued, covers infinitely many times the domain Fx ∪ F̄x ∪ {the
three intervals}, and gives the isomorphism

Hs/Λ ∼= Fx ∪ F̄x ∪ {the three intervals},

where Λ is the monodromy group of the hypergeometric equation.

The group Λ is a so-called Schottky group (of genus 2). Automorphic func-
tions with respect to this Schottky group is constructed in [IY1].

6.6.2. Analytic continuation II. We next continue analytically the restricted map
s|Fx : Fx 	→ Fs to the upper half x-plane Hx.

Proposition 6.5. If we apply the reflection principle to the inverse map of s|Fx

through the real intervals (the intersection of the real axis and the closure of Fs

) to the (complex conjugate) mirror image F̄s of Fs, back to Fs through the three
intervals, and continue as we did in the x-space in the previous section, then the
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whole image under the inverse map, i.e. s−1(PN ), does not cover the entire half-
plane Hx but is the complement of infinitely many disjoint (topological ) discs in
Hx.

Sketch of proof. Let us apply the reflection principle for s along the curve c bound-
ing Fx and the line segment c bounding Fs. See Figure 12 and its zoomed one
(focussed on x = 1) Figure 14. The line segment (resp. hemi-circle) b and the line

b 1 d

a e

f

c

Fx

e a c

bf

d

Fs

s

Figure 14. Analytic continuation through the curve/segment c

segment (resp. hemi-circle) d are prolonged toward 1 (resp. to the lower s-space).
The inverse image under s of the line segment e has one end on the line segment d
and the other end in Hx, not on the real axis. This is because the intervals (0, 1)
and (1,+∞) are mapped to the circles b and d, respectively, and so no part of
these interval can be mapped to the other circle f . Similarly the inverse image of
the line segment a has one end on the line segment a and the other end in Hx.
(This is the essential difference from the Schottky case appeared in the previous
subsection.) The completion of the proof is now immediate. �
The proposition above can be paraphrased as follows: the upper half-plane Hx

covers under the map s the whole s-sphere infinitely many times, and the three
real intervals bounding Hx are mapped to the three circles. (See Figure 15.) Maybe
Figure 16 is more impressive; the upper half plane Hx is transformed into a disc,
in which bubbles colored in b, d, f form a foam.

7. Towards further study

Since a Schottky group is stable under small deformation, if we move the parameter
(λ, μ, ν) a little from a purely imaginary point, the monodromy group is still a
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b

e

a cFx

a c

d f

e c a e

f b d0 1

Figure 15. The inverse image of PN

Schottky group. Thus the set of points (a, b, c) such that the monodromy group
of E(a, b, c) is a Schottky group (of genus 2) form an open subset of the (complex
3-dimensional) space of parameters (a, b, c). We started to study this space in [IY2].

8. Closing

I showed in this lecture, I hope, that though the hypergeometric function is a
slightly enriched version of the power function, there are many interesting problems
about this function still waiting to be studied; most of them can be stated in a
quite elementary language.

I expect that young researchers will find a new aspect of this function, pose a new
problem, and (perhaps) solve it.
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reference [Zap], which gave me a key to start the study of the Schwarz map of
the hypergeometric function with not necessarily real exponents. I also would like
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paper. My thanks goes also to the CIMPA, the Galatasary University and the
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Figure 16. More impressive picture: bubbles colored in b, d, f
forming a foam
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Problem Session

Edited by Celal Cem Sarıoğlu

Abstract. This article contains the open problems discussed during the prob-
lem session of the CIMPA summer school “Arithmetic and Geometry Around
Hypergeometric Functions” held at Galatasaray University, İstanbul, 2005.

1. Introduction

The Problem Session of the summer school Arithmetic and Geometry Around the
Hypergeometric Functions (AGAHF) was held on June 24, 2005 in İstanbul. Nine
open problems were presented during the problem session by Professors Rolf Peter
Holzapfel, Jürgen Wolfart, Shiguyeki Kondo, Igor Dolgachev, Daniel Allcock and
Hironori Shiga. Professors Jan Stienstra and A. Muhammed Uludağ added their
own problems after the problem session.

The aim of this article is to gather the open problems of AGAHF summer
school. Some notes taken at the problem session were first brought together and
then sent to lecturers to take their opinion. After their corrections and additional
background information, this problem session article took its final form.

The following is a list of the 11 problems presented on June 24, 2005 at the
problem session of AGAHF summer school.

2. Open Problems

Problem 1 (R.P. Holzapfel). Determine the Heegner series HeegDΓ(q) of a Picard
line DΓ on the most classical orbital Picard modular plane X̂Γ as linear combi-
nation of a basis of the space M3(DK/Q, χK) of modular forms of weight 3, of
Nebentypus χK , K the field of Eisenstein numbers, as it was explained in [4] for
an orbital curve on the orbital Picard modular plane of Gauß numbers with orbital
Apollonius cycle by a (Q)-linear combination of Jacobi and Hecke theta series.

Thereby, the most classical Picard modular surface (plane) is P2 together
with orbital cycle consisting of 6 lines through 4 points (complete quadrilateral)
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with orbital weights 1 (in general), 3, 9,∞, respectively, as drawn in the following
picture:
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Interpretation as ball quotient: Let Γ1 = U((2, 1),Z + Zρ), ρ a primitive 3-rd unit
root, be the full Picard modular group of the field K = Q(

√
−3) of Eisenstein

numbers acting on the complex two-dimensional unit ball B. The corresponding
Picard modular plane is the Baily–Borel compactification (add 4 points with weight
∞) of the quotient surface Γ1(

√
−3)\B, where Γ1(

√
−3) is the principal congruence

subgroup of Γ1 with respect to the ideal (
√
−3) in the ring of Eisenstein integers.

This was proved in [5]. The quotient map B→ P2 has the complete quadrihedral
(minus the 4 cusp points) as branch locus. The ramification index of each of the
6 lines is 3, as indiceted in the picture. For DΓ you can take one of this lines.
This is the quotient of a complete linear subdisc D of B. For more details, e.g., the
definition of the orbital line DΓ, see [4].

Problem 2 (R.P. Holzapfel).

a) Determine (by explicit equations) all Shimura curves of fixed small genus
(e.g. the rational ones) of the three orbital Shimura planes described in [4]
and in Problem 1.

Two of them are Picard modular and one is Hilbert modular. The Picard
planes support the above quadrilateral orbital cycle or the Appolonius cycle, re-
spectively. The former belong to a Picard modular congruence subgroup of Eisen-
stein numbers, the latter to Gauß numbers. The Hilbert modular plane with orbital
Cartesius cycle belongs to the real quadratic number field Q(

√
2). Use the Relative

Proportionality Theorem in [4], which can be written as explicit genus formula for
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curves in the projective plane joining genus, curve degree and singularity data like
Plücker’s formula.

b) Determine their Heegner series as in Problem 1.

Problem 3 (I. Dolgachev). Are there any strata in the space of configurations of
hyperplanes in higher-dimensional projective space which can be isomorphic to a
ball quotient?

Take P1, z1, z2, . . . , zm ∈ C and μ1, μ2, . . . , μm ∈ (0, 1) such that μ1+μ2+. . .+
μm = 2. Deligne and Mostow gives a list of possible μ such that (P1)m//μ SL(2)
is a ball quotient. A natural question is whether P1 can be replaced with arbitrary
Pn. Let us take Pn, z1, z2, . . . , zm ∈ C and μ1, μ2, . . . , μm ∈ (0, 1) such that μ1 +
μ2 + . . .+ μm = 1 + n. Then one considers the GIT-quotient (Pn)m//μ SL(n+ 1).
Unfortunately, even under some arithmetical conditions on the μi’s similar to
Deligne–Mostow conditions (see [12]), it seems essentially no new examples of ball
quotients arise in this way if n > 1. Here essentially means up to the association
isomorphism

(Pm−n−2)m//μ SL(m− n− 1) � (Pn)m//μ SL(n + 1).

To remedy this unfortunate situation, one has to consider some special strata in
the space of configurations defined by the following degeneracy conditions. Pick
a collection I of subsets I1, I2, . . . , Ik of {1, 2, . . . ,m} of cardinality n + 1 and
consider the subvariety XI of (Pn)m defined by the conditions that the points
defined by a subset Ij are linearly dependent. The problem is now whether XI ⊂
(Pn)m//μ SL(n+ 1) is a ball quotient for some values of the parameters μi and I.

Problem 4 (D. Allcock). Are there reflection groups Γ acting discretely on the
complex ball Bn, with finite-volume fundamental domains, for arbitrarily large n?

This question arose during discussion of Prof. Dolgachev’s question about
ball quotients. A reflection group means a group generated by complex reflections,
and a complex reflection is an automorphism of Bn of finite order that fixes a
hyperplane pointwise (For example, a complex reflection of the Poincaré disk B1

is a finite-order rotation around a point.).
Bn is also known as complex hyperbolic space, and the answer to the real-

hyperbolic analogue of this problem is ‘no’: the quotient of Hn by a reflection
group cannot be compact if n ≥ 30 (see [13]) and cannot have finite volume if
n ≥ 996 (see [11]). The techniques that prove these results do not extend to the
complex case, where I suspect (not strongly enough to call it a conjecture) that
the answer is ‘yes’. This suspicion is based on a curious phenomenon expressed
as theorems 3.1–3.3 of [1]; a good candidate for a discrete reflection group with
finite-volume fundamental domain in B4n+1 is the reflection group of the lattice(
EE

8

)n ⊕ ( 0 θ̄
θ 0

)
. Here EE

8 is the E8 lattice regarded as a 4-dimensional lattice over
the Eisenstein integers E = Z[ 3

√
1] and θ =

√
−3. See [1] for a discussion of the

cases n = 1, 2 and 3.
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Here is some background. In all the examples we have seen in this summer
school, and in several more, the groups Γ acting on Bn such that Bn/Γ is a moduli
space are all generated by complex reflections. This is natural because in each case
Bn is a ramified cover of a moduli space of some type of object, ramified along the
divisor representing the singular objects. This ramification implies that the group
of deck transformations contains elements of finite order with fixed-point sets of
codimension 1; the only such transformations are complex reflections. Therefore
reflection groups are especially interesting in algebraic geometry. The largest n
for which a finite-covolume reflection group is known to act on Bn is n = 13; I
constructed it in [1] by using the Leech lattice. The largest n for which the quotient
of Bn by such a group has a known interesting moduli interpretation is n = 10; this
is the moduli space of cubic three folds in CP 4, a work in progress of J. Carlson,
D. Toledo and myself. The possibility of a moduli interpretation for the n = 13
example is part of a circle of conjectures I have formulated involving the monster
simple group; details will appear elsewhere.

Problem 5 (H. Shiga). Can a K3 surface having toric structure be obtained from
orbifold? If answer is ‘yes’, what are the its period map and differential equation?

Problem 6 (J. Wolfart). Determine the transcendence degree of the field generated
by the hypergeometric functions F (a, b, c; z) (say all a, b, c ∈ Q with some fixed de-
nominator) over the field C(z) of all algebraic functions, or even better a complete
list of algebraic equations over the field C(z) among these F (a, b, c; z).

Examples of such relations are Gauss’s relations between contiguous hyper-
geometric functions and classical results about algebraicity of F (a, b, c; z) . To
include also Kummer’s relations, quadratic and higher transformations, it is per-
haps reasonable to include in the problem somehow also rational transformations
in the variable z .

Problem 7 (J. Wolfart). Does the Jacobian (respectively Prym) of the hypergeo-
metric curve yp = ur(u − 1)s(u − z)t have complex multiplication type only for
finitely many z if z runs over a fixed number field K ? Stronger version: do we
get CM type for only finitely many z if we restrict to algebraic z of bounded degree
[Q(z) : Q] < M ?

The elliptic curve y2 = u(u − 1)(u − λ) has in fact complex multiplication
only for finitely many λ of degree < M : in CM points, the absolute invariant
generates class fields, and their degree grows with the discriminant according to a
famous result by Siegel–Gross–Zagier.

Problem 8 (S. Kondo). Are the arithmetic subgroups Γ(μi) in the Deligne–Mostow’s
list related to K3 surfaces?
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Let μi be a positive rational number (0 ≤ i ≤ d + 1 or i = ∞) satisfying
Σiμi = 2. Set

Fgh(x2, · · · , xd+1) =
∫ h

g

u−μ0(u− 1)−μ1 ·
d+1∏
i=2

(u − xi)−μidu

where g, h ∈ {∞, 0, 1, x2, · · · , xd+1}. Then Fgh is a multi-valued function on

M = {(xi) ∈ (P1)d+3 : xi �=∞, 0, 1 and xi �= xj when i �= j}.
These functions generate a (d + 1)-dimensional vector space which is invariant
under monodromy. Let Γ(μi) be the image of π1(M) in PGL(d + 1,C) under
monodromy action. In [2] and [9], Deligne and Mostow gave a sufficient condition
for which Γ(μi) is lattice in the projective unitary group PU(d + 1), that is, Γ(μi)

is discrete and of finite covolume, and gave a list of such (μi) (see [10] for the
correction of their list).

Denote μi =
μ̄i

D
, where D is a common denominator. In case of D = 3, 4,

5 or 6, Γ(μi) is related to K3 surfaces (see [3], [6], [7] and [8]). In these cases,
the corresponding K3 surfaces have an isotrivial pencil whose general fiber is an
elliptic curve with an automorphism of an order 4 or 6 (the case D =3, 4 or 6) or
a smooth curve of genus 2 with an automorphism of order 5 (the case D =5). We
also remark that 12

∑
μi = 24 = Euler characteristic of K3. All of these examples

related to K3 surfaces are unirational.

Problem 9 (S. Kondo). Find a non-unirational moduli which is a ball quotient by
using K3 surfaces.

Problem 10 (A. M. Uludağ). Families of K3 surfaces with a non-symplectic sym-
metry as ball quotients.

In a recent article Galois coverings of the plane by K3 surfaces, I classified all
smooth K3 surfaces with a group action such that the quotient is isomorphic to the
projective plane. For example, the universal orbifold covering of the plane branched
along an arrangement of a smooth conic with four lines in general position is a K3
surface (the double covering branched along the same sextic curve has some singu-
larities, its resolution is also a K3 surface). These sextics — or the corresponding
K3s — form a 5-dimensional family and are related to 8-point configurations on
the projective line as follows: Take the smooth conic as the projective line and 8
intersection points with the remaining four lines as the point configuration. Ob-
viously, points belonging to the same line can be permuted, whereas the points
belonging to different lines can not be permuted. Hence the configuration space of
these points is a certain “coloured-braid space”, which is isogeneous to the usual
braid space. The corresponding K3 family must be isogeneous to the one associ-
ated by Kondo to 8-point configurations. But in the location cited above there
are many other families of K3 surfaces “with symmetry” which can be related to
point configurations, for example an arrangement of a conic with 3 lines in general
position-related to 6 points on the projective line exactly in the same way. (In
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this case the standart double-covering argument will not work, since the orbifold
structure is more complicated.) It seems promising to apply the machinery devel-
oped by Dolgachev and Kondo in this volume to these K3 families. In many cases,
it is easy to find elliptic fibrations on these K3 surfaces. Obviously, this story is
connected with two-dimensional non-linear hypergeometric integrals associated to
the corresponding branch loci (e.g. a conic with four lines).

Problem 11 (J. Stienstra). Compare the approaches to Lauricella’s FD in the lec-
tures by Looijenga (i.e., Deligne–Mostow), Varchenko (i.e., Knizhnik–Zamolod-
chikov), Stienstra (i.e., Gel’fand–Kapranov–Zelevinsky).

Deligne–Mostow theory gives global monodromy information. Gel’fand–
Kapranov–Zelevinsky theory is strong in its local analysis, but weak on getting
global monodromy. Knizhnik–Zamolodchikov theory gives the differential equa-
tions as a connection (i.e., first order, vector valued) using a combination of FD’s
with different exponents.

References

[1] Allcock, D., The Leech lattice and complex hyperbolic reflections, Invent. Math. 140
(2000), 283–301.

[2] Deligne, P., Mostow,G.W., Monodromy of hypergeometric functions and non-lattice
integral monodromy, Publ. Math. IHES 63 (1972), 543–560.

[3] Dolgachev, I., van Geemen, B., Kondo, S., A complex ball uniformization of the
moduli space of cubic surfaces via periods of K3 surfaces, math.AG/0310342, J.reine
angew. Math., To appear.

[4] Holzapfel, R.P., Relative Propertionality on Picard and Hilbert Modular Surfaces, To
appear in the proceedings of the AGAHF summer school.

[5] Holzapfel, R.P., Geometry and Arithmetic around Euler partial differential equations,
Dt. Verlag d. Wiss., Berlin / Reidel Publ. Comp., Dordrecht, (1986)

[6] Kondo, S., The moduli space of curves of genus 4 and Deligne-Mostow’s complex
reflection groups, Adv. Studies Pure Math. 36 (2002), Algebraic Geometry (2000),
Azumino, 383–400.

[7] Kondo, S., The moduli space of 5 points on P1 and K3 surfaces, math.AG/0507006.

[8] Kondo, S., The moduli space of 8 points on P1 and automorphic forms,
math.AG/0504233, To appear in the proceedings of the conference ”Algebraic Ge-
ometry in the honor of Igor Dolgachev”.

[9] Mostow, G.W., Generalized Picard lattices arising from half-integral conditions,
Publ. Math. IHES 63 (1986), 91–106.

[10] Thurston, W.P., Shape of polyhedra and triangulations of the sphere, Geometry &
Topology Monograph 1 (1998), 511–549.

[11] Prokhorov, M., Absence of discrete reflection groups with a non-compact polyhe-
dron of finite-volume in Lobachevsky spaces of large dimension, Math. USSR Izv. 28
(1987), 401–411.



Problem Session 437

[12] Varchenko, A., Hodge filtration of hypergeometric integrals associated with an affine
configuration of general position and a local Torelli theorem, I. M. Gelfand Seminar,
Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, (1993), 167–177.
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