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1 IntroductionLet E be an elliptic curve with complex multiplication �eld K. In [Hir] Hirze-bruch posed the following problem: Has the abelian surface E � E a modelwhich is Picard modular ? Starting from E �E he constructed for the �eld Kof Eisenstein numbers covering models of general type, which are compacti�-cations of ball quotient surfaces, see also [BHH], I.4.A. In [Ho] we proved thatthey are Picard modular. This means that the corresponding uniformizing balllattices are commensurable with the (full) Picard modular group U((2; 1);OK ).For other CM-�elds K the problem remained open.In section 1 we de�ne elliptic divisors D. For abelian surfaces B we givea simple counting criterion (see 2) in Theorem 2.5), which is necessary for thecomponents of such divisor to bound a (neat) open ball quotient model of B.The model is constructed by blowing up all intersection points ofD-components.With the method of cyclic coverings we prove that the criterion 2) is also suf-�cient (Theorem 2.5). For the proof in section 2 we combine the Miyaoka-Yaucriterion for neat ball quotient surfaces with the Cyclic Covering Theorem. Weuse the theory of orbital heights on orbital surfaces developed in [BSA]. Animportant role plays a quotient of two special orbital heights, which appears assingular mean value of elliptic divisors on abelian surfaces. From the construc-tion it is easy to see that all the coverings support (Zariski-locally) a �bration ofexplicit equation type Y n = f , where f = 0 is a (local) equation of the divisorDon B, over an elliptic base curve E � B. The �bres are n-cyclic covers of an el-liptic curve (with moving branch loci). That's what we call a cyclotome-elliptic�bration.For a neat 2-ball lattice � the invariant (Bergmann) metric on the ball Bgoes down to a complete K�ahler-Einstein metric on B=� with negative con-stant holomorphic sectional curvature. Such metrics on surfaces we call Picard-Einstein because Picard was the �rst who discovered the role of ball lattices(in connection with Picard-Fuchs systems of partial di�erential equations), see[Pic], [EPD], [Yo]. The cusp points (or their resolving cusp curves) appear asdegeneration locus of the Picard-Einstein metric.On this way we discover new "Picard-Einstein surfaces" by �nite quotientsand coverings of E�E, E elliptic CM-curve with Gauss number multiplication.In a forthcoming paper we will show that all these models are quotients ofPicard modular groups of the �eld of Gauss numbers, which can be determinedprecisely. Among them the K3 (Kummer) surface (E � E)= < �1 > is mostinteresting because it is closely connected with rational cuboid problems: Findrational cuboids with (some) rational diagonals. For details and new startswe refer to [NS], [BvG], [Ha]. There is a modular approach to the congruencenumber problem (dedicated to rational rectangular triangles with rational area)due to Tunnell [Tu], see also Koblitz0 book [Ko]. I think that a Picard modularapproach to the rational cuboid problems is now possible and could be fruitful.
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2 Numerical ball quotient criterion for abeliansurface modelsLet B be an abelian surface, D 2 Div+B a reduced curve on B and Y 0 = B0 �!B the blowing up of all intersection points of the irreducible components of D.The proper transform of D on Y 0 is denoted by D0. We look for curves D0 suchthat the open surface Y := Y 0 n suppD0 is a neat ball quotient surface B=�,where B = fz = (z1; z2) 2 C 2 ; jzj2 = jz1j2 + jz2j2 < 1gis the two-dimensional complex unit ball and� � AutholB = PU((2; 1); C ) =: Gis a neat ball lattice. A ball lattice is a discrete subgroup of AutholB withfundamental domain of �nite volume with respect to a G -invariant hermitianmetric on B . � is neat , i� the eigenvalues of each element  2 � generatea torsion free subgroup of C � . In this case the analytic quotient morphismB �! B=� is the universal covering of B=� and the Baily-Borel compacti�cationdB=� is a (projective) algebraic surface with �nitely many cusp singularitiescompactifying B=�. The cusp singularities are of simple elliptic type, whichmeans that they have an elliptic curve as singularity resolution. For details andproofs we refer to [BSA], Ch.IV.In order to get Y 0 as (smoothly compacti�ed) neat ball quotient surface, it isclear that the irreducible components of D have to be elliptic curves. Its properimage D0 on Y 0 must be a disjoint sum of elliptic curves. It follows that theintersections of two components of D have to be transversal. Fortunately, thiscondition is automatically satis�ed. Namely, assume that two di�erent ellipticcurves F , F 0 on B meet in P . Then the embeddings F; F 0 ,! B can be liftedvia universal coverings to embeddings of lines L; L0 ,! C 2 . So the tangent linesof F , F 0 at P , hence F , F 0 themselves, cross each other in P .Moreover, it follows that the abelian surface B splits up to isogeny into aproduct of two elliptic curves. Namely, the existence of only one elliptic curveon B induces such a splitting.Alltogether we found the following (necessary) basic conditions:(i) all irreducible components of D are elliptic curves;(ii) these components have (at most) transversal intersections with each other;(iii) the irreducible components of D0 have negative sel�ntersection;(iv) B is isogeneous to a product of two elliptic curves.On abelian surfaces B the third property is equivalent to(iii0) each irreducible component of D intersects properly with at least one othercomponent. 3



Namely, the adjunction formula�e(C) = (C � (C +KX));(1)C a smooth curve on a smooth (compact) surface X , KX a canonical divisor,e(C) = 2� 2g(C) the Euler number of C, yields0 = (E2) + (E � O) = (E2)(2)for elliptic curves E on any abelian surface B because the canonical class of Bis trivial. It becomes negative after blowing up some points of B if and only ifat least one of these points lies on E.De�nition 2.1 A reduced e�ective divisor D on an abelian surface B with onlyelliptic components is called elliptic divisor. It is called an intersecting ellipticdivisor if and only if (additionally) there are (at least two) components inter-secting each other properly.It is clear that the properties (i),(ii),(iii) � (iii0) are satis�ed for intersect-ing elliptic divisors. They could be used as de�nition. Namely, looking at thesimultaneous universal covering of the abelian surface B and the embedded el-liptic curve E ,! B via tangential spaces it is clear that E does not intersectanother elliptic curve E0 if and only if the a�ne tangential lines TE and T 0E atpoints on E or E0, respectively, are not parallel in the a�ne tangential plane TB .The intersection must be transversal, so property (ii) is satis�ed automatically.Moreover, if there are two components of D intersecting each other properly,then each third component has to intersect at least one of these two �rst com-ponents, because its universal covering line cannot be parallel to TE and T 0E atthe same time. So, also the properties (iii0) � (iii) are satis�ed. It follows alsothat intersecting elliptic divisors are connected.Let Y 0 = B0 �! Ŷ be the contraction of all components of D0. The imageD̂ of D0 is considered as set (or cycle) of cusp points . We consider (Y 0; D0),Y or (Ŷ ; D̂) as orbital surfaces in the sense of [BSA]. There we de�ned orbitalEuler and signature heights He(Y ), H� (Y ) of open orbital surfaces, namely:He(Y ) = e(Y 0) = Euler number of Y 0;H� (Y ) = �(Y 0)� 13(D02); �(Y 0) = signature of Y 0:We set Prop(Y ) = Prop(B;D) := He(Y )� 3H� (Y ):In [BSA], see Ch. IV, (4.8.1), (4.8.2) we proved4



Proposition 2.2 If Y is a ball quotient, then Prop(Y ) = 0. �De�nition 2.3 An intersecting elliptic divisor D on the surface B satisfyingProp(B;D) = 0 is called proportional.Let S = S(D) be the set of intersection points of all pairs of D- componentsand s := #S its number of elements. For abelian surfaces B we know thate(B) = 0 = 13((K2B)� 2e(B)) = �(B);hence e(Y 0) = He(Y ) = s; �(Y 0) = �s; P rop(Y ) = 4s+ (D02):(3)Going back to B we write D = NPi=1Di, Di irreducible, and setSi = S(Di) = SD(Di) := S \Di; si := #Si:Then we get with (1) for the proper transforms D0i on Y 0 the sel�ntersections(D02i ) = �si, hence(D02) =X(D02i ) = �X si; P rop(Y ) = 4s� (s1 + :::+ sN );(4)and theCorollary 2.4 If B is an abelian surface with intersecting elliptic divisor Dsuch that Y is a ball quotient, then4s = s1 + :::+ sN :(5) �The basic result of this paper is the followingTheorem 2.5 Let A be an abelian surface, C =PCj , an intersecting ellipticdivisor on A, s = #S(C), sj = #S(Cj) de�ned as above, A0 �! A the blowingup of A at all points of S(C), C 0 the proper transform of C and A0fin :=A0 n suppC 0. Then it holds that1) 4s >P sj .2) A0fin is a neat ball quotient surface (with smooth compacti�cation A0) ifand only if C is proportional, or, equivalently4s =X sj :5



3) If the properties of C in 2) are satis�ed, then A is isogeneous to the squareE �E of an elliptic curve E.We start the proof withProposition 2.6 Let �f : B �! A be an isogeny of abelian surfaces, C anintersecting elliptic divisor on A and D := �f�1(suppC) the preimage of thecurve C identi�ed with its reduced inverse image. Then D is an intersectingelliptic divisor on B. If C is proportional, then also D is.Proof. Let E be an elliptic curve on B. By the base change property for �etalmorphisms (see e.g. [Mil], I, Prop. 3.3) the restriction �f�1(E) �! E of �f is�etal, too. Especially, �f�1(E) is smooth, hence this preimage is a disjoint �niteunion of smooth irreducible curves. These curves have to be elliptic because thisis the only possibility of unrami�ed covers of elliptic curves by Hurwitz genusformula.We proved that property (i) lifts from C to D. The lift of the intersectionproperty (iii0) � (iii) to D is obvious.Now let � : X 0 �! A be the blowing up of S = S(C) and � : Y 0 �! Bthe blowing up of S(D) = �f�1(S) with proper preimages D0, C 0 of D or C,respectively. Contracting D0 and C 0 we get a commutative diagramB Y 0 Ŷ Y = Y 0 nD0A X 0 X̂ X = X 0 nC 0?�f � � -q̂?f 0 ?̂f� ?f� � -p̂ �(6)
with vertical Galois coverings of order d, say. Counting preimage points, itis easy to see, that together with �f also f 0 is unrami�ed. Namely, over theexceptional rational curve MP = ��1(P ), P 2 S, lie precisely d exceptionalrational curvesLQ, Q 2 �f�1(P ). Therefore eachR 2MP has at least d preimagepoints, each in one LQ. But it cannot have more, because its number is restrictedby the degree d of f 0. Therefore f 0 is unrami�ed everywhere. This propertyrestricts to f . This means that the orbital quotient surface Y=G, G = Ker �f ,coincides with X . Hence Y �! X is a �nite orbital morphism. By de�nition oforbital heights we get the relationsHe(Y ) = d �He(X) ; H� (Y ) = d �H� (X)(see [BSA], III, Prop. 3.7.6). Therefore the proportionality relation He(X) =3H� (X) lifts to He(Y ) = 3H� (Y ). �6



Corollary 2.7 If an abelian surface A has a proportional elliptic divisor C,then each abelian surface B isogeneous to A has in�nitely many of them. Moreprecisely, for arbitrary N 2 N there exist on B a proportional elliptic divisorwith more than N components.Proof. For n 2 N, n > 1, we consider the isogeny �n : A �! A multiplyingeach point with n. Let E be a component of C such that O = OA 2 E.There is a unique addition on E with zero point O. The embedding E ,! Ais a homomorphism, this means the addition on A restricts to the additionon E. The multiplication morphism with n on E is denoted by nE . SincenE : E �! E is an isogeny of degree n2 = #Ker nE , each point P 2 E hasprecisely n2 preimages on E but n4 preimages on A. Therefore ��1n (E) consistsof n2 disjoint components consisting of the translates E + t of E by n-divisionpoints t 2 A.More generally, we need not assume that E goes through O. Then for anypoint Q 2 E we have E = Q+E0 with an elliptic curve E0 through O. Countingpreimages it is easy to see now, that also ��1n (E) = ��1n (E0) + ��1n (Q) consistsof n2 components. Its number of components is greater than N , if pn > N .With notations and implication of Proposition 2.6 we know that �f�1(��1n (C))is a proportional elliptic divisisor on B. Obviously, its number of componentsis also greater than N . �Corollary 2.8 If an abelian surface B supports a proportional elliptic divisor,then it is isogeneous to E �E for a suitable elliptic curve E.Proof. With the assumption of the corrollary we know that B is isogeneousto E1 � E2 for two elliptic curves E1; E2 (see iv). There exists an isogenyE1 � E2 �! B. By Proposition 2.6 it su�ces to show that E1 � E2 has noproportional elliptic divisor, if E1 and E2 are not isogeneous. We assume thislatter property. Each elliptic curve F on E1 �E2 must be a �bre of one of thenatural projections of E1 �E2 onto E1 or E2, because F cannot be a coveringof E1 and E2 at the same time. Otherwise E1 and E2 would be isogeneous toF , hence to each other, in contradiction to our latter assumption. Thereforeeach elliptic divisor D 2 Div E1�E2 is a sum of horizontal �bres Hn �= E1 andvertical �bres Vm �= E2: D = MXm=1Vm + NXn=1Hn:We show that D is not proportional checking the proportionality condition (5)of Corollary 2.4. We haves = #S(D) =M �N; #S(Vm) = N; #S(Hn) =M;hence 4s = 4M �N 6=M �N +N �M =X#S(Vm) +X#S(Hn):7



�Remark 2.9 . We have the estimation2s � s1 + :::+ sN ; with s = s(D); sj = sj(D);for arbitrary intersecting elliptic divisors D = NPi=1Di on abelian surfaces B.Namely, on the right hand side we count each intersecting point of D at leasttwice because of (iii0). So a sum of �bres on E � E takes the minimal value 2of the (relative) singular mean value�(D) = ( NXi=1 si)=sof D. By the way we proved statement 3) of Theorem 2.5.3 Cyclic coverings of general typeWe want to prove that abelian surfaces with proportional elliptic divisors Dbecome neat ball quotient after blowing up S(D). For this purpose we look �rstfor �nite cyclic coverings of general type satisfying the (neat) proportionalitycondition He = 3H� . The strategy is given by the following two general results.Ball Uniformization Theorem 3.1 (see [HV], Th. 0.1 or [HPV], Introduc-tion). For an orbital surface X = (X;Z) the following conditions are equivalent:(i) X has a ball uniformization(ii) The proportionality conditions(Prop 2) He(X) = 3H� (X) > 0(Prop 1) he(C) = 2h�(C) < 0 for all orbital curves C � Zare satis�ed, and there exists a �nite uniformization Y of X, which is ofgeneral type. �Cyclic Cover Theorem 3.2 (cit. in [EPD], proof e.g. in [Liv]). Let V be asmooth algebraic variety, d > 2 a natural number, � a reduced e�ective divisoron V whose linear equivalence class �� is divisible by d in Pic V . Then:(a) There exist d-sheeted cyclic coverings V (��) �! V with branch locus �and totally branched there. 8



(b) These cyclic covers V (��) are in one-to-one correspondence with the "d-throots" (tensor language) �� of �� in Pic V , that means with all �� 2 Pic Vsatisfying d � �� = ��. �We start with an abelian surface B and a reduced divisor D =PDk on Bwith properties (i), (ii), (iii) � (iii0). As in the upper row of diagram (6) we blowup the intersection point set S = S(D). We use the notations there and assumethat the class of D is divisible by n > 1 in PicB. Then also the class of theproper image D0 =PD0k is n-divisible in Pic Y 0. By the Cyclic Cover Theoremthere exists a n-cyclic covering � 0 : W 0 �! Y 0 (totally) branched over D0. Thesurface W 0 is smooth because D0 is a disjoint sum by (ii). The normalization ofB in the function �eld C (W 0 ) along � 0 is denoted by �W . The components of thepreimage of D0k in W 0 are contractible because they have together with ��(Dk)negative sel�ntersection. The latter is equal to n � (D2k), which is negative by(iii). Alltogether we get a commutative diagram with vertical n-cyclic coverings�W W 0 Ŵ WB Y 0 Ŷ Y?�� � -?�0 ?̂� � ?�� � -q̂ �(7)
In contrast to W 0, the surfaces �W and Ŵ are not smooth. We use orbitalheights for calculating the Chern numbers of W 0. For this purpose we considerthe Galois quotient Y 0 ofW 0 as support of the orbital surfaceY0 = (Y 0;Z0) withorbital cycle Z0 = PD0k, where D0k is the orbital curve nD0k (without orbitalpoints, because the curves D0k do not intersect each other). Each componentD0k has a unique preimage D00k on W 0 with identical restriction � 0k : D00k $ D0kof � 0. According to [BSA], chapters II, III, we have the following orbital curveheights h� (D00k ) = (D002k ); he(D0k) = e(D0k) = e(Dk) = 0;h� (D0k) = 1n � (D02k ) = 1n (D2k � sk) = �skn ; sk = #S(Dk):and the orbital relation (degree formula)h� (D00k ) = (deg � 0k) � h� (D0k) = h� (D0k):9



because W 0 �! Y0 is a �nite orbital covering. It turns out that(D002k ) = �skn :The orbital heights of W 0, Y0 areHe(W 0) = e(W 0); H� (W 0) = �(W 0);He(Y0) = e(Y 0)�X(1� 1n )he(D0k) = e(Y 0) = s = #S;H� (Y0) = �(Y 0)� 13X(n� 1n )h� (D0k) = �s+ 13(1� 1n2 )X skwith relations He(W 0) = (deg � 0) �He(Y0) = n �He(Y0);H� (W 0) = (deg� 0) �H� (Y0) = n �H� (Y0):We assume n > 1. Using the Riemann-Roch formulas (K2W 0) = 2e(W 0)+3�(W 0)for the sel�ntersection of canonical class, �(W 0) = 112 (e(W 0) + (K 02W )) for thearithmetic genus, and s � �s+P sk by Remark 2.9 it follows thate(W 0) = n � e(Y 0) = n � s > 0;�(W 0) = �n � s+ 13(n� 1n)X sk;(K2W 0) = �n � s+ (n� 1n )X sk � n � s� 1nX sk�(W 0) = 112(n� 1n )X sk > 0:(8)Most interesting is the Chern quotientc21c2 (W 0) = (K2W 0)=e(W 0) = �1 + (1� 1n2 )1sX sk:(9)Denoting the singular mean value by� = �(D) := 1sX skwe can write e(W 0)=s = n;�(W 0)=s = �n+ 13(n� 1n)�(D);(K2W 0)=s = �n+ (n� 1n )�(D) � n� 2n;�(W 0)=s = 112(n� 1n )�(D);c21c2 (W 0) = �1 + (1� 1n2 )�(D):(10)
10



The estimation comes from �(D) � 2, see Remark 2.9. For proportional divisorsD we have �(D) = 4 by Corollary 2.4, hence3�(W 0)=s = n� 4n;(K2W 0)=s = 3n� 4n;3�(W 0)=s = n� 1n;c21c2 (W 0) = 3� 4n2 :(11)
Proposition 3.3 Let B be an abelian surface with intersecting elliptic divisorD, which is n-divisible in PicB, n > 1. Then each n-cyclic cover W 0 of Y 0totally branched over D0 is a smooth surface of general type. The contractionW 0 �! �W is the minimal singularity resolution. Moreover, W 0 is the uniqueminimal model in its birational equivalence class.Proof. We already mentioned that W 0 is smooth. Now we show that there isno exceptional curve of �rst kind (�1 line) on W 0. Assume there is one, denoteit by M . Then its � 0-image L is rational too. On the abelian surface B thereis no rational curve. Therefore L = LQ is the blowing up of a point Q 2 S(D).The ��-preimage P of Q is a unique point because Q is the intersection of somecomponents of D, say Q 2 Dk, and ���1(Dk) �! Dk is bijective. The point Pis the contraction of M =: MP . We have an orbital Galois covering M �! Lwith Galois group G := GP = Gal(W 0=Y 0) �= Z=nZ. The number of branchpoints coincides with the number t(Q) = tD(Q) � 2 of elliptic components ofD through Q. We calculate orbital heights ofL = (LQ; t(Q) smooth curve germs of weight n crossing LQ) :he(L) = e(L)� t(Q)(1� 1n ) = 2� t(Q)(1� 1n );h� (L) = (L2) = �1:Therefore e(M) = he(M) = n � he(L) = (2� t(Q))(n� 1) + 2;genus g(M) = (2� e(M))=2 = 12(t(Q)� 2)(n� 1);(M2) = h� (M) = n � h� (�L) = �n � �2:The curve M is rational if and only if t(Q) = 2, but (M2) < �1. Therefore Mis not exceptional of �rst kind. We proved that W 0 is minimal in its birationalclass, hence W 0 �! �W is the minimal singularity resolution.The Kodaira dimension {(Y 0) is not negative because B is abelian. Forany non-constant morphism X �! Y 0, X an irreducible compact complex al-gebraic surface, it holds that {(X) � {(Y 0). Since W 0 covers Y 0 �nitely, we11



get {(W 0) � 0. Surfaces with non-negative Kodaira dimension have a uniqueminimal model. This proves the last statement of the proposition.From (10) we know that the sel�ntersection of the canonical class of W 0 ispositive. But for minimal surfaces X of Kodaira dimension 0 and 1 one knowsthat (K2X) vanishes (see e.g. [BPV]). Therefore the Kodaira dimension of W 0is equal to 2. This means that W 0 is of general type. �Now let A be an abelian surface with proportional elliptic divisor C =PCj .It de�nes birational morphismsA X 0 X̂ X = X 0 n suppC 0� � -p̂ �as described in the bottom of Diagram (6) for B instead of A. Consider theisogeny �� = �n : A �! A of multiplication with n > 1 of degree n4. Followingthe proof of Corollary 2.7 we know that each component E = Q+E0 of C haspreimage ���1(E) = ���1(E0) + ���1(Q)consisting of n2 components, which are translations of each other. The corre-sponding sheaves on E are isomorphic (via the translations ). So all of themrepresent the same element in PicA consisting of isomorphy classes of invert-ible sheaves (line bundles). Therefore ���1(E) and also D = Dn := ���1(C)is n-divisible in PicA (even n2-divisible). Moreover, ���1(C) is an elliptic pro-portional divisor by Proposition 2.6. We use it for the construction of n-cycliccoverings as in Diagram (7) with (A;D) instead of (B;D). Together with Di-agram (7) we get the following tower of birational morphism triples (for each�xed n). �W W 0 Ŵ WA Y 0 Ŷ Y = Y 0 nD0A X 0 X̂ X = X 0 n C 0?�� � -?�0 ?̂� � ?�?�� � � -q̂?�0 ?̂�n� ?�� � -p̂ �(12)
Now we are well-prepared for theProof of 2.5 1). By the above diagrams - choose one for each natural number12



n > 1 - we dispose on a series of minimal surfaces W 0 = W 0n = W 0(�0n; �)of general type. The well-known Miyaoka-Yau Theorem says that the Chernquotient c21=c2 is not greater than 3 for smooth compact algebraic surfaces ofgeneral type. Combined with the quotient formula in (10) we getc21c2 (W 0n) = �1 + (1� 1n2 )�(D) � 3for all n. This is only possible if �(D) � 4. This relation is the same as �(C) � 4by the next proposition. The latter relation coincides with 1) of Theorem 2.5.Proposition 3.4 . The singular mean value of intersecting elliptic divisors onabelian surfaces is an isogeny invariant.This means that for isogenies �f : B �! A, intersecting elliptic divisors C onA, D = �f�1(C) considered as reduced intersecting elliptic divisor on A (seeProposition 2.6), the singular mean values �(C) and �(D) coincide.Proof. We use the notations of Diagram (6). From (4), (3) and the de�nitionof Prop(Y ) before follows that the mean value�(D) = �(D02)=s = (Prop(Y )� 4s)=s= (He(Y )� 3H� (Y )� 4He(Y ))=He(Y ) = �3(He(Y ) +H� (Y ))=He(Y )is a quotient of orbital heights. But f : Y �! X is a B -orbital unrami�ed �nitemorphism. For each orbital height H the degree formula H(Y ) = d � H(X),with d = deg f , holds. Therefore�(D) = �3(He(Y ) +H� (Y ))=He(Y ) = �3(He(X) +H� (X))=He(X) = �(C)�Corollary 3.5 . The Chern-quotients of the minimal surfaces W 0 = W 0n =W 0(�0n; �) of general type constructed in Diagram (12) approach the extremevalue 3 for n ! 1 if and only if the intersecting elliptic basic divisor C on Ais proportional.Proof. This is now an immediate consequence of the last formula of (10):c21c2 (W 0n) = �1 + (1� 1n2 )�(Dn) = �1 + (1� 1n2 )�(C):with limit �1 + �(C). �Proof of 2.5 2). One direction has already been proved before the statement 2),see Corollary 2.4. Now assume that C is a proportional divisor on the abeliansurface A. For an arbitrary �xed natural number n > 1 we construct diagram13



(12). The cyclic covering � : W �! Y is unrami�ed because we omittedthe branch locus (Y = Y 0 n suppD). We consider again � as morphism inthe category of open B -orbital surfaces because we omitted elliptic curves withnegative sel�ntersections. Together with C also D is proportional elliptic byProposition 2.6. So we have the relationProp(Y ) = He(Y )� 3H� (Y ) = 0by De�nition (2.3) and (4). Multiplication with n = deg � yieldsProp(W ) = n �He(Y )� 3n �H� (Y ) = He(W )� 3H� (W ) = 0:The theorem of Miyaoka-Kobayashi-Yau (MKY) for open surfaces (generalizingthe compact version, see e.g. [KoR]) says that an open surface Z with negativeelliptic curve compacti�cation Z 0 of general type satisfying Prop(Z) = 0 is aneat ball quotient. This theorem is now part of the most general Ball Uni-formization Theorem 3.1 (proved also by R. Kobayashi [KoR] in the case ofsurfaces of general type). The MKY-theorem is applicable to Z = W , becauseW 0 is of general type, see Proposition 3.3. Therefore W is a neat ball quotient,with Baily-Borel compacti�cation Ŵ .Both � and �n are unrami�ed coverings. ThereforeX has the same universalcovering as Y andW , namely the two ball B . It follows that Y and X themselvesare neat ball quotient surfaces. The proof of Theorem 2.5 is �nished. �4 Bisectional proportional elliptic divisorsIt is not easy to �nd proportional elliptic divisors on abelian surfaces. Theorem2.5, 3) and Corollary 2.7 reduce the existence problem to abelian biproductsurfaces E �E, E an arbitrary elliptic curve. The endomorphism algebra isEnd�E �E =Mat2(EndcircE) =Mat2(Q) or Mat2(K);K an imaginary quadratic number �eld. We concentrate our attention on thelatter (decomposed CM-) case, which happens i� E has complex multiplication.Then we dispose on the matrix ring Mat2(O) acting on E � E, EndE �= O,O an order of K, which is enough to produce a few special, but arithmeticallyimportant, examples.As in linear algebra the action of G = � � � � � 2 Mat2(O) can be describedby E �E 3 � PQ � 7! � � � � �� PQ � := � �P+�QP+�Q � = � �(P )+�(Q)(P )+�(Q) �G : E � E �! E � E is an isogeny i� detG = �� � � 6= 0. It is anautomorphism i� G 2 GL2 (O). The multiplicative semigroup of isogenies isdenoted by Isog E �E. We identifyEndE �E =Mat2(O) ; AutOE �E =: End�E �E = G l2 (O) (unit group):14



The isogenies G applied to �bres produce elliptic curves on E �E, e.g.E1(G) := G(E � O) = f� �PP � ; P 2 Eg;E2(G) := G(O �E) = f� �Q�Q � ; Q 2 EgTransposing columns we get the same class of elliptic curves on E �E throughO: (Isog E �E)(E �O) = (Isog E �E)(O �E):Identifying E with E �O the isogeny G induces an isogenyg : E $ E �O �! G(E �O); P 7! (P;O) 7! � �(P )(P ) �with kernelKer g = g�1(O �O) = E��tor \ E�tor = Ker � \Ker :(13)For each ideal I of O we set EI�tor := fT 2 E; IT = Og:Lemma 4.1 . For any G 2 Mat2(O) as above, the restriction g to E � O isan isomorphism onto G(E �O) i�(a) Ker � \Ker  = O:This condition is satis�ed if(b) I := O�+O = O:In the principal case O = OK , both properties (a) and (b) are equivalent.Proof. The �rst statement follows from (13). It is clear thatKer � \Ker  = EI�tor;(14)hence (a) is a consequence of (b).In any case we have E = E(C ) = C =a, a an ideal of O with[a : a]K := fc 2 K; ca � ag:The (natural) torsion points of E are represented by K, more precisely, Etor =K=a. In the principal case O is a Dedekind domain. Then we know for idealsI $ O that [a : I]K = a � I�1 % a;(15)hence there is an element c 2 K n a such that cI � a. The class c mod a isa non-trivial I-torsion point of E. By (14) condition (a) is not satis�ed. Weproved the implication (a) ) (b) in the principal case. �15



Let p1, p2 be the projections of E � E onto the �rst or second factor,respectively. By abuse of language, the curve C � E � E is called a hor-izontal (vertical) section i� p1 (p2) induces an isomorphism C  ! E. Itis called a bisection, i� C is simultaneously a horizontal and vertical section.The image curve g(E) = G(E � O) is a horizontal section i� the implication�(P ) = �(Q) ) (P ) = (Q) holds for all pairs P;Q 2 E. Now the �rst threestatements of the following corollary are immediately clear.Corollary 4.2 With the notations of the lemma it holds that:The image curve G(E � O) is a horizontal section i� Ker � � Ker . It isa vertical section i� Ker  � Ker �. The curve G(E � O) is a bisection i�EI�tor = Ker � = Ker . The morphism g is an isomorphism onto a bisectionif and only if � and  are units in O.Proof. We have only to check the last statement. The if-direction is trivial. To-gether with (a) and (13) it is easy to see now that the isomorphy and bisectionalassumptions are equivalent withO = Ker � \Ker  = Ker � = Ker :Therefore the E-endomorphisms � and  are invertible because they are alsosurjective. �We want to count intersection points of End(E�E)-induced elliptic curves.It is immediately clear that for G = � � � � �, G0 = � �0 �00 �0 � we have surjectivehomomorphisms KerE�E � � ��0 �0 � �! E1(G) \ E1(G0)KerE�E � � ��0 ��0 � �! E1(G) \ E2(G0)(16)with kernelsKer �\Ker �0\Ker \Ker 0 andKer �\Ker �0\Ker \Ker �0,respectively. For instance, the surjection in the �rst row sends � PQ � to � �(P )(P ) � =� �0(Q)0(Q) �.Lemma 4.3 . Assume that these kernels in (16) are �nite. The number ofintersection points are#(E1(G) \E1(G0)) = N(det � � �0 0 �)#(E1(G) \E2(G0)) = N(det � � �0 �0 �);where N = NK=Q denotes the absolute norm.16



Proof. Along the uniformizing exact sequence0 �! � �! C 2 �! E �E �! 0we lift, for instance, the curves E1(G), E2(G0) to the universally covering linesC 2 � L1(G) : Z1 � �Z2 = 0 or L2(G0) : �0Z1 � �Z2 = 0:(17)The number of intersection points of E1(G), E2(G0) coincides with the norm ofthe determinant of the coe�cient matrix of the system of two linear equations in(17). For this result we refer to [BHH], I.5.G (8), or originally, to [Ho], LemmaII.5. This proves the second equality of the lemma. The proof of the �rst is thesame. �Example 4.4 (Hirzebruch [Hir], see also [BHH], I.4.A). Let K = Q(�), � =e2�i=3 primitive third unit root, the �eld of Eisenstein numbers, E = C =OK andG = � 1 ��1 1 �. Then D = E � O + O � E + E1(G) + E2(G) is a proportionalelliptic divisor on E � E. After blowing up the zero point of E � E one gets aD- compacti�ed neat ball quotient surface.Proof. The elliptic curves E1(G), E2(G) are bisections by Corollary 4.2. There-fore they intersect each horizontal and vertical �bre in one point only. SincedetG is a unit, the curves E1(G), E2(G) have also only O = OE�E as intersec-tion point by Lemma 4.3. So D is an intersecting elliptic divisor withs = #S(D) = 1;s(E �O) = #SD(E �O) = s(O �E) = s(E1(G)) = s(E2(G)) = 1:The proportionality condition (4 � 1 = 1 + 1+ 1 + 1) is satis�ed. Now Theorem2.5, 2) yields the conclusion. �Fail Example 4.5 ([BHH], I.4.G,H). For the ring O = Z+ Zi of Gaussianintegers and the elliptic curve E = C =O the authors of [BHH] present on E�Ethe intersecting elliptic divisorD = E1(F ) +E2(F ) +E1(G) +E2(G) +E1(H) +E2(H)with F = � 0 1�i1 1 �, G = ( 1 11 i ), H = � 1 10 1+i �, E1(F ) = O �E, E1(H) = E �O,s(D) = 4;s(E1(F )) = s(E2(F )) = s(E1(G)) = s(E2(G)) = s(E1(H)) = s(E2(H)) = 2:The proportionality condition of Theorem 2.5 2) is not satis�ed:4 � 4 > 2 + 2 + 2 + 2 + 2 + 2:So the example fails to be a Picard modular (after blowing up intersectionpoints). The authors of [BHH] used this example for the construction of asmooth compact surface with c21 = 3c2 by means of a special Kummer coveringof small degree. Knowing proportionality relation 2) of Theorem 2.5 we are ableto construct a proportional elliptic divisor on this surface.17



Main Example 4.6 .Take the same abelian surface E � E as in the previous (fail) example. Thematrices G = � 1 �11 1 �, H = � i �i1 1 � de�ne four bisectional (see Corollary 4.2)elliptic curvesE1 := E1(G) ; E2 := E2(G) ; E3 := E1(H) ; E4 := E2(H)on E�E. With the formulas of Lemma 4.3 it is easy to calculate the numericalintersection matrix N (number of intersection points as entries) for these curves:N = 0BB@1 4 2 24 1 2 22 2 1 42 2 4 11CCA :For a matrix A 2Mat2(O), detA 6= 0, we set(E �E)A�tor := KerE�EA:Since the adjoint matrix A0 2Mat2(O) of A satis�es AA0 = A0A = (detA) ( 1 00 1 ),we have the inclusions(E �E)A�tor � (E �E)detA�tor = EdetA�tor �EdetA�torjTEN(detA)�tor �EN(detA)�tor = (E �E)N(detA)�tor;(18) EdetA�tor � EN(detA)�tor �= (Z=N(detA)Z)2:The latter relations transfer to our elliptic curves Ej , j = 1; 2; 3; 4. Restrictingdiagonal endomorphisms of E �E to Ej we getEj;��tor = Ej \ (E �E)��tor for all � 2 O:(19)For A = G or H we have jdetAj = 2, N(detA) = 4. Therefore the fourintersection points of E1; E2 or of E3; E4 coincide with the four 2-torsion pointsof these curves, respectively. For example, according to (16) we haveE1(G) \ E2(G) �= (E �E)G�tor � E2�tor �E2�tor = (E �E)2�tor:(The minus sign in the second column of G0 in (16) can be omitted if only2-torsion points appear in the kernel). Therefore, by (19),E1 \ E2 � (E �E)2�tor \ Ej = Ej;2�tor; j = 1; 2:The inclusion is the identity because the number of elements is 4 on both sides.To be more explicit we set Tmn := (Tm; Tn) 2 E � E with the vector(T0; T1; T2; T3) = (0; 12 ; 1 + i2 ; i2)modO18



of 2-torsion points of E and get(E �E)2�tor = fTmn; 0 6 m;n 6 3g;(E �E)(1+i)�tor = fO; T02; T20; T22g �= (Z=2Z)2;E1;2�tor = fO; T11; T22; T33g =< T11 > � < T33 >�= (Z=2Z)2:because E1 is the diagonal curve on E �E. We proved thatE1 \ E2 =< T11 > � < T33 >;E1;(1+i)�tor = E2;(1+i)�tor = fO; T22g =< T22 >�= Z=2Z;For further intersections one needs only to look at the inverses A�1 of matricesA constructed by pairs of two di�erent columns taken from G and H . Namely,the columns c of A�1 satisfy Ac 2 O�O, therefore cmodO 2 E = C =O belongsto (E � E)A�tor. This allows already to �ll the numerical intersection matrixN to get the following point intersection scheme P for E1; E2; E3; E4:P =  E1 <T11>�<T33> <T22> <T22><T11>�<T33> E2 <T22> <T22><T22> <T22> E3 <T13>�<T31><T22> <T22> <T13>�<T31> E4 !The elliptic divisor C := E1 + E2 + E3 +E4 is not proportional:S(C) = fO; T11; T22; T33; T13; T31g ; #S(Ek) = 4; k = 1; 2; 3; 4;4 �#S(C) = 4 � 6 > 4 + 4 + 4 + 4:But we can enrich it by adding some horizontal and vertical �bres. We takeH1 := E � T1; H3 := E � T3; V1 := T1 �E; V3 := T3 �Eand consider the elliptic divisorD := E1 +E2 +E3 +E4 +H1 +H3 + V1 + V3 = C + F(20)Since the elliptic curves Ek are bisections, they have only one intersection pointwith each �bre. The intersection indices are equal to 1. Identifying divisorswith supports we haveS(F ) = fT11; T33; T13; T31g = C \ F � S(C);hence S = S(D) = S(C); S(Ek) = SD(Ek) = S � (Ek); k = 1; 2; 3; 4;S(Hm) = SD(Hm) = SF (Hm) = fT1m;T3mg; m = 1; 3;S(Vm) = SD(Vm) = SF (Vm) = fTm1; Tm3g;m = 1; 3:Counting the intersection points of the components we get the proportionalityrelation 4 �#S = 4 � 6 = 4 + 4 + 4 + 4 + 2 + 2 + 2 + 2(21)we looked for.With Theorem 2.5 we get 19



Proposition 4.7 Blowing up E�E at S(D), E = C =(Z+Zi), D the intersect-ing elliptic divisor (20), we get a compacti�ed neat ball quotient surface (E�E)0.The compacti�cation divisor is the proper transform D0 of D on (E �E)0. �5 Explicit cyclotomic �brationsWe want to understand more explicitly our surface modelsW 0 as curve �brationsover elliptic curves. Since ball quotients are extreme from the metric (or othernumerical) view point one should expect that specializations of the curves over�nite �elds have also extreme properties, which are interesting in Coding Theory.We present one of the simplest explicit example starting from an elliptic curveover its own function �eld. It is then easy to generalize the method to othercases.Let k = C (x; y) be the function �eld of the elliptic curve E : Y 2 = X3 �Xand ~C = ~CC(x) the normalization of the projective plane elliptic curve C : T 2 =(U � x)(U + x)(U � 1)(U + 1) over the rational function �eld C (x). By basechange from C (x) to k we get the following Galois tower of curves over k:~Ck :V 2 = U3 � U; T 2 = (U � x)(U + x)(U � 1)(U + 1)jEk :V 2 = U3 � UjP1kwith (2 : 1)-Galois quotient morphisms (u; v; t) 7! (u; v) 7! u. The top curve~Ck is understood as normalization of the projective model of the space curvedescribed by the two a�ne equations above. One has only to desingularise thepoint at in�nity lying over 1E = (0 : 1 : 0). The rami�cation locus of ~Ck overEk consists of six points:Ram(~Ck=Ek) = f(x;�y; 0); (�x;�iy; 0); (�1; 0; 0)g;the branch locus on P1k isfe1; e2; e3; e4;h1; h3g = f(x; y); (�x; iy); (x;�y); (�x;�iy); (1; 0); (�1; 0)g:(22)By Hurwitz' formula we get the genusg(~Ck) = 1 + (g(Ek)� 1) + 6=2 = 4:The elliptic curve Ek=k is nothing else but the general �bre of the (vertical)projection E � E �! E onto the �rst component. Looking back to the mainexample, especially to (20), we see that the branch locus of ~Ck=Ek is the in-tersection (pull back) of the bisectional elliptic curves E1, E2, E3, E4 and the20



horizontal �bres H1, H3 with the general �bre Ek. Namely, the set of the fourbisections is the < ( 1 00 i ) >-orbit of the diagonal curve in E�E. Their equationson E � E are (u; v) = ((�1)kx; iky), k = 0; 1. On the other hand, the points(1; 0) and (�1; 0) are obviously the odd 2-torsion points on E or Ek.On the global surface E � E with general �bre Ek we add to the above sixsections the vertical �bres V1 and V3 to get the divisor D as in (20). The framedsurface (E �E; D) restricts to (Ek; e1 + e2 + e3 + e4 + h1 + h3) with the samedivisor as described in (22). The components of D are E �E- isomorphic witheach other. ThereforeD is 8-divisible in PicE�E, especially 2-divisible. By theCyclic Cover Theorem (3.2) we dispose of a global 2-cyclic covering diagram (7)with B = E�E. The framed 2-cyclic surface coverings (W;D)=(E�E;D) andalso (W 0; D0)=((E � E)0; D0) "restrict" to ~Ck=Ek over the general point Spec k;but W=E and also W 0=E "restrict" to ~Ck=k. We see that W 0=E is a genus 4�bration over the horizontal elliptic basic curve E : Y 2 = X3 �X . The �bresare the 2-cyclic coverings Cx;y of the vertical elliptic curve E : V 2 = U3 � Uwith moving branch locus described in (22).Proposition 5.1 . The surface W 0 supporting the cyclotomic genus-4 familyfCx;yg has a complete Picard-Einstein metric degenerating along D0. It is aminimal smooth surface of general type with Chern numbers�(W 0) = 0; e(W 0) = 12; (K2W 0) = 24; �(W 0) = 3:Proof. Since D is a proportional divisor on E � E by (21) we know fromthe Theorem 2.5 that Y = (E � E)0 n D0 is a neat ball quotient. Repeatingarguments, the unrami�ed covering W of Y , see (7), has the same universalcovering ball B as Y . For the calculation of Chern numbers we use (11) withs = #S(D) = 6 and � = 4 (proportionality). For the properties of minimalityand general type we use the followingCorollary 5.2 of Proposition 3.3 and Theorem 2.5.Let B be an abelian surface with proportional elliptic divisor D, which is n-divisible in PicB, n > 1. Then each n-cyclic cover W 0 of Y 0 totally branchedover D0 is a smoothly compacti�ed neat ball quotient surface of general type.The contraction W 0 �! �W is the minimal singularity resolution. Moreover,W 0 is the unique minimal model in its birational equivalence class. �Following this way and the proof of Theorem 2.5 one can construct furtherexplicit n-cyclotomic curve families over elliptic curves with Gau� or Eisen-stein complex multiplication supporting a complete Picard-Einstein metric. Theequations for the �bre curves are as explicit as the algebraic description of n-torsion points on the elliptic basic curve E. It is an open question to �nd such�bred Picard-Einstein models over other elliptic curves.21



6 Going down to rational and Kummer surfacesLet D0 be the proper transform of an intersecting elliptic B-divisor D along theblowing up � : Y 0 := B0 �! B of S(D), B an abelian surface. We look for�nite Galois quotients X 0 = Y 0=G of Y 0 = B0, which are ball quotients withcompacti�cation curve D0=G. This means that X := (Y 0 n D0)=G = Y=G =B=� for a suitable ball lattice � � U((2; 1); C). Obviously, G must be a �nitesubgroup of Authol(B;D) := fg 2 Authol(B); g(D) = Dg:Proposition 6.1 The surface X = Y=G is a ball quotient B=� if D is propor-tional.Proof. From Theorem 2.5 we know that Y is an open neat ball quotient B=�0 .The action of G on Y lifts along the universal covering B �! Y . This yields anexact sequence of group homomorphisms1 �! �0 := �1(Y ) �! � �! G �! 1;(23)with inclusion �0 � � without loss of generality. Therefore X = Y=G = B=� isa ball quotient. �We apply this proposition to our Main Example 4.6 on E�E, E = C =Z+Ziwith proportional elliptic divisor D described in (20). The bicyclic groupG :=< ( i 00 1 ) > � < ( 1 00 i ) >�= (Z=4Z)2 � AutE �Eacts transitively on the columns of� 1 �1 i �i1 1 1 1 �mod�O�de�ning C = E1 + E2 + E3 + E4 via column pairs. Therefore G acts also onS(C) = S(D), thereby transitively on its even part fO; T22g and on its odd partS(F ) = fT11; T13; T31; T33g. Moreover, the generators of GI := ( i 00 1 ) J := ( 1 00 i )send vertical and horizontal �bres to �bres of the same type. Therefore G actson the four �bres through horizontal and vertical pairs of the odd points, hencetransitively on fV1; V3g and on fH1; H3g. Alltogether we have an action of Gon D = C+F . Along � the action pulls back to (E�E)0, D0 and to the inverseimage ~D = D0 + L00 + L22 + L11 + L33 + L13 + L31; Lij := ��1(Tij) �= P1(24)of D with G-orbits G(E1) = fE1; E2; E3; E4g;G(H1) = fH1; H3g; G(V1) = fV1; V3gG(L00) = fL00g; G(L22) = fL22g;G(L11) = fL11; L33; L13; L31g:(25) 22



Corollary 6.2 . For each subgroup U of G =< I; J > the surface (E �E)0=Uis a compacti�ed ball quotient surface with cusp curve D0=U .Beside of interesting rational surface models among quotients of E � E bysubgroups of G there is an important case closely connected with RationalCuboid Problems, see [NS], [Ha], [BvG]. We take U =< �1 >=< (IJ)2 >to get a K3-quotient.Corollary 6.3 The Kummer surface �S := (E �E)= < �1 > has the compact-i�ed ball quotient model S0 = (E �E)0= < �1 > with cusp divisor�B01 = �D0 = �E01 + �E02 + �E03 + �E04 + �H 01 + �H 03 + �V 01 + �V 03being a disjoint sum of smooth rational curves�E01; �E02; �E03; �E04; �H 01; �H 03; �V 01 ; �V 03 ;which are the images of the D0-components along (E � E)0 �! S0. The cuspsingularities of the corresponding Baily-Borel model Ŝ = \B=�S are rational oftype (2; 2; 2; 2). The open orbital ball quotient onS = B=�S = (E �E)0 nD0)= < �1 >is S = B=�S = (S;B�) = (S;B�1 +B0)with open disconnected orbital 1-cycleB�1 = �L�00 + �L�11 + �L�22 + �L�33 + �L�13 + �L�31with smooth rational components all of weight 2, sel�ntersection �2, and with0-cycle B0 = �T02 + �T20consisting of two isolated cyclic surface singularities of type < 2; 1 >.Notations. The upper index � means that we omit cusp points lying on thecurve, and bar markes image curves along the < �1 >-quotient maps. Rationalcusp type (2; 2; 2; 2) means that the (rational) cusp curve is crossed by fourcurves of branch weight 2 and no other orbital curves, see [BSA], III.Proof. It is easy to verify that �S is a Kummer surface, whose minimal smoothmodel is K3. We refer to [Vi] or to [NS], [Ha], [BvG] for this simple fact.The action of �1 on E � E has precisely sixteen isolated �xed points, namely(E�E)2�tor = fTmn; 0 6 m;n 6 3g. The image points �Tmn are the singularitiesof �S, all of type < 2; 1 >. In order to get S0 we have to blow up six of them.Their preimages form a divisorB01 := �L000 + �L011 + �L022 + �L033 + �L013 + �L031;23



which is a disjoint sum of �2-lines. The reduced branch cycle of the covering(E�E)0 �! S0 is B0 = B01+B0, where B0 is the sum of 10 points �Tkl with doubleindex set complementary to the index set used for the B01-components. Since theaction of �1 on each elliptic curve Hk; Vk; Ek+1, 0 6 k 6 3, is not trivial, theirimages �Hk; �Vk; �Ek+1 on �S, hence also the proper transforms �H 0k; �V 0k ; �E0k+1, arerational (and smooth). From Proposition 4.7 and Corollary 6.2 we know thatY = (E � E)0 nD0 is a neat open ball quotient B=�Y . It follows immediatelythat S = S0 n �D0 is a ball quotient B=�S with exact sequence1 �! �Y �! �S �!< �1 >�= Z=2Z�! 1;(26)see Proposition 6.1 with S instead of X . Only the 2-torsion points T02 and T20survive after removing D0 from (E � E)0. Obviously, the rami�cation indicesthe B01-components are all equal to 2. Since B �! Y is unrami�ed, the rami�edcoverings B �! S and Y �! S have the same orbital cycle. So we get theorbital cycle B� as de�ned in the corollary. �7 The Kummer surface of rational cuboid prob-lem and other quotients are Picard modularIn a forthcoming paper we will show that the cyclotome-elliptic covers and theU -quotients, U �< I; J >, of the main example, especially the above orbitalKummer surface, are Picard modular. More precisely, the corresponding balllattices are well-determined congruence subgroups of � := SU((2; 1);Z+ Zi).Let � := 1 + i be the Gauss prime dividing 2. Consider the inclusion chain�(4) �! �(2�) �! �(2) �! �(�) �! �of principal congruence subgroups of �. The index[� : �(4)] = 14 � 48 � (1� 2�2) � (1� 0 � 2�3) = 3 � 212can be read o� from the general (2,1)-unitary index formula for natuaral prin-cipal congruence subgroups in [BSA], Proposition 5A.2.14. We re�ne the chainby the following diagram of inclusions:
24



�(4) �(4)
�(2�)

Z82 f �E�E �E�E�K3 f < I; J >�= Z24�(2) �22O f �(�)
� �

? -= ?Z52
? ?Z2
? ?<�1> -= ?? �����	 < �J2> @@@@@R<�I; �J> ?
?@@@@@RZ32 -Z2 -Z2 �����	Z2
? ?S3-=

(27)

At the arrows we wrote the corresponding factor groups. For instance, �=�(2)is the binary octahedron group 2O of order 48 de�ned as preimage of the octa-hedron group O along the classical group epimorphism SU(2) �! SO(3) withkernel < �1 >. This has been proved in [HPV], Proposition 8.3. In the samepaper, see (35) in section 8 there, we proved that �(2)=�(4) is a power of Z2,where Z2 is the cyclic group of order 2. Comparing indices we get �(2)=�(4)�= Z82 .The corresponding diagram of Galois coverings of ball quotient surfaces isthe following one:
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X 0�(4) X 0�(4) general typeX 0�(2�) general typeZ82 f (E �E)0 (E �E)0 abelianX 0K3 g < I; J >�= Z24F 0 X 0�(2) (P1 � P1)0 rational2O f (P2Apoll)0 rationalX 0� X 0� rational

? -= ?Z52
? ?Z2
? ?<�1> -= ?? �����+ < �J2> QQQQQs<�I; �J> ?-= ? QQQQQsZ32 -Z2 -Z2 �����+Z2
? ?S3-=

(28)

Except for the K3-surface X 0K3 we announced the rough Kodaira classi�cationtype of the surfaces of each line in the last column. For the non-general typeswe announce also the �ne classi�cations:E � E is the abelian surface of our main example with E �= C =Z+Zi, and(E �E)0 the blowing up of E �E at the six intersection points of eight ellipticcomponents of the divisor (20).P2Apoll denotes the projective plane with the Apollonius cycle consisting ofa plane quadric together with three tangent lines, and (P2Apoll)0 is the blowingup of P2 at the three tangent points, which are precisely the cusp points of theBaily-Borel compacti�cation of B=�(�), see [HPV] or [HV].On P1�P1 one �nds the three cusp points on the diagonal curve. They haveto be blown up to get the model (P1 � P1)0 in the diagram.The classi�cation of X 0�(2) is important because it is a Picard modular Thetasurface in the sense of van Geemen's construction in [vGm], which could notbe classi�ed there. It is understood now as a special degeneration of E7-del-Pezzo surfaces. In simpler words, we found the following construction. Take26



four points on P2 in general position. The con�guration of six lines through thepairs of the four points is known as complete quadrilateral. The quadrilateral,considered as plane curve, has seven singular points: four intersection pointsof three lines and three intersection points of precisely two lines of the con�g-uration. The blowing up of these seven points yield the smoothly compacti�edball quotient surface X 0�(2) of Diagram (28). The proper transforms of the sixlines have sel�ntersection �2 on X 0�(2). So they can be contracted to singularpoints. The arising surface X̂�(2) is the Baily-Borel compacti�cation of B=�(2)with these six cusp points.The link with Picard modular groups comes with the Apollonius model.This main point of proof is well prepared in [HPV] or [HV]. It needs also somee�ort to determine the factor groups in Diagram (27) precisely and the orbitalcycles with their weights. Then one compares with the quotients of (E � E)0and discovers coincidences. This will be done in a forthcoming paper dedicatedto Picard modular forms.References[BHH] Barthel, G., Hirzebruch, F., H�ofer, Th.: Geradenkon�gurationen undalgebraische Fl�achen, Aspects of Mathematics D 4, Vieweg, Braun-schweig -Wiesbaden, 1986[BPV] Barth, W., Peters, C., van de Ven, A.: Compact complex surfaces, Erg.d. Mathem., Springer, Berlin, 1984[BSA] Holzapfel, R.-P.: Ball and surface arithmetics, Aspects of MathematicsE 29, Vieweg, Braunschweig -Wiesbaden, 1998[BvG] Beukers, F., van Geemen, B.: Rational cuboids, Preprint, Utrecht, 1995[vGm] van Geemen, B.: Projective models of Picard modular varieties, Lect.Notes Math. 1515 (1991), 68 - 99[EPD] Holzapfel, R.-P.: Geometry and Arithmetic around Euler partial di�e-rential equations, Dt. Verlag d. Wiss., Berlin/Reidel Publ. Comp., Dor-drecht, 1986[Ha] Haberland, K.: Zur Arithmetik dreidimensionaler Orthoschemes,Preprint, Univ. Jena, 1999[Hir] Hirzebruch, F.: Chern numbers of algebraic surfaces - an example,Math. Ann. 266 (1984), 351 - 356[Ho] Holzapfel, R.-P.: Chern numbers of agebraic surfaces - Hirzebruch'sexamples are Picard modular surfaces, Math. Nachr. 126 (1986), 255-273 27
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