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0. Preface

The moduli space F of polarized abelian threefolds with (compatible) imaginary quadratic
multiplication (of type (2,1) with a fixed imaginary quadratic number field K) is called a
Picard modular surface. The corresponding period domain is the two-dimensional complex
unit ball IB. So F is the Baily-Borel compactification of a quotient surface F = IB/T", T
an arithmetic group, called a Picard modular group.

Let C be an irreducible compact curve on F and C its intersection with F. We call
C (also C) an arithmetic curve, if each abelian threefold Ap corresponding to any point
P of C is not simple. We show that all arithmetic curves fill a thin dense set on F. More
precisely, they can be realized as quotients of all K-rational linear subdiscs ID of the ball
IB using the arithmetic ID-lattices Np(ID) consisting of all elements of I' acting on ID.

Arithmetic curves have both, an important geometric and arithmetic meaning. Geo-
metrically, they can be used for the classification of Picard modular surfaces in the sense
of Kodaira. For this purpose one defines special numerical invariants called (local) orbital
hights of curves on ﬁ, principally, the Fuler hight and the signature height. A simple
proportionality relation between Euler and signature height yields an explicit criterion for
a curve C' on F to be arithmetical. The determination of the surface type can be managed
by finding a classifying configuration of arithmetic curves (together with the knowledge of

Chern numbers of a smooth model of F coming from global hights).

0.1 Theorem. There are two types of arithmetic curves C. In the modular case the
threefolds Ap have an isogeny decomposition E(P) x E(P) x E into three elliptic curves
for all points P of C', where E is constantly an elliptic curve with complex K -multiplication
and the E(P)’s can be organized to non-isotrivial elliptic curve families over (suitable) finite
covers of C'. The other (quaternionic scew field types) are interpreted in a similar manner by
non-isotrivial families of abelian surfaces with scew field multiplication (in general points
P) coming from isogeny decompositions B(P) x E of Ap, B(P) a simple abelian surface
of type Il in Albert’s list.



For the proof we classify the types of all possible endomorphism algebras of abelian
threefolds with imaginary quadratic multiplication. There are precisely six types corres-
ponding to different types of isogeny decompositions in the Picard modular case.

With regard to Hilbert’s 7-th (transcendence) and 12-th (class field) problems one uses
a strong theorem of Wistholz for the fist part and Shimura’s work to prove the second
part of

0.2 Theorem. The point P on F and (each of) its preimage(s) 7 on IB are algebraic if
and only if the abelian threefold Ap is simple with complex multiplication (CM) or it has
an isogeny decomposition into three elliptic curves with complex multiplication. In the
simple CM-case the field K(P) is a class field over the CM-field L = K(7) of Ap which is
a cubic extension of K.

We call a point 7 = (u:v:w) of IB C IP? simply transcendental, if K(7) is a
transcendental field extension of K and w, v, w are linearly dependent over K. With
the decomposition results one gets

0.3 Theorem. The abelian threefold Ap not of (decomposed) CM-type is not simple, if
and only if (each of) its preimage(s) 7 on IB is simply transcendental.

Shimura’s class field theory works for simple abelian CM-varieties. It is not difficult
to see that all other candidates for class field theory, namely the points P for which Ap has
a decomposition into elliptic CM-curves, ly on arithmetic curves €. The previous result
means that important class field extensions of K(7), 7 as above, for these points P comes
from the theory of elliptic curves in the modular case or from the class field theory of
quaternion division algebras over Q in the skew field case. This is a corollary of Theorem
1. Moreover the modular case happens in distinction to the quaternionic scew field case if
and only 1if the corresponding curve C' goes through at least one of the cusp singularities

collected in ﬁ\F

The results are applied in analogy to elliptic curves to Picard curves defined by
equations of type Y? = X* 4 aX3 4 bX? + ¢X + d. The Jacobians are classified by
the Picard modular surface of the field of Eisenstein numbers generated by a primitive
third unit root over Q. Here the quotient morphism th: IB — F is described by explicit
Theta constants and the inverse map by three (typical Picard) integrals of first kind along
pathes on Picard curves.

0.4 Corollary. The following conditions are equivalent:

(1) The Picard integrals at a point P are linearly dependent over I;
(12) th(7) = P lies on an arithmetic curve;

(721) the corresponding Jacobian threefold Ap is not simple;

1. Introduction

An abelian variety A has complex multiplication (CM), if its endomorphism algebra

End (4) := Q® End (A) is a CM-field (totally imaginary quadratic extension of a totally
real number field) of absolute degree 2¢, where ¢ := dim A. In our context abelian CM-
varieties are understood as simple abelian varieties. From the basic work of SHIMURA and
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TANIYAMA [ST] one knows that they play an important role in number theory. Let A /T
be a family of abelian varieties over a complex (irreducible) algebraic variety T. We call
t € T a spectal point of this family, if the abelian variety A, splits up to isogeny into simple
abelian varieties with complex multiplication. By our definition such abelian varieties are
called abelian DCM-varieties (decomposed complex multiplication ). More generally we look
for (irreducible) subvarieties S of T such that all members A, of the restricted family Ag/S
have a greater endomorphism algebra than a general member of A /T. The restricted family
A g is called specific in this case. If the family is fixed once for all, then we call simply S
a specific subvariety of T. The subvariety S (or the family Ag) is called very specific with
respect to the family A/T, if dim S > 0 and for each s € S the abelian fibre variety Ag
is 1sogeneous to a product of elliptic curves. The definitions transfer in obvious manner
to the moduli spaces of polarized abelian varieties using the biunivoque correspondence
between moduli points and isomorphy classes of polarized abelian varieties.

By means of the general classification theory of endomorphism algebras of abelian
varieties due to ALBERT we introduce the decomposition type DT(A) of an abelian variety.
We say that the decomposition type DT(B) is a specialisation of DT(A), if there is a
family A /T of abelian varieties such that the general members of A have decomposition
type DT(A) and there exists a point s € T with A, of decomposition type DT(B). Such
a concrete specialisation is called of codimension ¢, where ¢ := dim T — dim S. On this
way one gets a hierarchy structure among all decomposition types of abelian varieties of a
fixed dimension g. It seems to be an interesting problem to study the hierarchy structures
in more detail.

This should also be done for classes of abelian varieties satisfying additional conditions.
For example, one considers all abelian varieties whose endomorphism algebras contain a
given Q-algebra R. Such abelian varieties are said to have R-multiplication. With some
restrictions and refinements (polarisations of certain lattice types) there are classifying
algebraic varieties called (complex) SHIMURA varieties. For basic definitions and facts
of the complex theory we refer to the monograph [BL]. The notion of ”(very) specific”
subvarieties of these moduli varieties is defined as above simply by the restrictive moduli
interpretation.

In this article we restrict our attention to abelian varieties A with imaginary quadratic
multiplication. By definition, End (A) contains an imaginary quadratic number field K.
Most important are the principally polarized abelian threefolds with K -multiplication. The
corresponding SHIMURA varieties (for each K') are called PICARD modular surfaces. For
basic facts and advanced arithmetic studies we refer to the proceedings [Lg]. (Very) specific
points and (very) specific curves are the main objects of our investigation. We want to
describe in simple words in section 1 the results of the article and in 7. some open problems,
which are all connected with each other. Proofs are given in sections 2. - 7.

Leading Example

Each PICARD modular surface M is a non-compact quotient IB/T" of the complex two-ball
B by an arithmetic group I' actmg on IB. Its BAILY-BOREL compactification is denoted

by M = IB/T The difference M\M consists of finitely many cusp points, which are normal
surface singularities. Via Jacobian varieties M is interpreted as modular surface of certain
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curves of genus 3. The smooth curve correspond to a ZARISKI open subvariety M*™ of M.

The difference ﬁ\Msm is an algebraic cycle of codimension 1 called the compactification
cycle (with respect to smooth curves). At the end of this article we apply the above results
to the PICARD modular surface M of the imaginary quadratic field of EISENSTEIN
numbers and a specific one-dimensional subfamily C7 /T of the corresponding PICARD
curve family C/M', M’ a suitable finite covering of the moduli space M. Together with
some earlier work the following interesting properties are verified:

1.1

M’ = IP?, M\’\M' = IP?\ {four (cusp) points in general position},
1\//I’\M'3m = {the stz projective lines through pairs of the four cusp points}

1.2 T s a specific curve in the above sense, more precisely, with respect to the Jacobian

fibration J(C)/M'.
1.3 T is a projective line on IP? = M’ not containing any cusp point. So it does not belong

to the compactification cycle K/I\’\M'Sm.

1.4 T is the subquotient ID/A of the ball quotient surface M' = IB/I", ID a linear subdisc
of the two-ball IB, A a cocompact arithmetic group commensurable with the unitary group
U((1,1),0), where O = Z + Z,, p a primitive unit root, is the ring of EISENSTEIN

integers.

1.5 Explicitly the curve family Cr /T has the affine model

V3=X* 400 +1)X?4+16)%, A€ C,
of smooth (PICARD) curves of genus 3 (in general).

1.6 The Jacobian threefolds Jy of the Picard curves of the above family split in general
up to isogeny into a product of the elliptic curve E with Q(p)-multiplication and a simple
abelian surface Sy with a Q-central skew field D = End Sy as endomorphism algebra.

2. Decomposition types of abelian varieties

Let A be an abelian variety. All our abelian varieties are defined over a field of characteristic
0. By POINCARE’s Complete Reducibility Theorem, see e.g. [BL], V.3.7, there is an

isogeny decomposition (unique up to isogeny)

An AT <o x AT (2.1)

with simple abelian varieties A; in the decomposition. We call the factors A; (more
precisely their isogeny classes) the isogeny components of A and the exponent m; the
multiplicity of A; in the decomposition. The endomorphism algebra

End (A) = Q ® End (A) has the decomposition

4



End (4) 2 Mat,,, (D)@ ... & Matm, (D,) (2.2)

where D; = End (A4;) is a division algebra (a skewfield because of associativity) since
A; 1s simple. We denote by K an imaginary quadratic number field. We say that A has
K-multiplication, if there exists a Q-algebra homomorphism «: & — End (A). This is a
field embedding because it is non-trivial.

Now let A be simple. We remember to the classification list for endomorphism algebras
D of simple abelian varieties due to ALBERT (see [AV], [Al], [BL]). The division algebra D
has an involution ' (ROSATTI involution) associated to a polarisation of A. The involution
is positive, this means that the quadratic form = — Tr(zz'), Tr = Trp/q the reduced
trace on D, is positive definit. In general the involution is not uniquely determined, but
uniquely determined is the JORDAN algebras Jd(A) = Jd(D, ' ) = {« € D; 2’ =} of
elements of D fixed by the involution, because it is the image of a canonical homomorphism
from the NERON - SEVERI group NS(A) into D. There are four rough types of division
algebras (D, ' ) with positive involutions coming from simple abelian varieties A (of any
characteristic). For their description we denote the center of D by Z, the indez of D by d,
that means d* = dim Q(D/Z), and set

g=dim A,
e=[2:Q],
7t ={2¢eZ; s =2},
et =12:2%) €{1,2},
n = dimg Jd(D, ' )/dimq D.
Then we have the following complete list:

2.3. Rough types of endomorphism algebras of simple abelian varieties

Types Conditions

I. e=eT, d=1, h=1; elg

II. e=et, sz,hz%; 2e | g

II1. T, d=2, h= i; 2¢ | ¢ in characteristic 0

(e | g in characteristic p > 0)
etd? | ¢ in characteristic 0
(etd | g in characteristic p > 0)

IV. e =2t h =

b [ =

Moreover, one has the following additional informations I', II', II1I', IV’ for the above

cases, respectively (in all characteristics):
I''D =7 = Z7" is a totally real number field.

II'. Totally indefinite quaternion type. Z = Z7T is a totally real number field and D a
quaternion field over Z (associative non-commutative division algebra of index d = 2 with

center Z ), such that for all field embeddings o: Z — R it holds that
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R @, D = Maty(R). (2.4)

The ROSATI involution can be represented by = — ' = ax*a™', a € D with a®> € Z
totally negative, where @ — «* = T'r(a)—ux is the standard involution on D. The involution
' is the restriction of the transposition map (X1,...,X¢) — ( 'Xy,...." X.) along a suitable

isomorphism R ® DiMatg(R) X ... x Maty(R).
III'. Totally definite quaternion type. Z = Z7T is a totally real number field and D a
quaternion field over Z again, such that

R®, D=H =R+ Ri+ Rj+ Rk,

for all ¢ as above, H the HAMILTON quaternion field over R. The involution ’ is the

standard involution * = Tr — ¢d on D. A suitable isomorphism R ® DSH x ... xH
transforms ' to the componentwise conjugation on the HAMILTON quaternion field H.

IV'. ZT is a totally real number field, Z a totally imaginary quadratic extension (a CM-
field) of Z* and each field embedding o: Z — C induces an isomorphism

The automorphism ~ of complex conjugation on Z coincides with the involution '. More-

over, there is a positive involution *: D-=4D defined by restricting the canonical involution
(Xq,.... X)) — ( Xq,... ,tXe+> on Maty(C) x ... x Maty(C) along an isomorphism
R @ D——Maty(C) x ... x Maty(C).

Each positive involution’ on D has the form z + 2’ = az*a~! for a suitable element a € D*
with image (A1,...,A.+), A; hermitian positive definit, in Mat4(C) x ... x Matq4(C).

2.5 Remark. Let D be a division algebra of rough type I, II, IIl or IV. By the
classification results of ALBERT it can be realized as endomorphism algebra of a suitable
simple abelian variety in characteristic 0, except for some of the types Il or IV, namely
g = 2eor 4e (type II1I) and g = et d?* or ed? (type IV). In these cases additional conditions
to I1I' respectively IV’ must be given.

2.6 Definition. A simple abelian variety A is called of

fine type (I,e), (II,e), (II1,e) or (IV,d,e), d,e € N,

if it is of rough type I., II., IIl., IV., respectively, and the skewfield End (A) has the
invariant e = [Z : Q], Z the center of End (A), and index d =1, 2, (d = 1 unique in the
first three cases).

2.7 Definition. Let A, B be two abelian varieties with isogeny decompositions (2.1) or
B~ B x...x B,
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respectively. We say that A, B have the same decomposition type, if and only if

1) kE=r;
2) for a suitable numeration the multiplicities m;, n; coincide for ¢ = 1,...,r;
3) there is a suitable numeration as in 2) such that additionally for : = 1,...,r the

fine types of End (4;) and End (B;) coincide.
The decomposition type of A is denoted by DT(A).

3. Abelian varieties with imaginary quadratic multiplication

Let M be a number field. If the abelian variety has M-multiplication, then one knows
that the absolute degree of M is not greater than 2divm A. If, especially, K = M is an
imaginary quadratic number field, then we say shortly that A has imaginary quadratic
multiplication.

3.1. Lemma. Let A be an abelian variety with K -multiplication, IX a number field, with
isogeny decomposition (2.1). Then each primary component AT has K-multiplication.
Especielly, of A; 1s a simple component of multiplicity m; = 1, then A; has K-multiplica-
tion.

Proof. The composition of «: K — End (A) of the i-th projection

pi: End (A) — End (A")

in the direct sum (2.2) is a homomorphism of Q-algebras not being trivial because 1
corresponds to 1. Therefore the kernel of p; o ¢ is trivial and p; o ¢ an embedding of K into
End (A"). Hence A" has K-multiplication.

1

3.2. Proposition. Let A be a simple abelian variety with imaginary quadratic K-
multiplication and with endomorphism algebra D not of type IV. Then D s uniquely
determaned up to Z-isomorphy by K, the center Z and the L/Z-norm class of a suitable
z=2p € Z*\Np,z(L*) having a square root u in D but not in L := KZ. More explicitly
one has

D=(L/Z, 0 ,2)= L-1+ L-u with relations u®> = z, uc = o(c)u for all c € L, (3.3)

where o denotes the complex conjugation. D is of type II (an indefinit quaternion field)
if and only of z >0 and of type II1 (a definit quaternion field) iff = < 0.

Proof. Without loss of generality we can assume that ' = Q <\/—_a> ,a € Qtisa

subfield of the skewfield D. Then Z - K = Z <\/—_a> 1s a subfield of D because Z is

central in D. Since Z is totally real we conclude that L := Z - K C D is a quadratic field
extension of K. So it is a maximal (commutative) subfield of D because [D : Z] = d* = 4,
see I, III. (Type I is excluded because the endomorphism algebra is not a totally real
number field). Therefore L splits D by the following
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3.4 Theorem ((28.5) in [R]). Let D be a skewfield with center Z, and let d = /[D : Z]
be the index of D. Let L be a finite extension of Z.
(7) If L splits D, then d | [L: Z].
(1) There exists a smallest positive integer r for which there is an embedding
L C Mat,(D) as Z-algebras. With this choice of r, L splits D if and only if (the
image of) L is a maximal subfield of Mat, (D). Furthermore, the centralizer L'
in Mat,(D) of the image of L is a skewfield or a field. Identify L with its image.
Then L is a maximal subfield of Mat,(D) if and only if L = L'.
O

Since our L = KZ lies in D = Maty(D) we have r = 1 in (i¢). 7L splits D” means that
L ®z D is isomorphic to Maty(L) as L-algebra.

Any simple algebra R with center Z is isomorphic to a matrix algebra Mat, (D) for a
suitable r € N and a skewfield D. Both, the natural number r and the isomorphy class of
D, are uniquely determined by R, see [R]. D is called the skewfield part of R. Two simple
Z-central algebras R and B are called similar, iff there 1s an 1somorphism of Z-algebras

R®@y Mat(Z)= B @y Mats(Z)

for suitable positive integers r and s. The similaryty classes of Z-central simple algebras
form via tensor product a group Br(Z) called the Brauer group of Z. The unit element is
represented by the elements Mat,.(Z), r € NT.

For each field extension L of Z there is an exact sequence of groups

1— Br(L/Z) — Br(Z) — Br(L)
R—L®zR

Thus, the similarity classes of Z-central simple algebras splitted by L appear as subgroup
of Br(Z). Moreover, if L/Z is a finite Galois extension, there is an isomorphism

Br(L)Z)=sH?(Gal (L/Z), L"),
see [R], theorem (29.12). On the other hand the cohomology theory of groups yields
isomorphisms
HZ (G,L*) ~ L*G/L*l—l—a—l—...—l—a" — L*G/NL/Z(L*) — Z*/NL/Z(L*),

it G=(0)=Gal(L/Z) = Z/nZ is cyclic of order n. We refer to [R] again, 29. exerc. 12,
13.

Now we turn back to the field L = KZ in Prop. 3.2. It is a (cyclic Galois) extension
of Z of degree 2 splitting D. In [R], section 30, one can find the explicit description of the
our quaternion field D as described in (3.3). Indeed, one has the the exact group sequence

1 — Npjz(L*) — Z* — Br(L/Z) — 1
2= L/Z, o, 2]

where [...] denotes the similarity class of the corresponding simple agebra described in
(3.3). For this fact we refer to [R], section 30, ex. 1. It means that
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3.5 the quaternion fields (L/Z, o, z) and (L/Z, o, z') are Z-isomorphic if and only if z /2’
is in NL/Z(L*)

Since A is assumed to be simple, hence D = End (A) # Maty(Z), it cannot happen in
our case that z € Ny ;7 L*. The main part of Prop. 3.2 is proved.

For the last statement we show that D is of type I, if z < 0. The tensor product of
(3.3) with R yields explicitly

RoD=C-1+C-u=(C/R, o, z).

Comparing with the HAMILTON quaternion field

C-1+C-j=H=(C/R, o, —1)

we see that R @ D = H because —1/2 € Ry = Ng/r(C*). This means that D is of type
I11.
If 2> 0 then R®D = (C/R, o, +1) splits because +1 is a norm. This means
R @ D = Maty(R), hence D is of type II. The Proposition 3.2 is proved.
(]

3.6 Definition. A simple abelian variety A of dimension ¢ has complex multiplication,
iff the endomorphism algebra End (A) contains a subfield F' of (maximal possible) degree

[F:Q] =2g.

In this case one knows that End (A) = F, see [CM], I, Lemma 3.2, and F is a CM-
field. Usually non-simple abelian varieties A are called of CM-type, if the condition of the
definition is satisfied. In this case one knows that A has a primary isogeny decomposition

A~ B x...x B=DB", B asimple abelian CM — variety,

see [CM], I, Theorems 3.1, 3.3. From (2.2) we get

End (A) = Mat,,(F) where F'= End (A) is a CM — field. (3.7)
For our purposes it is convenient to use the following generalizing

3.8 Definition. An abelian variety A has decomposed complex multiplication (or is of
DCM-type), if all the simple components A; of any isogeny decomposition (2.1) of A have
complex multiplication.

Together with (2.1),(2.2) we see that the endomorphism algebra of an abelian DCM-variety
A has the form

End (A) = Mat,,, (FA) & ... Mat,,, (F,), F; =2 End (A;) CM — fields. (3.9)



4. Endomorphism algebras of simple abelian surfaces
with imaginary quadratic multiplication

4.1. Proposition. If S is a simple abelian surface (over a field of characteristic 0), then
End (S) has one of the following types:

(7,1) End (5) = Q;

(7,2) End (5) = k a real quadratic field;

(12,1) End (5) = D an indefinite quaternion field over Q.

(1v,2)  End (S) = F o CM-field without imaginary quadratic subfields.

Especially, S has imaginary quadratic multiplication if and only if it is of type (ie,1). In
this case it has K-multiplication for each imaginary quadratic number field K.

N N N S’

Proof. We have ¢ = dim S = 2. Assume that S is of rough type I. Then End (S)
is a totally real field of degree e | 2, therefore e = 1 or 2, hence (7,1) and (¢,2) are the
only possibilities. Both types can be realized. The first by a general abelian surface, the
second by a general member of a family of abelian surfaces parametrized by a suitable
finite covering of the Hilbert modular surface of the field k.

The quaternion types II, III live with the condition 2¢ | ¢g. Therefore ¢ = 1 and
End S has to be a quaternion field over Q. But the case (II1,1) of a totally definit
quaternion field over Q is not possible by a result of SHIMURA. We refer to [BL], IX, Ex.
1, or, more originally, to [Shm 1], Theorem 5 (a) and Prop. 15.

Now let S be of type IV. The condition etd? | g in IV. yields d = 1 and et =1
or 2. By IV’ End S has to be a CM-field F of absolute degree ¢ = 2¢™ = 2 or 4. The
case (IV,1) of an imaginary quadratic field F' cannot occur, see [BL], IX, Ex. 4, or, more
originally, [Shm 1], Theorem 5 (¢), (d), Propositions 14 and 18. The remaining possibility
is the CM-type (IV,2) because [F : Q] = 4 = 2g.

We consider complex abelian surfaces S of this type with imaginary quadratic K-
multiplication and show that they cannot be simple. For this purpose we remember to the
definition of types of complex multiplications. Let (A, ¢) be an abelian variety of CM-type

t: F— End (A), [F:Q]=2dim A= 2g.

The number field F acts on the complex tangent space T(A) of A at 0 € A(C).

Diagonalizing this action we get ¢ characters F* — C* or, equivalently, field embed-
dings ¢;: FF— C, 1 =1,...,¢. It can be shown that they are pairwise different and not
conjugated, this means that ¢; # @, for all 7,7 < ¢g. Such a g-tuple ® = (¢1,...,p,) is
called a CM-type. Usually it is denoted by (F,®) or &. Sometimes it is convenient to
write

g
®=Pp :Z@i
=1

The abelian CM-varieaty (A,7) with complex multiplication we started with is called of
CM- type (F,®). If M/F is a finite field extension, then
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g
by = Z Z {all extensions of ¢; to M}
=1
is a type on M. It is called the [ift of ®p to M. A CM-type is called simple, if it is not
lifted from a subfield. It can be proved that all CM-types lifted from suitable CM-subfields

are endomorphism algebras of abelian varieties with decomposed complex multiplication
(see [CM], I, Theorem 4.4). Moreover, we need the following

4.2. Proposition (see [CM], I, Theorem 3.5). The abelian CM-variety A of type (F,®)
is simple of and only if the type (F,®) is simple.
(]

We assume that S is simple of CM type and has K-multiplication. Then F'is a CM-field
with totally real quadratic subfield F'*. Furthermore, there exists an imaginary quadratic

field

KCF=EndS, K#F".

So we dispose on quadratic field extensions

/
N

F

K F H

AN
/

Q

Let (1,p2) be the CM-type of F-multiplication on S. Without loss of generality we can
assume that ¢ = ¢d is the identical embedding. The restrictions of 5 to K and H cannot
be both complex conjugated to idx or idp, respectively. Otherwise @2 would be complex
conjugated to ¢1, which is not possible by a basic property of CM-types of abelian varieties.
Without loss of generality we have ¢ = @2 on H. Therefore the type (¢1,¢2) is the lift
of the type (H,idy). We get a contradiction to Proposition 4.2. The only possibility for
endomorphism algebras of type IV of simple abelian surfaces is (1v, 2).

The last statement of 4.1 will be proved and a littlebit extended in the following
subsection, see Prop. 4.4.

1

5. Abelian threefolds with imaginary quadratic multiplication
5.1 Theorem. Let A be an abelian threefold over a field of characteristic 0 with imaginary
quadratic K-multiplication, E an elliptic curve with K -multiplication. There are only the

followning types of isogeny decompositions of endomorphism algebras of A, respectively:
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End (A) = K, A simple not of CM-type; (A, K)

End (A) =2 F, F a CM-field, [F : K] = 3, A simple abelian CM- (A, F)
threefold;
End (A) = K x Mat; (Q(o)), c e IH={z € C; Im z > 0}, (E x E%)

A~ EXE,, E, =C/Z+ Zo an elliptic curve with imaginary
quadratic Q(o)-multiplication, Q(o) # K;

End (4) & Mat;(K), A~ E?; (E?)
End (A) 2 K x D, D an indefinite Q-central quaternion field, (E xS)
A~ E xS, S a simple abelian surface of type 11;

End (4) 2 K x Mat2(Q), A~ExE? reH, E, =C/Z+ Zr (E x E?)
an elliptic curve without imaginary quadratic multiplication;

End (A) & Mat3(Q), A ~ E3, E, as above an elliptic curve not (E2)
of CM-type.

Proof. First let A be simple. Then it is not of type I. The types I'T and I11 are impossible
because of the condition 2¢ | ¢ = 3. Type IV comes with condition e + d? | ¢ = 3, hence
d =1, this means that End (A) coincides with its center Z and is therefore a number field
containing K. Since e¥ | g = 3, there are only the possibilities e™ = 1 or 3, hence Z = K
or Z = F, F a CM-field of absolute degree 6.

Now assume that A has a decomposition A ~ E x S in two simple abelian varieties
of dimension 1 or 2, respectively. Both factors have multiplicity 1. Therefore they have
K-multiplication by Lemma 3.1. In characteristic 0 we know that a simple abelian surface
S with K-multiplication has type (¢7,1) by Lemma 4.1.

It remains to investigate the case when A has an isogeny decomposition
A~ A; x Ay X A3 into three elliptic curves. If these curves are not all isogeneous to each
other, then at least one, say Ay, appears with multiplicity 1 in the isogeny decomposition
of A. By Lemma 3.1 it has K-multiplication, hence A; ~ E with the above notations.
Furthermore, the other components cannot appear with multiplicity 1 because, by the same
conclusion, they have to be isogeneous to E, hence to A1, in this case. This contradicts to
the 1-multiplicity of A;. The only possibilities for an elliptic splitting with a component
of multiplicity 1 are therefore the cases (E x E2) and (E x E2).

It remains to check the isogeny case A ~ A?. If A; has K-multiplication, then we
have case (E?®). If Ay is not a CM-curve, then we get (E?). Finally, it remains to exclude
the case A ~ Y3, YV an elliptic CM-curve with multiplication field H # K. We show
that End (A) = Mats(H) is not compatible with K-multiplication. Namely, in this case
End (A4) is a H-central algebra containing the subfield K. Then End (A) contains the
compositum L = H - K of degree 4 over Q, hence 4 = [L : Q] divides 2dim A = 6 by [CM],
[,Thm.3.1. This is a contradiction.

1

Let us consider a family A /T of abelian varieties over an irreducible variety T of positive
dimension. Let t be a general and s an arbitrary point of T (the general point of a subvariety
S of T). Both fibres A; and A, are abelian varieties. The isogeny decomposition type of
the fibre variety A; is called a specialisation of the decomposition type of A;. If A, B are
arbitrary abelian varieties. Then we call DT(B) a specialisation of DT(A), if there is a
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family A /T as above with general fibre A and special fibre B. It is equivalent to say that
the decomposition type of B is more special than that of A. In this case we write

DT(A) — DT(B).

Moreover, we call DT(A) a specialisation of DT(B), if there is a chain of specialisations

DT(Ay) — DT(Ay) — ... — DT(Ay)

with A = Ay and B = Ay.

If we restrict our view to families of abelian varieties with K -multiplication, K a fixed
number field, then it may happen, that the decomposition type DT(B) of an abelian variety
B with K-multiplication is the specialisation of DT(A), A also an abelian variety with
K-multiplication, but there is no family A /T of abelian varieties with K-multiplication
joining A, B in the above sense. If such a K-family exists, then we say that DT(B) is a
K -specialisation of DT(A) writing DT(A)—B—>DT(B). The definition is extended by means
of chains of K-specialisations in analogy to the absolute case above.

For example, the decomposition type of an elliptic CM-curve E is a specialisation of
the decomposition type of the elliptic curve E, without complex multiplication. Therefore
also DT(E?) is a specialisation of DT(E2). Let K be the CM-field of E. Since there
are embeddings K — Maty(Q) — Mat3(Q) = End (E2?) we see that E2? has also
K-multiplication. But there is no irreducible K-family of abelian varieties of positive
parameter dimension joining the types DT(E?) and DT(E?). Namely, it is easy to check
that the type DT(E?) can only occur in a constant K-family. To see this we assume that
their is a K-family A/T, dim T > 0, with A, of isogeny decomposition type DT(E2)
at a general point 7 of T. Since the imaginary quadratic numbers ¢ € IH are dense
in IH, in a small neighbourhood of 7 there are members A, of the family of DCM-type
DT(E?), Q(o) # K. So A, has both K-multiplication and Q(o)-multiplication. But this
has been already excluded at the end of the proof of Theorem 5.1. So we notice with the
above notations that

DT(E?) —s DT(E?) but not DT(E?)-2DT(E3). (5.2)

An isogeny decomposition type of abelian varieties is called K-rigid (K any number
field), if there are only constant irreducible families A/T of abelian varieties with K-
multiplication containing only members of the given type or of its specialisations. Besides
of the above example one knows that all DCM-types are rigid, that means Q-rigid, because
it is well-known that abelian DCM-varieties have no moduli, see e.g. [BHP], IV.3.

Together with Theorem 5.1 we receive the following

5.3 Corollary. The hierarchy of K-specialisations of decomposition types of abelian
threefolds with imaginary quadratic IK-multiplication 1s described in the following diagram:

13



(5.4)

(A, K)
(E x B) (Ex E?)
(E3) \ (E x E?y)
(A B

On the bottom row we placed the 0-modular cases (moduli dimension 0); the types (A, K),
is 2-modular and the types (E x S) and (E x E2) are 1-modular.

Remark. It is not clear to me whether the sporadic type (E?) can appear as K-
specialisation of the type (A, K) in a suitable family. The K-specialisations

DT(E x E?) — DT(E x E2) and DT(E x E%) — DT(E?) can be realized in obvious
manner. For the other possible specialisations we did not prove the existence until now.
This will be done by examples in 7.

5.5 Corollary-Definition. Each specific (not isotrivial!) subfamily Ac/C of an arbitrary
famaily A /S of abelian threefolds with imaginary quadratic K-multiplication s of type
(E x S) or (E x E?). Each very specific subcurve C of S with respect to A/S is of
decomposition type (E x E?) at general points.

In the very specific case we call Ac/C a modular (sub)family and C a modular curve

in S. In the other specific case we call Ac/C a Kuga (sub)family and C a Kuga curve in
S.

5.6 Corollary. With the notations of 5.5 the following conditions are equivalent:

(7) C 1s specific;

(1) E is an isogeny component of all fibres A., ¢ € C;

(77) E 1s an isogeny component of a general fibre A, of Ac;
(1v) C is a modular or a Kuga curve.

Now it is clear that we proved with Theorem 5.1 and Corollaries 5.3 - 5.6 the statements 1.1,
1.2, 1.3 and 1.4 of section 1. The criterion 1.4 (or 5.6 (i¢), (427)) is helpful for discovering
explicitly curves of genus 3 with splitting Jacobian threefold with K -multiplication. This
will be applied in the main example below. In order to be more precise and more flexible
in connection with special and general fibres and for the sake of completeness, we prove

5.7 Lemma. Let A/C be a family of abelian varieties over a smooth algebraic curve C,
all defined over an algebraically closed field k of characteristic 0. If there is a point 7 € C
outside of C(k) such that A, 1s not simple, then the general fibre A, /k(C), v = Spec k(C)
the general point of C, is not simple. Moreover, all fibres A., ¢ € C, are not simple.
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Proof. The point 7 corresponds to a morphism Spec k(1) — C, where k(7) # k has to
be a transcendental extension of K. Without loss of generality we can assume that C' 1s
an affine scheme over k. Then 7 is interpreted as k-algebra homomorphism k[C] — k(7)
not factorizing through k. Therefore the kernel is a non-maximal prime ideal, hence equal
to 0 because k[C] is a DEDEKIND domain. The homorphism extends to the cofinte field
embedding k(C) — k(7).

The endomorphism algebra End (A;) has a faithful linear representation in the
space of differentials of first kind. This is a vector space with finite basis defined over
k(C). Therefore the endomorphisms are stabilized by each element of the GALOIS group
Aut (k(7)" Jk(C)) acting on A, (k(7)"), where a denotes the algebraic closure of a field.
The elements of End (A;) are defined over k(C')?, therefore End (A;) and End (A)
coincide. Since an abelian variety A over a field i1s simple if and only if its endomorphism
Q-algebra is a skewfield, the general fibre A. inherits this (or the opposite) property from
A

For the last statement we assume that the general fibre A is not simple. Then there is
an isogeny A, — B x G onto a product of two abelian varieties B, G of positive dimension.
Product and isogeny are defined over k(C)*, hence already over a finite extension K’
of k(C). The field K' is the quotient field of the DEDEKIND domain R’ obtained by
normalisation of R := k[C] in K'. Therefore we can work with the NERON models
(B X G)rr and Ap' over C' = Spec R'. The latter model is nothing else but the lift Ac
of A/C along the finite covering C' — C, see [Ar], Cor. 1.4. For existence, uniqueness
and other basic properties of NERON models we refer to M. ARTIN’s survey article [Ar].
The morphism Axr — B X G extends uniquely to a morphism Apr — (B X G)pr =
Bpr xXp Gg. By definition, the abelian variety A has good (non-degenerate) reduction
at each point ¢ € C. This property pulls back to Axs and all points ¢’ € C’, and descents
along isogenies, see [CM], II, Cor. 3.5. Therefore the fibres of (B x G)gs at all ¢' € C' are
abelian varieties, hence products of two abelian varieties B.., G of positive dimension.
Moreover, the fibre morphism A, — B, X G cannot be trivial because projections to
factors restrict to projections. Now we see that the fibres A, are not simple. Let ¢ € C
and ¢’ € C' a preimage point. Together with Q ® End (A, ) also Q @ End (A.) is not a
skewfield. Namely, both Q-algebras coincide because k(c')/k(c) is a finite field extension.

1

6. Semi-period matrices

Shimura defined in [Shm 1] Shimura varieties as quotients of certain bounded domains by
arithmetic subgroups acting on them. They parametrize isomorphy classes of polarized
abelian varieties with specified multiplication by a fixed finite-dimensional Q-algebra with
(anti)involution. For a more recent version we refer to [BL], ch. IX. Abelian threefolds
with K-multiplication of type (2,1) explained below, K = Q(y/—d) an imaginary quadratic
number field, correspond to Picard modular surfaces of K. We repeat Shimura’s definition
for this case and transfer it to a three-dimensional language, which is more convenient
and handable for our purposes. In order to avoid some unessential complications with
elementary linear algebra we restrict ourselves to the pricipal case using the Z-lattise O3
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of K? and and the skew-symmetric diagonal matrix T = diag (\/—d, vV —d, —V—d), see
[BL], IX, 6. The complex unit ball
B = {(u,v); |u|2 + |V|2 < 1} (=IH,, 1in [BL])

with the canonical embeddings IB ¢ C? C IP? = IP*(C) is the corresponding period
domain. The (transitive) action of the unitary group

1 1
U((2,1),C) =S AcGl3(C); "4 1 |A=] 1
-1 -1
on IB is explained as restriction of the canonical action of IPGl3(C) on IP?. The arithmetic
subgroup
1 1
:=U((2,1),0) =< AcGl3(0); ‘4| 1 |A=] 1 , O=0y,
-1 -1

is a Picard modular group. The quotient surface IB/I" (or its compactification) is called a
Picard modular surface. It parametrizes isomorphism classes of polarized abelian threefolds
with K -multiplication, which we want to describe now. Let 7 = (u,v) be a point of IB and
A, the Z-lattice in C? generated by all vectors

(a4
uleOOﬂ
00010 uul|ll], a B, ~veoO. (6.1)
0000 1 v i

3

7

Then the torus C? /A, is an abelian threefold. For the polarization we refer to [Shm 1] or
[BL] again. Now let us introduce for p € C the notation

w 0 0
p=10 7 O (6.2)
0 0 &
Then the above lattice vector can be written as
U v 1
all ) +p810]+7]|u
0 1 v
By abuse of language we call
v v 1
N=|1 0 u
0 1 w



a normalized semi-period matriz. It is regular because of 1 > |[u?| + [v?| > |u? + v?|.
Observe that the last two row vectors (1,0,u), (0,1,v) generate the orthogonal com-
plement of (u,v,1) in C® with respect to the symmetric bilinear form represented by the
diagonal matrix diag(1,1,—1). It is the same to say that their conjugates (1,0,%), (0,1,7)
generate the orthogonal complement of (u,v,1) with respect to the hermitian form

a T
(,):C*xC —=C,a=|b],x=|y|—=(a,x):=aT+by—cZ (6.3)
c z

on C? represented by the same diagonal matrix. Let A be a lattice in C* and G € Gl3(C).
Then the tori C*/A and C3*/GA are isomorphic. Especially, for

G=dxg=

o O
o Q@ O

0
b | € C* x Gl1(C) C Gl3(C) (canonically embedded)
d

and A = A, the orthogonal relations of the rows in N are preserved. This means that

t

ap gz as a
II .= GN == bl bz b3 == tb (64)
€1 €2 C3 ‘e

(a,a) <0, alb, ¢ (generating a™).

On this way we do not loose the ball point we started with, namely

Pa=(aj:az:as)=(u:v:1)€B. (6.5)

A matrix II with the conditions of (6.4) is called a semi-period matriz. Obviously, the
matrices d x g and i, p € C, commute with each other. Therefore we can read off the
lattice A" = (d x ¢)A, directly from II, namely

u v 1
N=dxg-<all]|+8[0]|+7[u];a B, v€0
0 1 v
u R v 1
=qadxg) [ 1| +8dxg)| 0)+3(dxg){u];a §,7€0
1 v
a1 [ 2 a3
=gal b | +8] b | +7]| bs
c1 C2 C3
Now we introduce the operation ™ for each column vector x = (xy,...,2,) € C" setting
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Ty
Then it holds that
% = (ux) = (xp1) for y € C and x € C°. (6.7)
The lattice A’ can be written as
A A A
ax az as N A
AM={{al b w18l b 4~ [ v . a, 8, 7€0 :[Hoﬂ
C1 Co C3
(6.8)
with II defined in obvious manner:
M=1I(a, b, ¢) and=1(ab,c):= ‘(ab,c). (6.9)
Keep in mind that II (a, b, c) is (in general) not a semi-period matrix in our sense.
Altogether we get explicitly
A, =A(a,b,c):=A =[(ab,c)0*]". (6.10)

Since the isomorphy class of the corresponding abelian variety depends only on the ball
point 7 = [Pa we introduce the notations

_ _ N A

A, =A.=A(a,b,e) = C*/A (a,b,c) = C¥/ {Hoﬂ : (6.11)

defined up to isomorphy by IPa. Its Q-span of the period lattice is explicitly described by
A . A

QoA =['(ab,e)K*]" = {m’ﬂ . (6.12)

This follows immediately from the considerations above substituting O by K = Q ® O.

Now we explain the K -action of type (2,1) on A;. The element u € O is applied as
fto A'. From (6.7) and (6.8) it follows that gA" C A'. This defines a natural morphism
O — End A, which extends to the embedding

i K —End A, o(u) =7 [ Ya,b,e)x]” = [ Yab,e)px]” ,p e K. (6.13)
In terms of diagrams we notice for p € O
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(6.14)

0—= A(ab,c) c A, 0
m
0——= A(ab,c) c? Aa 0

For finding interesting sublattices of Il (a, b, €), which possibly split the abelian three-
folds Aa (up to isogeny), we introduce the notation

t

I (a,B) = (a.b) = (Z_ll o Z_§> _ ( %) (6.15)

for the submatrix of II (a, b, E) consisting of its first two rows only. There is a C-action of
signature (1,1) on C? defined by multipleation with

(5 %)

which is also denoted by 1 for ¢ € C. With respect to this action restricted to O we
denote the O-module in C? generated by the columns of II (a, b) by A (a, b). As above

we have the following relations:

Q@ A(a,b)=["(a,b)K*]", A(a,b) = [ {(a,b)0*]" (6.16)

and

d:= dimqll (a,b) Q° = dimqQ © A (a,b) = 2 dimy [ "(a,b)K°]".

We recognize that d is an even natural number < 6. We exclude the cases d < 2. Assume
the opposite, this means that the K-dimension is not greater than 1. Then the vectors
a, b must be K-linearly dependent. We obtain the contradiction 0 > (a,a) = (a,b) =0,
namely a, b come from a semi-period matrix, see (6.4). We proved the first part of the
following

6.17 Lemma. The Z-rank (or Q-dimension) of A (a,B) (of Q@A (a,B)) is equal to 4 or
6. It is equal to 4 if and only if a, b € € for a suitable o # ¢ € K.

Proof. Assume that d = 4, that means dimy [ t(a,b)K?)]A = 2. This happens if and
only if there is a non-trivial triple of numbers o, 3, v € K such that

)+ () () -
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«
oZc:=|p | eK®
Y

this relation can be translated to a_lc and to b_Lc. Conversely, assume that o # ¢ € K?
and a, bLc. Then one obtains a non-trivial relation (6.18) setting

[l

6.19 Definition-Remark. We call a semi-period matrix II = II (a,B, E) orthogonally
normalized iff alb lcla. If II is an arbitrary semi-period matrix, then we can choose in
al an orthogonal basis b’, ¢'. Also II' = 1I (a,g, F) is a semi-period matrix. There is
an element g € Gly(C) such that (1 x ¢g)II = II'. The corresponding lattices A and A’
generated by the columns of IT or II” as O-modules are C* x Gly(C)-isomorphic. Therefore
the corresponding abelian threefolds C*/A and C?/A’ are isomorphic. So each isomorphy
class of an abelian threefold A, with K-multiplication of type (2,1) is represented by an
orthogonally normalized semi-period matrix. An O-submodule of type A (a,g> of small
Z-rank 4 sits in A if and only if there exists a vector ¢’ € at(K) := K® N at. Namely, in
this case b’ is defined (uniquely up to a C*-factor) as basis vector of the line atne't ¢ C3,
and II (a, b, F) is an orthogonally normalized period matrix equivalent to II with respect

to C* x Gl,(C).

6.20 Proposition. With the above notations the abelian variety A = A, is not simple
if there exists o # ¢ € K? orthogonal to a. An abelian subsurface can be realized up to
isogeny as S = C?/A (a,B) coming from a orthogonally normalized semi-period matrix
II (a,B, E) corresponding to a, ¢. More precisely, S has K-multiplication, and there is an
1sogeny decomposition A ~ E x S, where E is an elliptic curve with K-multiplication. If,
moreover, also a (or b) belong to K?, then A ~ E?.

Proof. The projection 7: C* = C? x C — C? onto the first factor yields a commutative
diagram

(6.21)
0—= A(ab,c) c A 0
T T
0——= A(aDb) c? S 0

where S is a complex torus of dimension 2 by Lemma 6.17. Taking vertical kernels we
recognize that A has an elliptic curve E = Ker 7 as subvariety. Therefore A is not simple.
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The O-multiplications (of type (2,1) or (1, 1), respectively) on the varieties are compatible
with the morphisms of the diagram. Therefore both, S and E have K-multiplication.
Let S’ be an abelian subsurface of A complementary to E. This means that there exists
an isogeny E' x §' — A with isogeneous restriction £ — E'. The composition with
A — S sends E' to 0, hence S' and S are isogeneous. Since S’ is an algebraic subvariety
of A, it has to be abelian. Therefore also its isogeneous image S is an abelian surface.

If b (or a) € K? then a (or b) lies in the K-line b1 (K)Nct(K) (or at(K)Nect(K))
in K. So we can choose also a (or b) € K®, in any case an orthogonally normalized
semi-period matrix II = II (a,E, E) € Mats(K) not changing the isomorphy class of A.
But then by the same argument as above, the projections of C? onto the first and second
coordinate axes in the lower row of diagram (6.21) split S in E x E up to isogeny.

[l

6.22 Definition-Remark. We consider the linear subdiscs ID. = IB N IPct of IB for
c € C? (c,c) > 0. ID. is called a K-disc iff ¢ € K®. The linear subdisc ID of IB —
defined as a non-void intersection of a projective line in IP?(C) with IB C IP?*(C) — is
a K-disc if and only if there are two different points IPa, IPa’ € IP*(K) on ID. Namely,
for a K-disc ID. the orthogonal complement of ¢ in K* has K-dimension 2 and signature
(1,1). Therefore the set of points with coordinates in I is dense on ID.. Conversely, the
orthogonal complement of Ka + Ka' in K® has K-dimension 1, if a, a’ € K*, [Pa # IPb,
both on ID. Now choose a vector ¢ € K® generating (Ka + Ka’)J'. Then the points
IPa, IPa’' ly on ID., hence ID = ID,. is a K -disc.

1

6.23 Corollary. If 7 = IPa € IB lies on a A-disc ID C IB, then the abelian variety
A; = A, is of decomposition type (E x S), (E X EZ) (E X Eg) or (E?) in the sense of
Theorem 5.1.

Proof. We know that

ID =D, c€ K3 := {x€ K’ (x, x) >0},

6.24
clae K? :={xe K? (x, x) <0}. (6.24)

Choose 0 # b € ¢t Nat. The abelian variety A, = Ay, II = II (a,B, E), splits up to

isogeny by Proposition 6.20. The possible types of splitting have been listed in Theorem

5.1.

1

7. Exceptional abelian threefolds with imaginary quadratic
multiplication

7.1 Definition. An abelian threefold A with imaginary quadratic IX-multiplication
t: K — End A is called exceptional if and only if the centralizer Zgna a¢(I) of ¢«(K) in the
endomorphism algebra of A is bigger than «(/K). We call also End A or the endomorphism
ring End A exceptional, if A is. In the opposite case these objects are called general.
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Remark. Shimura proved in [Shm 1] that End A = K| if the isomorphism class of A
represents a ”general” point of a Picard modular surface of K. Therefore the set of general
abelian threefolds with A -multiplication in the sense of 7.1 is not void.

7.2 Lemma. With the above notations it holds that A is general iff End A = K.

Proof. The direction (<) is trivial. For the other direction we first remark that a general
abelian threefold A with K-multiplikation must be simple. Namely, if A is not simple, then
the elliptic curve E with K-multiplication is an isogeny factor of A (=~ E xS, S an abelian
surface), see Theorem 5.1. But then X' x O C K x End S centralizes ((K) additionally
to the subfield «(K') in contradiction to the assumption of the lemma. For simple A the
endomorphism algebra End A is (isomorphic to) a number field by Theorem 5.1 again.
Thus the centralizer of «(K') coincides with End (A). The conclusion of the lemma follows
immediately.

1
With the notations of the previous section let
r=IPacIB, a= "(aj,a2,1) (w.log.) (7.3)
be the period point of
A=A, =C*/A, A=A, =['(a,b,c)0%", alb,ce C?, (7.4)

with respect to the corresponding hermitian form ( , ) of signature (2, 1), representing a
point of the Picard modular surface of K. Remember that

Q@ A, =["(ab,c)K’], (7.5)

On this way we get a representation of End A in Mats(I) in the following manner. We
use the complex representation (or C-representation) of End A on C? corresponding to the
middle column of diagram (6.14) forgetting & there. Let C' = (c;;) € Mats(C) represent
an element of End A. It acts on Q® A by left multiplication with column vectors. Looking
at the generating columns and at (7.5) we see that there is a Matrix M € Mats(K) such
that

C '(a,b,c) = [“(a,b,c) ‘M]" = ‘[M(a,b,c)]". (7.6)

The faithful representation J: C +— M is called the K -representation of End A (on K3
with respect to a,b,c).

7.7 Proposition. The restriction of the K-representation J yields a isomorphism of

Q-algebras

J: Zgna at(K)"Endy (ajat) := {M € End K*; Ma € Ca, Mat Cat}. (7.8)
sending «(K) to the center K -id of End K3.
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Proof. Let C = (cij> € Mat3(C) be an element of End A centralizing «( L) =

{diag (d, d, E) pd € K}. Comparing both sides of C' diag (d, d, E) = diag (d, d, E) C it is
clear that ¢;; = ¢; = 0 for ¢ = 2, 3. Write C = diag (a; E) € C* x Maty(C). For
M = pg(C) defined in (7.6) it holds that

A

diag (a, E) ! (a,E, E) = [diag (a;§> ! (a,b,c)} = — '[M(a,b,c)]",

hence

M(a,b,c) = (a,b,c)diag (a; tB) = (a, (b,c) tB) , (7.9)

thus Ma = aa, M(b,c) = (b,c) ‘B and finally M € End(a;a’).
Conversely, one gets easily back C' = diag (a, B) from M € Endg (a; aJ‘>.
1

7.10 Corollary. The ball point 7 = IPa is exceptional if and only if Endg (a; aL>
is greater than K - :d. Especially, each exceptional ball point is a fixed point of a K-
endomorphism acting effectively on IP2.

[l

The following table relates the decomposition types of A listed in Theorem 5.1 with the
types of centralizers of «(K).

(7.11)
Dec. type End A max. subfields N ZEnd al(K)
of A (in big component) >~ Fndk (a;at)
general( A, K) K N =K K
CM(A,F) F N=F F
CM — field, [F: K] =3
(E % 8) K % Q V:Q]=2 KxK
(E x E2) K x Mats(Q) N:Q] =2 KxK
(E x E2) K x Mat;Q(0) [N:Q(s)] =2 K x K(o)
o ¢ K
(Ex ExFE) Mats(K) [N:K]=3 K x Maty(K)

where S is a simple abelian surface with indefinite quaternionic endomorhism algebra Q.
If A is not simple, then the maximal subfields N in the greatest component of End A are
not unique. The projection of ((K') to the second component is a maximal subfield of Q
or of Maty(Q), respectively. It is its own centralizer there.
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In the 5-th case N contains Q(o) because Q(o) is the center of the component. Each
quadratic extension of Q(o) can be embedded into Maty(Q(o)). A greater subfield is not
possible because dimq(,)Matz(Q(c)) = 4. The centralizer Z' of K' = pou(K) = K in
Mat2(Q(0)) is a Q-algebra containing K’ and Q(c), but Z' # Maty(Q(c)) because the
center of Maty(Q(0)) is Q(o) # K'. Comparing degrees we obtain Z' = K'Q(0).

For the last case we use that all abelian varieties of isogeny type (E x E x E) are
isogeneous by definition and the corresponding endomorphism algebras are isomorphic.
Therefore we can work with a special representant A = C?/A as in (7.4) with a,b,c € K3,
see Prop. 6.20. The relation (7.9) and Proposition 7.7 show that the centralizer of ()
corresponds to all matrices diag(a, B) with a € K, B € Maty(K) because diag(a, B) has
to be Gl3( K )-conjugated to M € Mats(K).

(]

7.12 Definition. We call 7 = IPa € IB exceptional of third, second or first degree, if A,
is exceptional and K(7) := K(ay,a3) is a field extension of K of third, second or first
degree. The exceptional point 7 as above is called isolated if and only if a is eigenvector
of a suitable M € End (a; aJ‘> belonging to simple eigenvalue of M.

7.13 Lemma. If 7 is isolated exceptional of third degree, then A = A, is simple of
CM-type. Moreover, 7 is not a point of any K-disc on IB.

Proof. By 7.10 the ball point 7 is a fixed point of M € End (a, aJ‘> \K -ud, hence
Ma = aa, a € K(«)® and K(«) = K(a) has degree 3 over K. Then the characteristic
polynomial of M is its minimal polynomial. The field K[M] transfers along the isomor-
phism of 7.7 to a subfield of Zgna at(K) of degree 3 over K. This is only possible in
the CM-case by Table (7.11). It is clear that K[M] = F = K(«), where F denotes the
CM-field in the table.

Assume that 7 € ID, ID = IPc¢'t the K-disc of ¢/ € K. Then the endomorphism
algebra End A contains Mat,(Q) or a scewfield Q by Corollary 6.23. But this contradicts
obviously to End A = F.

Ol
7.14 Lemma. For the ball point 7 the following conditions are equivalent:
(7) 7 is a K -rational point on IB, that means K (7) = K;
(1) A, is of decomposition type (E?);
(77) 7 is exceptional of degree 1.

Proof. (i) = (iii), (i1): If 7 = IPa, a € K3, then one finds easily a vector ¢ € K* N at.
But then A, is isogeneos to E* by Prop. G.
(17) = (i): By Table (7.11) a is eigenvector of suitable M, M' € End K® whose restrictions
to at generate different quadratic extensions F, F' of K in End a*. Neither M nor M’
generate a cubic field extension of K. The eigenvalues of M, M' generate F' or F',
respectively. If a ¢ K?, then K(7)= F = F'. This is a contradiction.
(121) = (¢) is trivial.

1

7.15 Lemma. If 7 is isolated exceptional of second degree, then A = A, is of decompo-
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sition type (E x E2) and K(7) = K(o) # K. Moreover, there is a K-disc ID on IB

containing 7.

Proof. Choose again M € End (a, aJ‘> \K -id with Ma = aa, « a simple eigenvalue of
M. The same argument as above yields a subring isomorphic to K[M]in Z = Zgna at(I).
The characteristic polynomial y (7' splits into (T — a)(T —a™ (T —¢), c € K, {ud, 7} =
Gal K(«)/K and K(7) = K(«). The presence of such subrings in Z is only possible in the
last two cases of Table (7.11). The decomposition type (E?) is excluded by by the previous
lemma. So we obtain the decomposition type (E x E,), where the maximal subfield of Z
is uniquely determined as K (o). Now it is easy to see that K(o) = K(a).

For the second statement observe that the eigenvalues o™, ¢ of M are the eigenvalues
of M|,c. The eigenvector ¢' corresponding to ¢ is orthogonal to a and can be choosen in
K?. So we find 7 = IPa on the K-disc ID = IPc't.

O

7.16 Proposition. If 7 = IPa is a non-isolated exceptional ball point, then it lies on a
K-rational linear subdisc of IB. Except for the isolated exceptional (CM-)points of third
degree all exceptional points are contained in suitable K-dises ID C IB.

Proof. We have Ma = aa, M has precisely two different eigenvalues a, ¢, say, of order 2
or 1, respectively. The decomposition of the characteristic polynomial
(T—a)(T—a)(T—c) € K[T) of M in prime polynomials in K[T] shows that a, ¢ € K. The
restriction M|,1 has eigenvalues a, c¢. Since ¢ is a simple eigenvalue we find a K-rational
eigenvector ¢’ of M in at. This means that 7 = IPa belongs to the K-disc IDc'.

Now the second statement comes from the Lemmas 7.13 - 7.15.

[l

7.17 Theorem. Let C be a specific curve on the Picard modular surface IB/T" of the
imaginary quadratic number field K. Then there exists a K-disc ID C IB such that

C=D/T:={zmod T; ze€ID}. (7.18)

The K-disc ID is uniqely determined up to I'-equivalence. Moreover, the normalization C
of C coincides with ID/T'p, where I'p is the arithmetic group acting on ID defined by

I'p = IPNp(ID) = Np(ID)/Zr (ID),
Np(D) = {y €T 7|p = D}, (7.19)
Zr(ID) ={y €T; ylp =idn}.

Moreover, there is an algebraic group Ny defined over Q such that the arithmetic norma-
lizer group Np(ID) is commensurable with Nip(Z).

Proof. For a general point P € C' the corresponding abelian threefold Ap has decompo-
sition type (E x S) or (E x E%). Let z € IB be a preimage of P. By Proposition 7.16
there is a K-disc ID, C IB through z. Since A, = Ap is not of type (E?) the ball point =z
does not belong to IB(K) by Lemma 7.14. Especially, z is not an intersection point of two
K-discs on IB. Therefore ID = ID, is uniquely determined by z. The projective K-rational
line through ID is denoted by L = L, C IP. Choose a small open neighbourhood U of =
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such that the restriction of the quotient map p: IB — IB/T" to U is a finite covering onto
p(U) (possibly branched along CNp(U)). Now take another point P’ € CNp(U) nearby P
such that Ap/ is also not of DCM-type (E?). It has a finite number of preimages 2’ € U.
As for z there is a unique K-disc ID, or K-line L./ through z', respectively. Assume that
ID # ID,, hence L # L... The intersection point of L and L., belongs to L(K) C TP?(K).
There are only countable many of them. Therefore there are only countable many points
P' € CNp(U) such that ID # ID,/. So for almost all points P’ € p(U) and their preimages
z' € U we have ID = ID,/. All these points ly on ID/T". By contineouity we conclude that
C and ID/T coincide in p(U). Now it is clear that C' and ID/T" coincide also globally.
For the last statement of the theorem we refer to [Ho 2.

O
The main result of this (and previous) section is summerized in the follwing

7.20 Theorem. The specific points P of an open Picard modular surface IB/T of an
imaginary quadratic field K have been characterized now as images along the quotient map
of exceptional points T on IB. The corresponding abelian threefold Ap = A, is not simple
if and only of t belongs to a K-disc on IB. It splits up to 1sogeny completely into Ex E X E
iff T € B(K) = IBNIPYK) or, equivalently, T is the intersection point of two different
K-dises on IB.

8. K-discs on IB

We fix the imaginary quadratic number field KX = Q <\/——d>, d a squarefree positive
integer. The K-line on C? through 0 = (0,0) and (1,¢), ¢ € C arbitrary, is denoted
by L(c), and ID(c) denotes its intersection with the unit ball B = IPV(C)~, V = K3
with the canonical hermitian (2, 1)-metric corresponding to diag(+1,41,—1). In canonical
projective coordinates we get

ID(c)={(z:cz:1); z€ C, (1 +|c[))|z]* < 1}. (8.1)
Setting
c= "(¢-1,0), Ve=ct CV, (8.2)
we see that
ID(c) = D, = IPV.(C)” = PcH(C)". (8.3)

The hermitian vector space V(C) = C? is spanned by the orthogonal basis

z c
a=a(z)=|cz|,b=blz)=[c|,c=|-1] withg:=1+|¢* (8.4)
1 qz 0

Assume that a € V(C)™, that means [Pa € ID(c). Then we dispose on semi-period
matrices
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and lattices

A (a,b.e) = Ox; + Ox; + Ox;,

where x; is the j-th column of

II(a,b,c) = qz

O /W
o

-1
The corresponding abelian threefold 4, = C*/A (a,B, E) has the abelian surface

S(z)=S(¢;z):= 5 (a,B) = C?/A (a,B) (8.5)

as isogeny component, see Proposirtion 6.20 and the definitions around. As usual we write

A(z) = A(e;2) == A (a,b) = KZ ~ 1_) Matgxz(O)] "

z 1 ~

Q@ A(z) = Kl qg) Matz(K)] T K7z + Ky, (8.6)

(- ()

At general points P of the arithmetic curve ID/T" on the Picard modular surface IB/T" the
abelian threefold Ap is of modular decomposition type (E x EZ2) or of quaternionic (scew
field) type (E x S). This depends only on ID. The notation of both types is transfered to
the K-discs. We would like to distinguish both types of K-discs by a suitable arithmetic or
geometric condition. For this purpose we will apply a criterion of Ruppert about splitting
of abelian surfaces knowing a period matrix.

Let A be a lattice in C? such that S = C?/A. The determinant det: C* x C? — C
defines by restriction to the elements of the 4-dimensional vector space Q ® A over Q an
alternating form

5 (QA)x(QaA) — C, §(u,v) =det(u,v) = ‘u (_01 (1)> v (8.7)

This form is called hyperbolic, if there is a direct decomposition

QA=VaW (8.8)
into two d-isotropic Q-subspaces of dimension 2.

8.9 Proposition (Ruppert’s criterion). The torus S = C?/A has an isogeny decomposition
into elliptic curves if and only if § is hyperbolic.
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The simple proof is given in see [BL], X,(6.1), where it is not necessary to suppose that
the torus S is an abelian surface.

[l

We apply the criterion to S = S(z) S(¢;z), A = A(z) = Ae; z) as defined above, connected
with arithmetic discs ID = ID(¢) through 0 € IB. For arbitrary pairs

G=az+by, v=C2+dycQaA, a, b, ¢, dE K,

we can write

We work especially with

z= '(z,1)andy = (1,¢2), ¢ € Q*, 00 > [K(2): K] > 2.
Then one gets

A
~ oy z 1 a c _ az+b cz4+d
0 (U, V) = det [(1 qE) (b d)] = det (Zqz +a dgz —|—E>
:q@a—Zc)ZZ + [q@b—&l) —I—(Ea—ﬁc)] z — (3@—50).

Since z cannot satisfy a non-trivial quadratic equation over K we conclude that

§(W,v) =0 iff (8.10)

(7) det (% %) =0 and
. b d a ¢
(1) q - det (Z E) = det (6 E)
The first condition is equivalent to (b d) = (Z %) or
1
(2) <ccl> = (%) for a suitable t € I

or, more symmetrically, to

o R(5)-1()

Substituting ¢, d by ta ortb, respectively, the second condition transforms to
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2 1 E . b % . . a ta . 2 1 ¢
q|| det(l t)-qdet<g 0 =...= —det = 3= = —|a|*det 1 7))

This is equivalent to

(i) t€Qor |a? = qlb>.

Now we distinguish two cases:

1.) ¢ is not a norm of an element of K: Then the conditions are equivalent to:

t=0or <fl>:t-<z>,t€Q*.

This means that 6 (u,v) = 0 is only possible for v € Qu. In this case there cannot
exist a two-dimensional d-isotropic Q-subspace of Q @ A. By Ruppert’s criterion the torus

S = C?/A is simple.

2.) ¢ is a norm of an element of K: Then we denote by u the Q-linear isomorphism

p K? — [(z,y) K" = Q@ A, <Z> U= {(Z’Y) <Z>}A

Next we satisfy the second of the conditions (ii') setting ¢ = |a|*/[b|* for suitable a, b € K.
This is possible because ¢ is a norm. Each pair u, v € u <ff (Z)) =: V satisfies obviously
the condition (¢)"”. Together with (8.10) it follows that V is a d-isotropic Q-plane in Q@ A.

It is easy to find
a' a
b/ ¢ Q b

such that also o', &' € K and ¢ = |a'|*/|b']?; take for example

(Z,) =\ (Z) A€ K\Q.

Then also W := p <I:’ <Z,>> is a two-dimensional d-isotropic Q-subspace of Q @ A and

VW = {0} because the preimages of V, W along p are different K-vector spaces K (%)
or K <Z, >, respectively, of dimension 1. Therefore they have trivial intersection. So we
found a direct decomposition (8.8) into two d-isotropic subspaces. Now Ruppert’s criterion

tells us that S = C? /A has an isogeny decomposition into elliptic curves.

8.11 Theorem. Let ID = ID(¢) = ID. be the K-subdisc of IB and S(z) = C*/A(2),
z € ID(¢), the corresponding two-dimensional abelian isogeny factor of A., all defined in

(8.1),...,(8.6). Furthermore we denote by I' the Picard modular group U((2,1), O),
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O = Oy and by I'p = Np(ID)/Zr(ID) the corresponding arithmetic group acting effec-
tively on ID. Then the following conditions are equivalent:

(7) S(z) splits at general points z € ID, hence everywhere on ID;

(1) A, is of modular decomposition type (K X EZ) on ID in general;
(77) (c,c) belongs to the norm group N(K*) C Q*;

(

i) the 4-dimensional Q-algebra Q @ A(z) splits directly into two J-isotropic Q-
subspaces of Q-dimension 2;

(v) the boundary JID of ID contains a I'-cusp point k € drIB = JIB(K) = K* N J1B;

(v') the closure (ID/T)" of the arithmetic curve ID/T" on the Baily-Borel compactified
Picard modular surface (IB/T")" goes through a cusp singularity = € (IB/T')" IB/T.

(vi) I'p is a modular group, that means that a suitable IPGly(C)-conjugate of I'p is

commensurable with IPSl;(Z).

The equality OrIB = K? N JIB has been first proved in [Ho IJ.

The equivalence of the properties (¢) — (iv) has been proved above. The properties
(v) and (v') are obviously equivalent. The first four and last three conditions are joined
by some results of Shimura and an old classification result for hermitian vector spaces over
number fields due to Landherr. We delegate this equivalence proof to the next section.

8.12 Remark. It is not necessary to restrict the proof of 8.11 to discs through 0. The
equivalence of the Ruppert criterion (¢v) with (¢) and (i¢¢) can be proved in a similar but
not so convenient manner for all K-discs on IB, and all other equivalences are proved quite
generally in this article. For a full proof of the first equivalences one parametrizes the
K-discs in the following manner:

The projective line L(b,c¢) C IP? through <8>, <_Oc> € C% b, ¢ € C* has the

parametrization

L(b,c) = {IPa(z); z€ C}, a(z) = "(bz,c(b—2),b).

The vector ¢ := ! (E, b, E) is orthogonal to all a(z), hence L(b,c) = IPct, and L(b,c)
intersects IB if and only if (c,c)/|c|* = 1 +|b/c|* — |b]* > 0. Under this condition the disc
D(b,c¢) = L(b,c) N IB = ID, is defined. With b, ¢ € K* one parametrizes explicitly on
this way all K-discs on IB not containing 0. One obtains explicit expressions for b(z) # o
orthogonal to a(z) and ¢ = ¢(b, ¢), for A (a,B) , QXA (a,B) and so on. This leads finally
to the isogeneous splitting condition 1 + |b/c|* — [b]* € N(K*) for all abelian surfaces
S(z) = C%/A (a(z),B(z)) , z € ID(b, ¢), sitting in the abelian threefolds A, respectively.

9. Q-central quaternion algebras and unitary groups

Let K be a CM-field with maximal total real subfield F; then [K : F] = 2. By (V,®)
we denote a non-degenerate hermitian vector space over K of dimension n. The infinite
places of F' are numerated in the following manner:

Fi=Rfor1<r, K;=Cforl1<I[<t K;nota field fort <1 <r. (9.1)
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Then V; = K; x V together with the extension ®; of ® to V; is a hermitian vector space for
[ <t of signature (pr,s1), pi+ s; = dimgV, say, where p; denotes the positive elements
of a diagonalizing matrix for ®;. For a second non-degenerate hermitian K -vector space
(V',®") we use the obviously corresponding notations n', r', ', pj, s;. An isometric
embedding - V — V' is an injective K-linear map satisfying ®' (u(a), (b)) = ®(a,b)
for all a, b € V. The isometric embedding p is called an isometry, iff it is bijective. For
all finite places p of F' corresponding to prime ideals of Op we dispose on norm maps
Np: Kp — Fp, where K, = K X F is a field extension of degree 2 (iff p is inert in /') or
of degree 1 (iff p is ramified in ') or K, is Fp-isomorphic to F}, x Fy, (iff p is decomposed in
K). The discriminant d(®) is the determinant of a Gram matrix (CI> (a;, aj)>i it where
aj,...,a, is a basis of V. It is uniquely determined up to multiplication with elements of
the norm group N(K™*) C F*, where N denotes the norm map Ng/p: K — F.

9.2 Theorem (Landherr, see [Ln 2]). With the above notations the following conditions
(1), (1) are equivalent:
(7
(7

)
) There exists an isometric embedding p: V' — V.
i) n >n' and for 1 <1<t it holds that 0 < s; —s; <n —n' or n' =n, s;=s) for
1<I<tandd(®)e Np (K;) -d(®") for all primes p of F.
(]

In the case n = n' each isometric embedding is an isometry because injective K-linear
embeddings have to be surjective, hence isomorphic. For n = n’ = 1 the theorem reduces
to the well-known local characterizations of norms:

9.3 For two elements f, f' € F* it holds that f' € N(K*)- f if and only if f' € Np(KJ)- f
for all primes p of F. Especially, f € N(K*) iff f € Np(K};) for all primes p of F.

In the case of an imaginary quadratic number field K we have ' = Q, hence 1 =t =r
in (9.1). So we can omit the only index [ = 1 in our notations (F; = R, K; = C). For
n=n'"=2and s =s" =1 we get

9.4 Corollary. Let A be an imaginary quadratic number field. The indefinite hermitian
K-planes (V,®) and (V', ®') are isometric if and only if d(®') € N(K™*)d(F).

Our main objects are indefinite K-subplanes of the hermitian K-vector spaces V = K3
with the metric (, ) corresponding to diag(+1,41,—1) of signature (2,1), I an imaginary
quadratic number field. If W is any indefinite hermitian /-plane, then it is isometric to
a hermitian K -subplane V' of V' by Theorem 9.2. Moreover,

V=V'NnKcforanyo#ce V1t =KecV=EK V' =ct (9.5)

The multiplicativity of discriminants for orthogonal decompositions and isometry invari-
ance up to N(IK*)-multiplication yield

(e, €)d(W) ~ {e,e)d(V") = {c,e)d (e4) ~y d(V) = —1, (9.6)

where ~x denotes the N(K™)-equivalence in Q*. Since V' is indefinite we know that
dV'y=d (cJ‘> < 0, hence (c,c) > 0 that means ¢ € V. Also from (9.6) follows that the
N(K*)-class of (c,c) depends only on the N(K*)-class of W.
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Take conversely a vector b € VT with (b,b) ~xn (c,c) (~y —d(W)). Because of
Kcnel =V = Kbnb* the orthogonal complements bt and ¢t are indefinite K-planes
with norm-equivalent discriminants —(b,b) or —(c, c), respectively. Therefore b1 and c*
are 1sometric, but also K'b and K¢ are by the above criteria. By linear extension we get
an isometric endomorphism

p: V=EKbnbtSKenelt =V

sending cb to ¢ for a suitable ¢ € K*. Vice versa each triple b, ¢ € V*, ¢ € K* with
(cb,cb) = (c,c) defines on this way an isometric endomorphism p € U(V) = U((2,1), K)
sending cb to c. Altogether we get the following

9.7 Corollary. With the above notations the following conditions are equivalent:

(7) d(Ve) € N(K*)d(Ve);

e the indefinite planes Vi, = bt and Ve = ¢t are isometric;
i) (b,b) € (c,c) - N(K™*);

i) ce K*-U((2,1), K)b;

v Vb = g(Ve) for a suitable g € U((2,1), K);

TN TN TN TN

[l

Now we turn our attention to the connection of unitary groups as above with indefinite
Q-central quaternion skewfields. Proofs of facts listet below can be found in [Shm 3],
ch. IX and [Shm 2]. For comparising first facts with the 1-dimensional modular case we
remember to the following

9.8 Remark. Let ' be a sublattice of

G12+(R) = {g € Matz(R), det q > 0}

commensurable with Sl3(Z). The group act on the Poincar upper half plane

IH = {z € C; Im z > 0} via linear fractions. The lattice I' is a Fuchsian group of first
kind, and the quotient IH/T is a non-compact quasiprojective curve. The set of fixed
points of elements of Gla1(R) on IH coincides with the set of numbers z € IH generating
an imaginary quadratic extension of Q.

One has a similar situation for the Q-central indefinit quaternion fields D C Mat3(R)
= R ® D. There is an algebraic group D defined over Q such that D(R) = D*. The
determinant defines the norm n on D. The condition n(g) = 1 defines a Q-subgroup SD
of D and the condition n(g) > 0 a subgroup Dy of D* acting on IH. Let T} be an open
compact subgroup of the finite valuation part of the group SD(A), A = AQ the adéles
of Q, T =T(SD(R) and I' =T'r = TN SD(Q). Then I' is a Fuchsian group of first kind
with compact quotient curve TH/T.

If z € H is a fixed point of an element ¢ € D4 (Q)\Q, then Q(z) is an imaginary
quadratic field. Conversely, each Q-linear embedding (: K — D defines a unique such
fixed point with isotropy group «(K*) = {g € D4(Q);9(z) = z}.

9.9 Proposition. Let D be an indefinit quaternion field as described above. Then the
quotient SD(Q)\SD(A) is compact. This is also true for the quotient curve I'\IH.
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For proofs we refer to [Shm 3], ch. IX, see also [GGP], ch.I, App. 1.4, for a more
direct and explicit variant.

9.10 Remark. The only arithmetic Fuchsian groups (of first kind, acting proper disconti-
neously on IH) are the groups commensurable with Sly(Z) or subgroups I' of quaternion

fields. This has been proved by A. Weil, see [GGP], ch.I, App. 1.1

Let K be an imaginary quadratic field and V' = K? a three-dimensional K-vector space

endowed with hermitian form ( , ): V x V — K of signature (2,1). Its extension to
V(R) = R®V = C? is also denoted by ( , ). As above we restrict our attention to the
case where ( , ) is given by the diagonal matrix diag(1,1,—1) € Mat3(Q), that means

(v,w) = 'v-diag(+1,+1,—1)- W for v, w € V(R).

Cosider the complex 2-ball

B = {(u,v) € C* [u+|v]* <1} =IPV(R)” = V(R) /C*

with V(R)™ = {v € V(R); (v,v) < 0}. There is an algebraic group G defined over Q
such that G(Q) = U((2,1), ) and G(R) = U((2,1),C). The Lie group G(R) acts on
IB. Let O = O denote the ring of integers in K. The quotient surface IB/T" of IB by the
Picard modular group T’ := U((2,1),0) = G(Z) is the (complex, open) Picard modular
surface.

For abbrevity we call a vector ¢ € V(R) positive, if it belongs to

V(R)t :={v € V(R); {(v,v) > 0}

The negative vectors v are those which belong to V(R)™. The latter define points

IPv € IB =IPV(R)™ by projection v — v mod C*. Remember to the parametrization of
all linear subdiscs of IB by positive vectors ¢ and their notation ID. := IB N c*. It holds
that

ID. =Dy & [Pc=1Pb < b ¢ Cec. (9.11)

On ID. acts the Lie group

Ge = Ge(R) = {g € G(R); g(c) € Cc} = {g € G(R); ¢(IDc) = D} .

From the existence of orthogonal bases in hermitian vector spaces, especially in ¢, it
follows that

Ge 2 U((1,1),C) =2 Gl1(R).

These two presentations of the Lie group G, correspond to the action on ID or IH,
respectively, which are biholomorphic equivalent domains. The biholomorphic map
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g: IH — ID can be realized by an element g € Gl (Q <\/—_1>> C Gl;(C) acting by linear
transformation on the complex projective line IP*(C).

The algebraic group G, is defined over Q, if ¢ € VT C K?. In this case G, is
a Q-model of Gl;4+R. By classification of such Q-models and corresponding Fuchsian
groups, see Remark 9.10, there is a Q-central indefinit quaternion algebra D such that
D% = Gc(Q) and T'e := T' N G¢(Q) is a Fuchsian subgroup of D* acting on ID.. The
natural map ID./T'c — ID/T" C IB/T" is a birational map of complex (i.g. open) algebraic
curves, see [Ho 2].

It is clear that

ID.. = IP(yc)t = Py ~! (cJ‘) =~ 'ID, for v €T,
hence, by (9.11), we proved the first part of the following
9.12 Lemma.
(7) With the above notations it holds that

7Dy = D, <= ~(c) € K*b, ID./T' =Dy, /T <= b € ['K*c

(1) There exist infinitely many subdiscs IDe of IB which are not I'-equivalent.
Proof. If ID. and IDy, are -equivalent, then v(c) = ¢b for a suitable ¢ € K, hence

[el*(b,b) = (cb.cb) = (y(c).7(c)) = (e, c),
thus (c,c)/(b,b) € N (K™*).

The group Q*/N(K*) is not finite. On the other hand (K°)* — Q%, ¢ — (c,c), is a
surjective map. Namely, the equation (x,x) = ¢ for ¢ € Q can be understood as indefinite
homogeneous quadratic diophantine equation over Q with six variables. By the Hasse-
Minkowski theory (Theorem of Mayer) there exist proper Q-solutions, see [Se], IV, 3.2,
Cor. 2.

1

With the explicit background 9.7 we notice on this place the following important biunivoque
correspondences in terms of U(V) = U((2,1), ' )-equivalences:

{K — discs on IB}/U(V) = {ID¢; c € VT} /U(V)
— QL /N(K™) (9.13)
— VT/K* UV)
This is much stronger than 9.12 (¢1).

9.14 Definition. The positive vector ¢ € VT is called of modular type, if G, = Glyy as
algebraic group over Q.

By Remark 9.10 we have the following characterizations:
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9.15 The vector ¢ € VT is not of modular type if and only if one of the following conditions
18 satisfied:

(7) ID/T¢ 1s a compact curve;

(1) the above quaternion algebra D = D¢ corresponding to c is a skewfield.

[l

Now we look more carefully at the value (c,c) or the discriminant of the two-dimensional
hermitian K-vector space Vi := K® N ct(K) endowed with the restriction ®. of ( , ).
We know for an imaginary quadratic subfield K of a Q-central quaternion algebra D it
holds that K @ D = Maty (K ), see Theorem 3.4 (¢¢). Shimura’s article [Shm 2] rediscovers
indefinit Q-central quaternion algebras D sitting in Maty () by means of two-dimensional
hermitian K -vector spaces (W, ®), & of signature (1,1) on W(R) = C?. We review the
most useful results.

9.16 Definition. The hermitian K -vector space (W, ®) is called anisotropic if and only
if ®(w,w) is only satisfied for w = o. It is called isotropic iff it is not anisotropic.

9.17 Notations. Let H be a subalgebra of a matrix algebra Mati(R), R a commutative
ring with unit element 1. We assume that H contains the unit matrix. The multiplicative

subgroup of H defined by det = 1 is denoted by SH and the group of units of H by H*.

All hermitian similitudes of W form a subgroup GU(W) = GU(W, ®) of Endx(W)*.
The factors ¢(g¢) of the similitudes appear as values of the characters ¢ on GU(W). The
preimage of 1 is the unitary group U(W, ®). Its intersection with SEndy (W) is the special
unitary group SU(W, ®). Also important for our purpose is the subgroup

DUW,®) :={g € GU(W,®); «(g) =det g}.

From the definitions it is clear that DU(W, &)NU(W, ®) = SU(W, &). By [Shm 2], Prop.
2.5, it also holds that DU(W,®) - U(W,®) = GU(W, @) in our case 2 = dim g W.

The (simple) matrix algebra Mats(K) has a canonical involution ¢, see [Shm 2], 1.4.

D = D(W,®,i)

:={g € Endg(W); ®(goi(v),w)=®(v,g(w)) forall v, we W} (9.18)

9.19 Proposition ([Shm 2], Prop. 2.6). If dimxgW = 2, then D = D(W,®,7) is a
quaternion algebra over Q and Endx (W) =2 K @ D. Furthermore,
GUW,®)=K"-D*, DU(W,®) =D* and SUW,®) ={g € D; gg1 = 1}.

[l

Observe that the second, hence also the first and finally the third, do not depend on «.
Especially, for W = V., c € (K?)t we set

D¢ :={g € Endi (Vo); (gi(v),w) = (v,g(w)) for all v, w € V.}; (9.20)
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then:

GU(V.,®.)=K*-D;, DU(V.,®.) =D, SU((V.,®.) ={g € D¢; gg: =1}. (9.21)

It follows that

9.22 Proposition. The arithmetic lattice SG¢ of finite index in G is a subgroup of the
unit group D} of the quaternion algebra D..

[l

In comparision with earlier notations the arithmetic group I'c is nothing else but N, (ID )
defined in (7.19). Dividing out its finite center we get the effectively on ID = IDc acting
groups I'p = IPT'.. The latter group is isomorphic to ST'¢ except for the field K =

Q (\/—3> of Eisenstein numbers, where it has to be substituted by ST'./Z3, where Z3 is
the cyclic center of ST'. of order 3 generated by diag(p, p,p), p a primitive third unit root.

9.23 Proposition ([Shm 2], Prop. 2.8). The quaternion algebra D = D(W) as in Prop.
9.19 (especially D.) is isomorphic to Mat,(Q) if and only if W is isotropic (iff in ¢ (K)
exists an isotropy vector).

The proof is given in the appendix, see Cor. 12.21
1

9.24 Proposition ([Shm 2], Prop. 4.1). The indefinite hermitian K-plane W as above
is isotropic if and only if the negative discrimanant —d(W) belongs to N(K™*). Especially
ct, c eVt C K3 is K-isotropic iff {c,c) € N(K*).

The second statement uses d (cJ‘> (c,¢) ~n —1, see (9.6).

We are now able to finnish the

Proof of Theorem 8.11 (continued). As already remarked it remains to prove only some
equivalences, namely: the conditions (¢2), (v), (vi) are each equivalent to

(i) Ve = ¢t (K) is isotropic.

(111) <= (iv") follows from Prop. 9.24. (v) <= (vi) comes from Prop. 9.15 (7).

(v) <= (vi') is rather obvious because the set of rational boundary points of ID. =
IPct(C) is nothing else but the projective set IP {a € cH(K); (a,a) = O} of isotropy
vectors in ¢t (K).

[l

At the end of the last section 12 we prove that the chain (9.13) of biunivoque corresponden-
ces can be extended to
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{K —discs on B} /U(V) = {ID.; c € VT } /U(V)
— VF/K*-U(V)

— QL IN(E?)

— {D(K,q); q € Qi} /iso

<= {indefinite Q — central quaternion algebras} /iso

(9.25)

<= {indefinte K — hermitian vector planes (W, ®)} /isometries

Notice that these are infinitely many chains, one for each imaginary quadratic number field
K 1in spite of independence of the last isomorphism class. Along these chains one finds the
simple explicit description D(K,¢) = (IK/Q,0,q) of the quaternion algebra belonging to
any K-disc ID = ID. and the corresponding arithmetic curve ID/T" C IB/T, see (12.4) and

It is a much harder problem to find or describe the arithmetic curves on a Picard
modular surfaces IB/T in algebraic geometric terms. An example (K = Q (v/—3)) will be
given in section 11, where the surface is well-known and sufficiently simple to describe.
We expect an intersting connection with a modular form on IH with Fourier coefficients
using intersection numbers and hights of arithmetic curves on our highly singular modular
surfaces. For analogeous work without a special intersection theory we refer to some work
of Hirzebruch-Zaiger [H-Z] and Kudla [Ku]. In the mean time the necessary intersection
(hight) theory seems to be well-prepared in [Ho 6]. The application just mentioned will be
appear in a forthcoming paper.

10. Elliptic curve subfamilies

We want to show that specific curves C' = ID /T'p of modular type (E X EZ) on the Picard
modular surfaces IB/T" of the imaginary quadratic field K give rise to elliptic curve families
over finite coverings of C' in a natural manner. In order to be precise we rember to some
basic notions, see e.g. [Sha], VIL.
A (complex) elliptic bundle is a triple (V,B,7),m: V — B compact complex algebraic
curve, such what the general fibre of 7 is an elliptic curve. The elliptic bundle is a
manimal model, iff there are no exceptional curves of first kind in the fibres of 7. In each
birational equivalence class of elliptic bundles over B there exists a uniquely determined
minimal model up to isomorphy over B. Birational automorphisms of a minimal model are
biregular. Up to finitely many exceptions — called ezceptional fibres — the invers images
7*(b), b € B are the reduced fibres V} of the above elliptic bundle. If 7*(b) = mVj, m > 1,
then 7*(b) is called multiple fibre. All types of exceptional fibres of minimal models have
been classified by KODAIRA, see also [Sha|, VII. Let Fg/k(B), 8 = Spec k(B), k(B)
function field of B be the general fibre of 7. The elliptic bundle V/B has a section iff Fj
has k(B)-rational point (t.m. Fgz(k(B)) # 0). If not then there exists a finite covering
C — B such what V' x g C'/C has sections. The birational classification theory of elliptic
bundles due to KODAIRA is managed on this way.

Omitting intersection points of components in exceptional fibres of a minimal model
with sections one can extend the group structure in the non-exceptional elliptic fibres to
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all fibres. On this way each elliptic bundle V/B with (0-)section becomes an object of the
moduli theory of abelian schemes due essentialy to MUMFORD [GIT]:

Let S be a noetherian base scheme; By [GIT], Def. 6.1 (ch. VI) the relative group
scheme X/S is called abelian scheme, if 7: X — S is simple, proper, with connected
geometric fibres. Keep in mind that abelian schemes have as group schemes a 0-section
over S (see [GIT], ch. 0, § 1). The classifying objects for the moduli space A, of principally
polarized abelian varities of dimension ¢ are collected in the following manner ([GIT], VII,
§ 2): For all S as above set

Agy(S) := {principally polarized abelian schemes /Sof dimension ¢} /iso.

As rough moduli space A; = M is uniquely determined up to isomorphy by the following

properties:

(1)  For each principally polarized abelian scheme A/T there exists a map of contravariant
functors ®: A, — Hom(-, M), especially A (T) — Hom(T, M), with bijective
restrictions to algebraically closed points of T, see diagram (10.1);

(1) @ is universal with respect to all mappings A, — Hom(-, N) with the same property
as in (7).

(10.1)

Rough moduli diagram

(geometric fibre Ay of the family A/T — unique moduli point m)

10.2 Proposition. Up to completion, desingularisation and finite covering each specific
curve C' of modular type on the PICARD modular surface corresponding to K can be
reinterpreted as base space of a non-isotrivial elliptic curve family E with the following
property: Up to isogeny and some special points P the elliptic fibre Ep over P € C s
uniquely determaned as 1sogeny component without I -multiplication of the abelian threefold
Ap cortresponding to the PICARD moduli point P of the surface.

Proof. First we apply the above general moduli interpretation to M = A;, the elliptic
curve case. Let E/T be a family of elliptic curves over a curve T, not isotrivial. The pull
back E'/T' along suitable finite covering f: T' — T has a section. So we can restrict
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ourselves to minimal models of elliptic bundles over curves with section, or to abelian
schemes over curves of relative dimension 1. The moduli diagram exists for E', T" instead
of A, T. The elliptic fibres at t € T and #' € f~!(¢) coincide almost everywhere.

Now let C' be a specific curve of modular type on the PICARD modular surface
parametrizing principally polarized abelian threefolds with (admissible) imaginary quadra-
tic K-multiplication. It is represented by a fibrewise splitting abelian scheme A/C’', C' a
finite covering of C'. It is equivalent to say that the general fibre A splits up to isogeny
into the product of elliptic curves, see Lemma 5.7. Since C' gives moduli dimension 1 we
find an elliptic isogeny factor E. without K-multiplication, see Corollary 5.3.

This elliptic factor in the general fibre determines an elliptic curve family over an
open part U’ of C', which can be uniquely extended to a minimal model E/C" of elliptic
bundles. The non-trivial homorphism E. — A. extends to an open ZARISKI set on C'.
Therefore almost everywhere the ellpitic curves E., ¢ € C' appear as isogeny components
of A.. Thus E/C’ is a hidden elliptic curve family over C' we look for sitting in A up to
isogeny.

Ul
11. The leading example

By (9.25) all Q-central indefinite quaternion algebras appear in the theory of Picard
modular surface of an imaginary quadratic number field K. Thereby the field can be
chosen arbitrarily. In the case K = Q <\/—_3> the abelian threefolds corresponding to
points of the Picard modular surface are Jacobians of explicitly known plane projective
curves of degree 4, the so-called Picard curves. Moreover the correspondence of these
curves with their moduli points is explicitly known and easy to describe, see (11.1) below.
As levelled Picard modular surface we can choose the projective plane IP?. For detailed
proofs we refer to [Ho 3] and/or [Ho 5].

By the results of the previous sections the arithmetic curves C' on IP? collect precisely
all moduli points of Picard curves with (isogeneously) splitting Jacobians. These points are
the image points of K-discs ID on the uniformizing ball IB. The projection IB — IP? can
be analytically expressed by the restriction along IB C TH? (the Siegel upper half space for
abelian threefolds) of 4 explicitly known (linearly dependent) theta constants thy,...thy
described precisely in [Ho 5]. Analytic-geometrically we established there a Schottky-
Torelli diagram connecting IB, IH*, IP? and the moduli space of abelian threefolds with
these thetas.

The aim of this section is to give a first explicit example of an arithmetic curve
corresponding to an explicit subfamily of curves with (isogeneously) splitting Jacobian
threefolds of non-trivial quaternion type. It is described in (11.3). On the other hand we
present also a subfamily of Picard curves along an arithmetic curve of modular type. The
previous section teaches us that it discovers a hidden non-isotrivial family of elliptic curves
sitting in the Jacobians.

Let us start with the explicit description the PICARD modular surface M := IB/T"
of (the field K = Q <\/—_3>) of EISENSTEIN numbers of level 1 — p, p a primitive third
unit root. By definition, I'" is the principal congruence subgroup of I' := U((2,1),0) of
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the ideal (1 — p) = (/=3) of the ring of EISENSTEIN integers O + Z + Zp acting on the
complex two-ball IB.
In [Ho 3] we proved that

IB/T’ = IP? {4 points in general position} .

Furthermore IP?/S, is the compactified moduli space of PICARD curves, which can be
defined as smooth curves of genus 3 with an automorphism group of order 3. Each of them
has a plane model with normalized equation

Cot V3 = (X —a1)(X —22)(X —a3)(X —24), &1 + 22+ 23 +24 =0. (11.1)

The situation is described in the following picture (11.2)
(11.2)

X1+ X,=0

]:Pz:{(Xl : X9 @ X3 :X4)€IP3:IP3(C); X1 + X2 + X3 -|-X4:()}

The symmetric group Sy acts by permutation of coordinates. The six (thin) lines corres-
pond precisely to non-smooth PICARD curves. The three (thick) lines through the double
points of the six thin lines are determined as fixed points of (12)(34), (13)(24), (14)(23) €
Sy, respectively. Let T be the first of them. Along p: IB — IP? it is covered by a linear
subdisc ID of IB fixed by a reflection o € I' with image (12)(34) in I'/T" = Sy, thus

T =ID/A, A an arithmetic group commensurable with U((1,1),O). This is a cocompact
lattice of the disc ID because T does not go through one of the four compactification points.
For more details and proofs we refer to chapter I of the monograph [Ho 3].

Changing coordinates one gets a 2-parameter family over the affine (u,v)-plane

P/A%: Y? = X(X — 1)(X —u)(X —v),
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the original PICARD curve family. It contains representants of all isomorphy classes of
smooth PICARD curves. The correspondence (z,y) — (x,py) defines an automorphism
of order 3 on each PICARD curve. Therefore the Jacobian threefolds of PICARD curves
have K-multiplication, K the field of EISENSTEIN numbers. They form a two-dimensional
family J = J(P), wich cannot be lifted from a family of smaller dimension because the
moduli space of PICARD curves has dimension 2 and by TORELLI’s theorem. Looking
at the hierarchy diagram (5.4) we see that a general member A of this family must have
isogeny decomposition type (A, K'). This means that A is simple and End (4) = K.

Now we consider the l-modular subfamily of (in general) smooth PICARD curves
corresponding to IP%-points of the cubic X1 Xo X3 + X3 Xo X3 + X1 Xu X3 + X1 XX, =0
in terms of (11.1). They are of equation type

Y3 =X*+aX? +0. (11.3)

The cubic is degenerate and consists of the three thick lines of picture (11.2). Especially,
T: X1+ Xy = X3+ Xy =01s a component of the cubic not going through the four cusp
points. Setting x1 = —x9 = 2\, 3 = —x4 = 2 we get the 1-modular subfamily

C/T: Y?=X*"—4(\ +1)X* +16)\* )€ C, (11.3)

of P (up to coordinate shift), see 1.5. For symmetric reasons all PICARD curves over the
cubic are represented up to isomorphy by this family, hence all curves of the biquadratic
equation type (11.3). The corresponding Jacobian family is denoted by T = J(C)/T.

One can immediately recognize that the general fibre of T /T is not of type (A, K'). For
this purpose we apply the criterion 5.6 to our family in order to show that 7" is an arithmetic
curve. We work with the equations of type (11.3). The correspondence (z,y) — (—z,y)
defines an automorphism 7 of order 2 on C. The corresponding quotient curve C/(7) is
defined by the equation Y? = V24 aV +0, or, after change of coordinates, by W? = Y3 4.
This is an elliptic curve E with K-multiplication. By Cor. 5.5 the parameter curve T has
to be arithmetic. Since T is smooth it follows from Theorem 7.17 that

11.4 The arithmetic curve T is a quotient curve T' = ID/A for a suitable K-disc ID € IB
by the Q-arithmetic ID-lattice A = I',.

11.5 Very special example. The Jacobian threefold J of the smooth PICARD curve
Y? = X* + 1 has decomposition type (E*). This curve is represented by the point
(1: —i:1:—1) on IP*(C) (which is not visible in the real picture (11.2)).

Namely, the automorphism (z,y) — (ix,y) of order 4 on the curve extends to Q(¢)-
multiplication on J. So J has both Q <\/—_3>— and Q(7)-multiplication. By Lemma 3.1
each primary isogeny component of J has Q(¢)-multplication. Therefore E cannot be a
primary isogeny component. The only possibility is the decomposition type (E?) for J by
the hierarchy diagram (5.4).
Setting A =7 = v/—1in (11.3)’ one obtains the representing point (¢ : —i : 1: —1).
1

In order to find a suitable K-disc ID € IB covering T some elementary things should be
added to the picture (11.2). From [Ho 3] we know that the fixed points of G := Sy = T'/I"
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on IP?\ {4 points} correspond biuniquely to the I'-orbits of the I'-elliptic points on IB.
Especially. the branch points of the subquotient morphism

D —>]:D/P]D = (]:D/A)/GT :T/GT

are the same as those of the finite covering 7' — T /Gr. We use similar notations for T
and G C PGI3(C) acting on IP%. Explicitly we have

T:=T="T54: X1 +Xo=X3+X,=0,
Na(T)=1((1,2),(3,4),(1,4,2,3)) = D, (dieder group),
ZG(T) = <(1,2)(3,4)> = Zz, GT =~ D4/Z2 =~ Ky.

The generating reflection of Zg(T) lifts to a reflection in I, for example to

o O =

01 0
(12)34)s=[1 0 0] el cT=U((21),0)
00 1

The corresponding K-disc ID over T fixed pointwise by (12)(34)p is the diagonal disc
described by the equation v = v on the ball. In the (real) picture (11.6) we draw six
representing discs covering the six (thin) branch lines and ID covering T along the quotient
map IB — IB/T".

(11.6)

N

N

For more details we refer to [Ho 3].
Finally, one finds easily the branch and ramification points of the curve coverings
starting from ID. It is clear that

P'2T - T/K,=P!
has 3 branch points by the HURWITZ genus formula:
(2¢' —2)=d(29g —2) + Z(ep —1), ¢ = genus of T =0 = g = genus of Py,
pPecT
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ep = |Gr,p| = 2,= d = |K4| = 4. Therefore there are 6 ramification points P on T or
[M-inequivalent ramificatient points on ID, hence 3 branch points on T/ Ky = ID/T,. Four
of the six ramification points are obviously the intersection points of T with the six thin
lines T;;: X; = X;, 1 <i<j <4, see picture (11.2).

TNFix(1,2)=(0:0:1:-1), Fix(1,3) N Fix(2,4)=(1:=1:1:-1),
TNFix(3,4)=(1:-1:0:0), Fix(1,4) N Fix(2,3)=(1:—-1:-1:1),

The other two sit in Fix(1,4,2,3) ={(1:=1:¢: =), (1:=1:—i:2)}.

11.7 Corollary. The general members of the family of Jacobian threefolds of PICARD
curves Y = X*+aX?+b have non-trivial quaternionic isogeny decomposition type (Ex S).
Special members are of type (E X Eg) or <E3>

Proof. This follows now directly from Theorem 8.11 because the parameter curve
T: X1+ X3 =0 doesn’t cross the set of 4 cusp points.
1

Finally, let L one of the six thin lines in Picture (11.2), say L: X5 = X4. As already
mentioned it is the compactification of a quotient curve of IB/T"y of one of the K-discs ID
joining two of the I'-cusps 1,2, 3,4 drawn in (11.6). Again from Theorem 8.11 it follows
that

11.8 Corollary. The general members of the family of Jacobian threefolds of PICARD
curves Cy: Y3 = X(X — 1)(X — M)(X = \), XA € C, have modular decomposition type
(E x E2).

1

It is easy to recognize the elliptic curve family sitting in the Jacobian J(C) of this Picard
curve family C/L = IP! according to Prop.10.2 of the previous section. Consider C/L
as algebraic surface with function field G = C(x,y)(u), @,y transcendentally independent
over C, with only relation u? = y*/z(x — 1). We substituted in the equation for C the
term (X — X\)? by U and use small lattices in the function field. It contains the function
field F = C(xz,y)(t), if we set t+ = u?. Since t = y* /x(x — 1) the field F is the function field
of the most classical elliptic curve family E/L: Y? = X(X — 1)(X — \). There are surface
models C, E of our curve families allowing a two-sheeted covering C — E corresponding
to the quadratic field extension G/F. Using A = & — t as a parameter again we see that
this covering yields curve coverings Cx — E) of degree 2. They extend to surjective
morphisms of the Jacobians J(Cy) — E\, hence Ej is an isogeny component of J(C}).
By 11.8 we get

11.9 Corollary. For A # 0, 1 the (generalized) Jacobians of the singular Picard curve C)
of 11.8 has isogeny decomposition

J(Cy\) = E x E) x Ey with elliptic curve Ex: Y? = X(X — 1)(X — \).
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11.10 Remark-Problem. This elliptic curve family {E\} appears as most classical
example in the theory of (ordinary) Fuchsian differential equations and their solutions
described by hypergeometric functions. The example fits into a nice correspondence
between isomorphy classes of complex (minimal smooth) elliptic surfaces over IP! with
precisely 3 exceptional fibres and the most simple Fuchsian equations, see [S-Z] for a nice
modern algebraic-geometric treatment.

With regard to our splitting results it is quite natural to ask for a similar connection
between abelian surface families of non-trivial quaternion type (over arithmetic curves of
Picard modular surfaces). One should start with the above example of 11.7, wich is the
most simple sitting in the Jacobians of Picard curves.

12. Appendix
K-embeddings into Q-central quaternion algebras

We will prove that for each indefinit Q-central quaternion algebra D and independently
given imaginary quadratic number field K there exists a K-embedding. Moreover we would
like to parametrize all of them.

Let D be a Z-central simple algebra, Z a number field. Consider it as element of the
BRAUER group Br(Z) and denote the localisations D, = Q, @ D at arbitrary places v
of Z. The property that an algebra is central and simple is preserved under extension of
ground field. Therefore the localitions define group homomorphisms Br(Z) — Br(Z,).
The local Brauer groups are well-understood by certain invariants, wich are unit roots. In
additive style of writing one disposes on local BRAUER group isomorphisms
[y Br(Zv)iQ/Z. For more details and proofs we refer to [R] or [We].

With regard to our purposes we restrict to the case Z = Q and n? = dimgD = 4,
where we describe the local-global (Hasse) principle more explicitly. We have Q, = Q, or
R for v = p a natural prime number or v = oo, respectively. The local invariants (D)
are described as follows

po(D) =+1iff D, = Mats (Qy);
po(D) = —1iff D, is a skew field.
12.1 Theorem (Hasse-Brauer-Noether). The map D — (..., uy(D),...), corresponding

each Q-central quaternion algebra D its set of local invariants induces a bijection

{Q—central quaternion algebras} /iso

> {(5v) S H{il}; gy = +1 for almost all v, Hgv = -|-1}

{Q—central indefinite quaternion algebras} /iso

— {(ev) € [T{£1}: e = +1, ey = +1 for almost all v, [] v = +1}
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12.2 Corollary.

(7) A Q-central quaternion algebra is isomorphic to Mat2(Q) if and only if all local
invariants u,(D) are equal to +1.
(1) There exist infinitely many isomorphy classes of indefinit Q-central quaternion
algebras.
O

For Q-central quaternion algebras D and imaginary quadratic number fields K we consider
pairs (D, ¢) or (D, (K)), where ©: K — D is an embedding of algebras. In order to classify
such pairs we define for any ¢ € Q% the Q-central Matrixalgebra D(I, q) by

D(K,q) = {(% q@f’) a be K}. (12.3)

Set u := (2 g) and identify diag (¢,¢) with ¢ € K. Then

D(K,q) =K+ Ku (12.4)
with relations

u? = ¢, 2u = uc for all ¢ € K.

12.5 Definition. If the quaternion algebra D is isomorphic to K + Ku with relations
(12.3) defining the Q-algebra structure, then we call K + Ku a K-presentation of D. The
matrix algebra D(K, ¢) is called a K-representation of D.

So we dispose on models for each of the isomorphy classes (K/Q,0,q) described in (3.3).
From the Brauer group theory we also know that they represent all isomorphy classes of
Q-central indefinit quaternion algebras containing I, and two of these algebras D(I, q),
D(K,q") are isomorphic if and only if ¢'/¢ € N(K™*), see 3.5.

In [K-S], § 11, for K = Q (\/—_d> the isomorphy class of D = D(K,¢) is denoted by

(—d, ¢). Using the notation of (6.2), n = 2, we can write our K -respresentation as

o~

D =D(K,q) = {a+3u; a, be K} = K+ Ku. (12.6)
of (—=d, q). The canonical anti-involution * on D is defined by

a+bu— (a+bu)* :=(a—bu). (12.7)

Indeed, it is easy to check that

[(a+bu)(a' +bu)]" = (a' +bu) (a+bu)".

Furthermore,

[

N(a + bu) := (a + bu)(a + bu)* = |a|* — ¢|b]* = det <% %) €Q
and
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T(a+bu)=(a+bu)+ (a4 bu)* =a+a= trace of < q;)eQ

define norm and trace on K + Ku extending the K/Q-norm or -trace on K, respectively.
The element A € D satisfies the characteristic equation T? — T(A)T + N(A), which is
independent of any imaginary quadratic representation of ). Therefore T and N are
correctly defined on D. This is also true for the anti-involution * because A* = T(A) — A.

All elements A € D with N(A) # 0 have an inverse in D, namely A™! = N(A)~1 A*.
On this way we proved directly the first part of

12.8 Proposition. D = D(K,q) is a skewfield if and only if the equation |a|* — ¢|b|* =0
has only the trivial solution a« = b = 0 in K. This happens if and only if ¢ ¢ N(K™*). With
a fixed imaginary quadratic subfield K of a Q-central quaternion algebra D = K + Ku
all K-presentations are given by K + Kv with v € N(K™*)u and all K-representations by
D(K,q"), ¢ € N(K*)q.

N R

Proof. It suffices to prove the third statement. Let K + Kv be a second K-presentation
of D with relations v = ¢/ and év = ¢v for ¢ € K. These relations
ca+¢cbu =7¢(a+ bu) =¢v =ve = (a+ bu)c = ac + ¢chu

are only possible, if @ = 0. Therefore v = bu and

¢ = v* = bubu = [b*u® = |bf*g € N(K)q.
0

12.9 Lemma. Let K = Q + Qv —d be an imaginary quadratic number field and D =

D(K,q) a K-representation (12.4) of indefinit Q-central quaternion algebras belonging to

the norm class gN(K*) € Q% /N(K*). The imaginary quadratic field L = Q (v—k) , d, k

squarefree natural numbers, can be embedded into D if and only if the diophantine equation
qX2 + qu2 +kV? =dT?

has a rational solution (x,y,v,t) with v # 0.

Proof. Let a = <% %b> be an arbitrary element of D*. Its square is

o2 — (@ +adbl* q(ab+ab)
o ab + ab Ez—l—q|b|2

It is an element of Q* C D* iff « € Q*vV—d. With a = t/—d, t € Q, and b € K we

parametrize on this way all imaginary quadratic subfields

L=L(t,h)=Q+Qa=Q <x/—dt2 n q|b|2> L 0> —di? + g|bf.

sitting in D. We set b=2 + yv/—d, =, y € Q. Then L =2 Q (v—k) iff
—dt* + q(2* + dy*) = —v%k for a suitable v € Q*.
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12.10 Proposition. Let D be an indefinit Q-central quaternion algebra. Each imaginary
quadratic number field L can be embedded into D.

Proof. By the lemma, it remains to check that the homogeneous diophantine equation

Q: ¢X? +dgY? +EV? —dT? =0
has a non-trivial Q-solution ag = (¢, yo,v0,t0). If this is done, then one finds also a
rational solution (x,y,v,t) with £ # 0 because in this case the projective rational solutions
fill a dense subset on the corresponding projective quadric IPQ(R) C IP*(R). In order to
see this one chooses an arbitrary Q-rational plane E in IP® not containing Py := IPa. The
central projection with center Py restricted to E yields defines correspondences

E(Q) — IPQ(Q)\ {Po} and E(R) — TPQ(R)\ {Po}.

The discriminant of the quadratic form is the product of the coefficients diser(Q) =
—d?¢?k. This is not a square in Q. The existence of a non-trivial Q-solution follows now
from the following special result 12.11 of the Hasse-Minkowski theory for quadratic forms
over Q:

12.11 Proposition (see e.g. [Se|, IV, § 2, Theorem 6, (¢i2)). The diophantine equation

aX? 4+ 0Y? +cU? +dV? =0, a, b, ¢, d € Q,

has a non-trivial rational solution, of its discriminant abed 1s not a rational square.

[l

12.12 Remark. Looking back to Theorem 3.4 (i¢) we proved that for each imaginary
quadratic field L the smallest number r for which there exists an embedding
L — Mat,.(D) is equal to 1.

Moreover, for the set of all embeddings of a given field into an algebra the following general
result is known, which is much more intrinsical than Lemma 12.2:

12.13 Theorem. Let R be an algebra over a field F, dimpR = n?, R* its group of units,
L a field extension of F of degree n over F and f: L — R a F-linear embedding. FEach
other such embedding f': L — R 1s R*-conjugated to f.

This means that there is an element a € R* such that f'(I) = a=! f(I)a for all [ € L. The
commutator of f(L)in Ris f(L) itself. Thus, there is a bijective correspondence between
all F-linear embeddings of L into R and the coset f(L)*\R*. For a proof of the theorem

we refer to [We], Appendix 3 (of the russian edition).
(]

12.14 Corollary. Let D be a Q-central indefinite quaternion algebra and K an arbitrary
imaginary quadratic number field. Starting from one Q-algebraic embedding K C D all
embeddings of K into D are precisely parametrized by the coset K*\D*.

Proof. First we need the existence of a K-embedding into D. This comes from Prop.
12.10. Now the statement follows immediately from 12.13 setting R = D, F = Q,
n=2 L=K.

O
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12.15 Theorem. Let K be an arbitrary fixed imaginary quadratic number field. Then
one has the followig bijective correspondences:

{indefinite Q — central quaternion algebras}/iso = {D(K, q); q € Q+} /iso
—
QY /N(K™) =Q"/ £ N(K™),

where D(K,q) = (K/Q,0,q) are defined in (12.4) and (3.3), N is the norm map of K/Q);
and ¢ — ¢N(IK™*) is the explicit description of the biunivoque map.

Proof. Indeed, let K + Ku and K'+ K'u' be two K-presentations with possibly different
but isomorphic subfields K, K’ of D, u? = ¢, u'? = ¢'. The existence has been proved
above. By 12.13/14 there exists ¢ € D* such that K = ¢ 1 K'g. Set v = ¢ 'u'g. Then

1 1

v =g 'cdu'g =g tu'cdg=vecforall ¢ € K'

Therefore we can apply Prop. 12.8, which says that ¢' € ¢N(K™).
1

Now we are able to establish more directly for any fixed imaginary quadratic number field
K the bijective correspondence

{indefinite Q — central quaternion algebras}/iso
—
{indefinte K — hermitian vector planes (W, ®)} /isometries

which is part of the chain (9.25). For given (W, ( , )) the quaternion algebra sitting inside
has been defined by Shimura, see 9.19.

D* ={g € Glxg(W); (9(x),9(y)) = (det g){x,y) for all x, y € W}. (12.16)

It determines D = D(W, ®) as smallest Q-subalgebra of Endyx (W) containing D*. Accor-
ding to the considerations after (12.7) the minimal polynomial of ¢ € D\Q is

T? — T(¢g)T + N(g) € Q[T]. On the other hand ¢ satisfies as element of Endx (W) the
characteristic equation T? — tr(¢)T + det g = 0. Tt follows that

tr(g) = T(g9) € Q, det g =N(g) € Q, ¢" =tr(g) — g. (12.17)

We want to join the norm N on D with the indefinite hermitian form (, ) on W. For this
purpose we consider W as a 4-dimensional Q-vector space with D-multiplication. For any
fixed p € W the map 7: g — ¢gp is a Q-linear homomorphism from D into W, both with
Q-dimension 4. For each g € D it holds that

n(gp) := (gp, gp) = (det g)(p,p) = (P, P)N(g) = N(g)n(p). (12.18)
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If (p,p) = 0, then 7 cannot be surjective because the hermitian form ( , ) is not trivial.
If (p,p) # 0, then from 7(g) = gp = o follows N(g) = det ¢ = 0, hence R x Ker 7 is
an R-linear subspace of R x D = Maty(R) outside of Glz(R). This is only possible for
Ker m = O. Therefore

12.19 Lemma. The Q-linear map 7= = 7 defined above is an isomorphism iff (p, p) # 0.
Equivalent are both of the conditions W = Dp, respectively

(w,w) = (p,p)N <7T_1(W)> for all w € W. (12.20)

For the last statement set w = gp and apply (12.18).
(]

12.21 Corollary. For the quaternion algebra D = D(W, ®) the following conditions are
equivalent:

(7) D is a skewfield;
(i) det g # 0 for all ¢ € D\ {0} ;
(77) W doesn’t contain any isotropy vector.

Proof. We know that D is a skewfield if and only if N(g¢) # 0 for all ¢ € D\ {0}, see Prop.
12.8. The equivalence of (i) and (¢¢) follows now from (12.17). The equivalence with (ziz)
comes from (12.20).

(]

In the next step we give a geometric explanation for constructing all subfields of D = D(W)
isomorphic to K. Let L= C W be a K-line generated by a negative vector a, that means
(a,a) < 0. Its orthogonal complementary line is denoted by Lt = Kb, say. The nontrivial
vectors of LT are positive and W = L™ L™ (orthogonal sum). We consider the subalgebra
of all ¢ € D having L™ as a eigenline and prove that

K (L_> = {g € D; L™ is an eigenline of g} ~ = {(8 g) ; CE K}. (12.22)

Indeed, the linear extension of a — ca, b — ¢b is an element v = 7. of D because of

(14 )7 (U + ') = (el + 7m, el + ')
= |e[* [(L1) + (m, m)]
= (det v)(1+m,1l' + m’)
and the definition (12.6). On the other hand, any ¢ € D* preserves orthogonality by (12.6)
again. If, additionally, L™ is an eigenline of ¢, then also Lt is. Therefore K (L™)" is a
commutative group generating the commutative Q-subalgebra A (L™ ) of D. The maximal
subfields of D are quadratic, therefore K(L™) ={v.; c€e K} = K = K.
It is clear that different negative K-lines L™ in W define different subfields K (L™ ) of

D isomorphic to K. Conversely, the line L™ is uniquely determined as negative eigenline

of by its associated field K(L™). By (12.6) the subgroup
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D} ={g € D; N(g) > 0}

of index two in D* acts on the set IPW™ of negative K-lines L= C W. The whole group
D* acts on the set of pairs {L~, L1}, hence, via conjugation, on the corresponding set
of subfields I/;’(L_) On the other hand, any two subfields of D isomorphic to K are D*-
conjugated by Corollary 12.14. Therefore the above actions of D* or D’ are transitive.
Alltogether we notice the bijective correspondences

12.23 Internal conjugations.

IPW™ = {negative K—lines L™ C W}
— K*\D}
= {subﬁelds I/&\’(L_) of D} = {subfields of D isomorphic to K}
We constructed from each indefinit hermitian K -vector plane W an indefinit quaternion
algebra D with K-subfield. Let us start now conversely from D = K + Ku with the
relations described in (12.3). On this K-vector plane we define an indefinite hermitian

form in a natural manner. For this purpose let p: D — K denote the projection onto the
first summand. For X = a 4 bu € D, its conjugate X* =@ — bu and ¢ € K 1t holds that

p(X7) = p(X), p(cX) = cp(X).
12.24 Lemma-Definition. The canonical hermitian form on D = K + Ku is defined by

(X,V)=p(XY")e K, X, Y eD.

It is negative definit; the discriminant (of the canonical generators 1, u) is equal to
2

—¢ = —u” =u*uc —Q%. Furthermore K 4 Ku is an orthogonal decomposition of D
with respect to ( , ).
Proof. The definition is correct, namely
(cX,)Y) =p(cXY")=ep(X,Y")=c(X,Y), c € K
(X+2Y)=p(X+2)Y") =p(XY") +p(2Y") = (X.Y) +(Z,Y);
(Y, X) =p(Y"X) = p((XY)") = p(X*Y) = (X,Y).

Therefore ( , ) is a K-hermitian form on D. Furthermore for the canonical generators we
get

(L) =p(u”) =0, (1,1) =p(1-1") =p(1) = 1, (u,u) = p(un”) = p(~u*) = —¢.
Therefore K | Ku and the discriminant is —gq.
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[l

12.25 Proposition. The isometrie class of W = W(D) = (K + Ku,(, )) defined in
12.24 does not depend on the K-presentation of D.

Proof. If D = K+ Ku' with the relations analogeous to (12.3), then u’ = cu for a suitable
¢ K* and ¢' = u = N(c)q, see 12.8. Therefore the discriminant of ( , ) constructed with
u' instead of u does not change up to N(K™*)-multiplication. The isometry class is the
same by Landherr’s Theorem, see 9.4.

Now use another subfield X' =2 K of D = K'+ K'u’ for the construction of ( , ), say.
By 12.14 there is an element A € D* such that K’ = A™'KA. The old K-presentation
comes with u = Au’A~'. Using the notation Z' = A7'ZA for Z € D and p' for the

canonical projection of D onto K' along Ku' it is clear that p'(Z') = p(Z)'. Since

vu* = A luurA = —gATA = —¢

the discriminants of ( , )’ and ( , ) coincide. Therefore one gets the same isometry class
of hermitian forms. It is so easy to see that ' defines an isometry.

[l

Without change of notation we extend the hermitian form (, ) to W(R) = C%. Also the
action of D on W is extended to W(R). The group

UW(R)) :=UW(R),(, )= Gl(R)=U((1,1),C)

acts transitively on the set IPW(R)™ of negative C-lines L~ C W(R). We get the bijective
correspondences

12.24 External conjugations.

IPW(R)™ = {negative C — lines L~ ¢ W(R)}
<« C"\U((1,1),C);

{'D:=gDg™"; g € UW(R))}
<— Gl (R)/D*
<~ (R x D)"/D".
Let (a’,b') € W~ x WT be a fixed orthogonal pair; L™ a negative C-line in W(R) and
g € UW(R)) such that a:=g(a') € L™. Set b = ¢g(b’). The quaternion algebra D = 9D

acts on the hermitian I -vector space U := Ka QKb via g-conjugation. Since (a,a) # 0
we can write U = Da, see Lemma 12.19. Using a coordinate map x: W(R)-—+C? we can

assume that a = <Z;> , b= <Z;> € Da, and D acts K-linearly on Ka + Kb.
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