
Contents1: Introduction2: Decomposition types of abelian varieties3: Abelian varieties with imaginary quadratic multiplication4: Endomorphismalgebras of simple abelian surfaces with imaginary quadraticmultiplication5: Abelian threefolds with imaginary quadratic multiplication6: PICARD matrices7: Exceptional abelian threefolds with imaginary quadratic multiplication8: K-discs on IB9: Q-central quaternion algebras and unitary groups10: Elliptic curve subfamilies11: The leading example12: Appendix: K-invariants of Q-central quaternion algebras0. PrefaceThe moduli space bF of polarized abelian threefolds with (compatible) imaginary quadraticmultiplication (of type (2; 1) with a �xed imaginary quadratic number �eld K) is called aPicard modular surface. The corresponding period domain is the two-dimensional complexunit ball IB. So bF is the Baily-Borel compacti�cation of a quotient surface F = IB=�; �an arithmetic group, called a Picard modular group.Let bC be an irreducible compact curve on bF and C its intersection with F . We callC (also bC) an arithmetic curve, if each abelian threefold AP corresponding to any pointP of C is not simple. We show that all arithmetic curves �ll a thin dense set on bF . Moreprecisely, they can be realized as quotients of all K-rational linear subdiscs ID of the ballIB using the arithmetic ID-lattices N�(ID) consisting of all elements of � acting on ID.Arithmetic curves have both, an important geometric and arithmetic meaning. Geo-metrically, they can be used for the classi�cation of Picard modular surfaces in the senseof Kodaira. For this purpose one de�nes special numerical invariants called (local) orbitalhights of curves on bF , principally, the Euler hight and the signature height. A simpleproportionality relation between Euler and signature height yields an explicit criterion fora curve bC on F to be arithmetical. The determination of the surface type can be managedby �nding a classifying con�guration of arithmetic curves (together with the knowledge ofChern numbers of a smooth model of bF coming from global hights).0.1 Theorem. There are two types of arithmetic curves C. In the modular case thethreefolds AP have an isogeny decomposition E(P ) �E(P ) �E into three elliptic curvesfor all points P of C, where E is constantly an elliptic curve with complexK-multiplicationand theE(P )'s can be organized to non-isotrivial elliptic curve families over (suitable) �nitecovers of C. The other (quaternionic scew �eld types) are interpreted in a similarmanner bynon-isotrivial families of abelian surfaces with scew �eld multiplication (in general pointsP ) coming from isogeny decompositions B(P ) �E of AP ; B(P ) a simple abelian surfaceof type II in Albert's list. 1



For the proof we classify the types of all possible endomorphism algebras of abelianthreefolds with imaginary quadratic multiplication. There are precisely six types corres-ponding to di�erent types of isogeny decompositions in the Picard modular case.With regard to Hilbert's 7-th (transcendence) and 12-th (class �eld) problems one usesa strong theorem of W�ustholz for the �st part and Shimura's work to prove the secondpart of0.2 Theorem. The point P on F and (each of) its preimage(s) � on IB are algebraic ifand only if the abelian threefold AP is simple with complex multiplication (CM) or it hasan isogeny decomposition into three elliptic curves with complex multiplication. In thesimple CM-case the �eld K(P ) is a class �eld over the CM-�eld L = K(� ) of AP which isa cubic extension of K.We call a point � = (u : v : w) of IB � IP2 simply transcendental, if K(� ) is atranscendental �eld extension of K and u; v; w are linearly dependent over K. Withthe decomposition results one gets0.3 Theorem. The abelian threefold AP not of (decomposed) CM-type is not simple, ifand only if (each of) its preimage(s) � on IB is simply transcendental.Shimura's class �eld theory works for simple abelian CM-varieties. It is not di�cultto see that all other candidates for class �eld theory, namely the points P for which AP hasa decomposition into elliptic CM-curves, ly on arithmetic curves C. The previous resultmeans that important class �eld extensions of K(� ); � as above, for these points P comesfrom the theory of elliptic curves in the modular case or from the class �eld theory ofquaternion division algebras over Q in the skew �eld case. This is a corollary of Theorem1. Moreover the modular case happens in distinction to the quaternionic scew �eld case ifand only if the corresponding curve bC goes through at least one of the cusp singularitiescollected in bFnF .The results are applied in analogy to elliptic curves to Picard curves de�ned byequations of type Y 3 = X4 + aX3 + bX2 + cX + d. The Jacobians are classi�ed bythe Picard modular surface of the �eld of Eisenstein numbers generated by a primitivethird unit root over Q. Here the quotient morphism th: IB �! F is described by explicitTheta constants and the inverse map by three (typical Picard) integrals of �rst kind alongpathes on Picard curves.0.4 Corollary. The following conditions are equivalent:(i) The Picard integrals at a point P are linearly dependent over K;(ii) th(� ) = P lies on an arithmetic curve;(iii) the corresponding Jacobian threefold AP is not simple;1. IntroductionAn abelian variety A has complex multiplication (CM), if its endomorphism algebraEnd (A) := Q
End (A) is a CM-�eld (totally imaginary quadratic extension of a totallyreal number �eld) of absolute degree 2g, where g := dim A. In our context abelian CM-varieties are understood as simple abelian varieties. From the basic work of SHIMURA and2



TANIYAMA [ST] one knows that they play an important role in number theory. Let A=Tbe a family of abelian varieties over a complex (irreducible) algebraic variety T . We callt 2 T a special point of this family, if the abelian variety At splits up to isogeny into simpleabelian varieties with complex multiplication. By our de�nition such abelian varieties arecalled abelian DCM-varieties (decomposed complex multiplication). More generally we lookfor (irreducible) subvarieties S of T such that all membersAs of the restricted family AS=Shave a greater endomorphismalgebra than a general member ofA=T . The restricted familyAS is called speci�c in this case. If the family is �xed once for all, then we call simply Sa speci�c subvariety of T . The subvariety S (or the family AS) is called very speci�c withrespect to the family A=T , if dim S > 0 and for each s 2 S the abelian �bre variety Asis isogeneous to a product of elliptic curves. The de�nitions transfer in obvious mannerto the moduli spaces of polarized abelian varieties using the biunivoque correspondencebetween moduli points and isomorphy classes of polarized abelian varieties.By means of the general classi�cation theory of endomorphism algebras of abelianvarieties due to ALBERT we introduce the decomposition type DT (A) of an abelian variety.We say that the decomposition type DT (B) is a specialisation of DT (A), if there is afamily A=T of abelian varieties such that the general members of A have decompositiontype DT (A) and there exists a point s 2 T with As of decomposition type DT (B). Sucha concrete specialisation is called of codimension c, where c := dim T � dim S. On thisway one gets a hierarchy structure among all decomposition types of abelian varieties of a�xed dimension g. It seems to be an interesting problem to study the hierarchy structuresin more detail.This should also be done for classes of abelian varieties satisfying additional conditions.For example, one considers all abelian varieties whose endomorphism algebras contain agiven Q-algebra R. Such abelian varieties are said to have R-multiplication. With somerestrictions and re�nements (polarisations of certain lattice types) there are classifyingalgebraic varieties called (complex) SHIMURA varieties. For basic de�nitions and factsof the complex theory we refer to the monograph [BL]. The notion of "(very) speci�c"subvarieties of these moduli varieties is de�ned as above simply by the restrictive moduliinterpretation.In this article we restrict our attention to abelian varieties A with imaginary quadraticmultiplication. By de�nition, End (A) contains an imaginary quadratic number �eld K.Most important are the principally polarized abelian threefolds withK-multiplication. Thecorresponding SHIMURA varieties (for each K) are called PICARD modular surfaces. Forbasic facts and advanced arithmetic studies we refer to the proceedings [Lg]. (Very) speci�cpoints and (very) speci�c curves are the main objects of our investigation. We want todescribe in simple words in section 1 the results of the article and in ?. some open problems,which are all connected with each other. Proofs are given in sections 2. - ?.Leading ExampleEach PICARD modular surfaceM is a non-compact quotient IB=� of the complex two-ballIB by an arithmetic group � acting on IB. Its BAILY-BOREL compacti�cation is denotedbycM = IB=b�. The di�erencecMnM consists of �nitely many cusp points, which are normalsurface singularities. Via Jacobian varietiesM is interpreted as modular surface of certain3



curves of genus 3. The smooth curve correspond to a ZARISKI open subvarietyMsm ofM.The di�erence cMnMsm is an algebraic cycle of codimension 1 called the compacti�cationcycle (with respect to smooth curves). At the end of this article we apply the above resultsto the PICARD modular surface M of the imaginary quadratic �eld of EISENSTEINnumbers and a speci�c one-dimensional subfamily CT =T of the corresponding PICARDcurve family C=M0; M0 a suitable �nite covering of the moduli space M. Together withsome earlier work the following interesting properties are veri�ed:1.1 cM0 = IP2; cM0nM0 = IP2n ffour (cusp) points in general positiong ;cM0nM0sm = fthe six projective lines through pairs of the four cusp pointsg1.2 T is a speci�c curve in the above sense, more precisely, with respect to the Jacobian�bration J(C)=M0.1.3 T is a projective line on IP2 = cM0 not containing any cusp point. So it does not belongto the compacti�cation cycle cM0nM0sm.1.4 T is the subquotient ID=� of the ball quotient surface M0 = IB=�0; ID a linear subdiscof the two-ball IB; � a cocompact arithmetic group commensurable with the unitary groupU ((1; 1) ;O), where O = Z + Z�; � a primitive unit root, is the ring of EISENSTEINintegers.1.5 Explicitly the curve family CT =T has the a�ne modelY 3 = X4 � 4(�2 + 1)X2 + 16�2; � 2 C;of smooth (PICARD) curves of genus 3 (in general).1.6 The Jacobian threefolds J� of the Picard curves of the above family split in generalup to isogeny into a product of the elliptic curve E with Q(�)-multiplication and a simpleabelian surface S� with a Q-central skew �eld D �= End S� as endomorphism algebra.2. Decomposition types of abelian varietiesLet A be an abelian variety. All our abelian varieties are de�ned over a �eld of characteristic0. By POINCAR�E's Complete Reducibility Theorem, see e.g. [BL], V.3.7, there is anisogeny decomposition (unique up to isogeny)A � Am11 � : : :�Amrr (2:1)with simple abelian varieties Ai in the decomposition. We call the factors Ai (moreprecisely their isogeny classes) the isogeny components of A and the exponent mi themultiplicity of Ai in the decomposition. The endomorphism algebraEnd (A) = Q 
End (A) has the decomposition4



End (A) �=Matm1 (D1)� : : :�Matmr (Dr) (2:2)where Di = End (Ai) is a division algebra (a skew�eld because of associativity) sinceAi is simple. We denote by K an imaginary quadratic number �eld. We say that A hasK-multiplication, if there exists a Q-algebra homomorphism �: K �! End (A). This is a�eld embedding because it is non-trivial.Now let A be simple. We remember to the classi�cation list for endomorphismalgebrasD of simple abelian varieties due to ALBERT (see [AV], [Al], [BL]). The division algebraDhas an involution 0 (ROSATI involution) associated to a polarisation of A. The involutionis positive, this means that the quadratic form x 7! Tr(xx0); T r = TrD=Q the reducedtrace on D, is positive de�nit. In general the involution is not uniquely determined, butuniquely determined is the JORDAN algebras Jd(A) = Jd(D; 0 ) = fx 2 D; x0 = xg ofelements ofD �xed by the involution, because it is the image of a canonical homomorphismfrom the NERON - SEVERI group NS(A) into D. There are four rough types of divisionalgebras (D; 0 ) with positive involutions coming from simple abelian varieties A (of anycharacteristic). For their description we denote the center of D by Z, the index of D by d,that means d2 = dim Q(D=Z), and setg = dim A;e = [Z : Q] ;Z+ = fz 2 Z; z0 = zg ;e+ = �Z : Z+� 2 f1; 2g ;� = dimQ Jd(D; 0 )=dimQ D:Then we have the following complete list:2.3. Rough types of endomorphism algebras of simple abelian varietiesTypes ConditionsI: e = e+; d = 1; h = 1; e j gII: e = e+; d = 2; h = 34 ; 2e j gIII: e = e+; d = 2; h = 14 ; 2e j g in characteristic 0(e j g in characteristic p > 0)IV: e = 2e+; h = 12 ; e+d2 j g in characteristic 0(e+d j g in characteristic p > 0)Moreover, one has the following additional informations I 0; II 0; III 0; IV 0 for the abovecases, respectively (in all characteristics):I 0: D = Z = Z+ is a totally real number �eld.II 0: Totally inde�nite quaternion type. Z = Z+ is a totally real number �eld and D aquaternion �eld over Z (associative non-commutative division algebra of index d = 2 withcenter Z), such that for all �eld embeddings �: Z �! R it holds that5



R
� D �=Mat2(R): (2:4)The ROSATI involution can be represented by x 7! x0 = ax�a�1; a 2 D with a2 2 Ztotally negative, where x 7! x� = Tr(x)�x is the standard involution onD. The involution0 is the restriction of the transposition map (X1; : : : ;Xe) 7! ( tX1; : : : ;tXe) along a suitableisomorphism R
D �=�!Mat2(R) � : : :�Mat2(R).III 0: Totally de�nite quaternion type. Z = Z+ is a totally real number �eld and D aquaternion �eld over Z again, such thatR
� D �=H = R +Ri +Rj+Rk;for all � as above, H the HAMILTON quaternion �eld over R. The involution 0 is thestandard involution � = Tr � id on D. A suitable isomorphism R 
 D �=�!H � : : : �Htransforms 0 to the componentwise conjugation on the HAMILTON quaternion �eld H.IV 0: Z+ is a totally real number �eld, Z a totally imaginary quadratic extension (a CM-�eld) of Z+ and each �eld embedding �: Z �! C induces an isomorphismR
� D �=Matd(C):The automorphism � of complex conjugation on Z coincides with the involution 0. More-over, there is a positive involution �: D �=�!D de�ned by restricting the canonical involution(X1; : : : ;Xe+) 7! � tX1; : : : ; tXe+� on Matd(C) � : : :�Matd(C) along an isomorphismR
D �=�!Matd(C) � : : : �Matd(C):Each positive involution 0 onD has the form x 7! x0 = ax�a�1 for a suitable element a 2 D�with image (A1; : : : ; Ae+) ; Ai hermitian positive de�nit, in Matd(C) � : : :�Matd(C).2.5 Remark. Let D be a division algebra of rough type I; II; III or IV . By theclassi�cation results of ALBERT it can be realized as endomorphism algebra of a suitablesimple abelian variety in characteristic 0, except for some of the types III or IV , namelyg = 2e or 4e (type III) and g = e+d2 or ed2 (type IV ). In these cases additional conditionsto III 0 respectively IV 0 must be given.2.6 De�nition. A simple abelian variety A is called of�ne type (I; e); (II; e); (III; e) or (IV; d; e); d; e 2 N;if it is of rough type I:; II:; III:; IV:, respectively, and the skew�eld End (A) has theinvariant e = [Z : Q] ; Z the center of End (A), and index d = 1; 2, (d = 1 unique in the�rst three cases).2.7 De�nition. Let A; B be two abelian varieties with isogeny decompositions (2.1) orB � Bn11 � : : :�Bnkk ;6



respectively. We say that A; B have the same decomposition type, if and only if1) k = r;2) for a suitable numeration the multiplicities mi; ni coincide for i = 1; : : : ; r;3) there is a suitable numeration as in 2) such that additionally for i = 1; : : : ; r the�ne types of End (Ai) and End (Bi) coincide.The decomposition type of A is denoted by DT (A).3. Abelian varieties with imaginary quadratic multiplicationLet M be a number �eld. If the abelian variety has M-multiplication, then one knowsthat the absolute degree of M is not greater than 2dim A. If, especially, K = M is animaginary quadratic number �eld, then we say shortly that A has imaginary quadraticmultiplication.3.1. Lemma. Let A be an abelian variety with K-multiplication, K a number �eld, withisogeny decomposition (2:1). Then each primary component Amii has K-multiplication.Especielly, if Aj is a simple component of multiplicity mj = 1, then Aj has K-multiplica-tion.Proof. The composition of �: K �! End (A) of the i-th projectionpi: End (A) �! End (Amii )in the direct sum (2.2) is a homomorphism of Q-algebras not being trivial because 1corresponds to 1. Therefore the kernel of pi � � is trivial and pi � � an embedding of K intoEnd (Amii ). Hence Amii has K-multiplication.3.2. Proposition. Let A be a simple abelian variety with imaginary quadratic K-multiplication and with endomorphism algebra D not of type IV . Then D is uniquelydetermined up to Z-isomorphy by K, the center Z and the L=Z-norm class of a suitablez = zD 2 Z�nNL=Z(L�) having a square root u in D but not in L := KZ. More explicitlyone hasD �= (L=Z; � ; z) �= L � 1 + L � u with relations u2 = z; uc = �(c)u for all c 2 L; (3:3)where � denotes the complex conjugation. D is of type II (an inde�nit quaternion �eld)if and only if z > 0 and of type III (a de�nit quaternion �eld) i� z < 0.Proof. Without loss of generality we can assume that K = Q�p�a� ; a 2 Q+, is asub�eld of the skew�eld D. Then Z � K = Z �p�a� is a sub�eld of D because Z iscentral in D. Since Z is totally real we conclude that L := Z �K � D is a quadratic �eldextension of K. So it is a maximal (commutative) sub�eld of D because [D : Z] = d2 = 4,see II; III. (Type I is excluded because the endomorphism algebra is not a totally realnumber �eld). Therefore L splits D by the following7



3.4 Theorem ((28.5) in [R]). Let D be a skew�eld with center Z, and let d = p[D : Z]be the index of D. Let L be a �nite extension of Z.(i) If L splits D, then d j [L : Z].(ii) There exists a smallest positive integer r for which there is an embeddingL �Matr(D) as Z-algebras. With this choice of r; L splits D if and only if (theimage of) L is a maximal sub�eld of Matr (D). Furthermore, the centralizer L0inMatr(D) of the image of L is a skew�eld or a �eld. Identify L with its image.Then L is a maximal sub�eld of Matr(D) if and only if L = L0.Since our L = KZ lies in D = Mat1(D) we have r = 1 in (ii). "L splits D" means thatL
Z D is isomorphic to Matd(L) as L-algebra.Any simple algebra R with center Z is isomorphic to a matrix algebraMatr(D) for asuitable r 2 N+ and a skew�eld D. Both, the natural number r and the isomorphy class ofD, are uniquely determined by R, see [R]. D is called the skew�eld part of R. Two simpleZ-central algebras R and B are called similar, i� there is an isomorphism of Z-algebrasR
Z Matr(Z) �= B 
Z Mats(Z)for suitable positive integers r and s. The similaryty classes of Z-central simple algebrasform via tensor product a group Br(Z) called the Brauer group of Z. The unit element isrepresented by the elements Matr (Z); r 2 N+.For each �eld extension L of Z there is an exact sequence of groups1 �! Br(L=Z) �! Br(Z) �! Br(L)R 7! L
Z RThus, the similarity classes of Z-central simple algebras splitted by L appear as subgroupof Br(Z). Moreover, if L=Z is a �nite Galois extension, there is an isomorphismBr(L=Z) �=�!H2 (Gal (L=Z) ; L�) ;see [R], theorem (29.12). On the other hand the cohomology theory of groups yieldsisomorphismsH2 (G;L�) �= L�G=L�1+�+:::+�n = L�G=NL=Z (L�) = Z�=NL=Z (L�);if G = h�i = Gal(L=Z) �= Z=nZ is cyclic of order n. We refer to [R] again, 29. exerc. 12,13. Now we turn back to the �eld L = KZ in Prop. 3.2. It is a (cyclic Galois) extensionof Z of degree 2 splitting D. In [R], section 30, one can �nd the explicit description of theour quaternion �eld D as described in (3.3). Indeed, one has the the exact group sequence1 �! NL=Z (L�) �! Z� �! Br(L=Z) �! 1z 7! [L=Z; �; z]where [: : :] denotes the similarity class of the corresponding simple agebra described in(3.3). For this fact we refer to [R], section 30, ex. 1. It means that8



3.5 the quaternion �elds (L=Z; �; z) and (L=Z; �; z0) are Z-isomorphic if and only if z=z0is in NL=Z (L�).Since A is assumed to be simple, hence D = End (A) 6= Mat2(Z), it cannot happen inour case that z 2 NL=ZL�. The main part of Prop. 3.2 is proved.For the last statement we show that D is of type III, if z < 0. The tensor product of(3.3) with R yields explicitlyR
D = C � 1 +C � u = (C=R; �; z) :Comparing with the HAMILTON quaternion �eldC � 1 +C � j =H = (C=R; �; �1)we see that R
D �= H because �1=z 2 R+ = NC=R(C�). This means that D is of typeIII. If z > 0 then R 
 D �= (C=R; �; +1) splits because +1 is a norm. This meansR
D �=Mat2(R), hence D is of type II. The Proposition 3.2 is proved.3.6 De�nition. A simple abelian variety A of dimension g has complex multiplication,i� the endomorphism algebra End (A) contains a sub�eld F of (maximal possible) degree[F : Q] = 2g.In this case one knows that End (A) = F , see [CM], I, Lemma 3.2, and F is a CM-�eld. Usually non-simple abelian varieties A are called of CM-type, if the condition of thede�nition is satis�ed. In this case one knows that A has a primary isogeny decompositionA � B � : : :�B = Bm; B a simple abelian CM� variety;see [CM], I, Theorems 3.1, 3.3. From (2.2) we getEnd (A) �=Matm(F ) where F = End (A) is a CM� �eld: (3:7)For our purposes it is convenient to use the following generalizing3.8 De�nition. An abelian variety A has decomposed complex multiplication (or is ofDCM-type), if all the simple components Ai of any isogeny decomposition (2.1) of A havecomplex multiplication.Together with (2.1),(2.2) we see that the endomorphism algebra of an abelian DCM-varietyA has the formEnd (A) �=Matm1 (F1) � : : : �Matmr (Fr) ; Fi �= End (Ai) CM� �elds: (3:9)9



4. Endomorphism algebras of simple abelian surfaceswith imaginary quadratic multiplication4.1. Proposition. If S is a simple abelian surface (over a �eld of characteristic 0), thenEnd (S) has one of the following types:(i; 1) End (S) �= Q;(i; 2) End (S) �= k a real quadratic �eld;(ii; 1) End (S) �= D an inde�nite quaternion �eld over Q.(iv; 2) End (S) �= F a CM-�eld without imaginary quadratic sub�elds.Especially, S has imaginary quadratic multiplication if and only if it is of type (ii; 1). Inthis case it has K-multiplication for each imaginary quadratic number �eld K.Proof. We have g = dim S = 2. Assume that S is of rough type I. Then End (S)is a totally real �eld of degree e j 2, therefore e = 1 or 2, hence (i; 1) and (i; 2) are theonly possibilities. Both types can be realized. The �rst by a general abelian surface, thesecond by a general member of a family of abelian surfaces parametrized by a suitable�nite covering of the Hilbert modular surface of the �eld k.The quaternion types II; III live with the condition 2e j g. Therefore e = 1 andEnd S has to be a quaternion �eld over Q. But the case (III; 1) of a totally de�nitquaternion �eld over Q is not possible by a result of SHIMURA. We refer to [BL], IX, Ex.1, or, more originally, to [Shm 1], Theorem 5 (a) and Prop. 15.Now let S be of type IV . The condition e+d2 j g in IV: yields d = 1 and e+ = 1or 2. By IV 0 End S has to be a CM-�eld F of absolute degree e = 2e+ = 2 or 4. Thecase (IV; 1) of an imaginary quadratic �eld F cannot occur, see [BL], IX, Ex. 4, or, moreoriginally, [Shm 1], Theorem 5 (c), (d), Propositions 14 and 18. The remaining possibilityis the CM-type (IV; 2) because [F : Q] = 4 = 2g.We consider complex abelian surfaces S of this type with imaginary quadratic K-multiplication and show that they cannot be simple. For this purpose we remember to thede�nition of types of complex multiplications. Let (A; �) be an abelian variety of CM-type�: F �! End (A); [F : Q] = 2dim A = 2g:The number �eld F acts on the complex tangent space T (A) of A at 0 2 A(C).Diagonalizing this action we get g characters F � �! C� or, equivalently, �eld embed-dings 'i: F �! C; i = 1; : : : ; g. It can be shown that they are pairwise di�erent and notconjugated, this means that 'i 6= 'j for all i; j � g. Such a g-tuple � = ('1; : : : ; 'g) iscalled a CM-type. Usually it is denoted by (F;�) or �F . Sometimes it is convenient towrite � = �F = gXi=1 'iThe abelian CM-varieaty (A; i) with complex multiplication we started with is called ofCM- type (F;�). If M=F is a �nite �eld extension, then10



�M = gXi=1X fall extensions of 'i to Mgis a type on M . It is called the lift of �F to M . A CM-type is called simple, if it is notlifted from a sub�eld. It can be proved that all CM-types lifted from suitable CM-sub�eldsare endomorphism algebras of abelian varieties with decomposed complex multiplication(see [CM], I, Theorem 4.4). Moreover, we need the following4.2. Proposition (see [CM], I, Theorem 3:5). The abelian CM-variety A of type (F;�)is simple if and only if the type (F;�) is simple.We assume that S is simple of CM type and has K-multiplication. Then F is a CM-�eldwith totally real quadratic sub�eld F+. Furthermore, there exists an imaginary quadratic�eld K � F = End S; K 6= F+:So we dispose on quadratic �eld extensions
K

Q

H

F

F
+Let ('1; '2) be the CM-type of F -multiplication on S. Without loss of generality we canassume that '1 = id is the identical embedding. The restrictions of '2 to K and H cannotbe both complex conjugated to idK or idH , respectively. Otherwise '2 would be complexconjugated to '1, which is not possible by a basic property of CM-types of abelian varieties.Without loss of generality we have '1 = '2 on H. Therefore the type ('1; '2) is the liftof the type (H; idH ). We get a contradiction to Proposition 4.2. The only possibility forendomorphism algebras of type IV of simple abelian surfaces is (iv; 2).The last statement of 4.1 will be proved and a littlebit extended in the followingsubsection, see Prop. 4.4.5. Abelian threefolds with imaginary quadratic multiplication5.1 Theorem. Let A be an abelian threefold over a �eld of characteristic 0 with imaginaryquadratic K-multiplication, E an elliptic curve with K-multiplication. There are only thefollowing types of isogeny decompositions of endomorphism algebras of A, respectively:11



(A;K)End (A) �= K; A simple not of CM-type; (A;F )End (A) �= F; F a CM-�eld, [F : K] = 3, A simple abelian CM-threefold; (E �E2�)End (A) �= K �Mat2 (Q(�)) ; � 2 IH = fz 2 C; Im z > 0g,A � E �E�; E� = C=Z+ Z� an elliptic curve with imaginaryquadratic Q(�)-multiplication, Q(�) 6= K; (E3)End (A) �=Mat3(K); A � E3; (E � S)End (A) �= K � D; D an inde�nite Q-central quaternion �eld,A � E � S; S a simple abelian surface of type II; (E �E2� )End (A) �= K �Mat2(Q); A � E � E2� ; � 2 IH; E� = C=Z + Z�an elliptic curve without imaginary quadratic multiplication; (E3� )End (A) �= Mat3(Q); A � E3� ; E� as above an elliptic curve notof CM-type.Proof. First let A be simple. Then it is not of type I. The types II and III are impossiblebecause of the condition 2e j g = 3. Type IV comes with condition e + d2 j g = 3, henced = 1, this means that End (A) coincides with its center Z and is therefore a number �eldcontaining K. Since e+ j g = 3, there are only the possibilities e+ = 1 or 3, hence Z = Kor Z = F; F a CM-�eld of absolute degree 6.Now assume that A has a decomposition A � E � S in two simple abelian varietiesof dimension 1 or 2, respectively. Both factors have multiplicity 1. Therefore they haveK-multiplication by Lemma 3.1. In characteristic 0 we know that a simple abelian surfaceS with K-multiplication has type (ii; 1) by Lemma 4.1.It remains to investigate the case when A has an isogeny decompositionA � A1 �A2 �A3 into three elliptic curves. If these curves are not all isogeneous to eachother, then at least one, say A1, appears with multiplicity 1 in the isogeny decompositionof A. By Lemma 3.1 it has K-multiplication, hence A1 � E with the above notations.Furthermore, the other components cannot appear with multiplicity 1 because, by the sameconclusion, they have to be isogeneous to E, hence to A1, in this case. This contradicts tothe 1-multiplicity of A1. The only possibilities for an elliptic splitting with a componentof multiplicity 1 are therefore the cases (E �E2�) and (E �E2� ).It remains to check the isogeny case A � A31. If A1 has K-multiplication, then wehave case (E3). If A1 is not a CM-curve, then we get (E3� ). Finally, it remains to excludethe case A � Y 3; Y an elliptic CM-curve with multiplication �eld H 6= K. We showthat End (A) �= Mat3(H) is not compatible with K-multiplication. Namely, in this caseEnd (A) is a H-central algebra containing the sub�eld K. Then End (A) contains thecompositum L = H �K of degree 4 over Q, hence 4 = [L : Q] divides 2dim A = 6 by [CM],I,Thm.3.1. This is a contradiction.Let us consider a family A=T of abelian varieties over an irreducible variety T of positivedimension. Let t be a general and s an arbitrary point of T (the general point of a subvarietyS of T ). Both �bres At and As are abelian varieties. The isogeny decomposition type ofthe �bre variety As is called a specialisation of the decomposition type of At. If A; B arearbitrary abelian varieties. Then we call DT (B) a specialisation of DT (A), if there is a12



family A=T as above with general �bre A and special �bre B. It is equivalent to say thatthe decomposition type of B is more special than that of A. In this case we writeDT (A) �! DT (B):Moreover, we call DT (A) a specialisation of DT (B), if there is a chain of specialisationsDT (A1) �! DT (A2) �! : : : �! DT (Ak)with A = A1 and B = Ak.If we restrict our view to families of abelian varieties with K-multiplication,K a �xednumber �eld, then it may happen, that the decomposition typeDT (B) of an abelian varietyB with K-multiplication is the specialisation of DT (A); A also an abelian variety withK-multiplication, but there is no family A=T of abelian varieties with K-multiplicationjoining A; B in the above sense. If such a K-family exists, then we say that DT (B) is aK-specialisation of DT (A) writingDT (A) K�!DT (B). The de�nition is extended by meansof chains of K-specialisations in analogy to the absolute case above.For example, the decomposition type of an elliptic CM-curve E is a specialisation ofthe decomposition type of the elliptic curve E� without complex multiplication. Thereforealso DT (E3) is a specialisation of DT (E3� ). Let K be the CM-�eld of E. Since thereare embeddings K �! Mat2(Q) �! Mat3(Q) �= End (E3� ) we see that E3� has alsoK-multiplication. But there is no irreducible K-family of abelian varieties of positiveparameter dimension joining the types DT (E3) and DT (E3� ). Namely, it is easy to checkthat the type DT (E3� ) can only occur in a constant K-family. To see this we assume thattheir is a K-family A=T; dim T > 0, with A� of isogeny decomposition type DT (E3� )at a general point � of T . Since the imaginary quadratic numbers � 2 IH are densein IH, in a small neighbourhood of � there are members A� of the family of DCM-typeDT (E3�); Q(�) 6= K. So A� has both K-multiplication and Q(�)-multiplication. But thishas been already excluded at the end of the proof of Theorem 5.1. So we notice with theabove notations thatDT (E3� ) �! DT (E3�) but not DT (E3� ) K�!DT (E3�): (5:2)An isogeny decomposition type of abelian varieties is called K-rigid (K any number�eld), if there are only constant irreducible families A=T of abelian varieties with K-multiplication containing only members of the given type or of its specialisations. Besidesof the above example one knows that all DCM-types are rigid, that meansQ-rigid, becauseit is well-known that abelian DCM-varieties have no moduli, see e.g. [BHP], IV.3.Together with Theorem 5.1 we receive the following5.3 Corollary. The hierarchy of K-specialisations of decomposition types of abelianthreefolds with imaginary quadratic K-multiplication is described in the following diagram:13



(5.4)
(A, K)

(E B)

(E 3)

(A, F)

(E E 2
τ )

(E E2
σ)On the bottom row we placed the 0-modular cases (moduli dimension 0); the types (A;K),is 2-modular and the types (E � S) and (E �E2� ) are 1-modular.Remark. It is not clear to me whether the sporadic type (E3� ) can appear as K-specialisation of the type (A;K) in a suitable family. The K-specialisationsDT (E � E2� ) �! DT (E �E2�) and DT (E � E2� ) �! DT (E3) can be realized in obviousmanner. For the other possible specialisations we did not prove the existence until now.This will be done by examples in ?.5.5 Corollary-De�nition. Each speci�c (not isotrivial!) subfamily AC=C of an arbitraryfamily A=S of abelian threefolds with imaginary quadratic K-multiplication is of type(E � S) or (E � E2� ). Each very speci�c subcurve C of S with respect to A=S is ofdecomposition type (E �E2� ) at general points.In the very speci�c case we call AC=C a modular (sub)family and C a modular curvein S. In the other speci�c case we call AC=C a Kuga (sub)family and C a Kuga curve inS.5.6 Corollary. With the notations of 5:5 the following conditions are equivalent:(i) C is speci�c;(ii) E is an isogeny component of all �bres Ac; c 2 C;(iii) E is an isogeny component of a general �bre A
 of AC ;(iv) C is a modular or a Kuga curve.Now it is clear that we proved with Theorem 5.1 and Corollaries 5.3 - 5.6 the statements 1.1,1.2, 1.3 and 1.4 of section 1. The criterion 1.4 (or 5.6 (ii); (iii)) is helpful for discoveringexplicitly curves of genus 3 with splitting Jacobian threefold with K-multiplication. Thiswill be applied in the main example below. In order to be more precise and more 
exiblein connection with special and general �bres and for the sake of completeness, we prove5.7 Lemma. Let A=C be a family of abelian varieties over a smooth algebraic curve C,all de�ned over an algebraically closed �eld k of characteristic 0. If there is a point � 2 Coutside of C(k) such that A� is not simple, then the general �bre A
=k(C); 
 = Spec k(C)the general point of C, is not simple. Moreover, all �bres Ac; c 2 C, are not simple.14



Proof. The point � corresponds to a morphism Spec k(� ) �! C, where k(� ) 6= k has tobe a transcendental extension of K. Without loss of generality we can assume that C isan a�ne scheme over k. Then � is interpreted as k-algebra homomorphism k[C] �! k(� )not factorizing through k. Therefore the kernel is a non-maximal prime ideal, hence equalto 0 because k[C] is a DEDEKIND domain. The homorphism extends to the co�nte �eldembedding k(C) �! k(� ).The endomorphism algebra End (A� ) has a faithful linear representation in thespace of di�erentials of �rst kind. This is a vector space with �nite basis de�ned overk(C). Therefore the endomorphisms are stabilized by each element of the GALOIS groupAut (k (� )a =k (C)) acting on A� (k (� )a), where a denotes the algebraic closure of a �eld.The elements of End (A� ) are de�ned over k(C)a, therefore End (A� ) and End (A
)coincide. Since an abelian variety A over a �eld is simple if and only if its endomorphismQ-algebra is a skew�eld, the general �bre A
 inherits this (or the opposite) property fromA� . For the last statement we assume that the general �bre A
 is not simple. Then there isan isogenyA
 �! B�G onto a product of two abelian varietiesB; G of positive dimension.Product and isogeny are de�ned over k(C)a, hence already over a �nite extension K 0of k(C). The �eld K 0 is the quotient �eld of the DEDEKIND domain R0 obtained bynormalisation of R := k[C] in K 0. Therefore we can work with the NERON models(B � G)R0 and AR0 over C 0 = Spec R0. The latter model is nothing else but the lift AC0of A=C along the �nite covering C 0 �! C, see [Ar], Cor. 1.4. For existence, uniquenessand other basic properties of NERON models we refer to M. ARTIN's survey article [Ar].The morphism AK0 �! BK0 �GK0 extends uniquely to a morphism AR0 �! (B�G)R0 =BR0 �R0 GR0 . By de�nition, the abelian variety AK has good (non-degenerate) reductionat each point c 2 C. This property pulls back to AK0 and all points c0 2 C 0, and descentsalong isogenies, see [CM], II, Cor. 3.5. Therefore the �bres of (B �G)R0 at all c0 2 C 0 areabelian varieties, hence products of two abelian varieties Bc0; Gc0 of positive dimension.Moreover, the �bre morphism Ac0 �! Bc0 �Gc0 cannot be trivial because projections tofactors restrict to projections. Now we see that the �bres Ac0 are not simple. Let c 2 Cand c0 2 C 0 a preimage point. Together with Q 
End (Ac0) also Q 
 End (Ac) is not askew�eld. Namely, both Q-algebras coincide because k(c0)=k(c) is a �nite �eld extension.6. Semi-period matricesShimura de�ned in [Shm 1] Shimura varieties as quotients of certain bounded domains byarithmetic subgroups acting on them. They parametrize isomorphy classes of polarizedabelian varieties with speci�ed multiplication by a �xed �nite-dimensionalQ-algebra with(anti)involution. For a more recent version we refer to [BL], ch. IX. Abelian threefoldswith K-multiplication of type (2,1) explained below, K = Q(p�d) an imaginary quadraticnumber �eld, correspond to Picard modular surfaces of K. We repeat Shimura's de�nitionfor this case and transfer it to a three-dimensional language, which is more convenientand handable for our purposes. In order to avoid some unessential complications withelementary linear algebra we restrict ourselves to the pricipal case using the Z-lattise O315



of K3 and and the skew-symmetric diagonal matrix T = diag �p�d; p�d; �p�d�, see[BL], IX, 6. The complex unit ballIB = �(u; v); juj2 + jvj2 < 1	 (= IH2; 1 in [BL])with the canonical embeddings IB � C2 � IP2 = IP2(C) is the corresponding perioddomain. The (transitive) action of the unitary groupU ((2; 1) ;C) =8<:A 2 Gl3(C); tA0@ 11�11AA = 0@ 11�11A9=;on IB is explained as restriction of the canonical action of IPGl3(C) on IP2. The arithmeticsubgroup� := U ((2; 1) ;O) =8<:A 2 Gl3(O); tA0@ 11�11AA =0@ 11�11A9=; ; O = OK ;is a Picard modular group. The quotient surface IB=� (or its compacti�cation) is called aPicard modular surface. It parametrizes isomorphism classes of polarized abelian threefoldswith K-multiplication, which we want to describe now. Let � = (u; v) be a point of IB and�� the Z-lattice in C3 generated by all vectors0@u v 1 0 0 00 0 0 1 0 u0 0 0 0 1 v1A0BBBBB@��
��
1CCCCCA ; �; �; 
 2 O: (6:1)Then the torus C3=�� is an abelian threefold. For the polarization we refer to [Shm 1] or[BL] again. Now let us introduce for � 2 C the notationb� =0@� 0 00 � 00 0 �1A : (6:2)Then the above lattice vector can be written asb�0@u101A+ b�0@ v011A+ b
0@ 1uv1ABy abuse of language we call N := 0@u v 11 0 u0 1 v1A16



a normalized semi-period matrix. It is regular because of 1 > ju2j+ jv2j � ju2 + v2j.Observe that the last two row vectors (1; 0; u); (0; 1; v) generate the orthogonal com-plement of (u; v; 1) in C3 with respect to the symmetric bilinear form represented by thediagonal matrix diag(1; 1;�1). It is the same to say that their conjugates (1; 0; u); (0; 1; v)generate the orthogonal complement of (u; v; 1) with respect to the hermitian formh ; i: C3 �C3 �! C; a = 0@ abc1A ; x =0@xyz1A 7! ha;xi := ax + by � cz (6:3)on C3 represented by the same diagonal matrix. Let � be a lattice in C3 and G 2 Gl3(C).Then the tori C3=� and C3=G� are isomorphic. Especially, forG = d� g = 0@ d 0 00 a b0 c d1A 2 C� �Gl2(C) �Gl3(C) (canonically embedded)and � = �� , the orthogonal relations of the rows in N are preserved. This means that� := GN = 0@ a1 a2 a3b1 b2 b3c1 c2 c31A = 0@ tatbtc1A (6:4)ha;ai < 0; a?b; c (generating a?):On this way we do not loose the ball point we started with, namelyIPa = (a1 : a2 : a3) = (u : v : 1) 2 IB: (6:5)A matrix � with the conditions of (6.4) is called a semi-period matrix. Obviously, thematrices d � g and b�; � 2 C, commute with each other. Therefore we can read o� thelattice �0 = (d � g)�� directly from �, namely�0 = d� g �8<:b�0@u101A+ b�0@ v011A+ b
0@ 1uv1A ; �; �; 
 2 O9=;=8<:b�(d� g)0@u101A+ b�(d � g)0@ v011A+ b
(d� g)0@ 1uv1A ; �; �; 
 2 O9=;=8<:b�0@ a1b1c11A+ b�0@a2b2c21A+ b
0@ a3b3c31A9=; :Now we introduce the operation b for each column vector x = t(x1; : : : ; xn) 2 Cn setting17



bx := 0BB@ x1x2...xn1CCA ; n � 2: (6:6)Then it holds that b�bx = d(�x) = d(x�) for � 2 C and x 2 C3: (6:7)The lattice �0 can be written as�0 = 8<:0@�0@ a1b1c11A1A^ +0@�0@ a2b2c21A1A^ +0@
0@ a3b3c31A1A^ ; �; �; 
 2 O9=; = hb�O3i(̂6:8)with b� de�ned in obvious manner:b� = � �a; b; c�l and = �(a;b; c) := t (a;b; c) : (6:9)Keep in mind that � (a;b; c) is (in general) not a semi-period matrix in our sense.Altogether we get explicitly�� = � �a;b; c� := �0 = � t (a;b; c)O3�^ : (6:10)Since the isomorphy class of the corresponding abelian variety depends only on the ballpoint � = IPa we introduce the notationsA� = Aa �= A �a;b; c� = C3=� �a;b; c� = C3= hb�O3i^ ; (6:11)de�ned up to isomorphy by IPa. Its Q-span of the period lattice is explicitly described byQ
 �0 = � t (a;b; c)K3�^ = hb�K3i^ : (6:12)This follows immediately from the considerations above substituting O by K = Q
O.Now we explain the K-action of type (2; 1) on A� . The element � 2 O is applied asb� to �0. From (6.7) and (6.8) it follows that b��0 � �0. This de�nes a natural morphismO �! End A� which extends to the embedding�: K �! End A� ; �(�) = b�: � t(a;b; c)x�^ 7! � t(a;b; c)�x�^ ; � 2 K: (6:13)In terms of diagrams we notice for � 2 O 18



(6.14)
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µFor �nding interesting sublattices of � (a;b; c), which possibly split the abelian three-folds Aa (up to isogeny), we introduce the notation� �a;b� := t �a;b� = � a1 a2 a3b1 b2 b3 � = � tatb� (6:15)for the submatrix of � �a;b; c� consisting of its �rst two rows only. There is a C-action ofsignature (1; 1) on C2 de�ned by multiplcation with�� 00 ��which is also denoted by b� for � 2 C. With respect to this action restricted to O wedenote the O-module in C2 generated by the columns of � �a;b� by � �a;b�. As abovewe have the following relations:Q
 � �a;b� = � t (a;b)K3�^ ; � �a;b� = � t(a;b)O3�^ (6:16)and d := dimQ� �a;b�Q6 = dimQQ
 � �a;b� = 2 � dimK � t(a;b)K3�^ :We recognize that d is an even natural number � 6. We exclude the cases d � 2. Assumethe opposite, this means that the K-dimension is not greater than 1. Then the vectorsa, b must be K-linearly dependent. We obtain the contradiction 0 > ha;ai = ha;bi = 0,namely a, b come from a semi-period matrix, see (6.4). We proved the �rst part of thefollowing6.17 Lemma. The Z-rank (or Q-dimension) of � �a;b� (of Q
� �a;b�) is equal to 4 or6. It is equal to 4 if and only if a; b 2 c? for a suitable o 6= c 2 K3.Proof. Assume that d = 4, that means dimK � t(a;b)K3�^ = 2. This happens if andonly if there is a non-trivial triple of numbers �; �; 
 2 K such that��a1�b1 �+��a2�b2 ��� 
a3
b3 � = o: (6:18)With 19



o 6= c :=0@��
1A 2 K3this relation can be translated to a?c and to b?c. Conversely, assume that o 6= c 2 K3and a; b?c. Then one obtains a non-trivial relation (6.18) setting0@��
1A := c:6.19 De�nition-Remark. We call a semi-period matrix � = � �a;b; c� orthogonallynormalized i� a?b?c?a. If � is an arbitrary semi-period matrix, then we can choose ina? an orthogonal basis b0; c0. Also �0 = � �a;b0; c0� is a semi-period matrix. There isan element g 2 Gl2(C) such that (1� g)� = �0. The corresponding lattices � and �0generated by the columns of � or �' as O-modules areC��Gl2(C)-isomorphic. Thereforethe corresponding abelian threefolds C3=� and C3=�0 are isomorphic. So each isomorphyclass of an abelian threefold A� with K-multiplication of type (2; 1) is represented by anorthogonally normalized semi-period matrix. An O-submodule of type � �a;b0� of smallZ-rank 4 sits in � if and only if there exists a vector c0 2 a?(K) := K3 \ a?. Namely, inthis case b0 is de�ned (uniquely up to a C�-factor) as basis vector of the line a?\c0? � C3,and � �a;b0; c0� is an orthogonally normalized period matrix equivalent to � with respectto C� �Gl2(C).6.20 Proposition. With the above notations the abelian variety A = Aa is not simpleif there exists o 6= c 2 K3 orthogonal to a. An abelian subsurface can be realized up toisogeny as S = C2=� �a;b� coming from a orthogonally normalized semi-period matrix� �a;b; c� corresponding to a, c. More precisely, S has K-multiplication, and there is anisogeny decomposition A � E � S, where E is an elliptic curve with K-multiplication. If,moreover, also a (or b) belong to K3, then A � E3.Proof. The projection �: C3 = C2�C �! C2 onto the �rst factor yields a commutativediagram (6.21)
0

0 Λ( a, b, c ) C

C

3
Α

a, bΛ( ) 2
S 0

0

π πwhere S is a complex torus of dimension 2 by Lemma 6.17. Taking vertical kernels werecognize that A has an elliptic curve E = Ker � as subvariety. Therefore A is not simple.20



The O-multiplications (of type (2; 1) or (1; 1), respectively) on the varieties are compatiblewith the morphisms of the diagram. Therefore both, S and E have K-multiplication.Let S0 be an abelian subsurface of A complementary to E. This means that there existsan isogeny E0 � S0 �! A with isogeneous restriction E �! E0. The composition withA �! S sends E0 to 0, hence S0 and S are isogeneous. Since S0 is an algebraic subvarietyof A, it has to be abelian. Therefore also its isogeneous image S is an abelian surface.If b (or a) 2 K3 then a (or b) lies in the K-line b?(K)\ c?(K) (or a?(K)\ c?(K))in K3. So we can choose also a (or b) 2 K3, in any case an orthogonally normalizedsemi-period matrix � = � �a;b; c� 2 Mat3(K) not changing the isomorphy class of A.But then by the same argument as above, the projections of C2 onto the �rst and secondcoordinate axes in the lower row of diagram (6:21) split S in E �E up to isogeny.6.22 De�nition-Remark. We consider the linear subdiscs IDc = IB \ IPc? of IB forc 2 C3; hc; ci > 0. IDc is called a K-disc i� c 2 K3. The linear subdisc ID of IB |de�ned as a non-void intersection of a projective line in IP2(C) with IB � IP2(C) | isa K-disc if and only if there are two di�erent points IPa; IPa0 2 IP2(K) on ID. Namely,for a K-disc IDc the orthogonal complement of c in K3 has K-dimension 2 and signature(1; 1). Therefore the set of points with coordinates in K is dense on IDc. Conversely, theorthogonal complement of Ka+Ka0 in K3 has K-dimension 1, if a; a0 2 K3; IPa 6= IPb,both on ID. Now choose a vector c 2 K3 generating (Ka+Ka0)?. Then the pointsIPa; IPa0 ly on IDc, hence ID = IDc is a K-disc.6.23 Corollary. If � = IPa 2 IB lies on a K-disc ID � IB, then the abelian varietyA� = Aa is of decomposition type (E � S); �E �E2� � �E �E2�� or (E3) in the sense ofTheorem 5.1.Proof. We know thatID = IDc; c 2 K3+ := �x 2 K3; hx; xi > 0	 ;c?a 2 K3� := �x 2 K3; hx; xi < 0	 : (6:24)Choose o 6= b 2 c? \ a?. The abelian variety Aa = A�; � = � �a;b; c�, splits up toisogeny by Proposition 6.20. The possible types of splitting have been listed in Theorem5.1.7. Exceptional abelian threefolds with imaginary quadraticmultiplication7.1 De�nition. An abelian threefold A with imaginary quadratic K-multiplication�: K �! EndA is called exceptional if and only if the centralizerZEnd A�(K) of �(K) in theendomorphism algebra of A is bigger than �(K). We call also End A or the endomorphismring End A exceptional, if A is. In the opposite case these objects are called general.21



Remark. Shimura proved in [Shm 1] that End A �= K, if the isomorphism class of Arepresents a "general" point of a Picard modular surface of K. Therefore the set of generalabelian threefolds with K-multiplication in the sense of 7.1 is not void.7.2 Lemma. With the above notations it holds that A is general i� End A �= K.Proof. The direction (() is trivial. For the other direction we �rst remark that a generalabelian threefold A with K-multiplikation must be simple. Namely, if A is not simple, thenthe elliptic curve E with K-multiplication is an isogeny factor of A (� E�S; S an abeliansurface), see Theorem 5.1. But then K �O � K � End S centralizes �(K) additionallyto the sub�eld �(K) in contradiction to the assumption of the lemma. For simple A theendomorphism algebra End A is (isomorphic to) a number �eld by Theorem 5.1 again.Thus the centralizer of �(K) coincides with End (A). The conclusion of the lemma followsimmediately.With the notations of the previous section let� = IPa 2 IB; a = t (a1; a2; 1) (w:l:o:g:) (7:3)be the period point ofA = A� = C3=�; � = �� = � t (a;b; c)O3�^ ; a?b; c 2 C3; (7:4)with respect to the corresponding hermitian form h ; i of signature (2; 1), representing apoint of the Picard modular surface of K. Remember thatQ
 �� = � t (a;b; c)K3� ; (7:5)On this way we get a representation of End A in Mat3(K) in the following manner. Weuse the complex representation (or C-representation) of End A on C3 corresponding to themiddle column of diagram (6:14) forgetting b� there. Let C = �cij� 2 Mat3(C) representan element of End A. It acts on Q
� by left multiplication with column vectors. Lookingat the generating columns and at (7:5) we see that there is a Matrix M 2 Mat3(K) suchthat C t �a;b; c� = � t (a;b; c) tM�^ = t [M (a;b; c)]^ : (7:6)The faithful representation J : C 7! M is called the K-representation of End A (on K3with respect to a,b,c).7.7 Proposition. The restriction of the K-representation J yields a isomorphism ofQ-algebrasJ : ZEnd A�(K) ��!EndK �a;a?� := �M 2 End K3; Ma 2 Ca; Ma? � a?	 : (7:8)sending �(K) to the center K � id of End K3.22



Proof. Let C = �cij� 2Mat3(C) be an element of End A centralizing �(K) =�diag �d; d; d� ; d 2 K	. Comparing both sides of C diag �d; d; d� = diag �d; d; d� C it isclear that c1i = ci = 0 for i = 2; 3. Write C = diag �a; B� 2 C� �Mat2(C). ForM = �K(C) de�ned in (7:6) it holds thatdiag �a; B� t �a;b; c� = �diag �a;B� t (a;b; c)�^ = � t [M (a;b; c)]^ ;hence M(a;b; c) = (a;b; c) diag �a; tB� = �a; (b; c) tB� ; (7:9)thus Ma = aa; M(b; c) = (b; c) tB and �nally M 2 EndK(a;a?).Conversely, one gets easily back C = diag �a; B� from M 2 EndK �a; a?�.7.10 Corollary. The ball point � = IPa is exceptional if and only if EndK �a; a?�is greater than K � id. Especially, each exceptional ball point is a �xed point of a K-endomorphism acting e�ectively on IP2.The following table relates the decomposition types of A listed in Theorem 5.1 with thetypes of centralizers of �(K). (7.11)Dec: type End A max: sub�elds N ZEnd A�(K)of A (in big component) �= EndK �a;a?�general(A;K) K N = K KCM(A;F ) F N = F FCM� �eld; [F : K] = 3(E � S) K �Q [N : Q] = 2 K �K(E �E2� ) K �Mat2(Q) [N : Q] = 2 K �K(E �E2�) K �Mat2Q(�) [N : Q(s)] = 2 K �K(�)� =2 K(E �E �E) Mat3(K) [N : K] = 3 K �Mat2(K)where S is a simple abelian surface with inde�nite quaternionic endomorhism algebra Q.If A is not simple, then the maximal sub�elds N in the greatest component of End A arenot unique. The projection of �(K) to the second component is a maximal sub�eld of Qor of Mat2(Q), respectively. It is its own centralizer there.23



In the 5-th case N contains Q(�) because Q(�) is the center of the component. Eachquadratic extension of Q(�) can be embedded into Mat2(Q(�)). A greater sub�eld is notpossible because dimQ(�)Mat2(Q(�)) = 4. The centralizer Z 0 of K 0 = p2�(K) �= K inMat2(Q(�)) is a Q-algebra containing K 0 and Q(�), but Z 0 6= Mat2(Q(�)) because thecenter of Mat2(Q(�)) is Q(�) 6= K 0. Comparing degrees we obtain Z 0 = K 0Q(�).For the last case we use that all abelian varieties of isogeny type (E � E � E) areisogeneous by de�nition and the corresponding endomorphism algebras are isomorphic.Therefore we can work with a special representant A = C3=� as in (7.4) with a;b; c 2 K3,see Prop. 6.20. The relation (7.9) and Proposition 7.7 show that the centralizer of �(K)corresponds to all matrices diag(a;B) with a 2 K; B 2 Mat2(K) because diag(a;B) hasto be Gl3(K)-conjugated to M 2Mat3(K).7.12 De�nition. We call � = IPa 2 IB exceptional of third, second or �rst degree, if A�is exceptional and K(� ) := K(a1; a2) is a �eld extension of K of third, second or �rstdegree. The exceptional point � as above is called isolated if and only if a is eigenvectorof a suitable M 2 End �a;a?� belonging to simple eigenvalue of M .7.13 Lemma. If � is isolated exceptional of third degree, then A = A� is simple ofCM-type. Moreover, � is not a point of any K-disc on IB.Proof. By 7.10 the ball point � is a �xed point of M 2 End �a;a?� nK � id, henceMa = �a; a 2 K(�)3 and K(�) = K(a) has degree 3 over K. Then the characteristicpolynomial of M is its minimal polynomial. The �eld K[M ] transfers along the isomor-phism of 7.7 to a sub�eld of ZEnd A�(K) of degree 3 over K. This is only possible inthe CM-case by Table (7.11). It is clear that K[M ] �= F = K(�), where F denotes theCM-�eld in the table.Assume that � 2 ID; ID = IPc0? the K-disc of c0 2 K. Then the endomorphismalgebra End A containsMat2(Q) or a scew�eld Q by Corollary 6.23. But this contradictsobviously to End A �= F .7.14 Lemma. For the ball point � the following conditions are equivalent:(i) � is a K-rational point on IB, that means K(� ) = K;(ii) A� is of decomposition type (E3);(iii) � is exceptional of degree 1.Proof. (i) ) (iii); (ii): If � = IPa; a 2 K3, then one �nds easily a vector c 2 K3 \ a?.But then A� is isogeneos to E3 by Prop. G.(ii) ) (i): By Table (7.11) a is eigenvector of suitableM; M 0 2 End K3 whose restrictionsto a? generate di�erent quadratic extensions F; F 0 of K in End a?. Neither M nor M 0generate a cubic �eld extension of K. The eigenvalues of M; M 0 generate F or F 0,respectively. If a =2 K3, then K(� ) = F = F 0. This is a contradiction.(iii) ) (i) is trivial.7.15 Lemma. If � is isolated exceptional of second degree, then A = A� is of decompo-24



sition type (E � E2�) and K(� ) = K(�) 6= K. Moreover, there is a K-disc ID on IBcontaining � .Proof. Choose again M 2 End �a;a?� nK � id with Ma = �a; � a simple eigenvalue ofM . The same argument as above yields a subring isomorphic to K[M ] in Z = ZEnd A�(K).The characteristic polynomial �M (T ) splits into (T ��)(T ��� )(T � c); c 2 K; fid; �g =Gal K(�)=K and K(� ) = K(�). The presence of such subrings in Z is only possible in thelast two cases of Table (7.11). The decomposition type (E3) is excluded by by the previouslemma. So we obtain the decomposition type (E �E�), where the maximal sub�eld of Zis uniquely determined as K(�). Now it is easy to see that K(�) = K(�).For the second statement observe that the eigenvalues �� ; c of M are the eigenvaluesof M ja?. The eigenvector c0 corresponding to c is orthogonal to a and can be choosen inK3. So we �nd � = IPa on the K-disc ID = IPc0?.7.16 Proposition. If � = IPa is a non-isolated exceptional ball point, then it lies on aK-rational linear subdisc of IB. Except for the isolated exceptional (CM-)points of thirddegree all exceptional points are contained in suitable K-discs ID � IB.Proof. We have Ma = aa; M has precisely two di�erent eigenvalues a; c, say, of order 2or 1, respectively. The decomposition of the characteristic polynomial(T �a)(T �a)(T �c) 2 K[T ] ofM in prime polynomials in K[T ] shows that a; c 2 K. Therestriction M ja? has eigenvalues a; c. Since c is a simple eigenvalue we �nd a K-rationaleigenvector c0 of M in a?. This means that � = IPa belongs to the K-disc IDc0.Now the second statement comes from the Lemmas 7.13 - 7.15.7.17 Theorem. Let C be a speci�c curve on the Picard modular surface IB=� of theimaginary quadratic number �eld K. Then there exists a K-disc ID � IB such thatC = ID=� := fz mod �; z 2 IDg : (7:18)The K-disc ID is uniqely determined up to �-equivalence. Moreover, the normalization eCof C coincides with ID=�ID, where �ID is the arithmetic group acting on ID de�ned by�ID = IPN�(ID) = N�(ID)=Z�(ID);N�(ID) = f
 2 �; 
jID = IDg ;Z�(ID) = f
 2 �; 
jID = idIDg : (7:19)Moreover, there is an algebraic group NID de�ned over Q such that the arithmetic norma-lizer group N�(ID) is commensurable with NID(Z).Proof. For a general point P 2 C the corresponding abelian threefold AP has decompo-sition type (E � S) or (E � E2� ). Let z 2 IB be a preimage of P . By Proposition 7.16there is a K-disc IDz � IB through z. Since Az = AP is not of type (E3) the ball point zdoes not belong to IB(K) by Lemma 7.14. Especially, z is not an intersection point of twoK-discs on IB. Therefore ID = IDz is uniquely determined by z. The projective K-rationalline through ID is denoted by L = Lz � IP. Choose a small open neighbourhood U of z25



such that the restriction of the quotient map p: IB �! IB=� to U is a �nite covering ontop(U) (possibly branched along C\p(U)). Now take another point P 0 2 C \p(U) nearby Psuch that AP 0 is also not of DCM-type (E3). It has a �nite number of preimages z0 2 U .As for z there is a unique K-disc IDz0 or K-line Lz0 through z0, respectively. Assume thatID 6= IDz, hence L 6= Lz0 . The intersection point of L and Lz0 belongs to L(K) � IP2(K).There are only countable many of them. Therefore there are only countable many pointsP 0 2 C \p(U) such that ID 6= IDz0 . So for almost all points P 0 2 p(U) and their preimagesz0 2 U we have ID = IDz0 . All these points ly on ID=�. By contineouity we conclude thatC and ID=� coincide in p(U). Now it is clear that C and ID=� coincide also globally.For the last statement of the theorem we refer to [Ho 2].The main result of this (and previous) section is summerized in the follwing7.20 Theorem. The speci�c points P of an open Picard modular surface IB=� of animaginary quadratic �eld K have been characterized now as images along the quotient mapof exceptional points � on IB. The corresponding abelian threefold AP �= A� is not simpleif and only if t belongs to a K-disc on IB. It splits up to isogeny completely into E�E�Ei� � 2 IB(K) = IB \ IP2(K) or, equivalently, � is the intersection point of two di�erentK-discs on IB. 8. K-discs on IBWe �x the imaginary quadratic number �eld K = Q �p�d� ; d a squarefree positiveinteger. The K-line on C2 through 0 = (0; 0) and (1; c); c 2 C arbitrary, is denotedby L(c), and ID(c) denotes its intersection with the unit ball IB = IPV(C)�; V = K3with the canonical hermitian (2; 1)-metric corresponding to diag(+1;+1;�1). In canonicalprojective coordinates we getID(c) = �(z : cz : 1); z 2 C; (1 + jcj2)jzj2 < 1	 : (8:1)Setting c = t (c;�1; 0) ; Vc = c? � V; (8:2)we see that ID(c) = IDc = IPVc(C)� = IPc?(C)�: (8:3)The hermitian vector space V (C) = C3 is spanned by the orthogonal basisa = a(z) =0@ zcz1 1A ; b = b(z) = 0@ 1cqz1A ; c = 0@ c�10 1A with q := 1 + jcj2: (8:4)Assume that a 2 V (C)�, that means IPa 2 ID(c). Then we dispose on semi-periodmatrices 26



� �a;b; c� = 0@ z cz 11 c qzc �1 0 1Aand lattices � �a;b; c� = bOcx1 + bOcx2 + bOcx3;where xj is the j-th column of� (a;b; c) =0@ z cz 11 c qzc �1 0 1A :The corresponding abelian threefold Aa = C3=� �a;b; c� has the abelian surfaceS(z) = S(c; z) := S �a;b� := C2=� �a;b� (8:5)as isogeny component, see Proposirtion 6.20 and the de�nitions around. As usual we write�(z) = �(c; z) := � �a;b� = ��z1 czc 1qz�Mat3�2(O)�^ ;Q
�(z) = ��z1 1qz�Mat2(K)�^ = bKbz + bKby;z = �z1� ; y = � 1qz� : (8:6)At general points P of the arithmetic curve ID=� on the Picard modular surface IB=� theabelian threefold AP is of modular decomposition type (E �E2� ) or of quaternionic (scew�eld) type (E � S). This depends only on ID. The notation of both types is transfered tothe K-discs. We would like to distinguish both types of K-discs by a suitable arithmetic orgeometric condition. For this purpose we will apply a criterion of Ruppert about splittingof abelian surfaces knowing a period matrix.Let � be a lattice in C2 such that S = C2=�. The determinant det: C2 �C2 �! Cde�nes by restriction to the elements of the 4-dimensional vector space Q 
 � over Q analternating form�: (Q
 �)� (Q 
�) �! C; �(u;v) = det(u;v) = tu� 0 1�1 0�v (8:7)This form is called hyperbolic, if there is a direct decompositionQ
 � = V �W (8:8)into two �-isotropic Q-subspaces of dimension 2.8.9 Proposition (Ruppert0s criterion):The torus S = C2=� has an isogeny decompositioninto elliptic curves if and only if � is hyperbolic.27



The simple proof is given in see [BL], X,(6.1), where it is not necessary to suppose thatthe torus S is an abelian surface.We apply the criterion to S = S(z) S(c; z); � = �(z) = �(c; z) as de�ned above, connectedwith arithmetic discs ID = ID(c) through 0 2 IB. For arbitrary pairsbu = babz+bbby; bv = bcbz + bdby 2 Q
 �; a; b; c; d 2 K;we can write � (bu; bv) = det �(z;y)� a cb d��^ :We work especially withz = t(z; 1) and y = t(1; qz); q 2 Q�; 1� [K(z) : K] > 2:Then one gets� (bu; bv) = det �� z 11 qz�� a cb d��^ = det� az + b cz + dbqz + a dqz + c�= q �da� bc� z2 + �q �db� bd�+ (ca� ac)� z � �da � bc� :Since z cannot satisfy a non-trivial quadratic equation over K we conclude that� (bu; bv) = 0 i� (8:10)det� a cb d� = 0 and(i) q � det� b db d� = det� a ca c� :(ii)The �rst condition is equivalent to �ab cd� = �ab tatb � or(i)0 � cd� = �tatb� for a suitable t 2 Kor, more symmetrically, to(i)00 bK � cd� = bK �ab� :Substituting c; d by ta ortb, respectively, the second condition transforms to28



qjbj2det� 1 t1 t� = qdet� b tbb tb� = : : : = �det� a taa ta� = �jaj2det� 1 t1 t� :This is equivalent to(ii)0 t 2 Q or jaj2 = qjbj2:Now we distinguish two cases:1.) q is not a norm of an element of K: Then the conditions are equivalent to:t = 0 or � cd� = t �� ab� ; t 2 Q�:This means that � (bu; bv) = 0 is only possible for bv 2 Qbu. In this case there cannotexist a two-dimensional �-isotropic Q-subspace of Q
�. By Ruppert's criterion the torusS = C2=� is simple.2.) q is a norm of an element of K: Then we denote by � the Q-linear isomorphism�: K2 �! �(z;y)K2�^ = Q
 �; �ab� 7! bu = h(z;y) �ab�i^ :Next we satisfy the second of the conditions (ii0) setting q = jaj2=jbj2 for suitable a; b 2 K.This is possible because q is a norm. Each pair bu; bv 2 �� bK �ab �� =: V satis�es obviouslythe condition (i)00. Together with (8.10) it follows that V is a �-isotropicQ-plane in Q
�.It is easy to �nd � a0b0 � =2 Q� ab�such that also a0; b0 2 K and q = ja0j2=jb0j2; take for example� a0b0 � = �� ab� ; � 2 KnQ:Then also W := �� bK �a0b0 �� is a two-dimensional �-isotropic Q-subspace of Q 
 � andV \W = f0g because the preimages of V; W along � are di�erent K-vector spaces bK �ab �or bK �a0b0 �, respectively, of dimension 1. Therefore they have trivial intersection. So wefound a direct decomposition (8.8) into two �-isotropic subspaces. Now Ruppert's criteriontells us that S = C2=� has an isogeny decomposition into elliptic curves.8.11 Theorem. Let ID = ID(c) = IDc be the K-subdisc of IB and S(z) = C2=�(z);z 2 ID(c), the corresponding two-dimensional abelian isogeny factor of Az, all de�ned in(8.1),: : : ,(8.6). Furthermore we denote by � the Picard modular group U((2; 1);O),29



O = OK and by �ID = N�(ID)=Z�(ID) the corresponding arithmetic group acting e�ec-tively on ID. Then the following conditions are equivalent:(i) S(z) splits at general points z 2 ID, hence everywhere on ID;(ii) Az is of modular decomposition type �K �E2� � on ID in general;(iii) hc; ci belongs to the norm group N(K�) � Q�;(iv) the 4-dimensional Q-algebra Q 
 �(z) splits directly into two �-isotropic Q-subspaces of Q-dimension 2;(v) the boundary @ID of ID contains a �-cusp point k 2 @�IB = @IB(K) = K2 \ @IB;(v0) the closure (ID=�)^ of the arithmetic curve ID=� on the Baily-Borel compacti�edPicard modular surface (IB=�)^ goes through a cusp singularity b� 2 (IB=�)^ IB=�.(vi) �ID is a modular group, that means that a suitable IPGl2(C)-conjugate of �ID iscommensurable with IPSl2(Z).The equality @�IB = K2 \ @IB has been �rst proved in [Ho I].The equivalence of the properties (i) � (iv) has been proved above. The properties(v) and (v0) are obviously equivalent. The �rst four and last three conditions are joinedby some results of Shimura and an old classi�cation result for hermitian vector spaces overnumber �elds due to Landherr. We delegate this equivalence proof to the next section.8.12 Remark. It is not necessary to restrict the proof of 8.11 to discs through 0. Theequivalence of the Ruppert criterion (iv) with (i) and (iii) can be proved in a similar butnot so convenient manner for all K-discs on IB, and all other equivalences are proved quitegenerally in this article. For a full proof of the �rst equivalences one parametrizes theK-discs in the following manner:The projective line L(b; c) � IP2 through � b0� ; � 0�c� 2 C2; b; c 2 C�, has theparametrization L(b; c) = fIPa(z); z 2 Cg ; a(z) = t (bz; c (b� z) ; b) :The vector c := t �c; b; bc� is orthogonal to all a(z), hence L(b; c) = IPc?, and L(b; c)intersects IB if and only if hc; ci=jcj2 = 1+ jb=cj2 � jbj2 > 0. Under this condition the discID(b; c) = L(b; c) \ IB = IDc is de�ned. With b; c 2 K� one parametrizes explicitly onthis way all K-discs on IB not containing 0. One obtains explicit expressions for b(z) 6= oorthogonal to a(z) and c = c(b; c), for � �a;b� ; Q�� �a;b� and so on. This leads �nallyto the isogeneous splitting condition 1 + jb=cj2 � jbj2 2 N(K�) for all abelian surfacesS(z) = C2=� �a(z);b(z)� ; z 2 ID(b; c), sitting in the abelian threefolds Az , respectively.9. Q-central quaternion algebras and unitary groupsLet K be a CM-�eld with maximal total real sub�eld F ; then [K : F ] = 2. By (V;�)we denote a non-degenerate hermitian vector space over K of dimension n. The in�niteplaces of F are numerated in the following manner:Fl = R for 1 � r; Kl = C for 1 � l � t; Kl not a �eld for t < l � r: (9:1)30



Then Vl = Kl�V together with the extension �l of � to Vl is a hermitian vector space forl � t of signature (pl; sl) ; pl + sl = dimKV , say, where pl denotes the positive elementsof a diagonalizing matrix for �l. For a second non-degenerate hermitian K-vector space(V 0;�0) we use the obviously corresponding notations n0; r0; t0; p0l; s0l. An isometricembedding �: V �! V 0 is an injective K-linear map satisfying �0 (� (a) ; � (b)) = �(a;b)for all a; b 2 V . The isometric embedding � is called an isometry, i� it is bijective. Forall �nite places p of F corresponding to prime ideals of OF we dispose on norm mapsNp: Kp �! Fp, where Kp = K �F is a �eld extension of degree 2 (i� p is inert in K) orof degree 1 (i� p is rami�ed inK) orKp is Fp-isomorphic to Fp�Fp (i� p is decomposed inK). The discriminant d(�) is the determinant of a Gram matrix ��(ai;aj)�i;j=1:::n, wherea1; : : : ;an is a basis of V . It is uniquely determined up to multiplication with elements ofthe norm group N(K�) � F �, where N denotes the norm map NK=F : K �! F .9.2 Theorem (Landherr, see [Ln 2]). With the above notations the following conditions(i); (ii) are equivalent:(i) There exists an isometric embedding �: V 0 �! V .(ii) n > n0 and for 1 � l � t it holds that 0 � sl � s0l � n � n0 or n0 = n; sl = s0l for1 � l � t and d(�) 2 Np �K�p� � d(�0) for all primes p of F .In the case n = n0 each isometric embedding is an isometry because injective K-linearembeddings have to be surjective, hence isomorphic. For n = n0 = 1 the theorem reducesto the well-known local characterizations of norms:9.3 For two elements f; f 0 2 F � it holds that f 0 2 N(K�) �f if and only if f 0 2 Np(K�p) �ffor all primes p of F . Especially, f 2 N(K�) i� f 2 Np(K�p) for all primes p of F .In the case of an imaginary quadratic number �eld K we have F = Q, hence 1 = t = rin (9.1). So we can omit the only index l = 1 in our notations (F1 = R; K1 = C). Forn = n0 = 2 and s = s0 = 1 we get9.4 Corollary. Let K be an imaginary quadratic number �eld. The inde�nite hermitianK-planes (V;�) and (V 0;�0) are isometric if and only if d(�0) 2 N(K�)d(F ).Our main objects are inde�nite K-subplanes of the hermitian K-vector spaces V = K3with the metric h ; i corresponding to diag(+1;+1;�1) of signature (2; 1); K an imaginaryquadratic number �eld. If W is any inde�nite hermitian K-plane, then it is isometric toa hermitian K-subplane V 0 of V by Theorem 9.2. Moreover,V = V 0 \Kc for any o 6= c 2 V 0? = Kc � V = K3; V 0 = c?: (9:5)The multiplicativity of discriminants for orthogonal decompositions and isometry invari-ance up to N(K�)-multiplication yieldhc; cid(W ) �N hc; cid(V 0) = hc; cid �c?� �N d(V ) = �1; (9:6)where �N denotes the N(K�)-equivalence in Q�. Since V 0 is inde�nite we know thatd(V 0) = d �c?� < 0, hence hc; ci > 0 that means c 2 V +. Also from (9.6) follows that theN(K�)-class of hc; ci depends only on the N(K�)-class of W .31



Take conversely a vector b 2 V + with hb;bi �N hc; ci (�N �d(W )). Because ofKc \ c? = V = Kb\ b? the orthogonal complements b? and c? are inde�nite K-planeswith norm-equivalent discriminants �hb;bi or �hc; ci, respectively. Therefore b? and c?are isometric, but also Kb and Kc are by the above criteria. By linear extension we getan isometric endomorphism�: V = Kb \ b? ��!Kc \ c? = Vsending cb to c for a suitable c 2 K�. Vice versa each triple b; c 2 V +; c 2 K� withhcb; cbi = hc; ci de�nes on this way an isometric endomorphism � 2 U(V ) = U((2; 1);K)sending cb to c. Altogether we get the following9.7 Corollary. With the above notations the following conditions are equivalent:(i) d(Vb) 2 N(K�)d(Vc);(ii) the inde�nite planes Vb = b? and Vc = c? are isometric;(iii) hb;bi 2 hc; ci �N(K�);(iv) c 2 K� � U((2; 1);K)b;(v) Vb = g(Vc) for a suitable g 2 U((2; 1);K);Now we turn our attention to the connection of unitary groups as above with inde�niteQ-central quaternion skew�elds. Proofs of facts listet below can be found in [Shm 3],ch. IX and [Shm 2]. For comparising �rst facts with the 1-dimensional modular case weremember to the following9.8 Remark. Let � be a sublattice ofGl2+(R) = fg 2Mat2(R); det g > 0gcommensurable with Sl2(Z). The group act on the Poincar upper half planeIH = fz 2 C; Im z > 0g via linear fractions. The lattice � is a Fuchsian group of �rstkind, and the quotient IH=� is a non-compact quasiprojective curve. The set of �xedpoints of elements of Gl2+(R) on IH coincides with the set of numbers z 2 IH generatingan imaginary quadratic extension of Q.One has a similar situation for the Q-central inde�nit quaternion �elds D �Mat2(R)= R 
 D. There is an algebraic group D de�ned over Q such that D(R) = D�. Thedeterminant de�nes the norm n on D. The condition n(g) = 1 de�nes a Q-subgroup SDof D and the condition n(g) > 0 a subgroup D+ of D� acting on IH. Let Tf be an opencompact subgroup of the �nite valuation part of the group SD(A); A = AQ the ad�elesof Q, T = TfSD(R) and � = �T = T \ SD(Q). Then � is a Fuchsian group of �rst kindwith compact quotient curve IH=�.If z 2 IH is a �xed point of an element g 2 D+(Q)nQ, then Q(z) is an imaginaryquadratic �eld. Conversely, each Q-linear embedding �: K �! D de�nes a unique such�xed point with isotropy group �(K�) = fg 2 D+(Q); g(z) = zg.9.9 Proposition. Let D be an inde�nit quaternion �eld as described above. Then thequotient SD(Q)nSD(A) is compact. This is also true for the quotient curve �nIH.32



For proofs we refer to [Shm 3], ch. IX, see also [GGP], ch.I, App. 1.4, for a moredirect and explicit variant.9.10 Remark. The only arithmetic Fuchsian groups (of �rst kind, acting proper disconti-neously on IH) are the groups commensurable with Sl2(Z) or subgroups � of quaternion�elds. This has been proved by A. Weil, see [GGP], ch.I, App. 1.1Let K be an imaginary quadratic �eld and V �= K3 a three-dimensional K-vector spaceendowed with hermitian form h ; i: V � V �! K of signature (2; 1). Its extension toV (R) = R 
 V = C3 is also denoted by h ; i. As above we restrict our attention to thecase where h ; i is given by the diagonal matrix diag(1; 1;�1) 2Mat3(Q), that meanshv;wi = tv � diag(+1;+1;�1) �w for v; w 2 V (R):Cosider the complex 2-ballIB = �(u; v) 2 C2; juj2 + jvj2 < 1	 = IPV(R)� = V(R)�=C�with V (R)� = fv 2 V (R); hv; vi < 0g. There is an algebraic group G de�ned over Qsuch that G(Q) = U((2; 1);K) and G(R) = U((2; 1);C). The Lie group G(R) acts onIB. Let O = OK denote the ring of integers in K. The quotient surface IB=� of IB by thePicard modular group � := U((2; 1); O) = G(Z) is the (complex, open) Picard modularsurface.For abbrevity we call a vector c 2 V (R) positive, if it belongs toV (R)+ := fv 2 V (R); hv; vi > 0gThe negative vectors v are those which belong to V (R)�. The latter de�ne pointsIPv 2 IB = IPV(R)� by projection v 7! v mod C�. Remember to the parametrization ofall linear subdiscs of IB by positive vectors c and their notation IDc := IB \ c?. It holdsthat IDc = IDb () IPc = IPb() b 2 Cc: (9:11)On IDc acts the Lie groupGc :=Gc(R) = fg 2 G(R); g(c) 2 Ccg = fg 2 G(R); g (IDc) = IDcg :From the existence of orthogonal bases in hermitian vector spaces, especially in c?, itfollows that Gc �= U((1; 1);C) �=Gl2+(R):These two presentations of the Lie group Gc correspond to the action on ID or IH,respectively, which are biholomorphic equivalent domains. The biholomorphic map33



g: IH �! ID can be realized by an element g 2 Gl2 �Q �p�1�� �Gl2(C) acting by lineartransformation on the complex projective line IP1(C).The algebraic group Gc is de�ned over Q, if c 2 V + � K3. In this case Gc isa Q-model of Gl2+R. By classi�cation of such Q-models and corresponding Fuchsiangroups, see Remark 9.10, there is a Q-central inde�nit quaternion algebra D such thatD�+ = Gc(Q) and �c := � \ Gc(Q) is a Fuchsian subgroup of D� acting on IDc. Thenatural map IDc=�c �! ID=� � IB=� is a birational map of complex (i.g. open) algebraiccurves, see [Ho 2].It is clear that ID
c = IP(
c)? = IP
�1 �c?� = 
�1IDc for 
 2 �;hence, by (9.11), we proved the �rst part of the following9.12 Lemma.(i) With the above notations it holds that
IDb = IDc () 
(c) 2 K�b; IDc=� = IDb=�() b 2 �K�c(ii) There exist in�nitely many subdiscs IDc of IB which are not �-equivalent.Proof. If IDc and IDb are �-equivalent, then 
(c) = cb for a suitable c 2 K, hencejcj2hb;bi = hcb; cbi = h
(c); 
(c)i = hc; ci;thus hc; ci=hb;bi 2 N (K�).The group Q�=N(K�) is not �nite. On the other hand (K3)+ �! Q�+; c 7! hc; ci, is asurjective map. Namely, the equation hx;xi = q for q 2 Q can be understood as inde�nitehomogeneous quadratic diophantine equation over Q with six variables. By the Hasse-Minkowski theory (Theorem of Mayer) there exist proper Q-solutions, see [Se], IV, 3.2,Cor. 2.With the explicit background 9.7 we notice on this place the following important biunivoquecorrespondences in terms of U(V ) = U((2; 1);K)-equivalences:fK � discs on IBg=U(V ) = �IDc; c 2 V+	 =U(V )() Q�+=N(K�)() V +=K� �U(V ) (9:13)This is much stronger than 9.12 (ii).9.14 De�nition. The positive vector c 2 V + is called of modular type, if Gc �= Gl2+ asalgebraic group over Q.By Remark 9.10 we have the following characterizations:34



9.15 The vector c 2 V + is not of modular type if and only if one of the following conditionsis satis�ed:(i) ID=�c is a compact curve;(ii) the above quaternion algebra D = Dc corresponding to c is a skew�eld.Now we look more carefully at the value hc; ci or the discriminant of the two-dimensionalhermitian K-vector space Vc := K3 \ c?(K) endowed with the restriction �c of h ; i.We know for an imaginary quadratic sub�eld K of a Q-central quaternion algebra D itholds that K 
D �=Mat2(K), see Theorem 3.4 (ii). Shimura's article [Shm 2] rediscoversinde�nitQ-central quaternion algebrasD sitting inMat2(K) by means of two-dimensionalhermitian K-vector spaces (W;�); � of signature (1; 1) on W (R) �= C2. We review themost useful results.9.16 De�nition. The hermitian K-vector space (W;�) is called anisotropic if and onlyif �(w;w) is only satis�ed for w = o. It is called isotropic i� it is not anisotropic.9.17 Notations. Let H be a subalgebra of a matrix algebra Matk(R); R a commutativering with unit element 1. We assume that H contains the unit matrix. The multiplicativesubgroup of H de�ned by det = 1 is denoted by SH and the group of units of H by H�.All hermitian similitudes of W form a subgroup GU(W ) = GU(W;�) of EndK(W )�.The factors �(g) of the similitudes appear as values of the characters � on GU(W ). Thepreimage of 1 is the unitary group U(W;�). Its intersection with SEndK(W ) is the specialunitary group SU(W;�). Also important for our purpose is the subgroupDU(W;�) := fg 2 GU(W;�); �(g) = det gg :From the de�nitions it is clear that DU(W;�)\U(W;�) = SU(W;�). By [Shm 2], Prop.2.5, it also holds that DU(W;�) �U(W;�) =GU(W;�) in our case 2 = dimKW .The (simple) matrix algebra Mat2(K) has a canonical involution i, see [Shm 2], 1.4.D = D(W;�; i): = fg 2 EndK(W ); �(g � i(v);w) = �(v; g(w)) for all v; w 2Wg (9:18)9.19 Proposition ([Shm 2], Prop. 2.6). If dimKW = 2, then D = D(W;�; i) is aquaternion algebra over Q and EndK(W ) �= K 
D. Furthermore,GU(W;�) = K� �D�; DU(W;�) = D� and SU(W;�) = fg 2 D; ggi = 1g :Observe that the second, hence also the �rst and �nally the third, do not depend on i.Especially, for W = Vc; c 2 (K3)+ we setDc := fg 2 EndK (Vc) ; hgi(v);wi = hv; g(w)i for all v; w 2 Vcg ; (9:20)35



then:GU (Vc;�c) = K� �D�c; DU (Vc;�c) = D�c ; SU (Vc;�c) = fg 2 Dc; ggi = 1g : (9:21)It follows that9.22 Proposition. The arithmetic lattice SGc of �nite index in Gc is a subgroup of theunit group D�c of the quaternion algebra Dc.In comparision with earlier notations the arithmetic group �c is nothing else but N
 (IDc)de�ned in (7.19). Dividing out its �nite center we get the e�ectively on ID = IDc actinggroups �ID = IP�c. The latter group is isomorphic to S�c except for the �eld K =Q �p�3� of Eisenstein numbers, where it has to be substituted by S�c=Z3, where Z3 isthe cyclic center of S�c of order 3 generated by diag(�; �; �); � a primitive third unit root.9.23 Proposition ([Shm 2], Prop. 2.8). The quaternion algebra D = D(W ) as in Prop.9.19 (especially Dc) is isomorphic to Mat2(Q) if and only if W is isotropic (i� in c?(K)exists an isotropy vector).The proof is given in the appendix, see Cor. 12.219.24 Proposition ([Shm 2], Prop. 4.1). The inde�nite hermitian K-plane W as aboveis isotropic if and only if the negative discrimanant �d(W ) belongs to N(K�). Especiallyc?; c 2 V + � K3, is K-isotropic i� hc; ci 2 N(K�).The second statement uses d �c?� � hc; ci �N �1, see (9.6).We are now able to �nnish theProof of Theorem 8.11 (continued). As already remarked it remains to prove only someequivalences, namely: the conditions (iii); (v); (vi) are each equivalent to(iv0) Vc = c?(K) is isotropic:(iii) () (iv0) follows from Prop. 9.24. (v) () (vi) comes from Prop. 9.15 (i).(v) () (vi0) is rather obvious because the set of rational boundary points of IDc =IPc?(C) is nothing else but the projective set IP�a 2 c?(K); ha;ai = 0	 of isotropyvectors in c?(K).At the end of the last section 12 we prove that the chain (9.13) of biunivoque corresponden-ces can be extended to 36



fK � discs on IBg =U(V ) = �IDc; c 2 V+	 =U(V )() V +=K� �U(V )() Q�+=N(K�)() �D(K; q); q 2 Q�+	 =iso() finde�nite Q� central quaternion algebrasg =iso() finde�nte K� hermitian vector planes (W;�)g =isometries (9:25)Notice that these are in�nitely many chains, one for each imaginary quadratic number �eldK in spite of independence of the last isomorphism class. Along these chains one �nds thesimple explicit description D(K; q) �= (K=Q; �; q) of the quaternion algebra belonging toany K-disc ID = IDc and the corresponding arithmetic curve ID=� � IB=�, see (12.4) and(3.3).It is a much harder problem to �nd or describe the arithmetic curves on a Picardmodular surfaces IB=� in algebraic geometric terms. An example (K = Q �p�3�) will begiven in section 11, where the surface is well-known and su�ciently simple to describe.We expect an intersting connection with a modular form on IH with Fourier coe�cientsusing intersection numbers and hights of arithmetic curves on our highly singular modularsurfaces. For analogeous work without a special intersection theory we refer to some workof Hirzebruch-Zaiger [H-Z] and Kudla [Ku]. In the mean time the necessary intersection(hight) theory seems to be well-prepared in [Ho 6]. The application just mentioned will beappear in a forthcoming paper.10. Elliptic curve subfamiliesWe want to show that speci�c curves C = ID=�ID of modular type �E �E2� � on the Picardmodular surfaces IB=� of the imaginary quadratic �eld K give rise to elliptic curve familiesover �nite coverings of C in a natural manner. In order to be precise we rember to somebasic notions, see e.g. [Sha], VII.A (complex) elliptic bundle is a triple (V;B; �); �: V �! B compact complex algebraiccurve, such what the general �bre of � is an elliptic curve. The elliptic bundle is aminimal model, i� there are no exceptional curves of �rst kind in the �bres of �. In eachbirational equivalence class of elliptic bundles over B there exists a uniquely determinedminimal model up to isomorphy over B. Birational automorphisms of a minimal model arebiregular. Up to �nitely many exceptions | called exceptional �bres | the invers images��(b); b 2 B are the reduced �bres Vb of the above elliptic bundle. If ��(b) =mVb; m > 1,then ��(b) is called multiple �bre. All types of exceptional �bres of minimal models havebeen classi�ed by KODAIRA, see also [Sha], VII. Let F�=k(B); � = Spec k(B); k(B)function �eld of B be the general �bre of �. The elliptic bundle V=B has a section i� F�has k(B)-rational point (t.m. F�(k(B)) 6= ;). If not then there exists a �nite coveringC �! B such what V �B C=C has sections. The birational classi�cation theory of ellipticbundles due to KODAIRA is managed on this way.Omitting intersection points of components in exceptional �bres of a minimal modelwith sections one can extend the group structure in the non-exceptional elliptic �bres to37



all �bres. On this way each elliptic bundle V=B with (0-)section becomes an object of themoduli theory of abelian schemes due essentialy to MUMFORD [GIT]:Let S be a noetherian base scheme; By [GIT], Def. 6.1 (ch. VI) the relative groupscheme X=S is called abelian scheme, if �: X �! S is simple, proper, with connectedgeometric �bres. Keep in mind that abelian schemes have as group schemes a 0-sectionover S (see [GIT], ch. 0, x 1). The classifying objects for the moduli space Ag of principallypolarized abelian varities of dimension g are collected in the following manner ([GIT], VII,x 2): For all S as above setAg(S) := fprincipally polarized abelian schemes =Sof dimension gg =iso:As rough moduli space Ag = M is uniquely determined up to isomorphy by the followingproperties:(i) For each principally polarized abelian scheme A=T there exists a map of contravariantfunctors �: Ag �! Hom(�;M), especially Ag(T ) �! Hom(T;M), with bijectiverestrictions to algebraically closed points of T , see diagram (10.1);(ii) � is universal with respect to all mappingsAg �! Hom(�;N) with the same propertyas in (i). (10.1)Rough moduli diagram
A T

k

M T

km

Ak

=(geometric �bre Ak of the family A=T 7! unique moduli point m)10.2 Proposition. Up to completion, desingularisation and �nite covering each speci�ccurve C of modular type on the PICARD modular surface corresponding to K can bereinterpreted as base space of a non-isotrivial elliptic curve family E with the followingproperty: Up to isogeny and some special points P the elliptic �bre EP over P 2 C isuniquely determined as isogeny component without K-multiplication of the abelian threefoldAP cortresponding to the PICARD moduli point P of the surface.Proof. First we apply the above general moduli interpretation to M = A1, the ellipticcurve case. Let E=T be a family of elliptic curves over a curve T , not isotrivial. The pullback E0=T 0 along suitable �nite covering f : T 0 �! T has a section. So we can restrict38



ourselves to minimal models of elliptic bundles over curves with section, or to abelianschemes over curves of relative dimension 1. The moduli diagram exists for E0; T 0 insteadof A; T . The elliptic �bres at t 2 T and t0 2 f�1(t) coincide almost everywhere.Now let C be a speci�c curve of modular type on the PICARD modular surfaceparametrizing principally polarized abelian threefolds with (admissible) imaginary quadra-tic K-multiplication. It is represented by a �brewise splitting abelian scheme A=C 0; C 0 a�nite covering of C. It is equivalent to say that the general �bre A
 splits up to isogenyinto the product of elliptic curves, see Lemma 5.7. Since C gives moduli dimension 1 we�nd an elliptic isogeny factor E
 without K-multiplication, see Corollary 5.3.This elliptic factor in the general �bre determines an elliptic curve family over anopen part U 0 of C 0, which can be uniquely extended to a minimal model E=C 0 of ellipticbundles. The non-trivial homorphism E
 �! A
 extends to an open ZARISKI set on C 0.Therefore almost everywhere the ellpitic curves Ec; c 2 C 0 appear as isogeny componentsof Ac. Thus E=C 0 is a hidden elliptic curve family over C 0 we look for sitting in A up toisogeny. 11. The leading exampleBy (9.25) all Q-central inde�nite quaternion algebras appear in the theory of Picardmodular surface of an imaginary quadratic number �eld K. Thereby the �eld can bechosen arbitrarily. In the case K = Q �p�3� the abelian threefolds corresponding topoints of the Picard modular surface are Jacobians of explicitly known plane projectivecurves of degree 4, the so-called Picard curves. Moreover the correspondence of thesecurves with their moduli points is explicitly known and easy to describe, see (11.1) below.As levelled Picard modular surface we can choose the projective plane IP2. For detailedproofs we refer to [Ho 3] and/or [Ho 5].By the results of the previous sections the arithmetic curves C on IP2 collect preciselyall moduli points of Picard curves with (isogeneously) splitting Jacobians. These points arethe image points of K-discs ID on the uniformizing ball IB. The projection IB �! IP2 canbe analytically expressed by the restriction along IB � IH3 (the Siegel upper half space forabelian threefolds) of 4 explicitly known (linearly dependent) theta constants th1; : : : th4described precisely in [Ho 5]. Analytic-geometrically we established there a Schottky-Torelli diagram connecting IB; IH3; IP2 and the moduli space of abelian threefolds withthese thetas.The aim of this section is to give a �rst explicit example of an arithmetic curvecorresponding to an explicit subfamily of curves with (isogeneously) splitting Jacobianthreefolds of non-trivial quaternion type. It is described in (11.3). On the other hand wepresent also a subfamily of Picard curves along an arithmetic curve of modular type. Theprevious section teaches us that it discovers a hidden non-isotrivial family of elliptic curvessitting in the Jacobians.Let us start with the explicit description the PICARD modular surface M := IB=�0of (the �eld K = Q �p�3�) of EISENSTEIN numbers of level 1 � �; � a primitive thirdunit root. By de�nition, �0 is the principal congruence subgroup of � := U((2; 1);O) of39



the ideal (1� �) = �p�3� of the ring of EISENSTEIN integers O+Z+Z� acting on thecomplex two-ball IB.In [Ho 3] we proved thatIB=�0 �= IP2 f4 points in general positiong :Furthermore IP2=S4 is the compacti�ed moduli space of PICARD curves, which can bede�ned as smooth curves of genus 3 with an automorphism group of order 3. Each of themhas a plane model with normalized equationCx: Y 3 = (X � x1)(X � x2)(X � x3)(X � x4); x1 + x2 + x3 + x4 = 0: (11:1)The situation is described in the following picture (11.2) (11.2)
x  = x1 4

2x  = x3

x  = x2 4

T

x  + x  = 01 2 x  = x1 2
x  = x1 3

x  + x  = 01 3
x  = x3 4

x  + x  = 01 4

IP2 = �(x1 : x2 : x3 : x4) 2 IP3 = IP3(C); x1 + x2 + x3 + x4 = 0	The symmetric group S4 acts by permutation of coordinates. The six (thin) lines corres-pond precisely to non-smooth PICARD curves. The three (thick) lines through the doublepoints of the six thin lines are determined as �xed points of (12)(34); (13)(24); (14)(23) 2S4, respectively. Let T be the �rst of them. Along p: IB �! IP2 it is covered by a linearsubdisc ID of IB �xed by a re
ection � 2 � with image (12)(34) in �=�0 �= S4, thusT �= ID=�; � an arithmetic group commensurable with U((1; 1);O). This is a cocompactlattice of the disc ID because T does not go through one of the four compacti�cation points.For more details and proofs we refer to chapter I of the monograph [Ho 3].Changing coordinates one gets a 2-parameter family over the a�ne (u; v)-planeP=A2: Y 3 = X(X � 1)(X � u)(X � v);40



the original PICARD curve family. It contains representants of all isomorphy classes ofsmooth PICARD curves. The correspondence (x; y) 7! (x; �y) de�nes an automorphismof order 3 on each PICARD curve. Therefore the Jacobian threefolds of PICARD curveshaveK-multiplication,K the �eld of EISENSTEIN numbers. They form a two-dimensionalfamily J = J(P), wich cannot be lifted from a family of smaller dimension because themoduli space of PICARD curves has dimension 2 and by TORELLI's theorem. Lookingat the hierarchy diagram (5.4) we see that a general member A of this family must haveisogeny decomposition type (A;K). This means that A is simple and End (A) �= K.Now we consider the 1-modular subfamily of (in general) smooth PICARD curvescorresponding to IP2-points of the cubic X1X2X3 +X4X2X3 +X1X4X3 +X1X2X4 = 0in terms of (11.1). They are of equation typeY 3 = X4 + aX2 + b: (11:3)The cubic is degenerate and consists of the three thick lines of picture (11.2). Especially,T : X1 +X2 = X3 +X4 = 0 is a component of the cubic not going through the four cusppoints. Setting x1 = �x2 = 2�; x3 = �x4 = 2 we get the 1-modular subfamilyC=T : Y 3 = X4 � 4(�2 + 1)X2 + 16�2; � 2 C; (11:3)0of P (up to coordinate shift), see 1.5. For symmetric reasons all PICARD curves over thecubic are represented up to isomorphy by this family, hence all curves of the biquadraticequation type (11.3). The corresponding Jacobian family is denoted by T = J(C)=T .One can immediately recognize that the general �bre of T=T is not of type (A;K). Forthis purpose we apply the criterion 5.6 to our family in order to show that T is an arithmeticcurve. We work with the equations of type (11.3). The correspondence (x; y) 7! (�x; y)de�nes an automorphism � of order 2 on C. The corresponding quotient curve C=h� i isde�ned by the equation Y 3 = V 2+aV +b, or, after change of coordinates, byW 2 = Y 3+c.This is an elliptic curve E with K-multiplication. By Cor. 5.5 the parameter curve T hasto be arithmetic. Since T is smooth it follows from Theorem 7.17 that11.4 The arithmetic curve T is a quotient curve T = ID=� for a suitable K-disc ID 2 IBby the Q-arithmetic ID-lattice � = �0ID.11.5 Very special example. The Jacobian threefold J of the smooth PICARD curveY 3 = X4 + 1 has decomposition type (E3). This curve is represented by the point(i : �i : 1 : �1) on IP2(C) (which is not visible in the real picture (11.2)).Namely, the automorphism (x; y) 7! (ix; y) of order 4 on the curve extends to Q(i)-multiplication on J . So J has both Q �p�3�- and Q(i)-multiplication. By Lemma 3.1each primary isogeny component of J has Q(i)-multplication. Therefore E cannot be aprimary isogeny component. The only possibility is the decomposition type (E3) for J bythe hierarchy diagram (5.4).Setting � = i = p�1 in (11:3)0 one obtains the representing point (i : �i : 1 : �1).In order to �nd a suitable K-disc ID 2 IB covering T some elementary things should beadded to the picture (11.2). From [Ho 3] we know that the �xed points of G := S4 = �=�041



on IP2n f4 pointsg correspond biuniquely to the �0-orbits of the �-elliptic points on IB.Especially. the branch points of the subquotient morphismID �! ID=�ID = (ID=�) =GT = T=GTare the same as those of the �nite covering T �! T=GT . We use similar notations for Tand G � PGl3(C) acting on IP2. Explicitly we haveT : = T12 = T34: X1 +X2 = X3 +X4 = 0;NG(T ) = h(1; 2); (3; 4); (1; 4; 2; 3)i �= D4 (dieder group);ZG(T ) = h(1; 2)(3; 4)i �= Z2; GT �= D4=Z2 �= K4:The generating re
ection of ZG(T ) lifts to a re
ection in �0, for example to(12)(34)IB =0@ 0 1 01 0 00 0 11A 2 �0 � � =U((2; 1); O)The corresponding K-disc ID over T �xed pointwise by (12)(34)IB is the diagonal discdescribed by the equation u = v on the ball. In the (real) picture (11.6) we draw sixrepresenting discs covering the six (thin) branch lines and ID covering T along the quotientmap IB �! IB=�0. (11.6)
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For more details we refer to [Ho 3].Finally, one �nds easily the branch and rami�cation points of the curve coveringsstarting from ID. It is clear thatP1 �= T �! T=K4 �= P1has 3 branch points by the HURWITZ genus formula:(2g0 � 2) = d(2g � 2) + XP2T(eP � 1); g0 = genus of T = 0 = g = genus of P1;42



eP = jGT;P j = 2;= d = jK4j = 4. Therefore there are 6 rami�cation points P on T or�0-inequivalent rami�catient points on ID, hence 3 branch points on T=K4 = ID=�0T. Fourof the six rami�cation points are obviously the intersection points of T with the six thinlines Tij : Xi = Xj ; 1 � i < j � 4, see picture (11.2).T \ Fix(1; 2) = (0 : 0 : 1 : �1);T \ Fix(3; 4) = (1 : �1 : 0 : 0); F ix(1; 3) \ Fix(2; 4) = (1 : �1 : 1 : �1);F ix(1; 4) \ Fix(2; 3) = (1 : �1 : �1 : 1);The other two sit in Fix(1; 4; 2; 3) = f(1 : �1 : i : �i); (1 : �1 : �i : i)g.11.7 Corollary. The general members of the family of Jacobian threefolds of PICARDcurves Y 3 = X4+aX2+b have non-trivial quaternionic isogeny decomposition type (E�S).Special members are of type �E �E2�� or �E3�.Proof. This follows now directly from Theorem 8.11 because the parameter curveT : X1 +X2 = 0 doesn't cross the set of 4 cusp points.Finally, let L one of the six thin lines in Picture (11.2), say L: X3 = X4. As alreadymentioned it is the compacti�cation of a quotient curve of IB=�0ID of one of the K-discs IDjoining two of the �0-cusps 1; 2; 3; 4 drawn in (11.6). Again from Theorem 8.11 it followsthat11.8 Corollary. The general members of the family of Jacobian threefolds of PICARDcurves C�: Y 3 = X(X � 1)(X � �)(X � �); � 2 C, have modular decomposition type�E �E2� �.It is easy to recognize the elliptic curve family sitting in the Jacobian J(C) of this Picardcurve family C=L = IP1 according to Prop.10.2 of the previous section. Consider C=Las algebraic surface with function �eld G = C(x; y)(u); x; y transcendentally independentover C, with only relation u2 = y3=x(x � 1). We substituted in the equation for C� theterm (X � �)2 by U and use small lattices in the function �eld. It contains the function�eld F = C(x; y)(t), if we set t = u2. Since t = y3=x(x�1) the �eld F is the function �eldof the most classical elliptic curve family E=L: Y 3 = X(X � 1)(X � �). There are surfacemodels C, E of our curve families allowing a two-sheeted covering C �! E correspondingto the quadratic �eld extension G=F . Using � = x � t as a parameter again we see thatthis covering yields curve coverings C� �! E� of degree 2. They extend to surjectivemorphisms of the Jacobians J(C�) �! E�, hence E� is an isogeny component of J(C�).By 11.8 we get11.9 Corollary. For � 6= 0; 1 the (generalized) Jacobians of the singular Picard curve C�of 11.8 has isogeny decompositionJ(C�) � E �E� �E� with elliptic curve E�: Y 3 = X(X � 1)(X � �):43



11.10 Remark-Problem. This elliptic curve family fE�g appears as most classicalexample in the theory of (ordinary) Fuchsian di�erential equations and their solutionsdescribed by hypergeometric functions. The example �ts into a nice correspondencebetween isomorphy classes of complex (minimal smooth) elliptic surfaces over IP1 withprecisely 3 exceptional �bres and the most simple Fuchsian equations, see [S-Z] for a nicemodern algebraic-geometric treatment.With regard to our splitting results it is quite natural to ask for a similar connectionbetween abelian surface families of non-trivial quaternion type (over arithmetic curves ofPicard modular surfaces). One should start with the above example of 11.7, wich is themost simple sitting in the Jacobians of Picard curves.12. AppendixK-embeddings into Q-central quaternion algebrasWe will prove that for each inde�nit Q-central quaternion algebra D and independentlygiven imaginary quadratic number �eldK there exists aK-embedding. Moreover we wouldlike to parametrize all of them.Let D be a Z-central simple algebra, Z a number �eld. Consider it as element of theBRAUER group Br(Z) and denote the localisations Dv = Qv 
D at arbitrary places vof Z. The property that an algebra is central and simple is preserved under extension ofground �eld. Therefore the localitions de�ne group homomorphisms Br(Z) �! Br(Zv).The local Brauer groups are well-understood by certain invariants, wich are unit roots. Inadditive style of writing one disposes on local BRAUER group isomorphisms�v: Br(Zv ) �=�!Q=Z. For more details and proofs we refer to [R] or [We].With regard to our purposes we restrict to the case Z = Q and n2 = dimQD = 4,where we describe the local-global (Hasse) principle more explicitly. We have Qv = Qp orR for v = p a natural prime number or v = 1, respectively. The local invariants �v(D)are described as follows �v(D) = +1 i� Dv �=Mat2 (Qv) ;�v(D) = �1 i� Dv is a skew �eld:12.1 Theorem (Hasse-Brauer-Noether). The map D 7! (: : : ; �v(D); : : :)v correspondingeach Q-central quaternion algebra D its set of local invariants induces a bijectionfQ�central quaternion algebrasg =iso()(("v) 2Yv f�1g ; "v = +1 for almost all v; Yv "v = +1)fQ�central inde�nite quaternion algebrasg =iso()(("v) 2Yv f�1g ; "1 = +1; "v = +1 for almost all v; Yv "v = +1)44



12.2 Corollary.(i) A Q-central quaternion algebra is isomorphic to Mat2(Q) if and only if all localinvariants �v(D) are equal to +1.(ii) There exist in�nitely many isomorphy classes of inde�nit Q-central quaternionalgebras.ForQ-central quaternion algebrasD and imaginary quadratic number �eldsK we considerpairs (D; �) or (D; �(K)), where �: K �! D is an embedding of algebras. In order to classifysuch pairs we de�ne for any q 2 Q�+ the Q-central Matrixalgebra D(K; q) byD(K; q) = �� a qbb a � ; a; b 2 K� : (12:3)Set u := �01 q0� and identify diag (c; c) with c 2 K. ThenD(K; q) = K +Ku (12:4)with relations u2 = q; cu = uc for all c 2 K:12.5 De�nition. If the quaternion algebra D is isomorphic to K + Ku with relations(12.3) de�ning the Q-algebra structure, then we call K +Ku a K-presentation of D. Thematrix algebra D(K; q) is called a K-representation of D.So we dispose on models for each of the isomorphy classes (K=Q; �; q) described in (3.3).From the Brauer group theory we also know that they represent all isomorphy classes ofQ-central inde�nit quaternion algebras containing K, and two of these algebras D(K; q),D(K; q0) are isomorphic if and only if q0=q 2 N(K�), see 3.5.In [K-S], x 11, for K = Q �p�d� the isomorphy class of D = D(K; q) is denoted by(�d; q). Using the notation of (6.2), n = 2, we can write our K-respresentation asD = D(K; q) = nba+bbu; a; b 2 Ko = bK + bKu: (12:6)of (�d; q). The canonical anti-involution � on D is de�ned bya + bu 7! (a + bu)� := (a� bu) : (12:7)Indeed, it is easy to check that[(a + bu) (a0 + b0u)]� = (a0 + b0u)� (a + bu)� :Furthermore,N(a + bu) := (a + bu)(a + bu)� = jaj2 � qjbj2 = det� a qbb a � 2 Qand 45



T(a + bu) = (a+ bu) + (a+ bu)� = a + a = trace of � a qbb a � 2 Qde�ne norm and trace on K +Ku extending the K=Q-norm or -trace on K, respectively.The element A 2 D satis�es the characteristic equation T 2 � T(A)T + N(A), which isindependent of any imaginary quadratic representation of D. Therefore T and N arecorrectly de�ned on D. This is also true for the anti-involution � because A� = T(A)�A.All elements A 2 D with N(A) 6= 0 have an inverse in D, namely A�1 = N(A)�1A�.On this way we proved directly the �rst part of12.8 Proposition. D = D(K; q) is a skew�eld if and only if the equation jaj2 � qjbj2 = 0has only the trivial solution a = b = 0 in K. This happens if and only if q =2 N(K�). Witha �xed imaginary quadratic sub�eld K of a Q-central quaternion algebra D �= K +Kuall K-presentations are given by K +Kv with v 2 N(K�)u and all K-representations byD(K; q0); q0 2 N(K�)q.Proof. It su�ces to prove the third statement. Let K +Kv be a second K-presentationof D with relations v2 = q0 and cv = cv for c 2 K. These relationsca+ cbu = c(a+ bu) = cv = vc = (a + bu)c = ac+ cbuare only possible, if a = 0. Therefore v = bu andq0 = v2 = bubu = jbj2u2 = jbj2q 2 N(K�)q:12.9 Lemma. Let K = Q+Qp�d be an imaginary quadratic number �eld and D =D(K; q) a K-representation (12.4) of inde�nit Q-central quaternion algebras belonging tothe norm class qN(K�) 2 Q�+=N(K�). The imaginary quadratic �eld L = Q �p�k� ; d; ksquarefree natural numbers, can be embedded into D if and only if the diophantine equationqX2 + dqY 2 + kV 2 = dT 2has a rational solution (x; y; v; t) with v 6= 0.Proof. Let � = �ab qba � be an arbitrary element of D�. Its square is�2 = � a2 + qjbj2 q (ab + ab)ab+ ab a2 + qjbj2 �It is an element of Q� � D� i� a 2 Q�p�d. With a = tp�d; t 2 Q, and b 2 K weparametrize on this way all imaginary quadratic sub�eldsL = L(t; b) = Q+Q� �= Q�p�dt2 + qjbj2� ; 0 > �dt2 + qjbj2:sitting in D. We set b = x + yp�d; x; y 2 Q. Then L �= Q �p�k� i��dt2 + q(x2 + dy2) = �v2k for a suitable v 2 Q�.46



12.10 Proposition. Let D be an inde�nit Q-central quaternion algebra. Each imaginaryquadratic number �eld L can be embedded into D.Proof. By the lemma, it remains to check that the homogeneous diophantine equationQ: qX2 + dqY 2 + kV 2 � dT 2 = 0has a non-trivial Q-solution a0 = (x0; y0; v0; t0). If this is done, then one �nds also arational solution (x; y; v; t) with t 6= 0 because in this case the projective rational solutions�ll a dense subset on the corresponding projective quadric IPQ(R) � IP3(R). In order tosee this one chooses an arbitrary Q-rational plane E in IP3 not containing P0 := IPa. Thecentral projection with center P0 restricted to E yields de�nes correspondencesE(Q) �! IPQ(Q)n fP0g and E(R) �! IPQ(R)n fP0g :The discriminant of the quadratic form is the product of the coe�cients discr(Q) =�d2q2k. This is not a square in Q. The existence of a non-trivial Q-solution follows nowfrom the following special result 12.11 of the Hasse-Minkowski theory for quadratic formsover Q:12.11 Proposition (see e.g. [Se], IV, x 2, Theorem 6, (iii)). The diophantine equationaX2 + bY 2 + cU2 + dV 2 = 0; a; b; c; d 2 Q;has a non-trivial rational solution, if its discriminant abcd is not a rational square.12.12 Remark. Looking back to Theorem 3.4 (ii) we proved that for each imaginaryquadratic �eld L the smallest number r for which there exists an embeddingL �!Matr(D) is equal to 1.Moreover, for the set of all embeddings of a given �eld into an algebra the following generalresult is known, which is much more intrinsical than Lemma 12.2:12.13 Theorem. Let R be an algebra over a �eld F; dimFR = n2; R� its group of units,L a �eld extension of F of degree n over F and f : L �! R a F -linear embedding. Eachother such embedding f 0: L �! R is R�-conjugated to f .This means that there is an element a 2 R� such that f 0(l) = a�1f(l)a for all l 2 L. Thecommutator of f(L) in R is f(L) itself. Thus, there is a bijective correspondence betweenall F -linear embeddings of L into R and the coset f(L)�nR�. For a proof of the theoremwe refer to [We], Appendix 3 (of the russian edition).12.14 Corollary. Let D be a Q-central inde�nite quaternion algebra and K an arbitraryimaginary quadratic number �eld. Starting from one Q-algebraic embedding K � D allembeddings of K into D are precisely parametrized by the coset K�nD�.Proof. First we need the existence of a K-embedding into D. This comes from Prop.12.10. Now the statement follows immediately from 12.13 setting R = D; F = Q,n = 2; L = K. 47



12.15 Theorem. Let K be an arbitrary �xed imaginary quadratic number �eld. Thenone has the followig bijective correspondences:finde�nite Q� central quaternion algebrasg=iso = �D(K; q); q 2 Q+	 =iso()Q�+=N(K�) = Q�=�N(K�);where D(K; q) �= (K=Q; �; q) are de�ned in (12.4) and (3.3), N is the norm map of K=Q;and q 7! qN(K�) is the explicit description of the biunivoque map.Proof. Indeed, let K +Ku and K 0+K 0u0 be two K-presentations with possibly di�erentbut isomorphic sub�elds K; K 0 of D; u2 = q; u02 = q0. The existence has been provedabove. By 12.13/14 there exists g 2 D� such that K = g�1K 0g. Set v = g�1u0g. Thencv = g�1c0u0g = g�1u0c0g = vc for all c0 2 K 0:Therefore we can apply Prop. 12.8, which says that q0 2 qN(K�).Now we are able to establish more directly for any �xed imaginary quadratic number �eldK the bijective correspondencefinde�nite Q� central quaternion algebrasg=iso()finde�nte K� hermitian vector planes (W;�)g=isometrieswhich is part of the chain (9.25). For given (W; h ; i) the quaternion algebra sitting insidehas been de�ned by Shimura, see 9.19.D� = fg 2 GlK (W ); hg(x); g(y)i = (det g)hx;yi for all x; y 2 Wg : (12:16)It determines D = D(W;�) as smallest Q-subalgebra of EndK(W ) containing D�. Accor-ding to the considerations after (12.7) the minimal polynomial of g 2 DnQ isT 2 � T(g)T +N(g) 2 Q[T ]. On the other hand g satis�es as element of EndK(W ) thecharacteristic equation T 2 � tr(g)T + det g = 0. It follows thattr(g) = T(g) 2 Q; det g = N(g) 2 Q; g� = tr(g) � g: (12:17)We want to join the norm N on D with the inde�nite hermitian form h ; i on W . For thispurpose we considerW as a 4-dimensional Q-vector space with D-multiplication. For any�xed p 2W the map �: g 7! gp is a Q-linear homomorphism from D into W , both withQ-dimension 4. For each g 2 D it holds thatn(gp) := hgp; gpi = (det g)hp;pi = hp;piN(g) = N(g)n(p): (12:18)48



If hp;pi = 0, then � cannot be surjective because the hermitian form h ; i is not trivial.If hp;pi 6= 0, then from �(g) = gp = o follows N(g) = det g = 0, hence R � Ker � isan R-linear subspace of R �D = Mat2(R) outside of Gl2(R). This is only possible forKer � = O. Therefore12.19 Lemma. The Q-linear map � = �p de�ned above is an isomorphism i� hp;pi 6= 0.Equivalent are both of the conditions W = Dp, respectivelyhw;wi = hp;piN ���1(w)� for all w 2W: (12:20)For the last statement set w = gp and apply (12.18).12.21 Corollary. For the quaternion algebra D = D(W;�) the following conditions areequivalent:(i) D is a skew�eld;(ii) det g 6= 0 for all g 2 Dn f0g ;(iii) W doesn't contain any isotropy vector.Proof. We know that D is a skew�eld if and only if N(g) 6= 0 for all g 2 Dn f0g, see Prop.12.8. The equivalence of (i) and (ii) follows now from (12.17). The equivalence with (iii)comes from (12.20).In the next step we give a geometric explanation for constructing all sub�elds of D = D(W )isomorphic to K. Let L� �W be a K-line generated by a negative vector a, that meansha;ai < 0. Its orthogonal complementary line is denoted by L+ = Kb, say. The nontrivialvectors of L+ are positive andW = L� ?
L+ (orthogonal sum). We consider the subalgebraof all g 2 D having L� as a eigenline and prove thatbK �L�� := �g 2 D; L� is an eigenline of g	 �= bK = �� c 00 c� ; c 2 K� : (12:22)Indeed, the linear extension of a 7! ca; b 7! cb is an element 
 = 
c of D because ofh
(l +m); 
(l0 +m0)i = hcl + cm; cl0 + cm0i= jcj2 [hl; li + hm;mi]= (det 
)hl +m; l0 +m0iand the de�nition (12.6). On the other hand, any g 2 D� preserves orthogonality by (12.6)again. If, additionally, L� is an eigenline of g, then also L+ is. Therefore bK (L�)� is acommutative group generating the commutative Q-subalgebra bK (L�) of D. The maximalsub�elds of D are quadratic, therefore bK(L�) = f
c; c 2 Kg �= K �= bK.It is clear that di�erent negative K-lines L� inW de�ne di�erent sub�elds bK (L�) ofD isomorphic to K. Conversely, the line L� is uniquely determined as negative eigenlineof by its associated �eld bK(L�). By (12.6) the subgroup49



D�+ = fg 2 D; N(g) > 0gof index two in D� acts on the set IPW� of negative K-lines L� � W . The whole groupD� acts on the set of pairs fL�; L+g, hence, via conjugation, on the corresponding setof sub�elds bK(L�). On the other hand, any two sub�elds of D isomorphic to K are D�-conjugated by Corollary 12.14. Therefore the above actions of D� or D�+ are transitive.Alltogether we notice the bijective correspondences12:23 Internal conjugations:IPW� = �negative K�lines L� �W	() K�nD�+()nsub�elds bK(L�) of Do = fsub�elds of D isomorphic to KgWe constructed from each inde�nit hermitian K-vector plane W an inde�nit quaternionalgebra D with K-sub�eld. Let us start now conversely from D = K + Ku with therelations described in (12.3). On this K-vector plane we de�ne an inde�nite hermitianform in a natural manner. For this purpose let p: D �! K denote the projection onto the�rst summand. For X = a + bu 2 D, its conjugate X� = a � bu and c 2 K it holds thatp (X�) = p(X); p(cX) = cp(X):12.24 Lemma-De�nition. The canonical hermitian form on D = K +Ku is de�ned byhX;Y i = p (XY �) 2 K; X; Y 2 D:It is negative de�nit; the discriminant (of the canonical generators 1; u) is equal to�q = �u2 = u � u 2 �Q�+. Furthermore K + Ku is an orthogonal decomposition of Dwith respect to h ; i.Proof. The de�nition is correct, namelyhcX; Y i = p (cXY �) = cp (X;Y �) = chX;Y i; c 2 K;hX +Z; Y i = p ((X +Z) Y �) = p (XY �) + p (ZY �) = hX;Y i + hZ; Y i;hY;Xi = p (Y �X) = p �(X�Y )�� = p (X�Y ) = hX;Y i:Therefore h ; i is a K-hermitian form on D. Furthermore for the canonical generators weget h1;ui = p(u�) = 0; h1; 1i = p(1 � 1�) = p(1) = 1; hu;ui = p(uu�) = p(�u2) = �q:Therefore K?Ku and the discriminant is �q.50



12.25 Proposition. The isometrie class of W = W (D) = (K +Ku; h ; i) de�ned in12.24 does not depend on the K-presentation of D.Proof. If D = K+Ku0 with the relations analogeous to (12.3), then u0 = cu for a suitablec K� and q0 = bu0 = N(c)q, see 12.8. Therefore the discriminant of h ; i constructed withu0 instead of u does not change up to N(K�)-multiplication. The isometry class is thesame by Landherr's Theorem, see 9.4.Now use another sub�eld K 0 �= K of D = K 0+K 0u0 for the construction of h ; i, say.By 12.14 there is an element A 2 D� such that K 0 = A�1KA. The old K-presentationcomes with u = Au0A�1. Using the notation Z 0 = A�1ZA for Z 2 D and p0 for thecanonical projection of D onto K 0 along Ku0 it is clear that p0(Z 0) = p(Z)0. Sinceu0u0� = A�1uu�A = �qA�1A = �qthe discriminants of h ; i0 and h ; i coincide. Therefore one gets the same isometry classof hermitian forms. It is so easy to see that 0 de�nes an isometry.Without change of notation we extend the hermitian form h ; i to W (R) �= C2. Also theaction of D on W is extended to W (R). The groupU(W (R)) :=U(W (R); h ; i) �=Gl2+(R) �=U((1; 1);C)acts transitively on the set IPW(R)� of negative C-lines L� �W (R). We get the bijectivecorrespondences12:24 External conjugations:IPW(R)� = �negative C � lines L� �W(R)	() C�nU((1; 1);C);� gD := gDg�1; g 2 U(W (R))	() Gl2+(R)=D�() (R�D)�=D�:Let (a0;b0) 2 W� �W+ be a �xed orthogonal pair; L� a negative C-line in W (R) andg 2 U(W (R)) such that a := g(a0) 2 L�. Set b = g(b0). The quaternion algebra D �= gDacts on the hermitian K-vector space U := Ka ?
Kb via g-conjugation. Since ha;ai 6= 0we can write U = Da, see Lemma 12.19. Using a coordinate map �: W (R) ��!C2 we canassume that a = �a1a2� ; b = � b1b2� 2 Da, and D acts K-linearly on Ka+Kb.51
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