# Contents

| 1        | Ellij      | iptic Curves, the Finiteness Theorem of SHAFAREVIČ 1 |                                            |                |  |  |
|----------|------------|------------------------------------------------------|--------------------------------------------|----------------|--|--|
|          | 1.1        | Elliptic Curves over $\mathbb{C}$                    |                                            |                |  |  |
|          | 1.2        | Ellipti                                              | c Curves Over Arbitrary Fields             | 4              |  |  |
|          |            | 1.2.1                                                | Reduction of Elliptic Curves               | 6              |  |  |
|          |            | 1.2.2                                                | Two Finiteness Theorems of Number Theory   | 7              |  |  |
|          |            | 1.2.3                                                | SHAFAREVIČ's Finiteness Theorem            | 9              |  |  |
|          |            | 1.2.4                                                | Basic References                           | 10             |  |  |
| <b>2</b> | PIC        | ARD                                                  | Curves                                     | 12             |  |  |
|          | 2.1        | The Moduli Space of PICARD Curves                    |                                            |                |  |  |
|          |            |                                                      |                                            |                |  |  |
|          | 2.2        | The R                                                | elative SCHOTTKY Problem for PICARD Curves | 18             |  |  |
|          | 2.2        | The R<br>2.2.1                                       | elative SCHOTTKY Problem for PICARD Curves |                |  |  |
|          | 2.2        |                                                      | elative SCHOTTKY Problem for PICARD Curves | 20             |  |  |
|          | 2.2        | 2.2.1                                                | elative SCHOTTKY Problem for PICARD Curves | 20             |  |  |
|          | 2.2<br>2.3 | <ul><li>2.2.1</li><li>2.2.2</li><li>2.2.3</li></ul>  | elative SCHOTTKY Problem for PICARD Curves | 20<br>21<br>23 |  |  |

## CONTENTS

|   |                                                                             | 2.3.2 Period Matrices of $G$ -typical Bases $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 27                                                                                             |
|---|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|   | 2.4                                                                         | Metrization                                                                                           | 29                                                                                             |
|   | 2.5                                                                         | Arithmetization                                                                                       | 31                                                                                             |
|   | 2.6                                                                         | A Retrospect to Elliptic Curves                                                                       | 33                                                                                             |
|   | 2.7                                                                         | Rough Solution of the Relative SCHOTTKY Problem for PICARD Curves                                     | 36                                                                                             |
| 3 | Uni                                                                         | formizations and Differential Equations of EULER-PICARD Type                                          | 41                                                                                             |
|   | 3.1                                                                         | Ball Uniformization of Algebraic Surfaces                                                             | 41                                                                                             |
|   | 3.2                                                                         | Special Fuchsian Systems and GAUSS-MANIN Connection                                                   | 49                                                                                             |
|   | 3.3                                                                         | PICARD Modular Forms                                                                                  | 56                                                                                             |
|   | 3.4                                                                         | PICARD Modular Forms as Theta Constants                                                               | 63                                                                                             |
|   |                                                                             |                                                                                                       |                                                                                                |
| 4 | Alg                                                                         | ebraic Values of PICARD Modular Theta Functions                                                       | 69                                                                                             |
| 4 | <b>Alg</b><br>4.1                                                           | ebraic Values of PICARD Modular Theta Functions                                                       |                                                                                                |
| 4 | Ū                                                                           |                                                                                                       | 69                                                                                             |
| 4 | 4.1                                                                         | Introduction                                                                                          | 69<br>71                                                                                       |
| 4 | 4.1<br>4.2                                                                  | Introduction                                                                                          | 69<br>71<br>74                                                                                 |
| 4 | <ul><li>4.1</li><li>4.2</li><li>4.3</li></ul>                               | Introduction                                                                                          | 69<br>71<br>74<br>81                                                                           |
| 4 | <ul><li>4.1</li><li>4.2</li><li>4.3</li><li>4.4</li></ul>                   | Introduction                                                                                          | <ul> <li>69</li> <li>71</li> <li>74</li> <li>81</li> <li>84</li> </ul>                         |
| 4 | <ul> <li>4.1</li> <li>4.2</li> <li>4.3</li> <li>4.4</li> <li>4.5</li> </ul> | Introduction                                                                                          | <ul> <li>69</li> <li>71</li> <li>74</li> <li>81</li> <li>84</li> <li>86</li> </ul>             |
| 4 | $ \begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ \end{array} $  | Introduction                                                                                          | <ul> <li>69</li> <li>71</li> <li>74</li> <li>81</li> <li>84</li> <li>86</li> <li>88</li> </ul> |

# CONTENTS

| 5        | Tran                                                                            | nscendental Values of PICARD Modular Theta Constants 111             |  |  |  |
|----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
|          | 5.1                                                                             | Transcendence at Non-Singular Simple Algebraic Moduli                |  |  |  |
|          | 5.2                                                                             | Transcendence at Non-Singular Non-Simple Algebraic Moduli            |  |  |  |
|          | 5.3                                                                             | Some More History                                                    |  |  |  |
| 6<br>tir | 6 Arithmetic Surfaces of KODAIRA-PICARD Type and some Diophan-<br>tine Eqs. 132 |                                                                      |  |  |  |
|          | 6.1                                                                             | Introduction                                                         |  |  |  |
|          | 6.2                                                                             | Arithmetic Surfaces and Curves of KODAIRA-PICARD type                |  |  |  |
|          | 6.3                                                                             | Heights                                                              |  |  |  |
|          | 6.4                                                                             | Conjectures of VOJTA and PARSHIN's Problem                           |  |  |  |
|          | 6.5                                                                             | KUMMER Maps                                                          |  |  |  |
|          | 6.6                                                                             | Proof of the Main Implication                                        |  |  |  |
| 7<br>ree | API<br>ducti                                                                    | PENDIX I: A finiteness theorem for PICARD curves with good<br>on 148 |  |  |  |
|          | 7.1                                                                             | Some definitions and known results                                   |  |  |  |
|          | 7.2                                                                             | Affine models of n-gonal cyclic curves                               |  |  |  |
|          | 7.3                                                                             | Normal forms of PICARD curves                                        |  |  |  |
|          | 7.4                                                                             | Conditions for smoothness                                            |  |  |  |
|          | 7.5                                                                             | Projective isomorphism classification in characteristic $> 3$        |  |  |  |
|          | 7.6                                                                             | Minimal normal forms for PICARD curves                               |  |  |  |
|          | 7.7                                                                             | Good reduction of PICARD curves                                      |  |  |  |

## CONTENTS

| 8  | AP     | PENDIX $^{\star}$ II: The HILBERT Problems 7, 12, 21 and 22                                     | 161   |
|----|--------|-------------------------------------------------------------------------------------------------|-------|
|    | 8.1    | Irrationality and Transcendence of Certain Numbers                                              | . 161 |
|    | 8.2    | Extension of KRONECKER's Theorem on Abelian Fields                                              | . 162 |
|    | 8.3    | Proof of the Existence of Linear Differential Equations Having a Prescribed<br>Monodromic Group | . 164 |
|    | 8.4    | Uniformization of Analytic Relations by Means of Automorphic Functions                          | 164   |
| Ba | asic I | Notations                                                                                       | 166   |

# Bibliography

172

# 1 Elliptic Curves, the Finiteness Theorem of SHAFAREVIČ

#### **1.1** Elliptic Curves over $\mathbb{C}$

Instead of the introduction we remember to an arithmetic-geometric part of the theory of elliptic curves. Let  $\wedge$  be a *lattice in*  $\mathbb{C}$ , that means a discrete additive subgroup of  $(\mathbb{Z})$ -rank 2. Two lattices  $\wedge$  and  $\wedge'$  in  $\mathbb{C}$  are said to be *equivalent*, if there is a complex number  $\alpha \neq 0$  such that  $\wedge' = \alpha \wedge$ . Each of our lattices is equivalent to a lattice  $\wedge_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$  with

$$\tau \in \mathbb{H} = \{ z \in \mathbb{C}; \operatorname{Im} z > 0 \}$$

IH is called the POINCARÉ upper half plane. The quotient spaces

$$E_{\wedge} = \mathbb{C}/\wedge$$
,  $E_{\tau} = \mathbb{C}/\wedge_{\tau}$ 

are one-dimensional complex tori, that means complete RIEMANN surfaces with abelian group structures. For equivalent lattices  $\land, \land'$  we have a commutative diagram

| $0 \longrightarrow$ | $\wedge$  | $\longrightarrow$ | C   | $\longrightarrow$ | E  | $\longrightarrow 0$ |
|---------------------|-----------|-------------------|-----|-------------------|----|---------------------|
|                     | ↓≀        |                   | ↓ ∥ |                   | ↓≀ |                     |
| $0 \longrightarrow$ | $\wedge'$ | $\longrightarrow$ | C   | $\longrightarrow$ | E' | $\longrightarrow 0$ |

with obvious notations. The tori E, E' are isomorphic. So each  $E = E_{\wedge}$  is isomorphic to a complex torus  $E_{\tau}$  for a suitable  $\tau \in \mathbb{H}$ .

Each torus E has a smooth complex projective algebraic structure. More precisely, it can be analytically embedded into the complex projective plane  $\mathbb{P}^2(\mathbb{C})$ . A torus together with such an embedding is called an *elliptic curve over*  $\mathbb{C}$ ). For the embeddings we need elliptic functions on  $\mathbb{C}$ . A meromorphic function on  $\mathbb{C}$  is called *elliptic*, if it is  $\wedge$ -periodic for a suitable  $\mathbb{C}$ -lattice  $\wedge$ . A central role among the elliptic functions play the *WEIERSTRASS*  $\wp$ -functions. For a fixed lattice  $\wedge$  it is defined as

$$\wp_{\wedge} : \mathbb{C} \longrightarrow \mathbb{P}^{1}(\mathbb{C}) ,$$
  
$$\wp_{\wedge}(z) = 1/z^{2} + \sum_{\omega \in \wedge^{*}} \left( 1/(z-\omega)^{2} - 1/\omega^{2} \right) ,$$

where  $\wedge^* = \wedge \backslash 0$ . The field of meromorphic function of  $E_{\wedge}$  is generated by  $\wp_{\wedge}$  and  $\wp'_{\wedge}$ . Both functions are related by a simple algebraic equation producing a differential equation for  $\wp_{\wedge}$ :

$$\wp_{\wedge}'(z)^2 = 4\wp_{\wedge}(z)^3 - g_2(\wedge)\wp_{\wedge}(z) - g_3(\wedge) ,$$

where

$$g_2(\wedge) = 60 \sum_{\omega \in \wedge^*} 1/\omega^4 , \quad g_3(\wedge) = 140 \sum_{\omega \in \wedge^*} 1/\omega^b$$

On this way we get a projective embedding

$$\begin{array}{rccc} h: \mathbb{C}/\wedge & \hookrightarrow & \mathrm{I\!P}^2(\mathbb{C}) \\ z \bmod \wedge & \longmapsto & (1: \wp(z): \wp'(z)) & (z \notin \wedge) \end{array} \end{array}$$

Using projective coordinates (w : x : y) the image curve  $= E(\wedge)$  is defined by the following equation:

$$E: WY^{2} = 4X^{3} - g_{2}(\wedge)W^{2}X - g_{3}(\wedge)W^{3}$$
(1.1)

Conversely, if E is a smooth projective curve of degree 3, then there is a projectively equivalent curve E' of equation type

$$E': WY^2 = 4X^3 - g_2 W^2 X - g_3 W^3.$$
(1.2)

The equation in (1.2) or the corresponding cubic form is called a WEIERSTRASS normal form of E. Moreover, there is a C-lattice  $\wedge$  such that  $g_2 = g_2(\wedge), g_3 = g_3(\wedge)$ . So we get in any case a uniformization  $\mathbb{C} \to \mathbb{C}/\wedge \xrightarrow{\sim} E$ .

We want to introduce and to explain now the moduli space of elliptic curves.

POINCARÉ's upper half plane III is the simplest non-euclidean model of a homogeneous (symmetric) space. On III acts transitively the real special linear group  $\$l(2, \mathbb{R})$  via fractional linear transformations

$$\tau \mapsto (a\tau + b)/(c\tau + d)$$
,  $\tau \in \mathbb{H}$ ,  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \$l(2,\mathbb{R})$ .

The quotient space  $l(2, \mathbb{Z}) \setminus \mathbb{H}$  has a natural complex structure. It is isomorphic to the affine complex line  $\mathbf{A}^1(\mathbb{C}) = \mathbb{C}$ . Its natural (smooth) compactification is the projective complex line  $\mathbb{P}^1(\mathbb{C})$ .

This can be made visible by decomposing II into infinitely many  $\$l(2, \mathbb{Z})$ -fundamental domains as it has been first done by GAUSS. The elements  $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$  and  $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ generate the unimodular group  $\$l(2, \mathbb{Z})$ . There is a nice central fundamental domain  $\mathcal{F}$  as drawn in the figure (1.3). By identification of equivalent boundary points one gets  $\mathbb{A}^1(\mathbb{C})$ and the compactification by addition of the external boundary point not lying in II. Shifting  $\mathcal{F}$  by means of products of  $S, T, S^{-1}, T^{-1}$  one obtains a covering of II consisting of  $\$l_2(2, \mathbb{Z})$ -fundamental domains.



The geometric imagination can be made precise by means of modular functions. These are  $l(2, \mathbb{Z})$ -invariant meromorphic functions on III allowing a meromorphic extension on  $l(2, \mathbb{Z}) \setminus \mathbb{H}$  to the compactification  $\mathbb{P}^1(\mathbb{C})$ . For i = 2, 3 we set  $g_i(\tau) = g_i(\wedge_{\tau})$ . Looking at the discriminant of the polynomial  $p_3(X)$  in the WEIERSTRASS equation  $Y^2 = p_3(X) = 4X^3 - g_2X - g_3$  of  $E_{\tau}$  we define

$$\Delta(\tau) = 27g_3^2(\tau) - g_2^3(\tau) \; .$$

Then  $g_2^3(\tau)/\Delta(\tau)$  is a modular function. The *elliptic modular function* is defined as  $j(\tau) = 12^3 g_2^3(\tau)/\Delta(\tau)$ . Especially it is invariant under  $S: \tau \mapsto \tau + 1$ . It can be written as Fourier series:

$$j(\tau) = q^{-1} + 744q^0 + \sum_{n=1}^{\infty} a_n q^n$$
,  $q = e^{2\pi i \tau}$ ,  $a_n \in \mathbb{Z}$ .

The elliptic modular function  $j : \mathbb{H} \to \mathbb{C}$  goes down to an analytic isomorphism  $l(2, \mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C}$ .

Consider now the elliptic curve family  $\mathcal{E}$  over IH defined by

$$\mathcal{E} = \{ (w : x : y), \tau) \in \mathbb{P}^2(\mathbb{C}) \times \mathbb{H} ; \quad wy^2 = 4x^3 - g_2(\tau)w^2x - g_3(\tau)w^3 \}.$$

It has a natural projection onto III. The fibres are the elliptic curves  $E_{\tau}$ . The upper half plane III appears as parameter space for (up to isomorphy) all elliptic curves. This analytic family of curves is denoted by  $\mathcal{E}/\text{III}$ . The fibres  $E_{\tau}, E_{\tau'}$ , are isomorphic iff  $\tau' \in \mathfrak{S}l(2,\mathbb{Z})\tau$ . Therefore we get a bijection

 $\mathbb{C} = \mathfrak{S}l(2, \mathbb{Z}) \setminus \mathbb{H} \iff \{\text{isomorphy classes of elliptic curves} \}.$ 

In this (rough) sense we say that  $\mathbb{P}^1$  is the (compactified) moduli space of elliptic curves. Altogether we have a commutative diagram (1.4) for each  $\tau \in \mathbb{H}$ .

$$E_{\tau} \hookrightarrow \mathcal{E} \hookrightarrow \mathbb{P}^{2}(\mathbb{C}) \times \mathbb{H}$$

$$\downarrow \qquad \qquad \downarrow \swarrow \text{ projection}$$

$$\{\tau\} \hookrightarrow \mathbb{H}$$

$$\downarrow \$l(2, \mathbb{Z})$$

$$\$l(2, \mathbb{Z}) \setminus \mathbb{H} \cong \mathbb{C} \subset \mathbb{P}^{1}(\mathbb{C})$$

### 1.2 Elliptic Curves Over Arbitrary Fields

We use the following notations:

| K                            | a field, $L$ a field extension of $K$ ,                   |
|------------------------------|-----------------------------------------------------------|
| $\bar{K}$                    | the algebraic closure of $K$ ,                            |
| $\mathbb{P}^2_K$             | the projective plane over $K$ ,                           |
| $\mathbb{P}^2(L)$            | the points of this plane with coordinates in $L$ ,        |
| f                            | a homogeneous polynomial in $K[W, X, Y]$ ,                |
| $\mathbb{P}\mathbb{G}l(3,K)$ | the projective linear group $\mathbb{G}l(3,K)/K^*$ ,      |
| C:f=0                        | the plane projective curve defined by $f$ ,               |
| C(L)                         | the points of $C$ with coordinates in $L$ ( $L$ -points). |

The group  $\mathbb{P} \mathbb{G} l(3, L)$  acts on  $\mathbb{P}^2(L)$  and  $\mathbb{G} l(3, L)$  on L[W, X, Y] in obvious manner. For  $G \in \mathbb{G} l(3, L)$  we define the inverse image curve of C by  $G^*C : G^*f = 0$ , where  $G^*f$  denotes the inverse image of f. We have

$$G^*C(L) = \{P \in \mathbb{P}^2(L); G^*f(P) = f(G(P)) = 0\}$$
.

Two curves C, C' are called *L*-linearly equivalent, if there is a linear transformation  $G \in \mathfrak{G}l(3, L)$  such that  $C' = G^*C$ .

A point  $P \in C(L)$  is called *singular* iff the derived polynomials  $\partial f/\partial W$ ,  $\partial f/\partial X$ ,  $\partial f/\partial Y$  vanish at P. The curve C is *non-singular* iff each point  $P \in C(\bar{K})$  is non-singular.

**Definition 1.1** An *elliptic curve* E/K is a non-singular curve of degree 3 in  $\mathbb{P}^2_K$  together with a point  $0 \in E(K)$ .

We are able to define a commutative group structure on E/K. For this purpose consider the *L*-points of *E*. Denote by PQ the line through two points  $P, Q \in E(L)$ . If P = Q, then it is defined as tangent line of *E* through *P*. By BEZOUT's, theorem there is a unique third intersection point  $R' \in \mathbb{P}^2(L)$  of  $E(\bar{L})$  and  $PQ(\bar{L})$  beside of *P*, *Q*. It is easy to see that it belongs to E(L). We apply the same procedure to OR' instead of PQ in order to receive a third intersection point *R*. Now define P + Q = R. Then one gets a commutative group law on E(L), *L* an arbitrary field extension of *K* (see [41]). The auxiliary point *R'* is nothing else than -(P + Q) and *O* is the neutral element of our addition with figure (1.4).



From projective (homogeneous) equations f = 0 we change over to affine (inhomogeneous) equations F = 0, F(X, Y) = f(1, X, Y). It defines an affine curve in  $\mathbf{A}_{K}^{2}$  and an affine geometric curve in  $\mathbf{A}^{2}(L)$  as algebraic set of points. Adding some points at infinity (W = 0) we get back C(L), especially  $C(\bar{L})$ , hence C : f = 0,  $f(W, X, Y) = F(X/W, Y/W)W^{\deg F}$ . In our elliptic cases we keep the distinction between affine and projective equations/curves only in mind.

Two elliptic curves E/K, E'/K are K-(linearly) isomorphic, iff there exists an element  $\alpha \in \mathbb{G}l(3, K)$  such that  $E = \alpha^* E'$  and  $\alpha(O) = O'$ , O' the zero point of E'.

Each elliptic curve E/K is K-isomorphic to an elliptic curve of type

$$E'/K: Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$$
(1.5)

with 0' = (0:0:1), the point at infinity of E'.

If char  $K \neq 2,3$ , then the above statement remains to be true, if we set  $a_i = 0$  for i = 1, 2, 3, that means we substitute (1.5) by

$$E'/K: Y^2 = 4X^3 - g_2X - g_3 . (1.6)$$

The equations or curves in (1.5) or (1.6) are called *WEIERSTRASS normal forms* (of *E*). Up to isomorphy it suffices to investigate elliptic curves given in WEIERSTRASS normal form. So we assume now that:

- (i) char K)  $\neq 2, 3$ ;
- (ii)  $E/K: Y^2 = 4X^3 g_2X g_3$
- (iii) O = (0:0:1);

the same for E'/K.

As in the classical (complex) case we look for invariants and their meaning. We set

$$\Delta(E/K) = 27g_3^2 - g_2^3 , \quad j(E/K) = 12^3 g_2^3 / \Delta(E/K) . \tag{1.7}$$

Given a plane projective curve C/K: f = 0. We also write  $C_L$ ,  $C_L/L$  or simply C/L for the curve in  $\mathbb{P}^2_L$  defined by f = 0. With obvious notations and the assumptions (i), (ii), (iii) above the following basic facts are well-known:

#### Proposition 1.2

- (i) E/K is non-singular, hence an elliptic curve, iff  $\Delta(E/K) \neq 0$ .
- (ii) Let E'/L be another elliptic curve,  $\overline{L} = \overline{K}$ . Then  $E/\overline{K}$  and  $E'/\overline{K}$  are  $\overline{K}$ -isomorphic if an only if j(E/K) = j(E'/L) in  $\overline{K}$ .
- (iii) The elliptic curves E/K and E'/K are  $\bar{K}$ -isomorphic iff there exists an element  $u \in \sqrt{K^{\times}} = \{v \in \bar{K}; v^2 \in K^{\times}\}$  such that  $g'_2 = u^4 g_2, g'_3 = u^6 g_3$ .
- (iv) The elliptic curves E/K and E'/K are K-isomorphic iff there exists  $u \in K^{\times}$  such that  $g'_2 = u^4 g$ ,  $g'_3 = u^6 g_3$ .

#### 1.2.1 Reduction of Elliptic Curves

Let  $R \subseteq K$  be an integral domain (with 1), such that K = Quot R, the quotient field of R. We write E/R instead of E/K, if the coefficients of the defining equation belong to R, and we say that E is defined over R. An R-model of the elliptic curve E'/K is an elliptic curve E/R such that E/K is K-isomorphic to E'/K. It is easy to see that each elliptic curve E'/K has at least one R-model. In fact, there are a lot of them.

Now, let  $(R, \mathcal{M})$  be a local ring,  $\mathcal{M}$  the maximal ideal of R and  $k = R/\mathcal{M}$  the residue field. We write  $\bar{g}$  for the residue class of  $g \in R$  modulo  $\mathcal{M}$ . For an elliptic curve  $E/R: Y^2 = X^3 - g_2 X - g_3$  we define the *reduction*  $E_k$  of E/R by

$$E_k/k: Y^2 = X^3 - \bar{g}_2 X - \bar{g}_3$$
.

We say that E/R has good reduction, if  $E_k$  is smooth, that means that  $E_k$  is an elliptic curve over k. There is a nice simple criterion:

Lemma 1.3 (local criterion for good reduction) The elliptic curve E/R has good reduction if and only if its discriminant  $\Delta(E/R)$  is a unit in the local ring R.

Now let R be a DEDEKIND domain with quotient field K = Quot R,  $\mathcal{P} \in \text{Spec } R$  a prime ideal and  $R_{\mathcal{P}}$  the corresponding (local) quotient ring. We say that the elliptic curve E'/K has good reduction at  $\mathcal{P}$ , if there is an  $R_{\mathcal{P}}$ -model  $E/R_{\mathcal{P}}$  of E' with good reduction. Otherwise we say that E'/K has bad reduction at P. In any case E'/K has good reduction at almost all points of Spec R. If T is a subset of Spec R, then we say that E'/K has good reduction on T, if E'/K has good reduction at all points of T. In obvious manner one explains the meaning of: bad reduction outside T, bad reduction on  $S \subset \text{Spec } R$ , good reduction outside S.

In our applications we will work with the ring R = O of integers of a number field K. Fixing these notations we notice

#### **1.2.2** Two Finiteness Theorems of Number Theory

Denote by  $I = I(\mathcal{O})$  the semigroup of integral ideals of  $\mathcal{O}$ , the group of fractional ideals of K by  $I^* = I^*(\mathcal{O}) = I^*(K)$  and by  $H^* = H^*(K)$  its subgroup of principal ideals. The group  $Cl(K) = I^*/H^*$  is called the *class group of* K.

**Theorem 1.4 (Finiteness of class group)** The class group Cl(K) has finite order.

The order  $h(K) = \sharp Cl(K)$  is called the *class number of* K.

For a subset  $S \subseteq$  Spec  $\mathcal{O}$  the ring of S-integers of K is defined by

$$\mathcal{O}_S = \{a/b; a, b \in \mathcal{O}, b \notin \mathcal{P} \text{ for all } \mathcal{P} \in T = \text{Spec } \mathcal{O} \setminus S\}$$

Take care of the difference between the local ring

$$\mathcal{O}_{\mathcal{P}} = \{ a/b; \ a, b \in \mathcal{O}, \ b \notin \mathcal{P} \}$$

and the global ring  $\mathcal{O}_{\{\mathcal{P}\}}$ .

**Corollary 1.5** For each finite  $S' \subset Spec \mathcal{O}$  there exists a finite  $S \subset Spec \mathcal{O}$  containing S' such that  $\mathcal{O}_S$  is a principal domain.

**Proof**: The semigroup homomorphism

$$I(\mathcal{O}) \longrightarrow I(\mathcal{O}_S), \ \mathcal{A} \longmapsto \mathcal{A}_S = \mathcal{O}_S \mathcal{A}$$

extends to the exact sequence of group homomorphisms

$$1 \longrightarrow \langle S \rangle \longrightarrow I^*(\mathcal{O}) \longrightarrow I^*(\mathcal{O}_S) , \qquad (1.8)$$

where  $\langle S \rangle$  denotes the group generated by S.

Now let  $\{A_1, \ldots, A_h\}$  be a system of representatives of the class group  $cl(\mathcal{O})$  and

 $S = S' \cup \{ \text{prime divisors of } \mathcal{A}_1 \cdot \ldots \cdot \mathcal{A}_h \}$ .

For each ideal  $\mathcal{A}$  of K we find  $a \in K$  and  $i \in \{1, \ldots, h\}$  such that  $\mathcal{A}_S = (a\mathcal{A}_i)_S = a\mathcal{O}_S$ because of  $\mathcal{A}_i \in \langle S \rangle$  and (1.8).

**Theorem 1.6 (DIRICHLET's Unit Theorem)** For finite  $S \subset Spec \mathcal{O}$  the group of units  $\mathcal{O}_S^*$  of  $\mathcal{O}_S$  is finitely generated.

**Corollary 1.7** For each natural number n the factor group  $\mathcal{O}_S^*/\mathcal{O}_S^{*n}$  is finite.

### 1.2.3 SHAFAREVIČ's Finiteness Theorem

Lemma 1.8 (global criterion for good reduction) Let S be a finite subset of Spec  $\mathcal{O}_S$ such that  $\mathcal{O}_S$  is a principal domain. The elliptic curve E'/K has good reduction outside of S iff it has an  $\mathcal{O}_S$ -model  $E/\mathcal{O}_S$  such that  $\Delta(E/\mathcal{O}_S) \in \mathcal{O}_S^*$ .

**Proof**: The discriminant condition is sufficient by the local criterion 1.3.

Assume conversely that for each  $\mathcal{P} \in T = \text{Spec } \mathcal{O} \setminus S$  there is a model

$$E_{\mathcal{P}}/\mathcal{O}_{\mathcal{P}}: Y^2 = 4X^3 - g_{2\mathcal{P}}X - g_{3\mathcal{P}}$$

of E'/K with  $\Delta_{\mathcal{P}} = \Delta(E_{\mathcal{P}}/\mathcal{O}_{\mathcal{P}}) \in \mathcal{O}_{\mathcal{P}}^*$ . With obvious notations we have

$$g'_{2} = u^{4}_{\mathcal{P}} \cdot g_{2\mathcal{P}} , \ g'_{3} = u^{6}_{\mathcal{P}} \cdot g_{3\mathcal{P}}, \Delta' = u^{12}_{\mathcal{P}} \Delta_{\mathcal{P}}$$
(1.9)

for suitable  $u_{\mathcal{P}} \in K$ ,  $\mathcal{P} \in T$ . Without loss of generality we can assume that we start with a model  $E'/\mathcal{O}_K$ , hence  $g'_i \in \mathcal{O}_K$ . Let  $\{\mathcal{P}_1, \ldots, \mathcal{P}_r\}$  be the set of prime divisors of  $\Delta' \in \mathcal{O}_K$ . Then

$$u_{\mathcal{P}} \in \mathcal{O}_{\mathcal{P}}^* \quad \text{for} \quad \mathcal{P} \in T \setminus \{\mathcal{P}_1, \dots, m\mathcal{P}_r\}$$

by the last identities of (1.9) and our assumptions. So  $(\mathcal{O}_{\mathcal{P}}u_{\mathcal{P}})_{\mathcal{P}\in T}$  belongs to the restricted product group (with components 1 almost everywhere)

$$\prod_{\mathcal{P}\in T}' I^*(\mathcal{O}_{\mathcal{P}}) \xrightarrow{\sim} I^*(\mathcal{O}_S) \ .$$

Since  $\mathcal{O}_S$  is principal we can represent our tuple by  $\mathcal{O}_S u, u \in K$ ; so

$$u_{\mathcal{P}} = \varepsilon_{\mathcal{P}} u , \ \varepsilon_{\mathcal{P}} \in \mathcal{O}_{\mathcal{P}}^* \quad \text{for all} \quad \mathcal{P} \in T .$$
 (1.10)

Now we define the elliptic curve

$$E/\mathcal{O}_S: Y^2 = X^3 - g_2 X - g_3$$

setting

$$g_2 = g_2'/u^4$$
,  $g_3 = g_3'/u^6$  (1.11)

The coefficients of the equation of E differ from those of  $E_{\mathcal{P}}$  only by local units because of (1.11), (1.9) and (1.10). This is also true for  $\Delta = \Delta(E/\mathcal{O}_S)$  and  $\Delta'$  for the same reasons. Therefore  $\Delta \in \mathcal{O}_{\mathcal{P}}^*$  for all  $\mathcal{P} \in T$ , hence  $\Delta \in \mathcal{O}_S^*$ . **Theorem 1.9 (SHAFAREVIČ)** Let K be a number field,  $\mathcal{O} = \mathcal{O}_K$  its ring of integers and S a finite set of prime ideals of  $\mathcal{O}$ . Then, up to K-isomorphy, there are only finitely many elliptic curves E/K with good reduction outside of S.

**Proof:** Without loss of generality we can assume that all prime divisors of 2 and 3 belong to S. So we can work locally along  $T = \operatorname{Spec} \mathcal{O} \setminus S$  and also globally with WEIERSTRASS normal forms in the narrow sense of (1.6). The class of all elliptic curves E/K with good reduction outside of S is denoted by  $\mathcal{E}(K, S)$ . The domain can be assumed to be principal by Corollary 1.5. Each member of  $\mathcal{E}(K, S)$  has models  $E/\mathcal{O}_S$  with  $\Delta(E/\mathcal{O}_S) \in \mathcal{O}_S^*$  by Lemma 1.8. Together with Proposition 1.2 (iv) we see that the map

$$\delta : \mathcal{E}(K,S) \longrightarrow \mathcal{O}_S^*/\mathcal{O}_S^{*12}, \ E/\mathcal{O}_S \longmapsto \Delta(E/\mathcal{O}_S) \operatorname{mod}^{\times} \mathcal{O}_S^{*12}$$

is well-defined. The image is finite by Corollary 1.7. So it suffices to prove that for a given S-unit D there exist only finitely many elliptic curves

$$E/\mathcal{O}_S: Y^2 = X^3 - g_2 X - g_3$$

with  $\Delta(E/\mathcal{O}_S) = D$ . This follows immediately from the definition of the discriminant and the next lemma.

Lemma 1.10 With the above notations the diophantine equation

$$U^3 - 27V^2 = D$$

has only finitely many solutions u, v in  $\mathcal{O}_S$ .

#### **1.2.4 Basic References**

For an introduction to the classical theory of elliptic and modular functions we refer to [46]. All we need in I.1 can be found in the first chapters there. The omitted proofs of some basic results on elliptic curves over finite fields are contained in [41]. K-isomorphy of curves needs in general the finer scheme language. It will be necessarily used later. Our style of writing is a good preparation. The basic introduction is HARTSHORNE's book [27]. Proofs of the two basic finiteness theorems 1.4 and 1.6 can be found in [16].

Our proof of SHAFAREVIČ's Finiteness Theorem for elliptic curves is a detailed version of SERRE's proof in [69]. The theorem was announced by SHAFAREVIČ on the International Congress in Stockholm 1962, together with a far-reaching conjecture on algebraic curves over number fields (SHAFAREVIČ-conjecture) proved by FALTINGS in 1983 together with the MORDELL-conjecture as consequence. The diophantine equation in Lemma 1.10 can be solved effectively by methods of BAKER [4], see also SERRE's lectures [71]. Altogether one has an effective way for finding up to isomorphy all elliptic curves over a fixed number field with prescribed places of bad reduction. An algorithm has been established by TATE [88].

Recently ESTRADA-SARLABOUS, see Appendix I, found a way to transfer the methods and the effective result to PICARD curves

$$C: Y^3 = X^4 + G_2 X^2 + G_3 X + G_4$$

of genus 3. These curves play a central role in all the following chapters.

# 2 PICARD Curves

#### 2.1 The Moduli Space of PICARD Curves

**Definition 2.1** Let C' be a compact algebraic curve over  $\mathbb{C}$ . It is called a *PICARD* curve, if it is isomorphic to a plane projective curve  $C/\mathbb{C}$  of the following equation type:

$$C' \xrightarrow{\sim} C: WY^3 = \sum_{i=0}^4 G_i W^i X^{4-i}, \quad G_0 \neq 0$$
.

In affine coordinates the plane PICARD curve C is described by

$$C: Y^3 = G_0 X^4 + G_1 X^3 + G_2 X^2 + G_3 X + G_4$$

One has to add the point  $\infty = (0:0:1)$  in order to obtain the projective model from the affine one. By means of projective TSCHIRNHAUS transformation one can reduce the equations to the following *normal forms* 

$$WY^{3} = X^{4} + G_{2}W^{2}X^{2} + G_{3}W^{3}X + G_{4}W^{4} \text{ (projective)}, \qquad (2.1)$$
  

$$Y^{3} = X^{4} + G_{2}X^{2} + G_{3}X + G_{4} = p_{4}(X) \text{ (affine)}.$$

The singular locus of

$$C: F(W, X, Y) = WY^{3} - X^{4} - G_{2}W^{2}X^{2} - G_{3}W^{3}X - G_{4}W = 0$$

can be determined by solving the system of homogeneous equations

$$F = \partial F / \partial W = \partial F / \partial X = \partial F / \partial Y = 0 \quad . \tag{2.2}$$

The point  $\infty$  is a smooth one because  $\partial F/\partial W(0,0,1) = 1$ . So all singular points of C lie in the affine part. It is easy to see that only the intersection points with the line  $L_0: Y = 0$  are possible singularities. These are the points

$$R_i = (1:a_i:0) , \quad i = 1, \dots, 4 ,$$
 (2.3)

where  $a_1, \ldots, a_4$  are the zeros of  $p_4(X)$ . As in the case of elliptic curves we have a discriminant criterion:  $\Delta(C) \neq 0$ . The discriminant of C is defined as  $\Delta(C) = \prod_{i \neq j} (a_j - a_i)$ . In terms of the coefficients of F it is described by

$$\Delta(C) = 16G_2^4 \cdot G_4 - 128G_2^2 \cdot G_4^2 - 4G_2^3 \cdot G_3^2 + 144G_2G_3^2G_4 - 27G_3^4 + 256G_4^3$$

The picture (2.4) gives an imagination of (the real part of) a PICARD curve in normal form with exactly one (real) singularity.



The line  $L_{\infty}$  touches C at  $\infty$  of order (intersection number) 4.

We look now for the moduli space **M** of PICARD curves in the rough sense: to find a complex-algebraic structure on the set of isomorphy classes of these curves. More precisely, this will be done for smooth curves, and then we look for a natural compactification and interpretation:

$${\rm smooth \ PICARD \ curves}/{\rm Isom.} \iff \mathbf{M}^0 \subset \mathbf{M}$$

Set

$$\mathbb{C}_0^4 = \left\{ (z_1, \dots, z_4) \in \mathbb{C}^4 ; \ z_1 + \dots + z_4 = 0 \right\} \subset \mathbb{C}^4$$

and let  $\mathcal{C}$  be the following analytic family of PICARD curves:

$$\mathcal{C} = \left\{ ((w:x:y), (a_1, \dots, a_4)) \in \mathbb{P}^2(\mathbb{C}) \times \mathbb{C}_0^4; \ wy^3 = \prod_{i=1}^4 (x - a_i w) \right\}$$

Without change of the notation C we omit the special singular fibre with  $WY^3 = X^4$  over 0. All other PICARD curves are represented in C up to isomorphy. We have the following commutative diagrams

with obvious projections and identifications.

The symmetric group  $S_4$  acts on  $\mathbb{C}_0^4$  by permutation of coordinates. This action goes down to  $\mathbb{P}^2$ . The compact quotient surface  $\hat{\mathbf{M}} = \mathbb{P}^2/S_4$  is normal, algebraic and, by LÜROTH's theorem, rational.

We go back to  $\mathbb{P}^2 = \mathbb{P}_0^3 := \mathbb{P}\mathbb{C}_0^4$  writing the elements as homogeneous quadruples  $(a_1 : \ldots : a_4), a_1 + \ldots + a_4 = 0$ . Now we choose four points in general position. In order to be explicit we choose

$$P_1 = (-3:1:1:1) , P_2 = (1:-3:1:1) ,$$

$$P_3 = (1:1:-3:1) , P_4 = (1:1:1:-3) .$$
(2.6)

The line through  $P_i, P_j$  is denoted by  $L_{ij} = L_{ji}$ . These six lines form a reduced divisor

(2.8)

on  $\mathbb{P}^2$  as described in picture (2.8)



Obviously the action of the symmetric group  $S_4$  restricts to an action on  $\mathbb{IP}^2 \setminus \Delta$ . We set

$$\mathbf{M}^{0} := \left( \mathbb{P}^{2} \setminus \mathbb{A} \right) / S_{4} \subset \mathbf{M} := \mathbb{P}^{2} \setminus \{ P_{1}, \dots, P_{4} \} \subset \widehat{\mathbf{M}} := \mathbb{P}^{2} / S_{4} .$$

Two plane PICARD curves C, C' are called *linearly isomorphic*, if there is a  $G \in Gl_3(\mathbb{C})$  such that  $G^*C = C'$