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Abstract

We define Picard-Einstein metrics on complex algebraic surfaces as Kähler-Einstein metrics with
negative constant sectional curvature pushed down from the complex unit ball allowing degenera-
tions along cycles. We demonstrate how the tool of orbital heights, especially the Proportionality
Theorem presented in [H98], works for detecting such orbital cycles on the projective plane. The
simplest cycle we found on this way is supported by a quadric and three tangent lines (Apollonius
configuration) with at most 3 cusp points sitting on the double points of the configuration. We
determine precisely the uniformizing ball lattices in the case of 3, 2, 1 or 0 cusp(s) respectively. The
corresponding orbital planes are (leveled) Shimura surfaces corresponding to Jacobian varieties of
certain families of plane genus 3, 6, 5 or 13 genus respectively. We present many examples of plane
orbital surfaces with quadrics, and determine for them precisely the uniformizing ball lattices. By
the way we check that some of them are Galois quotients of celebrated 27 orbital planes with line
arrangements occurring in the PTDM-list (Picard-Terada-Mostow-Deligne) which we will call also
BHH-list (Barthel-Hirzebruch-Höfer) because it is most convenient to get it from [BHH]. The others
are quotients of Mostow’s [M2] half-integral arrangements. Proofs are based on the Proportionality
Theorem and classification results for hermitian lattices and algebraic surfaces.
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Introduction

The main purpose of this article is to show that the world of complex algebraic surfaces is Picard-Einstein
with a universal degeneration lifted finitely from a quadric and three tangents on the complex projective
plane. The three tangent points are “points at infinity” (cusp points) from the non-euclidean metric
viewpoint. We call a hermitian metric on a smooth complex surface X̊ Picard-Einstein (in a wide sense),
if it is Kähler-Einstein with negative constant sectional curvature. If, moreover, X̊ is a Zariski open
part of an algebraic surface X, then one says that X is Picard-Einstein (with Picard- Einstein metric)
degenerating (at most) along X \ X̊. The Bergman metric on the two-dimensional complex unit ball B
is Picard-Einstein, see [BHH], Appendix B, for a short approach. For a ball lattice Γ ⊂ Authol B the
(quasiprojective) quotient surface X = XΓ = B/Γ (also any compactification X̂ of X) is Picard-Einstein
degenerating along the branch locus of the canonical quotient map p = pΓ : B −→ B/Γ (and along
the compactification cycle). The Picard-Einstein property lifts to each finite cover Ŷ of X̂ degenerating
(at most) along the preimages of branch loci of pΓ and Ŷ −→ X̂. We call Ŷ Picard-Einstein, if it is
finitely lifted (that means via finite covering) from a ball quotient surface B/Γ such that the Baily-Borel
compactification B̂/Γ of B/Γ is the complex projective plane P2. If one finds a ball lattice with this
property, then each complex projective surface is Picard-Einstein in the narrow sense because each such
surface is a finite covering of P2, e.g. via general projections.

The first proof for the fact that P2 is Picard-Einstein (degenerating along six lines) can be found in
[H86]. There we used the Picard modular group of Eisenstein numbers. The main result of this paper
is to show that P2 is Picard-Einstein degenerating along the Apollonius configuration (Apoll-3) with
precisely 3 cusp points, see theorem 9.1. The corresponding group Γ(1 + i) is the congruence sublattice
of Γ := SU(diag(1, 1,−1),O), O = Z+ Zi, i =

√−1, belonging to the ideal O(1 + i). This is a Picard
modular group of Gauß numbers.

Some papers of other authors have to be mentioned which come - with other methods -already near
to this result, or present useful preparations: Terada [T], Deligne & Mostow [DM1, DM2], Matsumoto
[Mat], van Geemen [vGm], Shvartsman [Sv1], [Sv2], Hashimoto [Has].

The most natural way for finding a configuration (reduced cycle Z) on an orbiface (two-dimensional
orbifold), which could be the degenerate locus of a Picard-Einstein metrics has been described in [H98].
Beside of quotient singularities we allow also cusp singularities on the surface. The irreducible com-
ponents of the configuration (points and irreducible curves) are endowed with natural numbers or ∞
(weights) in an admissible manner. Then one gets an orbital cycle. The surface X together with the
orbital cycle Z is called an orbital surface. The orbital surface germs around points are irreducible
components of the orbital cycle are called orbital points or orbital curves, respectively. Points or curves
with weight ∞ are called cusp points or cusp curves, respectively. They form a subcycle Z∞ of Z whose
support is denoted by X∞. The finitely weighted points are quotient (triple) points. For details we refer
to [H98], where we corresponded rational numbers to our orbital objects called orbital heights. The
orbital surface heights (global heights H) generalize volumes of Γ- fundamental domains on B of arbi-
trary ball lattices Γ. The orbital curve heights (local heights h) do the same for the complex unit disc
D and D-lattice groups. Euler form and signature form define on this way two different orbital heights
He, Hτ and he, hτ called Euler or signature heights, respectively. A finite uniformization Y −→ X
of an orbital surface X = (X,Z) is a finite Galois covering Y −→ X such that Y is smooth (outside
cusp points) and the weights of the components of Z coincide with corresponding ramification indices.
A ball uniformization of X is a (locally finite) infinite Galois covering (quotient map by a ball lattice)
B −→ Xf := X \X∞ again with weights equal to corresponding ramification indices. We announce the
following

Theorem 0.1. For an orbital surface X = (X,Z) the following conditions are equivalent:

(i) X has a ball uniformization

(ii) The proportionality conditions

(Prop 2) He(X) = 3Hτ (X) > 0

(Prop 1) he(C) = 2hτ (C) < 0 for all orbital curves C ⊂ Z

are satisfied, and there exists a finite uniformization Y of X, which is of general type.
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The direction (i) ⇒ (ii) has been proved in [H98], see Proportionality Theorem IV.9.2. Notice that
our hτ is 3 times hτ of [H98]. The other direction follows from the degree homogenity of the global
heights and a well-known theorem of R.Kobayashi-Miyaoka-Yau applied to Y . Namely, it is easy to see
that the (Prop 2)-condition lifts to the logarithmic Chern number condition c̄2

1 = 3c̄2 for Y . ¤

In section 2 we use the explicit orbital height machine for detecting suitable weights for points
and curves on the Apollonius configuration on P2 such that the corresponding orbital surface satisfies
the proportionality conditions. This has been done for demonstrating and understanding a general
approach to detect Picard-Einstein metrics on surfaces. Any orbital configuration (X, Z) defines a
system Dioph(X, Z) of diophantine equations. It comes out from a system of a quadratic and some
linear equations with rational coefficients closely related with (Prop 2) or (Prop 1), respectively, for
which we have to determine inverse of natural numbers as solutions (the inverse of the weights we look
for). There are at most finitely many solutions, see [H98], IV.10.

In section 3 we discus the weights obtained in 2. This is a connection between classical approach
and the proportionality technic. Then we give generators of the modular group and prepare the result
for the second part of the paper.

In the next section we transform the detected weights to seven properties (i), . . . , (vii) of a uniformiz-
ing ball lattice Γ′ we look for using the Proportionality Theorem via the system Dioph(X,Z) again,
this time in converse direction: We know the weights but the data (Chern numbers, selfintersections)
of X, Z are unknown. With the seven postulated properties we are able to determine these data and
to classify surface and curves to get B̂/Γ′ = P2 and the Apollonius configuration back. In the sections
9,10,11 we prove that the congruence lattice Γ(1 + i) has all the seven properties.

The second author wrote a detecting algorithm on MAPLE based on constructive proof of the
Finiteness Theorem in [H98]. It proves that there are precisely 4 possibilities (Apoll-k), k=0,1,2,3
number of cusp points, of Picard-Einstein metrics on P2 degenerated along Apollonius configuration.
Here we present another proof which is more analytic. We add some examples with two quadrics
and some lines, where we used a MAPLE programm from the first author which is able to check the
proportionality conditions for any orbital surface.

Acknowledgement. We have to thank A.Piñeiro for his contribution to the 5-th section.
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Part I

Proportionality and Monodromy

1 The basic orbital surface: Plane with Apollonius cycle

We consider an orbital surface

(1) X̂ = (X̂; Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3)

with smooth compact complex algebraic surface X̂ supporting the orbital cycle

(2) Z(X̂) = Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3,

which consists of four orbital curves Ĉj , j = 0, 1, 2, 3, on X̂ with weights vj , three (finite) orbital
abelian points Pj , j = 1, 2, 3, of type C2/Zvs

×Zvt
where Zvs

×Zvt
⊂ Gl2(C) denotes the abelian group

generated by 2 opposite reflections of orders vs, vt, and K1,K2,K3 are precisely the special points (cusp
or quotient). For the surface X̂ and the reduced cycle

(3) Z(X̂) = Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3

we claim the following conditions:

(i) The surface X̂ is the projective plane P2

(ii) a) Ĉ0 is a quadric on P2;

b) Ĉ1, Ĉ2, Ĉ3 are projective lines on P2;

c) P1, P2, P3 are the three different intersection points of these lines;

d) Ĉj is the tangent line of Ĉ0 at Kj , j = 1, 2, 3;

e) The configuration divisor Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 is symmetric. This means that there is an
effective action of the symmetric group S3 on P2 preserving Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3.

Definition 1.1. If these conditions are satisfied we call Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 a plane Apollonius config-
uration or Apollonius configuration on P2, the cycle Z(X̂) a reduced plane Apollonius cycle and each
effective cycle with this support a plane Apollonius cycle.

The properties a),b),c),d) mean that the Apollonius configuration on P2 consists of a plane quadric and
three different tangent lines of it. We will see below that e) is automatically satisfied with a unique S3-
action. The following graphic describes the corresponding configuration together with three additional
lines Lj joining Pj and Kj . For the rest of this section we work on X̂ = P2 and omit the hats over Cj

(see Figure 1).
Without loss of generality we can chose the S3-symmetric

Normalized Model 1.2.

C0 : (X + Y − Z)2 − 4XY = X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = 0;

C1 : Y = 0 C2 : Z = 0 C3 : X = 0 ,
P1 = (0 : 1 : 0) P2 = (0 : 0 : 1) P3 = (1 : 0 : 0) ;
K1 = (1 : 0 : 1) K2 = (1 : 1 : 0) K3 = (0 : 1 : 1) ;

L1 : X = Z L2 : X = Y L3 : Y = Z .

By elementary projective geometry the following facts are easy to check.

Proposition 1.3. Up to PGl3-equivalence the Apollonius configuration is uniquely determined. All
Apollonius configurations are S3-symmetric.

Corollary 1.4. The action of the symmetric group S3 on P2 preserving the configuration C0 + C1 +
C2 + C3 is unique. It is determined by extending permutations of points π : Ki 7→ Kπ(i), Pi 7→ Pπ(i),
i = 1, 2, 3, π ∈ S3, to Π ∈ AutP2 = PGl3(C). Especially for the normalized model 1.2 the group S3 acts
by permutation of canonical projective coordinates (x : y : z) on P2.
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P2 P3

P1

K1

K2K3

C1

C2C3

C0

L1

L2L3

P2

Figure 1: divisor C0 + C1 + C2 + C3

Remark 1.5. The lines L1, L2, L3 defined in (1.4) have a common point.

Lemma 1.6. For three projective lines C1, C2, C3 on P2 intersecting each other in different points and
for a given subgroup Σ3

∼= S3 of PGl3 permuting them there is precisely one quadric C0 with tangents
C1, C2, C3. For the canonical coordinate axes X = 0, Y = 0, Z = 0 of P2 the corresponding quadric (see
1.2, normalized model) has equation

X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = (X + Y − Z)2 − 4XY = 0.

Definition 1.7. An Apollonius cycle on a smooth compact complex algebraic surface Y is a cycle

Z = v0L0 + v1L1 + v2L2 + v3L3 + P1 + P2 + P3 + K1 + K2 + K3,

where the vi’s are positive integers, P1, P2, P3,K1,K2, K3 are points on Y , and the Li’s are smooth
complete algebraic curves on Y with the following intersection behaviour:

L0 · Lj = 2Kj for j = 1, 2, 3; Li · Lj = Pk for {i, j, k} = {1, 2, 3}.
The supporting reduced curve L0+L1+L3+L3 is called an Apollonius configuration on Y. The Apollonius
cycle (configuration) is called symmetric, iff there is an algebraic S3-action on Y , which preserves the
cycle Z permuting effectively its components Ĉj, Pj, Kj, j = 1, 2, 3, respectively.

Remark 1.8. Obviously, v1 = v2 = v3 holds in the symmetric case. If Y is the projective plane, then
the Apollonius configuration is automatically of the (symmetric) plane Apollonius cycle consisting of a
quadric and three tangent lines as defined in 1.1 .

2 Proportionality

Turn back now to the more precise notations of 1.1 not assuming in this section the symmetry condition
(ii) e). We blow up each of the the points Kj twice such that the proper transforms of Ĉi for i =
1, 2, 3 on the resulting surface X̃ do not intersect the proper transform of Ĉ0. The exceptional divisor
E(X̃ −→ X̂) on X̃ consists of three connected components. Each of them is a pair of transversally
crossing smooth rational curves with selfintersection -1 or -2, respectively. Then we contract the three
-2-curves to get a surface X ′ with three quotient singularities of type C2/± ( 1 0

0 1 ) lying on exceptional
curves E1, E2, E3 ⊂ X ′. On this way we get an orbital birational morphism X′ −→ X̂ being isomorphic
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E1
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E2

u

E3

P2 P3

P1

C′1

C′2C′3

C′0

P2

Figure 2: • singularity of type 〈2, 1〉

outside X ′
∞ = E1 + E2 + E3 and X̂∞ = K1 + K2 + K3. The proper transforms of the Ĉj are denoted

by C ′j , j = 0, 1, 2, 3, respectively. On this way we get a complete orbital surface

X′ = (X ′; C′
0 + C′

1 + C′
2 + C′

3 + P1 + P2 + P3 + E1 + E2 + E3)

called the canonical locally abelian model of X̂. The finite part supported by X = X ′
f = X ′\X ′

∞ is the
open orbital surface

X = (X; C0 + C1 + C2 + C3 + P1 + P2 + P3)

with supporting non-compact curves Cj = C ′jf = C ′j\X ′
∞. The orbital cycle Z(X′) is described in the

Figure 2. The open orbital curves can be written as

C0 = v0C0, C1 = (v1C1; P2 + P3), C2 = (v2C2; P1 + P3), C3 = (v3C3; P1 + P2) .

The corresponding atomic graphs of the four orbital curves and the three exceptional curves look like
Figure 3. The molecular graph of the whole orbital cycle is the Figure 4.

v
-2

v0

-1

k3

f

f
v3

〈2, 1〉-1

k2
f

f

v2

〈2, 1〉

C0 :

-1
k1 ff

v1

〈2, 1〉

v
-1

vi

f
vjf

vk

C1, C2, C3 :

-1
ki ff

v0

〈2, 1〉
〈2, 1〉

f

f

f1

v
-1

ki

vi

v0

E1,E2, E3:

Figure 3: atomic graphs of C0, C1, C2, C3, E1, E2,E3

In [H98], IV, Theorem 4.9.2, we proved that there are rather strong proportionality conditions for
an orbital surface to be an orbital ball quotient. For this purpose we defined orbital heights for orbital
curves and surfaces, which are rational numbers. First one has to draw the graph of an orbital curve
Ĉ on an arbitrary B−orbital surface X̂ (B−orbital means that only ball cusp singularities are allowed
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Figure 4: molecular graph of Apoll-3
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Q
Q

Q
Q
QQk

f

Q
Q
Q
Q
QQs

〈dj , ej〉
�
〈dk, ek〉

vk

Figure 5:

“at infinity”). On the open “finite” part X of X̂ at most quotient singularities are admitted. In our
examples cusp and triple (fraction) singularities are possible. These singularities are classified in [H98],
III, Definition 3.5.6 and Corollary 3.5.9. We denote the cusp and triple singularities with squares and
triangles respectively. In the following shortly special point is cusp or triple singularity. In our examples
K1,K2,K3 are special points with weights k1, k2, k3 respectively. The special points on the Figure 3 are
cusps (squares), but every square can also be a triangle.

The (atomic) graph of the orbital curve Ĉ = (vĈ;
∑

Pi +
∑

Kj) looks star-like – Figure 5. The
center represents the curve Ĉ weighted with v ∈ N+ and s is the selfintersection number (C ′2) on the
minimal singularity resolution X̃ −→ X ′ of the canonical locally abelian resolution X ′ −→ X̂, which
replaces each special point K by an irreducible curve EK (finite quotient of an elliptic curve) supporting
(at most 4) cyclic surface singularities.

The proper transform of Ĉ on X ′ or X̃ is denoted by C ′. The arrows to small circles represent cyclic
surface singularities Pi of type 〈di, ei〉 of X ′ lying on C ′ and the circle itself represents the curve germ

of weight vi crossing C ′ at Pi. The abelian point Pi :
〈di,ei〉◦−→◦
v vi

consist of the crossing curve germs of C,

Ci with weights v, vi, respectively. The small boxes represent cusp points lying on Ĉ, and the arrow to
the box represent the intersection point of EK and C ′ on X ′ being a cyclic singularity of type 〈dj , ej〉
isomorphic, by definition, to the singularity of C2/〈

(
ζ 0
0 ζe

)
〉, where ζ denotes a primitive d-th unit root.

Similarly the triangle represent triple points with weight vk and the arrow to the triangle represent the
intersection point of EK and C ′ on X ′ being a cyclic singularity of type 〈dk, ek〉. The weight t at the box
or triangle is the selfintersection of (the proper transform of) EK on X̃. We omit the arrow orientation
and 〈 , 〉, if 〈di, ei〉, 〈dj , ej〉 or 〈dk, ek〉 = 〈1, 0〉. This means that the corresponding intersection point is
non-singular. The arrow orientation is also omitted, if the singularity of type 〈d, e〉 is symmetric. This
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means that its minimal resolution (linear tree of smooth rational curve with selfintersection numbers
read off from the continued fraction of d

e ) is symmetric. Examples are given in Figure 3. For more
details we refer to [H98]. There we defined (see IV, Definition 4.7.3 and restrict to our situation) the
Euler height of C by

(4) he(C) = e(C ′)−
∑

(1− 1
vidi

)−#C ′∞ −
∑

(1− 1
vkdk

),

and the signature (or selfintersection) height

(5) hτ (C) =
1
v

[
(C ′2) +

∑ ei

di
+

∑ ej

dj

]
+

∑[ ek

v dk
+

1
dkvk

]

(which is 3τ f (Ĉ) in the notations of [H98]). The first sum runs over all abelian points Pi on C, the
second sum in (5) over all arrows 〈dj ,ej〉◦−→¦ joining the center with a cusp box and the last sum in (4-5)
over all triple points (all arrows 〈dk,ek〉

◦−→C joining the center with a triple triangle), see picture 5.
On this way we obtain for each Apoll-k separate system of diophantine equations. Effective Finiteness

Theorem 4.10.3 [H98] say that there are only fininitely many possibilities of weighting the B–orbital
surface X̂. We prefer to consider all Apoll-k together and have only one system of diophantine equations.
Any solution of this system is a candidate for appropriate weight. For this purpose we introduce
“universal weights”:

vk :=





vi – orbital curve
∞ – cusp point
−vk – triple point (negative weight) .

With the new universal weights we use also new Euler height (vk < 0)

(6) ue(C) = e(C ′)−
∑

(1− 1
vidi

)−
∑

(1− 1
∞ dj

)−
∑

(1− 1
vkdk

),

and the signature (or selfintersection) height

(7) uτ (C) =
1
v

[
(C ′2) +

∑ ei

di
+

∑ ej

dj
+

∑ ek

dk

]
.

Obviously the connection between two heights is:

(8) he(C) = ue(C) + 2
∑
vk<0

1
|vk|dk

, hτ (C) = uτ (C) +
∑
vk<0

1
|vk|dk

.

For a special point K we define Euler and signature heights ue(EK) and uτ (EK) using the exceptional
curve EK on X ′.

Remark 2.1. It is easy to redefine cusp and triple points:
if ue(EK) = 0 and limvj→∞ uτ (EK)vj < 0, then K is cusp point;

if exist vk < 0 such that ue(EK) = 2uτ (EK) > 0 then K is triple point.

For an orbital curve C using Proportionality [H98], IV, Theorem 4.9.2 we have he(C) = 2hτ (C).
Applying (8) and Remark 2.1 we obtain

(9) ue(C) = 2uτ (C), C ∈ {C0,C1,C2,C3, E1,E2,E3} .

This is a system of seven diophantine equations connected with Apollonius configuration. In terms of
[H98] and [HPV] these equations are Prop 1, Prop 0, Prop ∞.

Let as look at the Figure 3 and apply (9)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 : 2−
(
1− 1

k1

)
−

(
1− 1

k2

)
−

(
1− 1

k3

)
= 2

−2
v0

C1 : 2−
(
1− 1

v2

)
−

(
1− 1

v3

)
−

(
1− 1

k1

)
= 2

−1
v1

E1 : 2−
(
1− 1

v0

)
−

(
1− 1

v1

)
−

(
1− 1

2

)
= 2

−1 + 1
2

k1
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One write the equations for C2,C3, E2,E3 after cyclic permutation 1 → 2 → 3. The last system is
equivalent to

(10)

∣∣∣∣∣∣∣∣∣∣∣∣

4
v0

+
1
k1

+
1
k2

+
1
k3

= 1

1
vi

+
1
ki

+
1
v1

+
1
v2

+
1
v3

= 1, i = 1, 2, 3

1
v0

+
1
vi

+
1
ki

=
1
2
, i = 1, 2, 3.

We are looking for solutions of this system in ∞ ∪ Z\0. If v1, v2, v3 are known then v0, k1, k2, k3

are determined uniquely. The symmetric group S3 acts on v1, v2, v3 and after lifting on all variables
v0, v1, v2, v3, k1, k2, k3. Up to S3 symmetry (v1 ≤ v2 ≤ v3) the system (10) has 58 solutions (Table 1)
and 41 from them are hyperbolic1.

v0 v1 v2 v3 k1 k2 k3 He

1 18 -18 2 9 2 -18 3 13/216
2 4 -12 2 3 3 -4 -12 1/24
3 12 -12 2 6 2 -12 4 7/96
4 12 -12 3 3 2 12 12 7/48
5 10 -10 2 5 2 -10 5 3/40
6 8 -8 2 4 2 -8 8 9/128
7 -3 -6 -6 2 1 1 3 ×
8 3 -6 2 2 3 -3 -3 ¤
9 6 -6 2 3 2 -6 ∞ 1/24
10 4 -4 2 2 2 -4 -4 ¤
11 -4 -4 4 4 1 2 2 ¤
12 -6 -3 -3 1 1 1 -3 ×
13 -6 -3 2 6 1 6 2 ¤
14 -6 -3 3 3 1 3 3 ¤
15 ∞ -2 1 ∞ 1 -2 2 ×
16 ∞ -2 2 2 1 ∞ ∞ ×
17 2 1 d -d -1 -d d ¤
18 1 2 2 2 -1 -1 -1 ¤
19 2 2 2 ∞ -2 -2 ∞ ×
20 2 2 3 6 -2 -3 -6 ¤
21 3 2 3 ∞ -3 -6 6 1/24
22 2 2 4 4 -2 -4 -4 ¤
23 3 2 4 12 -3 -12 12 7/96
24 4 2 4 ∞ -4 ∞ 4 3/32
25 4 2 5 20 -4 20 5 99/800
26 3 2 6 6 -3 ∞ ∞ 1/12
27 4 2 6 12 -4 12 6 13/96
28 6 2 6 ∞ -6 6 3 1/8
29 4 2 8 8 -4 8 8 9/64

v0 v1 v2 v3 k1 k2 k3 He

30 5 2 10 10 -5 5 5 3/20
31 6 2 12 12 -6 4 4 7/48
32 9 2 18 18 -9 3 3 13/108
33 ∞ 2 ∞ ∞ ∞ 2 2 ×
34 2 3 3 3 -3 -3 -3 ¤
35 3 3 3 6 -6 -6 ∞ 1/12
36 4 3 3 12 -12 -12 6 7/48
37 6 3 3 ∞ ∞ ∞ 3 1/6
38 3 3 4 4 -6 -12 -12 1/12
39 4 3 4 6 -12 ∞ 12 17/96
40 6 3 4 12 ∞ 12 4 11/48
41 8 3 4 24 24 8 3 11/48
42 10 3 5 15 15 5 3 37/150
43 6 3 6 6 ∞ 6 6 1/4
44 12 3 6 12 12 4 3 1/4
45 ∞ 3 6 ∞ 6 3 2 1/6
46 18 3 9 9 9 3 3 13/54
47 4 4 4 4 ∞ ∞ ∞ 3/16
48 5 4 4 5 20 20 10 99/400
49 6 4 4 6 12 12 6 13/48
50 8 4 4 8 8 8 4 9/32
51 12 4 4 12 6 6 3 13/48
52 ∞ 4 4 ∞ 4 4 2 3/16
53 12 4 6 6 6 4 4 7/24
54 -12 4 12 12 3 2 2 7/48
55 10 5 5 5 5 5 5 3/10
56 ∞ 6 6 6 3 3 3 1/4
57 -8 8 8 8 2 2 2 9/64
58 -2 ∞ ∞ ∞ 1 1 1 ×

Table 1: solutions of diophantine equations (10) ∈ Z\0 ∪∞

We want to connect the solutions of (10) with the classical theory. Let us consider the configuration
divisor ([BHH, DM1]) xyz(x−y)(y−z)(z−x) (see Figure 6). In this case special points are P1, P2, P3, P4.
We blow up the four special points and the resulting divisor have 10 lines with selfintersection −1. Let
exceptional lines are L0j , j = 1, 2, 3, 4. The proportionality equations (9) are:

(11)

∣∣∣∣∣∣∣∣∣

L34 : 2−
(
1− 1

l01

)
−

(
1− 1

l02

)
−

(
1− 1

l12

)
= 2

−1
l34

L01 : 2−
(
1− 1

l34

)
−

(
1− 1

l24

)
−

(
1− 1

l23

)
= 2

−1
l01

.

1We say that a solution is hyperbolic if it satisfy the proportionality conditions (see proposition 2.3).
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P2

P1

P3

P4

L13 L12

L23

L24

L14

L34

Figure 6: xyz(x− y)(x− z)(x− z) = 0, (x :y :z) ∈ P2

The symmetric group S4 = S{1, 2, 3, 4} acts on this system changing the indexes. Under the action of
(13),(14), (23),(24),(34) on the first and (12), (13), (14) on the second equation we obtain ten equations
for lines L respectively. We assume that lij = lji. The last diophantine system has 38 solutions in
∞∪ Z\0 and 27 from them are hyperbolic (see [BHH], page 201, [DM1] page 86, [T] page 465).

Theorem 2.2. If v0, v1, v2, v3, k1, k2, k3 is a solution on system (10) such that v0 is even then

l14 = l34 = v3, l23 = l12 = v1, l24 = k2, l13 =
v0

2
,

l04 = k1, l01 = l03 = v2, l02 = k3.

is a solution on (11). For v0 even (∞ is also “even” number) the map

T : (v0, v1, v2, v3, k1, k2, k3) −→ (l12, l13, l23, l14, l24, l34, l01, l02, l03, l04)

is surjective in the sets of solution of (11).

Proof. The condition for v0 even is obvious. In the section 3 we will give geometric proof. ¤

We are looking for solutions of (10) which are hyperbolic weights of Apollonius configuration. In this
case 1 < v0, v1, v2, v3 ∈ N and k1, k2, k3 ∈ Z− ∪∞, Z− – negative integer numbers. The restrictions for
k1, k2, k3 are because K1, K2,K3 are special points. Only solutions 20, 22, 26, 34, 35, 38 and 47 satisfy
the above conditions.

We calculate Euler and signature height using (8)

(12)

he(C0) = − 1 +
1
k1

+
1
k2

+
1
k3

+ 2
(

1
|k1| +

1
|k2| +

1
|k3|

)
,

he(Ci) = − 1 +
1
v1

+
1
v2

+
1
v3
− 1

vi
+

1
ki

+ 2
1
|ki| , i = 1, 2, 3

(13)

hτ (C0) =
−2
v0

+
1
|k1| +

1
|k2| +

1
|k3| ,

hτ (Ci) =
−1
vi

+
1
|ki| , i = 1, 2, 3

10



and the result is the next table

(14)

v0 v1 v2 v3 k1 k2 k3 he : C0 C1 C2 C3

20 2 2 3 6 -2 -3 -6 0 0 0 0
22 2 2 4 4 -2 -4 -4 0 0 0 0
26 Apoll-2 3 2 6 6 -3 ∞ ∞ -2/3 -1/3 -1/3 -1/3
34 2 3 3 3 -3 -3 -3 0 0 0 0
35 Apoll-1 3 3 3 6 -6 -6 ∞ -2/3 -1/3 -1/3 -1/3
38 Apoll-0 3 3 4 4 -6 -12 -12 -2/3 -1/3 -1/3 -1/3
47 Apoll-3 4 4 4 4 ∞ ∞ ∞ -1 -1/2 -1/2 -1/2

In this table we write only he(C) because in all cases he(C) = 2hτ (C). According to relative propor-
tionality ([H98], Proposition 4.7.4) an orbital curve C is such that he(C) = 2hτ (C) < 0. Then only the
solutions 26, 35, 38 and 47 can be hyperbolic weights of Apollonius configuration.

Until now we did not prove that the points K1,K2,K3 are allowed to be considered as special points.
For the corresponding orbital curves E = EK , K = Ki, i ∈ {1, 2, 3}, on X ′ we have (see Figure 3)

he(Ei) = ue(Ei) = 2−
(
1− 1

v0

)
−

(
1− 1

vi

)
−

(
1− 1

2

)

hτ (Ei) = −uτ (Ei) = −−1 + 1
2

ki
, ki < 0,

lim
w−→∞

hτ (Ei)w = lim
w−→∞

1
w

(
− 1 +

1
2

)
w = −1

2
< 0 , ki = ∞

The explicit calculation give

(15)
he, hτ

type :

E1 E2 E3

38 Apoll-0 1/6, -1/12 1/12, -1/24 1/12, -1/24
(2, 3, 3) (2, 3, 4) (2, 3, 4)

35 Apoll-1 1/6, -1/12 1/6, -1/12 0, -1/2
(2, 3, 3) (2, 3, 3) (2, 3, 6)

26 Apoll-2 1/3, -1/6 0, -1/2 0, -1/2
(2, 2, 3) (2, 3, 6) (2, 3, 6)

47 Apoll-3 0, -1/2 0, -1/2 0, -1/2
(2, 4, 4) (2, 4, 4) (2, 4, 4)

This table shows that Apollonius configuration have triple points of type (2, 2, 3), (2, 3, 3), (2, 3, 4) and
cusp points of type (2, 3, 6) and (2, 4, 4). The graphs of these special points appears in the graphical
classification list in [H98], III, Figure 3.5.2 and 3.5.3. So we can change to the graph of special points
K, which looks like Figure 7.

e1
〈2, 1〉

�
��

e3

@
@@
e2

��AA
3

-1

(2, 2, 3)

e1
〈2, 1〉

�
��

e3

@
@@
e3

��AA
6

-1

(2, 3, 3)

e1
〈2, 1〉

�
��

e4

@
@@
e3

��AA
12

-1

(2, 3, 4)

e1
〈2, 1〉

�
��

e4

@
@@
e4

-1

(2, 4, 4)

e1
〈2, 1〉

�
��

e6

@
@@
e3

-1

(2, 3, 6)

Figure 7: graphs of the special points K

Now we calculate the heights of X using Proposition 4.10.2 in [H98], chapter IV, as definition. The
local contributions appear in [H98], IV, Table 10.2, the global ones in (4.10.2), (4.10.3) there. Since the
open surface X is smooth the formulas for the Euler height and the signature height simplify to

(16) He(X) = e(X ′)−
∑

(1− 1
vi

)he(Ci)−
∑

he(Pk)−
∑

he(Km)
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(17) Hτ (X) = τ(X ′)− 1
3

∑
(vi − 1

vi
)hτ (Ci)−

∑
hτ (Pk)−

∑
hτ (Km)

with
e(X ′) = Euler number of X ′

= e(X̃)−#{components of E(X̃ −→ X ′)} = e(X̃)− 3,

e(X̃) =
∑

(−1)idimHi(X̃,C) = Euler number of X̃

and
τ(X ′) = τ(X̃) + #{components of E(X̃ −→ X ′)} = τ(X̃) + 3,

τ(X̃) = signature of X̃ = signature of H2(X̃,R).

The sums in (16), (17) run over all orbital curves Ci, all abelian points Pk on X and all special points
Km (cusp or triple) on X̂. The point contributions can be read off from the molecular graph of the
orbital cycle Z(X̂) connecting the graphs of orbital curves and points as demonstrated in our example
in Figure 4. Namely, for abelian points P we have

(18)

he(P) = 1− 1
vd
− 1

v′d
+

1
v′vd

(P :
〈d,e〉
◦−→◦
v v′

in general)

= 1− 1
vi
− 1

vj
+

1
vivj

for our points P = Ci ∩Cj ,

3hτ (P) = Tr(P ) + 3lP − e

d
− e′

d
(in general)

= 0 + 3 · 0− 0− 0 = 0 for our points P .

Thereby lP denotes the length of a resolution curve EP (number of irreducible components of the linear
tree EP of rational curves) of the cyclic singularity P , Tr(P ) the trace of the intersection matrix of
these components.

We define he(K) and hτ (K) for a special point K using the resolution orbital curve EK .

(19)

he(K) = 2 rational cusp point ,

he(K) =
(
1− 1

2v

)
he(EK) +

3∑

i=1

he(Ti) triple point ,

where Ti are the abelian points of intersection between exception curve and orbital curves.

(20)

3hτ (K) =Tr(K) +
4∑

j=1

(3lj − ej

dj
) cusp point ,

3hτ (K) =
(
v +

2
v

)
hτ (EK) +

3∑

i=1

hτ (Ti)−
3∑

i=1

(vi − 1
vi

)
1

v di
triple point .

Tr(K) is the trace of the intersection matrix of ẼK being the preimage of EK ⊂ X ′ on X̃. The numbers
lj are the lengths of minimal resolutions of the cyclic surface singularities Tj ∈ X ′ of type 〈dj , ej〉 sitting
on EK . The formulas (19) and (20) can be read from [H98], IV, Table 4.8.1.

We give explicitly the calculation for Apoll-2. For our main example Apoll-3 all calculation are
written in [HPV]. By (18) it holds

he(P1) = 1− 1
6
− 1

6
+

1
6 · 6 =

25
36

, he(P2) = he(P3) = 1− 1
2
− 1

6
+

1
2 · 6 =

5
12

.

Let T1, T2, T3 be the cyclic singularities of E1, T1 ∈ C0, T2 ∈ C1, and T3 is of type 〈2, 1〉 (see Figure 3
and 7 type (2, 2, 3)). Again by (18) we have

he(T1) = 1− 1
3
− 1

3
+

1
3 · 3 =

4
9

, he(T2) = 1− 1
2
− 1

3
+

1
2 · 3 =

1
3

,

he(T3) = 1− 1
2 · 3 −

1
2 · 1 +

1
2 · 3 · 1 =

1
2

,

hτ (T1) = hτ (T2) = 0 , hτ (T3) =
1
3

(
− 2 + 3 · 1− 1

2
− 1

2

)
= 0 .
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We obtain the Euler and signature heights of the special points K using (19) and (20)

(21)

he(K2) = he(K3) = 2 , he(K1) =
(
1− 1

2 · 3
)1

3
+

4
9

+
1
3

+
1
2

=
14
9

,

hτ (K2) = hτ (K3) =
1
3

(
− 3 + 3 · 1− 1

2

)
= −1

6
,

hτ (K1) =
1
3

[(
3 +

2
3

)−1
6

+ 3 · 0−
(
3− 1

3

)1
3
−

(
2− 1

2

)1
3
−

(
1− 1

1

) 1
3 · 2

]
=
−2
3

.

Knowing X̂ = P2 we get e(X̂) = 3, τ(X̂) = 1, hence

e(X̃) = 3 + 6 = 9 , τ(X̃) = 1− 6 = −5

and

(22) e(X ′) = 9− 3 = 6 , τ(X ′) = −5 + 3 = −2.

Now we are able to calculate the heights of X explicitly substituting the local heights (12), (13), (18),
(21) and e(X ′), τ(X ′) into (16), (17), respectively:

(23)

He(X) = 6−
(
1− 1

3

)−2
3
−

(
1− 1

2

)−1
3
− 2

(
1− 1

6

)−1
3
− 25

36
− 2 · 5

12
− 2 · 2− 14

9
=

1
12

,

Hτ (X) = −2− 1
3

[
(3− 1

3
)
−1
3

+ (2− 1
2
)
−1
6

+ 2(6− 1
6
)
−1
6

]
− 3 · 0− 2

−1
6
− −2

3
=

1
36

.

For other Apoll-k we give the heights of the special points K and X in the table

(24)

K1 K2 K3 X
Apoll-0 127/72, -17/36 541/288, -25/72 541/288, -25/72 1/12, 1/36
Apoll-1 127/72, -17/36 127/72, -17/36 2, -1/6 1/12, 1/36
Apoll-2 14/9, -2/3 2, -1/6 2, -1/6 1/12, 1/36
Apoll-3 2, -1/6 2, -1/6 2, -1/6 3/16, 1/16

Summarizing (15), (14) and (24) we proved in this section the following

Proposition 2.3. The orbital surface X̂ of (1) with X̂ = P2 and orbital locus (2) supported by any
Apollonius configuration 1.1, (ii) a),b),c),d) satisfies the proportionality conditions for ball quotient
surfaces described in [H98] (IV.9, Theorem 4.9.2):

(25)

he(EK) = 0 , hτ (EK) < 0 , K – cusp point; (Prop ∞)
he(EK) = −2hτ (EK) > 0 , K – triple point; (Prop 0)

he(Ci) = 2hτ (Ci) < 0 , i = 0, 1, 2, 3; (Prop 1)
He(X) = 3Hτ (X) > 0 ; (Prop 2)

only in four cases Apoll-k, k = 0, 1, 2, 3. The corresponding weights are given in (14) solutions 26, 35,
38 and 47. ¤

The universal heights introduced in (6) and (7) are an easy way to find all orbital hyperbolic weights
for a given curves configuration (compare [H98], IV, Effective Finiteness Theorem 4.10.3). In this section
we have presented the following algorithm:

Step 1. Resolve all special points and obtain model X′ −→ X̂ −→ X (for Apollonius that is
Figure 2) on which all orbital points are abelian or separate and the corresponding graphs look like

v
��
��
��
��

〈di, ei〉
v
〈di, ei〉

v
〈di, ei〉

13



On X′ we know the Euler number and selfintersection on each curve and also type of possible cyclic
singularities 〈di, ei〉. Now write ue(C) = 2uτ (C) for each curve C on X′. This is a system of diophantine
equations (compare with (10) and (11)) with variables vi–the weight of the orbital curve Ci.

Step 2. Solve the system of diophantine equations in Z\0 ∪∞.

Step 3. Check every solution obtained in Step 2. For a solution one have to see:

1. if vi = 1 then Ci is not “pure” orbital curve (p : B −→ B/Γ is not ramified over Ci). An example
is solution 18 for Apollonius configuration.

2. if vi, vj ∈ Z− ∪∞ then Ci and Cj does not intersect on X ′.

3. if vi < 0 or vi = ∞ then Ci is triple or cusp point resolution curve and one apply Remark 2.1.

4. if vi > 1 then Ci is a pure orbital curve. We check if he(Ci) = 2hτ (Ci) < 0.

5. calculate and see if He(X) = 3Hτ (X) > 0.

If the above holds for any solution of our diophantine system, then this solutions satisfy the proportion-
ality conditions ([H98], IV, Theorem 4.9.2) and is hyperbolic.

At this place we define similar to (6) and (7) “universal heights” for orbital surface X′ and abelian
points P ∈ X ′. The universal height u(P) for abelian point P is the same as h(P) in (18) but v, v′ ∈
Z\0 ∪∞. Let us remember that X′ has only abelian points. The universal heights of X are

Ue(X) = e(X ′)−
∑

(1− 1
vi

)ue(Ci)−
∑

ue(Pk) ,

Uτ (X) = τ(X ′)− 1
3

∑
(vi − 1

vi
)uτ (Ci)−

∑
uτ (Pk) ,

where the fist sum runs over all curves on X ′ and the second over all abelian points on X ′. We assume
that Step 3 condition 2 is satisfied. Then there exist connection between heights

(26) He(X) = Ue(X)− 3
∑
vk<0

1
2vk

ue(Ek) , Hτ (X) = Uτ (X)−
∑
vk<0

1
vk

uτ (Ek) .

Using proportionality ue(Ek) = 2uτ (Ek) we have

He(X) = 3Hτ (X) ←→ Ue(X) = 3Uτ (X) .

For Apollonius configuration the universal heights are

Ue(X) = 1− 1
v0

+
1

v1v2
+

1
v2v3

+
1

v3v1
+

3∑

i=1

(
− 1

vi
− 1

2ki
+

1
viki

+
1

v0ki

)
,

Uτ (X) =
1
6
− 2

3v2
0

−
3∑

i=1

( 1
3v2

i

+
1

6k2
i

)
.

Remark 2.4. It is not difficult to see that from (10) follows Ue(X) = 3Uτ (X) ←→ He(X) = 3Hτ (X).

Now we are ready to consider any of our 58 solution connected with Apollonius configuration. The
solutions which don’t satisfy Step 3–2 are denoted with ×, these which don’t satisfy Step 3–4 are
denoted with ¤. Only 41 solutions are hyperbolic and He(X) for them is given in the table. The
calculations are made by using (26). From these 41 hyperbolic solutions four are such that vi > 1, i =
0, 1, 2, 3, ki < 0 or ki = ∞, i = 1, 2, 3, and they are 26, 35, 38, 47.

Until now it is not generally known that the four proportionality conditions (25) are sufficient for X̂
to be a ball quotient. In second part we prove it for our special plane orbital Apoll-3 surface solution 47.
This will be prepared in section 8 translating precise heights and local conditions to geometric lattice
conditions on the ball. For this purpose one has to read backwards the proof of the Proportionality
Theorem 4.9.2 in [H98], well-prepared in the book parts before. In the section after we find an arithmetic
ball lattice satisfying all these conditions.
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We give a geometric interpretation of Table 1.

Problem. Find all magic triangles with elements p/q ∈ Q,
p = 0 or 1 such that:

−c0 + c1 + c2 + c3 =
1
2

c0 + ci + ti =
1
2

, i = 1, 2, 3 .

Answer: ci =
1
vi

, ti =
1
ki

(see Table 1). µ´
¶³

t1µ´
¶³
c2 µ´

¶³
c3

µ´
¶³

c1

µ´
¶³
c0

µ´
¶³

t2µ´
¶³

t3

At the end of this section we give a table with the introduced new orbital heights on model X′.

e τ

u(P) 1− 1
vd
− 1

v′d
+

1
v′vd ��

��
PP

PP t
v v′

〈d, e〉 1
3

(
Tr(P ) + 3 lP − e

d
− e′

d

)

�
�
�

A
A
A

�
�
�

A
A
At→

u(C) e(C ′)−
∑ (

1− 1
vkdk

)
��
��
HH

HH

C Ck

1
v

(
(C ′2) +

∑ ek

dk

)
��
��
HH

HH

C Ck

U(X) e(X ′)−
∑(

1− 1
vi

)
ue(Ci)−

∑
ue(Pk) τ(X ′)− 1

3

∑(
vi − 1

vi

)
uτ (Ci)−

∑
uτ (Pk)

h(C) ue(C)− 2
∑
vk<0

1
vkdk

��
��
HH

HH

C Ck

uτ (C)−
∑
vk<0

1
vkdk

��
��
HH

HH

C Ck

H(X) Ue(X)− 3
∑
vk<0

1
2vk

ue(Ek) Uτ (X)−
∑
vk<0

1
vk

uτ (Ek)

3 Monodromy

Let µ := (µ0, . . . , µ4) be rational numbers satisfying

(27) 0 < µk < 1 ,

4∑

i=0

µk = 2

and consider families of plane curves

(28) wd = um0(u− 1)m1(u− x)m2(u− y)m3 , (x, y) ∈ C2

where
µ0 =

α0

d
, · · · , µ4 =

α4

d

and d is the least common multiple of denominators of the µk. Shortly we denote such a sequence with
[d; m0,m1,m2,m3,m4] ←− µ. We suppose (x, y) is pair of parameters running though

Λ := {(x, y) ∈ C2 | xy(x− 1)(y − 1)(x− y) 6= 0} .
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Under this condition (w, u)-curve (28) is Riemann surface R and the projection p : (w, u) −→ u is
d-cover of P1 ramified in 0, 1, x, y,∞. We denote 0, 1, x, y,∞ with uk, k = 0, 1, 2, 3, 4 respectively.

If (d,mk) > 1 then R is singular surface at (p−1(uk) , uk). Let R′ is non-singular model of R obtained
by blowing up the singularities of R. The geometric genus g of R′ by Riemann-Hurwitz formula is

(29) 2− 2g = d · 2−
4∑

k=0

(mk − rk) , rk = (d,mk) .

The aim of this section is to study the (x, y) moduli (28) and to connect to each solution of Table 1
six numbers [d; m0,m1,m2,m3,m4].

<

U0

1
x

y

∞

P

Let (x, y) are fixed and U is an simply connected domain on the
Riemann sphere and the ordered points {u0 , u1 , u2 , u3 , u4} ∈ ∂U .
We suppose ∂U have positive orientation with respect to U .
The map p : (w, u) −→ u is d-cover of P and by (27) one can chose
branch w such that w = ϕ(u) := uµ0(u − 1)µ1(u − x)µ2(u − y)µ3 is
well defined single valued holomorphic function when u ∈ U .
We consider integrals

(30) Ik := ck

∫ uk

0

du

ϕ(u)
= ck

∫ uk

0

du

w
, k = 1, 2, 3 ,

where the oriented path of integration (0, uk) ⊂ U , ck = 1 − exp(−2πiµk). The integrals Ik do not
depend from the path of integration because du/w is holomorphic differential in U .

Until now (x, y) =: (x0, y0) are fixed. For general (x, y) ∈ Λ we obtain the domain U(x, y) taking a
path s joining (x0, y0) and (x, y) and define U(x, y) by continuation of U(x0, y0) along s; it is possible
since the family (28) is locally trivial fiber space over Λ if µ is fixed. Notice that this choice of U depends
from the path s.

We assume that (d, m0) = 1 and let φ be the projective map

>

U

0
ui

>

φ : Λ −→ P2 , φ(x, y) := (I1 : I2 : I3) ,

We will connect the map φ with periods of Jacobian variety
J(R′). Let consider the homology group H1(R′,Z) and let σ
be the automorphism of R′ defined by σ(w, u) := (εw, u), ε =
exp(2πi/d).
We take three cycles Ak ∈ H1(R′,Z), k = 1, 2, 3. They start
from a point in U near to 0 go near to uk, make a positive loop
around uk and then come back to starting point. The definition

of these cycles2 is correct since (d,m0) = 1. There is a relation between periods of the holomorphic
differential du/w on cycles Ak and (30)

(31)
∫

Ak

du

w
=

(
1− exp(−2πiµk)

) ∫ uk

0

du

w
= Ik .

Proposition 3.1. For each γ ∈ H1(R′,Z) there exist ck ∈ Z[ε] such that
∫

γ

du

w
= c1I1 + c2I2 + c3I3 .

Proof. The automorphism σ acts on each δ ∈ H1(R′,Z) and let denote the lifting by σ(δ). It is
easy to see that the cycles σk(Aj), k = 0, . . . , d− 1, j = 1, 2, 3, generate H1(R′,Z). On the other side

∫

σk(Aj)

du

w
=

∫

Aj

du

σk(w)
=

∫

Aj

du

εkw
= εd−k

∫

Aj

du

w
.

Now by (31) the proof is complete. ¤
Let for general (x, y) ∈ Λ cycles Ak(x, y), k = 1, 2, 3, and basis of H1(R′(x, y),Z) are defined as

continuation on the same path s as U(x, y). Any element δ of π1(Λ , (x, y)) induces an automorphism
of H1(R′,Z).

2If (d, m0) > 1 one cannot take cycles Ak as described above. In this case Pochhammer cycles on Jacobian variety
work fine and then we change ck to ckc0 = ck

�
1− exp(−2πiµ0)

�
.
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Definition 3.2. Let δ ∈ π1(Λ , (x, y)). By proposition 3.1 the periods I1, I2, I3 are transformed as

t(I1, I2, I3) −→ g(δ) t(I1, I2, I3) , g(δ) ∈ GL(3,Z[ε]) .

Picard modular group for µ and φ is

Γ(µ) :=
{
g(δ) ∈ GL(3,Z[ε]) | δ ∈ π1(Λ , (x, y))

}
.

The map φ is called developing map.

Remark 3.3. The integrals Ik are three linearly independent solutions of the system of Fuchsian par-
tial differential equations for Appell hypergeometric function F1 (see [T]). The group Γ(µ) is also the
monodromy group of these solutions.

There are many papers about the group Γ(µ) (see Picard [P], Shimura [Sm64], Terada [T], Shiga
[Shg], Deligne and Mostow [DM1, DM2], Yoshida [Y97]). Here we presented briefly Γ(µ). For some µ,
the closure of the image of the map φ is projectively equivalent to the unit two dimensional complex
ball and this map gives an isomorphism of C2\Λ into B2/Γ(µ).

We can take generators {δs} of π1(Λ, (x, y)) and then {g(δs)} are generators for Γ(µ) (see [Mat]).
Here we give different presentation similar to [T], [Y97].

Let us consider five different ordered points uk on Riemann sphere P1. We assume uk are fixed and
the domain U and holomorphic differential du/w, u ∈ U , are as above. The following 10 paths Aij ,
0 ≤ i < j ≤ 4, are similar to cycles Ak of Jacobian variety. Namely Aij is closed path starting from
ui, go near to uj inside U , make a positive loop around uj and then come back to ui inside U . On the
same way as we defined U for general (x, y) we define action of Aij on Ik by continuation.

Definition-Proposition 3.4. The action of Aij, 0 ≤ i < j ≤ 3, on Ik are generators of Picard
modular group Γ(µ).

Next definitions are from [DM2]. Let S := {0, 1, 2, 3, 4}. We say µ satisfies condition INT iff for all
s, t ∈ S with µs + µt < 1 and s 6= t,

(32) λst := (1− µs − µt)−1 ∈ Z .

We say that µ satisfies condition ΣINT (S1) iff S1 ⊂ S, µs = µt for all s, t ∈ S1 and for all s, t ∈ S with
s 6= t and µs + µt < 1,

(33) λst := (1− µs − µt)−1 ∈




1
2
Z if s, t ∈ S1

Z otherwise.

We say that µ satisfies ΣINT if µ satisfies ΣINT (S1) for some S1 ⊂ S.
In [DM1] is proved that Γ(µ) is a lattice in PU(2, 1) if µ satisfies condition INT . In [M1] this

hypothesis is weakened to condition ΣINT . List of all µ satisfying condition INT and ΣINT is given
in [M2]. When µs + µt = 1 we substitute λst = ∞. Using list of [M2] one see that when µs + µt > 1
then (1− µs − µt)−1 ∈ Z. So λst is well defined in all cases.

Theorem 3.5 ([BHH], page 197). The diophantine equations (11) and (32) have the same solutions
in the sets Z\0 ∪∞ and

∑4
j=0 µj respectively. More precisely

λst = lst , 0 ≤ s < t ≤ 4 ,

If µ satisfy 0 < µs < 1 for 0 ≤ s ≤ 4 then µ is hyperbolic solution. There are only 27 such solutions.

We will connect Figure 6, Λ and Figure 1. These are spaces with configuration divisors

P2 −→ xyz(x− y)(x− z)(y − z) = 0

P1×P1 −→ p0p1q0q1(p0 − p1)(q0 − q1)(p0q1 − p1q0) = 0

P2 −→ p2 + q2 + r2 − 2pq − 2pr − 2qr = 0
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respectively. Between them the rational maps

(34) A :

∣∣∣∣∣∣∣∣

x

z
=

p0

p1

y

z
=

q0

q1
,

B :

∣∣∣∣∣∣∣∣

p

r
=

p0

p1
· q0

q1

q

r
=

(
1− p0

p1

)(
1− q0

q1

)

are defined. Notice that B is 2-cover ramified above the quadric (p + q − r)2 − 4pq.

(x : y : z) ∈ P2

←→
A

1 : 1

�
�
�
�
�
�
�
�

(p0 :p1; q0 :q1) ∈ P1×P1

−→
B

2 : 1

(p : q : r) ∈ P2

We blow up the four points Pk ∈ P2 and (0, 0), (1, 1), (∞,∞) ∈ P1×P1 and obtain the same model.
We denote this surface with Y ′. Let denote the 7 lines of P1×P1 by X0, X1, X∞, Y0, Y1, Y∞, Dxy and
special points by Q0, Q1, Q∞. So we obtain for the corresponding weights

(35)
x0 = l34 , x1 = l23 , x∞ = l03 , y0 = l14 , y1 = l12 ,

y∞ = l01 , q0 = l02 , q1 = l04 , q∞ = l24 , dxy = l13 .

The symmetric group S5 = S{0, 1, 2, 3, 4} acts on the curves Lij of Y ′ an on µk by changing the indexes.
This action lifts on the weights xk, yk, qk, dxy, k = 0, 1,∞, in obvious manner. When µ1 = µ3 then
xk = yk for k = 0, 1,∞ and we have

(36)
λ34 = x0 = v3 , λ23 = x1 = v1 , λ03 = x∞ = v2 , 2λ13 = 2dxy = v0 ,

λ02 = q0 = k3 , λ04 = q1 = k1 , λ24 = q∞ = k2 .

By theorem 3.5 and from the table [BHH] page 199 one see that for each solution of (11) there exist s
and t with µs = µt. Since S5 acts on µ we can permute the indexes so that (s, t) −→ (1, 3). Sometimes
there are many such possibilities. Examples are [4; 1, 2, 1, 2, 2], [4; 2, 1, 2, 1, 2], [4; 1, 2, 2, 2, 1].

We have obtained:

Theorem 3.6. i) If one apply the algorithm for finding proportional weights for P2 minus 6 lines and
P1×P1 minus seven lines as described at the end of section 2 then Prop. 1 for both models are diophantine
equations (11). Both weights are connected with equations (35).

ii) Diophantine equations (11) and (32) are equivalent.
iii) When µs = µt after permuting the indexes (s, t) −→ (1, 3) and using (36) one obtain a solution

of (10).

If we look at Table 1 we see that there are solutions with v0 odd (examples are Apoll-k, k = 0, 1, 2).
They come from “pure” ΣINT solutions µ of (33) with S1 = {1, 3}. In this case 2λ13 = 2dxy = v0 is
odd number. At the end we give a table with corresponding µ’s for Table 1.

The last two column of Table 2 are the number in [BHH] and [M2]. Looking at tables 1 and 2 we
see

Theorem 3.7. i) If vs, ks, v0 is solution of (10) then by (36) one obtain µ which satisfy INT or ΣINT
condition. For INT µ the last two column contain numbers and for ΣINT µ only the last column
contain a number (see Table 2).

ii) Any solution of (10) is hyperbolic iff the corresponding µ is such that 0 < µs < 1 for 0 ≤ s ≤ 4.
iii) If µ satisfy “pure” ΣINT condition with #S1 > 2 then this µ is not solution of (10).
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d m0 m1 m2 m3 m4 BHH M2
1 18 1 8 11 8 8 16 79
2 12 3 3 10 3 5 14 68
3 12 1 5 8 5 5 12 62
4 12 3 5 8 5 3 12 70
5 10 1 4 7 4 4 6 57
6 8 1 3 6 3 3 4 53
7 6 2 5 2 5 -2
8 6 2 1 6 1 2
9 6 1 2 5 2 2 25 49
10 4 1 1 4 1 1 31
11 4 0 3 2 3 0 30
12 3 2 2 2 2 -2 37
13 6 -1 4 4 4 1 38
14 3 0 2 2 2 0 29
15 2 -1 1 2 1 1 36
16 2 0 1 2 1 0 34
17 d d-1 0 0 0 d+1 28
18 2 2 -1 2 -1 2
19 2 1 0 1 0 2 34
20 6 4 0 3 0 5 32
21 6 3 1 2 1 5 46
22 4 3 0 2 0 3 30
23 12 7 2 4 2 9 65
24 4 2 1 1 1 3 21 42
25 20 11 5 5 5 14 17 85
26 6 4 1 2 1 4 47
27 12 7 3 3 3 8 13 69
28 6 3 2 1 2 4 24 50
29 8 5 2 2 2 5 3 54

d m0 m1 m2 m3 m4 BHH M2
30 10 6 3 2 3 6 59
31 12 7 4 2 4 7 10 67
32 18 10 7 2 7 10 81
33 2 1 1 0 1 1 35
34 3 2 0 2 0 2 29
35 6 3 1 3 1 4 48
36 12 5 3 5 3 8 11 70
37 3 1 1 1 1 2 19 41
38 12 7 2 6 2 7 66
39 12 6 3 5 3 7 27 71
40 12 5 4 4 4 7 26 73
41 24 9 9 7 9 14 18 89
42 15 6 6 4 6 8 15 78
43 6 3 2 2 2 3 22 52
44 12 5 5 3 5 6 9 72
45 6 2 3 1 3 3 23 51
46 9 4 4 2 4 4 5 56
47 4 2 1 2 1 2 20 43
48 20 9 6 9 6 10 87
49 12 5 4 5 4 6 8 74
50 8 3 3 3 3 4 2 55
51 12 4 5 4 5 6 8 74
52 4 1 2 1 2 2 20 43
53 12 5 5 4 5 5 7 75
54 12 4 7 2 7 4 10 67
55 5 2 2 2 2 2 1 44
56 6 2 3 2 3 2 22 52
57 8 2 5 2 5 2 3 54
58 1 0 1 0 1 0

Table 2: correspondence µ ←→ equations (10)

4 Matrix representation

Let us remember diophantine equations (11) with unknown variables lij . If µ satisfy INT or ΣINT then
lij := λij ∈ 1

2Z is a solution of (11). Notice that some lij can be “half” integer. The symmetric group
S5 acts on lij and on this way on the corresponding curve (28) permuting ms. We apply a permutation
on each curve on our Apoll-k curves and calculate the genus by (29) and the result is:

(37)

permutation d m0 m1 m2 m3 m4 ΣINT genus symmetry
38 A-0 (01324) 12 7 7 2 2 6 {2, 3} 13 Z2×Z2

35 A-1 (03) 6 1 1 3 3 4 {0, 1} 5 Z2×Z2

26 A-2 (03)(24) 6 1 1 4 4 2 {0, 1} 6 Z2×Z2

47 A-3 (03)(14) 4 1 2 2 2 1 3 Z2×S3

Here we give generators for monodromy groups of our Apoll-k. One can use [T] formulas or calculate
them explicitly using proposition 3.4. We denote them with Mst, qk = exp(−2πiµk).

M01 =




q0q1 0 0
q0q2 − q0 1 0
q0q3 − q0 0 1


 M13 =




1− q1 + q1q3 0 q1 − q2
1

(1− q2)(1− q3) 1 (q1 − 1)(1− q2)
1− q3 0 q1


 M03 =




1 0 q1 − 1
0 1 q2 − 1
0 0 q0q3




M12 =




1− q1 + q1q2 q1 − q2
1 0

1− q2 q1 0
0 0 1


 M23 =




1 0 0
0 1− q2 + q3q2 q2 − q2

2

0 1− q3 q2


 M02 =




1 q1 − 1 0
0 q0q2 0
0 q0q3 − q0 1




The projective multiplicative group generated by Mst is Γ(µ).
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Theorem 4.1 (Terada [T], Deligne and Mostow [DM1]). Up to multiplicative real constant there
exist unique hermitian matrix3

H =




(q − q1q)/(1− q1) q1q q1q2q

q1q (q − q2q)/(1− q2) q2q

q1q2q q2q (q − q3q)/(1− q3)




satisfying tMHM = H for all M ∈ Γ(µ), where q = −√µ4 = − exp(−πiµ4). The matrix H has
signature (1, 1,−1) and define the projective unit ball BH := {w ∈ P2 | wH tw < 0}. The image φ(Λ)
of developing map is dense subset of BH .

Definition 4.2. Arithmetic group for µ is A(µ) := PU
(
Z[ε], H

)
= {Q ∈ GL(3,Z[ε]) | tQHQ = H}.

Any normal subgroup of A(µ) of finite index is called arithmetic group for hermitian form H and Z[ε].

It is obvious from the generators of Γ(µ) that it is subgroup of A(µ). Is it true that Γ(µ) is arithmetic
group connected with hermitian form H and Z[ε]?

Proposition 4.3 (Mostow [M2] page 582, [DM1] page 76). Let µ satisfies ΣINT condition.
Then Γ(µ) is arithmetic iff for each integer s relative prime to d with 1 < s < d− 1 then∑〈sµj〉 = 1 or 4, where 〈b〉 denote fractional part of b.

Looking at (37) and after some calculations we see that all Apoll-k are arithmetic groups. There is
an extension of Picard modular group which is equal to arithmetic group A(µ). We need some definition
more.

From (37) it follows that the curves Apoll-k for different (x, y) ∈ Λ can be isomorphic as Jacobian
varieties. For Apoll-k we define automorphisms of Λ by

a01 : (x, y) −→ (1− x, 1− y) , a23 : (x, y) −→ (y, x) ,

a04 : (x, y) −→
( 1

x
,
1
y

)
, a12 : (x, y) −→

( 1
x

,
y

x

)
.

Let T012 and T3 be the groups generated by 〈a01, a23〉 and 〈a04, a12, a23〉 respectively and they are
isomorphic to Z2×Z2 and Z2×S3. Two curves (28) for different (x, y) and (x′, y′) ∈ Λ are isomorphic
if (x, y) is equivalent to (x′, y′) under T012 or T3 for Apoll-0,1,2 or Apoll-3. Since the corresponding
Jacobian varieties are isomorphic and by proposition 3.1 there exist matrix Q ∈ Z[ε] such that

(
I1, I2, I3

)
(x′, y′) = Q t

(
I1, I2, I3

)
(x, y) .

This matrix Q belongs to arithmetic group A(µ).
As we defined paths the Aij in section 3 let for µi = µj A′ij be “half” from Aij , namely that is path

from ui to uj . It changes ui and uj .

Definition-Proposition 4.4. The action of Aij, 0 ≤ i < j ≤ 3, and A′st for all µs = µt on Ik are
generators of full Picard modular group FΓ(µ). If µs = µt then (g(A′st))

2 = g(Ast).

So we need to take as generators for Apoll-0,1,2 the permutations (0, 1), (2, 3) and for Apoll-3 (0, 4),
(1, 2), (2, 3), (1, 3). They are

M ′
01 =




−q1 0 0
(q1 − q1q2)/(q1 − 1) 1 0
(q1 − q1q3)/(q1 − 1) 0 1


 M ′

23 =




1 0 0
0 1− q2 q2

0 1 0




For Apoll-3 we give them explicitly

(38) M ′
04 =

2
4

i 1− i −1 + i
−1 + i 2− i −1 + i
−1 + i 1− i i

3
5 M ′

12 =

2
4

2 −1 0
1 0 0
0 0 1

3
5 M ′

13 =

2
4

2 0 −1
2 1 −2
1 0 0

3
5 M ′

23 =

2
4

1 0 0
0 2 −1
0 1 0

3
5

3The matrix H and the ball come from Riemann periods relations on Jacobian variety ΠJtΠ = J , ΠJtΠ < 0, J is
the intersection matrix.
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From Deligne and Mostow ([DM2] page 76) results follows Γ(µ) is normal subgroup of FΓ(µ) and
more precisely

FΓ(µ)/Γ(µ) ≈Z2 for Apoll-0,1,2 ,

FΓ(µ)/Γ(µ) ≈Z2×S3 for Apoll-3 .

Terada proved ([T] page 182 example 8) that for Apoll-3 A(µ) = FΓ(µ).
In the following we consider in more details Apoll-3. In this case we substitute q1 = q2 = q3 = −1,

q0 = q4 = −i and obtain generators of Picard modular group Γ(µ)

(39)

M01 =




i 0 0
2i 1 0
2i 0 1


 M02 =




1 −2 0
0 i 0
0 2i 1


 M03 =




1 0 −2
0 1 −2
0 0 i




M12 =




3 −2 0
2 −1 0
0 0 1


 M13 =




3 0 −2
4 1 −4
2 0 −1


 M23 =




1 0 0
0 3 −2
0 2 −1




Lemma 4.5. The multiplicative set of matrices
[

1 0 0
0 1 0
0 0 1

]
,

[
0 1 0
1 0 0
0 0 1

]
,

[
1 0 0
0 0 1
0 1 0

]
,

[
0 0 1
0 1 0
1 0 0

]
,

[
0 1 0
0 0 1
1 0 0

]
,

[
0 0 1
1 0 0
0 1 0

]
,

is isomorphic to the symmetric group S3 and they correspond to permutations: identity, (12), (13), (23),
(123) and (132) respectively.

Let A− be the multiplicative group generated by M ′
04 and Mst, 0 ≤ s < t ≤ 3. This is Apollonius

modular group4 for Gauß numbers.

Theorem 4.6. i) A− is normal subgroup of FΓ and FΓ/AΓ = S3.
ii) AΓ =

{
Q ∈ GL(3, Z[i]) | tQHQ = H, Q ≈ E mod (1 + i)

}
. E =

(
1 0 0
0 1 0
0 0 1

)
.

By (38) and (39) we obtain the inclusion ⊂ for ii). The opposite direction is the aim of the second
part of the paper.

The first part i) is known for µ which satisfy INT condition. Notice that if we replace E with any
of the matrices from lemma 4.5 then we obtain factor classes of FΓ/AΓ. ¤

For the Hermitian form H we have H =

2
4

1 −1 + i 1− i
−1− i 1 −1 + i
1 + i −1− i 1

3
5.

Proposition 4.7. There exist matrix d ∈ SL(3,Z[i]) such that tdHd = diag(1, 1,−1).

For example d :=

2
4
−1− i −1 1 + i
−i −2i 2i

1− i −2i −1 + 2i

3
5. ¤

If we take as generators Picard modular group Γ and some matrices from (38) then we will obtain
other modular group and orbital surfaces. In section 6 we shall give more examples.

5 The ball quotient as moduli surface of curves of special type

For Apoll-3 there is an exact sequence (see Lemma 9.2)

0 −→ Z2 = AΓ/Γ −→ FΓ/AΓ −→ S3 = FΓ/AΓ −→ 1

with an index-2 subgroup Γ of AΓ. It comes from the double cover of X̂ = P2 branched precisely along
the quadric Ĉ0. In second part we prove that B/AΓ is P2. The compactification branch locus of the
quotient map p : B −→ B/AΓ is precisely Apollonius configuration. Here we use this result and classify
the ball quotient surface Ŷ = B̂/Γ. On this way we demonstrate how the Proportionality help to classify
the covering surface if one already knows the corresponding quotient surface.

The degree formulas for orbital heights applied to the finite orbital double covering f : Ŷ −→
(P2, 2Ĉ0), see [H98], compare with (16), (17), yield

(40)
e(Ŷ ) = He(Ŷ ) = 2He(P2, 2Ĉ0) = 2[e(P2)− (1− 1

2
)e(Ĉ0)] = 2[3− 1

2
· 2] = 4,

τ(Ŷ ) = Hτ (Ŷ ) = 2Hτ (P2, 2Ĉ0) = 2[τ(P2)− 1
3
(2− 1

2
) · 1

2
(Ĉ2

0 )] = 2[1− 1
2
· 2] = 0.

4In case Apoll-0,1,2, Apollonius modular group is equal to Picard modular group Γ(µ).
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Now we calculate Euler numbers and selfintersections of irreducible preimage curves D̂i of Ĉi, i =
0, 1, 2, 3, respectively, by the degree formulas for local orbital heights, see [H98], compare with (4),(5).
Since Ĉ0 is the branch locus we get immediately D̂0

∼= Ĉ0
∼= P1. We have to change to the double

covering Y ′ −→ X ′ for getting a locally abelian situation. With the ramification indices v0 = 2,
v = vj = 1, j = 1, 2, 3, of f along D′

j covering C ′j , we get

e(D′
j) = he(D′

j) = [D′
j : C ′j ] · he(C′

j) = [e(C ′j)− 2(1− 1
v
)] · [D′

j : C ′j ] = 2 · [D′
j : C ′j ],

hence
e(D′

i) = 2, D′
i
∼= P1, [D′

i : C ′i] = 1, i = 0, 1, 2, 3;

(D′2j ) = hτ (D′
j) = [D′

j : C ′j ] · hτ (C′
j) = (C′2j ) = −1, j = 1, 2, 3;

(D′20) = hτ (D′0) = [D′
0 : C ′0] · hτ (C′

0) =
1
2
· (C′20) = −1.

D′
0

D+
1

D−
1

D+
3

D−
3

F1

F2

F3

-1

-1

-1

-1

-1

-1

-1

-1

Since f ′ : Y ′ −→ X ′ is not ramified and not inert at
D′

j , each of the curves C ′j has precisely two irreducible
preimage curves D+

j and D−
j . Let Fj ⊂ Y ′ denote the

preimage of Ej ⊂ X ′. Locally Z2 acts around each fixed
point on Y ′ with smooth image on X ′ as a reflection
group. Starting from a preimage of the intersection point
of Ej and C ′0 we see that Z2 acts effectively on Fj because
it acts trivially on D′

0, see Figure 2. This means that
[Fj : Ej ] = 2. We calculate

e(Fj) = he(Fj) = [Fj : Ej ] · he(Ej)

= 2 · [e(Ej)− 2(1− 1
2
)] = 2;

(F 2
j ) = hτ (Fj) = [D′

j : C ′j ] · hτ (Ej)

= 2 · [(E2
j ) +

1
2
] = −1.

Forgetting for a moment D+
2 and D−

2 we get the above configuration on Y ′. From (40) follows that

¤

¤

¤

e

e

e

e

e

e
D̂0D̂+

1

D̂−
1

D̂+
2

D̂−
2

D̂+
3

D̂−
3

2

0

0

0

0 0 0

(41) χ(Ŷ ) =
1
4
(e + τ) = 1, c2

1(Ŷ ) = 12χ− e = 8.

Blowing down the curves F1, F2, F3 we get two crossing
smooth rational curves with selfintersection 0 on Ŷ , for in-
stance D+

1 and D−
3 . There is up to isomorphism only one

smooth compact surface with Chern numbers χ = 1 and
c2
1 = 8 and such crossing curve pair, namely P1 × P1. For

this fact we refer to [H98], end of V.2 (blow up the intersec-
tion point of the curves and blow down the two curves to get
a smooth rational surface with c2

1 = 9, which must be P2,
see [H98], V.2, Proposition 5.2.4). Taking in consideration
now also D+

2 and D−
2 we get the left branch configuration

on Ŷ = B̂/Γ = P1 × P1.
The six circles mark the (abelian) quotient points (images of all Γ2-elliptic points on B); the three

boxes mark the compactifying cusp points. D̂0 crosses each of the three marked horizontal and three
vertical fibers in precisely one point. Therefore D̂0 is a section for both canonical projections of P1×P1.
Blowing up the central cusp point in last figure and blowing down the two D̂+

2 and D̂−
2 after, then D̂0

becomes a smooth rational curve on P2 with selfintersection 1, hence a projective line. It is uniquely
determined as line through the remaining two cusp points. Therefore D̂0 coincides with the diagonal
line on P1 × P1.

Altogether we get the following
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Theorem 5.1. The compactified ball quotient surface B̂/Γ is isomorphic to P1 × P1. The compactified
branch locus of the quotient map p : B −→ B/Γ consists of three horizontal fibres D̂+

j , three vertical
fibres D̂−

j and the diagonal D̂0. The configuration is Z2 × S3-invariant, where the generator of Z2

changes the P1-components of each point (P, Q) ∈ P1 × P1 and S3 acts by simultaneous permutation of
natural homogeneous P2-coordinates (x : y : z) with sum zero (x + y + z = 0), on both components. The
cusp points are the three intersection points of the diagonal curve D̂0 with the other curves D̂±

j . The
ramification indices of p at D̂0 or D̂±

j are 2 or 4, respectively, for j = 1, 2, 3. The uniformizing ball
lattice of BHH-20 is Γ with generators (39).

The 2S3-invariance comes from the factor group FΓ/Γ. Cusp points and the branch indices are
simply lifted from those of

B −→ B/AΓ = Y/Z2 = P2 \ {K1,K2,K3},
with obvious notation. Only at D0 we loose the factor 2, while the other branch indices remain to be 4.

¤

We want to interpret the ball quotient surface B̂/Γ = P1 × P1/2S3 = P2/S3 as compactified moduli
space of a special curve family. Following Shimura [Sm64] we consider plane curves of affine equation
type w4 = p2(u) p3(u)2, where pn(u) ∈ C [u] denotes a normalized polynomial of degree n.

Similarly to (28) let us consider again the families of plane (w, u) curves

(42)
Cµa : wd = (u− a0)m0(u− a1)m1(u− a2)m2(u− a3)m3(u− a4)m4 , a ∈ Λ̂,

Λ̂ :=
{
a = (a0, . . . , a4) | a ∈ (P1)5, as 6= at

}
.

If some as = ∞ then we substitute (u−as)ms ≡ 1. We denote with C̃µa the normalization of projective
closure Cµa ⊂ P2. The genus of C̃µa for general a ∈ Λ̂ is known by (29) and if µ is fixed it is independent
of a. The projective group PGL(2,C) acts on a and this action preserves genus of Cµa. If g ∈ PGL(2,C)
and a′ = ga then the curves Cµa and Cµa′ are projective equivalent. We can consider moduli space

Cµ := {Cµa | a ∈ Λ} , Λ := PGL(2,C)\Λ̂ .

Without loss of generality we choose a0 = 0, a1 = 1, a4 = ∞, a2 = x, a3 = y and vary only x, y 6=
0, 1,∞, x 6= y. In other words Λ = (x, y) can be identified with the complement of seven lines on P1×P1

as on the picture near to (41).

Proposition 5.2. The symmetric group S5(0, 1, 2, 3, 4) has exact representation on Λ given by trans-
positions (st) in the next table.

(43) (x, y) −→

(01) 1− x, 1− y (13) x/y, 1/y

(02) x/(x− 1), (x− y)/(x− 1) (14) x/(x− 1), y/(y − 1)
(03) (y − x)/(y − 1), y/(y − 1) (23) y, x

(04) 1/x, 1/y (24) 1− x, y(1− x)/(y − x)
(12) 1/x, y/x (34) x(1− y)/(x− y), 1− y

The symmetric group S5 acts on µ and on Cµa permuting mt. Let H be subgroup of S5 and µ is
H-invariant (for example [4; 2, 2, 1, 1, 2] is H = 〈(01), (23)〉 invariant). Then we define

CµH := {Cµa | a ∈ ΛH} , ΛH := Λ/H := PGL(2,C)\Λ̂/H ,

where H acts on a ∈ (P1)5 by permuting as. If two curves f, g are elements of CµH they define Jacobian
varieties which are isomorphic.

Following Deligne and Mostow [DM2] page 76, let ΓµH be the extension of Γµ corresponding to H
(µ is H invariant). We do not give here general definition of ΓµH , since for all our examples we will give
generators of this group.

Our main idea is the correspondce:

(44) (µ, H) −→ ΛH −→ CµH −→ ΓµH −→ B/ΓµH −→ Proportionality −→ Surface
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Example 5.3. µ = [4; 1, 2, 2, 2, 1] , H = id or (04). This is Apoll-3 and the curve is:

Cµ : w4 = u(u− 1)2(u− x)2(u− y)2, (x, y) ∈ Λ .

Matsumoto [Mat] and van Geemen [vGm] work with the following family:

C[4; 2,2,1,1,2] : w4 = u2(u− 1)2(u− γ1)(u− γ2), (γ1, γ2) ∈ Λ .

Since (03)(24)[4; 1, 2, 2, 2, 1] = [4; 2, 2, 1, 1, 2] and by (43) we obtain the relation between both families:

(45) (x, y) −→ γ(x, y) = (γ1, γ2) =
(

1− x

1− y
,

y(1− x)
x(1− y)

)
.

We prefer to work with µ = [4; 1, 2, 2, 2, 1] since in this case the generators of full Picard modular group
FΓ are simple.

If H = (04) then µ is H invariant and ΓµH = Γµ(04) = AΓ = 〈Γ, M ′
04〉 (see (38)). Now we want to

find the quotient surface Λ/(04) = Λ/((x, y) ∼ (1/x, 1/y)). We do this in terms of γ. Using (43) and
(45) we see that the (04) action on (x, y) goes down to the transposition of γ1 and γ2. In S5 language
that is (03)(24) · (04) · (03)(24) = (23). So instead of (x, y) quotient Λ/(04) we must to find (γ1, γ2)
quotient Λ/(23). This surface is P2 and we know this by (34) and the map B defined there.

Let define the maps

H : P1 × P1 −→ P2 , (γ1, γ2) −→ (p : q : r) := (γ1γ2 : (1− γ1)(1− γ2) : 1) ,

and write our curve as

w4 = u2(u− 1)2(u− γ1)(u− γ2) = u2(u− 1)2(u2 − (γ1 + γ2)u + γ1γ2)

= u2(u− 1)2(u2 + (q − p− 1)u + p).

The last (w, u) curve has genus 3 precisely when pq
(
(q − p− 1)2 − 4p)

) 6= 0. So we have obtained our
Normalized model 1.2 again. We denote last (p, q) moduli space with Cµ(04).

We have a commutative moduli diagram of algebraic morphism

(46)

Cµ −→ Λ ↪→ P1 × P1 = B̂/Γ
↓ ↓ ↓

Cµ(04) −→ Λ/(04) ↪→ P2 = B̂/AΓ
↓ ↓ ↓

−→ Λ/2S3 ↪→ P2/S3 = B̂/FΓ

The second author don’t know how to complete the last diagram. In next section we obtain similar
diagrams for other subgroups H of S5.

Λ/2S3 is the moduli space of the curve family C̃µ by Piñeiro’s result in the first appendix of [HPV].
But P2/S3 = B̂/FΓ is also the moduli space of abelian 3-folds with Q(i)-multiplication of type (2, 1),
see [Sm63]. The Jacobians of the above curves C̃µ are obviously abelian threefolds of this type, see
[Sm64]. It follows that

Theorem 5.4. The compactified moduli spaces of of the curve families C̃µ and of (principally polarized)
abelian 3-folds with Q(i)-multiplication of type (2, 1) coincide with P2/S3

∼= B̂/FΓ.

¤

We have two families of curves

Cµ : w4 = u2(u− 1)2(u− γ1)(u− γ2)

Cµ(40) : w4 = u2(u− 1)2(u2 + (q − p− 1)u + p).

If γ1 and γ2 are known one reconstruct corresponding (x, y) using (45). For given (p, q) we reconstruct
γ1 and γ2 as roots of quadratic equation Z2 +(q− p− 1)Z + p but we loose the order. Observe that the
order of γ1, γ2 determines the order of the linear factors of Cµ. Forgetting the order of γ1, γ2 means to
forget the order of the two linear factors and this is the case Cµ(04). Then we say that our curves are
(only simply) distinguished.
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Theorem 5.5. The surfaces P1 × P1 = B̂/Γ and P2 = B̂/AΓ are the (compactified) moduli spaces of
double distinguished respectively distinguished curves of Shimura equation type. More precisely: The
correspondence

Cµ 7→ (x, y) 7→ (γ1, γ2)

defines a map to the moduli space P1×P1 ⊃ Λ of distinguished curves, which restricts to the set of curves
w4 = u2(u− 1)2(u− γ1)(u− γ2) and w4 = u2(u− 1)2(u− γ1)(u− γ2). Via Z2 equivalence interchanging
these curves by changing γ1 and γ2 we get a map to the moduli space P2 = P1 × P1/(04) ⊃ Λ/(04)
of distinguished curves, which restricts in isomorphy-compatible manner to the curves Cµ(04) = u2(u−
1)2(u2 + (q − p− 1)u + p), where p = γ1γ2, q = (1− γ1)(1− γ2). ¤

6 More proportional orbital planes with quadrics

Here we present more examples to demonstrate how (44) works.

Example 6.1. µ = [12; 7, 7, 2, 2, 6], H = id or (23). Looking at table (37) we see that this is Apoll-3.
Due to Deligne and Mostow ([DM2] page 76) we know know that Γµ = AΓµ := 〈Γµ, M ′

23〉 = Γµ(23). The
generators and hermitian form are given in section 4. We must substitute q0 = q1 = ε7, q2 = q3 = ε2,
q4 = ε6, q = ε3, ε = exp(−2πi/12). This is arithmetic cocompact subgroup of index 2 of the full Picard
modular group FΓµ and the curve we associate is:

Cµ = Cµ(23) : w12 = u7(u− 1)7(u2 + (q − p− 1)u + p)2 ,

where (p, q) are coordinates in C2, pq
(
(q − p− 1)2 − 4p)

) 6= 0. I section 2 we check that Proportion-
ality conditions are satisfied. The orbital surface seems to be B/Γµ = Λ/(23) ⊂ P2 with Apollonius
configuration divisor, but until now it is not generally known that the four proportionality conditions
(25) are sufficient for X̂ to be a ball quotient.

Example 6.2. µ = [6; 1, 1, 3, 3, 4] or [6; 1, 1, 4, 4, 2], H = id or (01). These are Apoll-1 and Apoll-2.
Both cases are similar to 6.1. The table (37) show that ΣINT condition set is {0, 1}. By the same
argument we have Γµ = AΓµ := 〈Γµ, M ′

01〉 = Γµ(01). To find curves we apply σ = (02)(13) to µ and
obtain similar to example 5.3 new coordinates (γ1, γ2),

(x, y) −→ γ(x, y) = (γ1, γ2) =
(

x

x− y
,

x− 1)
x− y

)
.

In these new coordinates (01) − (x, y) action goes to (23) − (γ1, γ2) action, which is interchange of γ1

and γ2. From (γ1, γ2) coordinates in P1 × P1 we go to (p, q) coordinates on P2. We go further as in
previous 6.1.

Example 6.3. µ = [3; 1, 1, 1, 1, 2], H = id. This is classical Picard [P], BHH-19, modular group for the
curve w3 = u(u− 1)(u− x)(u− y). The surface is P2 with 4 cusps and line arrangement as in Figure 6.
It is known that BHH-19 has the uniformizing ball lattice A(µ)(1− ε), ε = exp(2πi/3), see [H86], Ch. I
or [H98], V.2. Arithmetic group A(µ) is definition 4.2, A(µ)(1 − ε) := {g ∈ A(µ) | g ∼ E mod 1 − ε}.
Moreover, we have an exact sequence of group homomorphisms

1 −→ Γµ = A(µ)(1− ε) −→ A(µ) = FΓµ −→ S4 −→ 1.

We give a table with proportional invariants as in BHH-19.

01 02 03 04 12 13 14 23 24 34 surface
weights ∞ ∞ ∞ ∞ 3 3 3 3 3 3

he 0 0 0 0 −2/3 −2/3 −2/3 −2/3 −2/3 −2/3 1/3

Example 6.4. µ = [3; 1, 1, 1, 1, 2], H = (23). This is again as previous example (see Table 1 and 2
solution 37) but this time Γµ(23) = 〈Γµ, M ′

23〉. The uniformizing ball lattice Γµ(23) is nothing else but
the preimage of (23) ⊂ S4 in A(µ). In other words, we have an exact subsequence

1 −→ A(µ)(1− ε) = Γµ −→ Γµ(23) −→ 〈(23)〉 −→ 1.
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H Q2 Q1
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The curve is obvious w3 = u(u− 1)(u2 +(q− p− 1)u+ p) but how to find the appropriate surface? One
expect P2/(23), where (23) action on P2 is (a : b : c) ∼ (b : a : c).

Here we use Proportionality again. We consider on P2 two quadric C1, C2 with two intersection
points O, K1, where at O the intersection has multiplicity 3. The tangents to both quadric are denoted
by T, H and the line though O, K1 with V (at this time we don’t use V ). Let us blow up two times P2

at O and then contract the line T . Now we contract the exceptional line with selfintersection −2 and
obtain the model right with Q3– the singularity of type 〈2, 1〉. This is the surface we look for. Before
the last contraction one gets Hirzebruch surface F2. The orbital cycle is E,C1, C2,H with Q1, Q2,K2

cusp points and Q3 elliptic point.
We must check proportionality conditions and that P2/(23) is isomorphic to F̂2. Let start with

proportionality. This is already done in section 2. This is because this orbital cycle and the Apollonius
cycle (quadric and three tangents) have the some model Y′. Really after blowing up Q1, Q2,K2 two,
two, one times and contracting exceptional lines with selfintersection −2 we get Figure 2. We give
weights and heights in table:5

Q1 Q2 K2 H E C1 C2 surface
weight ∞ ∞ ∞ 6 3 3 3

he 0 0 0 −1/3 −2/3 −2/3 −2/3 1/6

From the other side it is not difficult to see that P2/(23) is isomorphic to F̂2. Looking at Figure 6 one
can think the quotient map P2 −→ P2/(23) as symmetries about L13 and the map is ramified (only)
along this line. It goes down to H ⊂ F̂2. The line pairs {L14, L34}, {L23, L12} are mapped onto C1, C2,
respectively. The line L24 projects onto E and the fixed point (−1 : 1 : 0) ∈ L24 goes to elliptic point Q3

of type 〈2, 1〉. Namely, by proportionality of heights and relations with surface invariants, one checks
that the quotient surface has Euler number 3. Therefore the blowing up the only surface singularity
Q3 yields a smooth rational surface with Euler number 4, hence a Hirzebruch surface Fd/P1. Again
by proportionality H, C1, C2, E have selfintersection 2, 0, 0, 0 respectively. It follows immediately that
Fd = F2 (see [H98] Remark 5.2.7).

The weights from the previous example go obviously down to the weights in our case. We have
proved the following

Proposition 6.5. For a suitable choice of C1, C2 the open plane

P2 \ supp (C1 + C2 + T + H)

has a Picard-Einstein metric. As uniformizing ball lattice one takes a suitable index-2 extension Γµ(23)

of A(µ)(1 − ε), where A(µ) the ring of integral Eisenstein numbers. More precisely, after a birational
transformation β - the blowing up two times of O and contraction of the exceptional line with self-
intersection −2 one gets the 〈(23)〉-quotient of the orbital surface BHH-19 of the table in [BHH], p.
201.

Let σ be an element of S5. By proposition 5.2 with σ we associate an automorphism of Λ. This auto-
morphism has fixed line in Λ if and only if when σ = (ij)(kj), i, j, k, l different (see [DM2], Lemma 8.3.2).
In the following the group H we consider have such elements.

5Both authors have MAPLE packages for working with orbital invariants.
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Example 6.6. µ = [3; 1, 1, 1, 1, 2], H = (01)(23). This is very closed to example 6.4 and we give only
some results. The action (01)(23) is (x, y) ∼ (1−y, 1−x) which goes to P2 as (a : b : c) ∼ (c−b : c−a : c).
This is symmetries about a + b − c = 0. Orbital surface is the same as example 6.4 with weight table
(the line V is the image a + b = c):

Q1 Q2 K1 K2 V H E C1 C2 surface
weight ∞ ∞ ∞ ∞ 2 3 3 3 3

he 0 0 0 0 −2/3 −1/3 −1/3 −2/3 −2/3 1/6

The group is Γµ(01)(23) = 〈Γµ, M ′
01M

′
23〉 (in other words we take as a new generator generator the

multiplication of two matrices. As coordinates on the moduli space one can take q = x + 1 − y,
p = x(1− y). Similar proposition to 6.5 holds.

Example 6.7. µ = [3; 1, 1, 1, 1, 2], H = 〈(01), (23)〉. The modular group we associate is Γµ〈(01),(23)〉 =
〈Γµ, M ′

01, M ′
23〉. The coordinates on the moduli space we consider p = xy(1−x)(1−y), q = (1−xy)

(
1−

(1− x)(1− y)
)
. We want to find the quotient P2/〈(01), (23)〉. Let us consider the map

π : P2 −→ P2 , (x : y : z) −→ (a : b : c) :=
(
(x− y)2 : z2 : (z − x− y)2

)
.

Obviously this map is invariant under the action of 〈(01), (23)〉 and P2 is the quotient we look for. The
image of the lines Lij from Figure 6 is our Apollonius configuration. Namely the lines {L24, L14, L23, L12}
projects to the quadric; {L13, L24} to {a = 0, b = 0} respectively and the line x + y = z goes to c = 0.
The quotient map π is Z2 ×Z2 cover ramified only along z(x− y)(z − x− y) = 0. After calculating the
heights we see that they are the same as Apoll-2. By Proportionality Theorem we get the following

Theorem 6.8. The open plane

P2 \ {xyz((x− y − z)2 − 4yz) = 0}

has a Picard-Einstein metric. As uniformizing ball lattice one takes a suitable Z2 ×Z2 extension
Γµ〈(01),(23)〉 of A(µ)(1 − ε), where A(µ) the ring of integral Eisenstein numbers, µ = [3; 1, 1, 1, 1, 2].
Apoll-2 is Z2 × Z2 quotient of the orbital surface BHH-19.

Example 6.9. µ1 = [6; 5, 1, 3, 1, 2], µ2 = [4; 3, 1, 1, 1, 2], H = id or (13). These are solutions 21 and 24
from Table 1, and 24 is BHH-21. They have special weights v3, k1, k2 precisely as example 6.4. In case
H = (13) the orbital cycle is again C1, C2, E, H and the surface is F2.

Since µ1 has only Z2 symmetrie and µ1 satisfies pure ΣINT condition Γµ1 = FΓµ1 = A(µ1).
For µ2 and H = id orbital cycle is Figure 6 with three cusps and one quotient point (1 : 1 : 1) ∈ P2.

The exact sequence holds
1 −→ Γµ2 −→ FΓµ2 −→ S3 −→ 1.

and from generators one gets Γµ2 ⊂ A(µ2)(1− i). This is again ring of Gauß integers but with different
hermitian form.

Example 6.10. µ = [4; 1, 2, 2, 2, 1], H = (23). This is solution 52. The curve is w4 = u(u− 1)2(u2 +
(q − p − 1)u + p)2, p = xy, q = (1 − x)(1 − y). Notice that this time we forget the order of quadratic
terms instead of linear. The group is obviously Γµ(23) = 〈Γµ,M ′

23〉. To obtain surface we prosed as
in example 5.3 and apply σ = (03)(24) to µ. Since σ−1(23)σ = (04) the (x, y) action on (23) goes
to (04) action on (γ1, γ2). Using (43) we see that (04) is (γ1, γ2) ∼ (1/γ1, /γ2) and so one have to
gets the quotient P1 × P1/(γ1, γ2) ∼ (1/γ1, /γ2). By proportionality of the heights we find that the
quotient have Euler number 4, signature 0 and 4 singularities of type 〈2, 1〉, namely the images of the
fixed points (1, 1), (1,−1), (−1, 1), (−1,−1). All curves are rational with selfintersection 0, only D have
selfintersection 1. Cusp points are K1,K2. We want to find nonsingular minimal model of this surface.
After resolving all singularities and blowing up K1 we find smooth surface with Euler number 4+5 = 9.
Now we contract −1-curves L,R,D and the exceptional curves to the down three singular points and
obtain smooth surface with Euler number 9− 6 = 3. Since this surface have rational curves it is P2 and
we obtain our Apollonius configuration. Cusp points K1,K2 goes to horizontal line and quadric. This
explains very well line 52 to the Table 1.
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Example 6.11. µ = [4; 1, 2, 2, 2, 1], H = (04)(23). Again Gauß numbers. The (04)(23) action in γ1, γ2

coordinates is (γ1, γ2) ↔ (1/γ2, 1/γ1) and is ramified only along quadric
γ1γ2 = 1. The quotient of P1 × P1 with respect to this action is P2. The
proof is similar to example 6.4 where we find the quotient P2/(23). The
configuration divisor is xyz(x − y)

(
(x − y − 1)2 − 4y

)
, namely Apollonius

configuration with diagonal line H : x = y.

Q1 Q2 K1 K2 H C0 C1 C2 C2 surface
weight −4 −4 ∞ ∞ 2 2 4 4 4

he 1/4 1/4 0 0 −1/2 −1 −1/2 −1/2 −1/2 3/16
Q1K1

Q2
K2H

Notice that H is the image of diagonal line and the quadric of γ1γ2 = 1. Now cusp points are K1,K2

and Q1, Q2 are quotient points.

Example 6.12. µ0 = [12; 7, 7, 2, 2, 6], µ1 = [6; 1, 1, 3, 3, 4], µ2 = [6; 1, 1, 4, 4, 2], H = 〈(01) , (23)〉.
These are full Picard modular groups for Apoll-k, k = 0, 1, 2. From section 4 we know that they are
arithmetic groups connected with hermitian forms Hk. To find the orbital surface one must find the
quotient P1 × P1/(x, y) ∼ (y, x) ∼ (1 − x, 1 − y). We know that P1 × P1/(x, y) ∼ (y, x) = P2. Let
the quotient map be (x, y) → (p, q) := (xy, (1 − x)(1 − y)). In (p, q) coordinates the action (x, y) →
(1 − x, 1 − y) is (p, q) → (q, p). But from example 6.4 we know this quotient and we obtain again F̂2

with two quadrics and two lines.

7 Two Gauß ball lattices – commesurability

Example 7.1. µ3 = [4; 1, 2, 2, 2, 1], H3 = 〈(04) , (13)〉. This is Apoll-3. We consider together also
µ4 = [4; 3, 1, 1, 1, 2], H4 = 〈(13)〉. In both cases we connect the curves

C3 : w4 = u(u− 1)2(u− x)2(u− y)2 , C4 : w4 = u3(u− 1)(u− x)(u− y)

having genus 3 and 4 respectively. We use (x, y) on C4 and (γ1, γ2) coordinates on C3. The birational
relations between them is defined in (43). Shortly we denote these groups with

G3 := Γ[4; 1,2,2,2,1]〈(04),(13)〉 , G4 := Γ[4; 3,1,1,1,2]〈(13)〉.

To find B/G4 we need to find the quotient P2/(x, y) ∼ (x/y, 1/y) which is symmetries about the vertical
line L23 on Figure 6. We know from example 6.4 that this is F̂2 and the orbital surface contain two
quadrics and two lines.

Since σ−1〈(04), (13)〉 = 〈(01), (23)〉 it follows B/G3 = P1 × P1/(γ1, γ2) ∼ (γ2, γ1) ∼ (1− γ1, 1− γ2).
As in example 6.12 the surface is F̂2. The weight and height table for both groups is the same:

Q1 Q2 K2 H E C1 C2 surface
weight ∞ −4 ∞ 4 4 4 2

he 0 1/4 0 −1/2 −1/4 −1/2 −1/2 3/32
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We want to prove that both groups are conjugate. We know the monodromy matrices from section 4.
For C4 and µ = [4; 3, 1, 1, 1, 2] we substitute (q0, q1, q2, q3, q4, q) = (i,−i,−i,−i,−1,−i) and obtain
generators {Tst} of G4 and hermitian form H4.

T12 =




i 1− i 0
1 + i −i 0

0 0 1


 T ′13 =




1 + i 0 −i
1 + i 1 −1− i

1 0 0


 T23 =




1 0 0
0 i 1− i
0 1 + i −i




T01 =




1 0 0
1− i 1 0
1− i 0 1


 T02 =




1 −1− i 0
0 1 0
0 1− i 1


 T03 =




1 0 −1− i
0 1 −1− i
0 0 1


 H4 =




1 −1 i
−1 1 −1
−i −1 1




Theorem 7.2. The groups G3 and G4 presented in example 7.1 are conjugate. More precisely
i) G3 and G4 are extensions

Γ[4; 1,2,2,2,1]
Z2←−− Γ[4; 1,2,2,2,1](04)

Z2←−− G3 = G4
Z2−−→ Γ[4; 3,1,1,1,2]

of Picard modular groups corresponding to curves C3, C4 respectively. These curves appear in [BHH]-list
as numbers 20 and 21.

ii) they are arithmetic groups

Gi = {g ∈ GL(3,Z[i]) | g ∼ E or Ea mod(1 + i), | det(g)| = 1, tgHig = Hi} ,

Γ[4; 3,1,1,1,2] = {g ∈ GL(3,Z[i]) | g ∼ E mod(1 + i), |det(g)| = 1, tgH4g = H4} ,

where E =
[

1 0 0
0 1 0
0 0 1

]
, Ea =

[
0 0 1
0 1 0
1 0 0

]
;

iii) there exist matrix Q ∈ GL(3,Z[i]), detQ = 1 + i, such that tQH3Q = H4, Q−1G3Q = G4;
iv) the hermitian form H3 and H4 are similar to:

tg3H3g3 =
[

0 0 −i
0 1 0
i 0 0

]
, tg4H4g4 =

[
0 0 −1−i
0 1 0

−1+i 0 0

]
, g3, g4 ∈ SL(3,Z[i]) ;

v) let B3 and B4 be the projective two dimensional complex balls: Bi := {w ∈ P2 | twHiw < 0}.
Then the quotient surfaces Bi/Gi are isomorphic to Hirzebruch surface F2 with one singularity of type
〈2, 1〉. The arrangement is as in example 6.4 and the weight table is given in example 7.1.

Proof. This is commesurability between two groups like [DM2] Corrolary 10.18.
iii-iv) We can take

Q :=



−1 1 + i −i
−1 1 −1
−1 1− i −1


 , g3 :=




0 −1 i
i −1 0
i −1 −i


 , g4 :=



−i 1 1
0 0 1
1 0 0


 .

We need to check also the inclusions Q−1G3Q ⊂ G4 and Q−1G3Q ⊃ G4. Since we know the generators
of both groups it is suficient to check these inclusions only for them. The next equalities show that
really Q−1G3Q = G4. Some terms appear with negative degree – they are cusp generators. We consider
projective groups and terms like −1,±i are not important.

Q−1 M ′
04 Q = i T02 T03 T23

Q−1 M01 Q = T ′13 T23 T12

Q−1 M02 Q = i T13 T01 T03

Q−1 M03 Q = −T ′13 T13 T−2
03 T−1

02

Q−1 M12 Q = T−1
03 T02 T03

Q−1 M ′
13 Q = T23 T03 T23

Q−1 M23 Q = T 2
23 T02

T01 = Q−1M3
01 M ′

13 M01Q

T02 = Q−1M23Q

T03 = Q−1M ′−1
13 M−1

12 M13 M23Q

T12 = Q−1M12 M ′
13 M ′3

04 M3
01 M−1

12 M3
02 M01Q

T ′13 = iQ−1M02 M12 M01Q

T23 = −iQ−1M ′
04 M ′−1

13 M−1
12 Q

i) Since Q−1G3Q = G4 and from the construction of both groups i) follows immediately.
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ii) The inclusions ⊂ follows from the fact that the generators satisfy such inclusions. The other
direction is not trivial. From the second part of the paper we know the exact group sequence

1 −→ {
g ∈ A(µ3) | g ∼ E mod(1 + i)

}
= Γµ3(04) −→ FΓµ3 = A(µ3) −→ S3 −→ 1 .

The ideal (1+ i) splits A(µ3) onto 6 classes. They are characterized as {g ∈ A(µ3) | g ∼ Ei mod(1+ i)},
where Ei are defined in Lemma 4.5. In the following we will write only ∼ 0 instead of ∼ 0 mod(1 + i).
Now it is easy to get the opposite inclusion ⊃ for G3, namely

G3 = {g ∈ A(µ3) | g ∼ E or Ea, tgH3g = H3} .

We need the following

Proposition 7.3. Let Q be the matrix from Theorem 7.2, det Q = 1 + i. Then
i) Q

{
g ∈ GL(3,Z[i] | g ∼ 0 mod(1 + i)

}
Q−1 ⊂ GL(3,Z[i]).

ii) QEaQ−1 ∼ E mod(1 + i).
iii) Let {Es} be the set of matrices from Lemma 4.5. Then only two of them E and Ea satisfy the

inclusion Q−1EsQ ⊂ GL(3,Z[i]).

Let us assume that there is an element p of {g ∈ GL(3,Z[i]) | g ∼ E or Ea, tgH4g = H4} and
p 6∈ G4. We want to get contradiction. We consider r := QpQ−1. Using the proposition 7.3 we obtain
r ∈ GL(3,Z[i]), trH3r = H3. In other words r is an element of the full Picard modular group FΓµ3 .
If r ∈ G3 then using Theorem 7.2 iii) we have Q−1rQ = p ∈ G4. So let us assume that r 6∈ G3. Then
r does not belongs to classes presented by E or Ea. But in this case Q−1rQ = p 6⊂ GL(3,Z[i]) and we
have contradiction.

Since T ′13 ∼ Ea and E2
a = E we get Γµ4 = {g ∈ GL(3,Z[i]) | g ∼ E, tgH4g = H4}.

Now v) follows from examples 6.9 and 7.1. ¤

Remark 7.4. We have translated information from G3 to G4. On the similar way we can also connect
classical Picard curve w3 = u(u− 1)(u− x)(u− y) (example 6.7) with Apoll-2 curve w6 = u(u− 1)(u−
x)4(u− y)4. This is another example of commesurability.
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Part II

Arithmetic Lattices
In this part we work only with the lattice of Gauß integers and use different notations. They are
shortly and more convenient in this case. We give the connection with the notations from Part I,
µ = [4; 1, 2, 2, 2, 1], in the table:

part I part II
A(µ) = FΓµ Γ

A(µ)(1 + i) = AΓµ = Γµ(04) Γ′ = Γ(π) = Γ(1 + i)
Γµ Γ2

8 Ball lattice conditions

We look for an arithmetic ball lattice Γ ⊂ SU((2, 1),C) ⊂ Gl3(C) acting effectively on the complex
two-ball

B = {(z1, z2) = (z1 : z2 : 1) ∈ P2; |z1|2 + |z2|2 < 1} ⊂ P2 = P2(C)

via projective (fractional linear) transformations with postulated data described in 8.1 below (for special
Γ′ instead of general Γ). For the sake of simplicity we assume that all our ball lattices Γ are arithmetical
(arithmetic defined subgroup of SU((2, 1),C)) and that they act effectively on B.

Furthermore we use the following notions, see [H98], especially chapter IV, for more details. A
reflection is an element 1 6= σ ∈ Γ of finite order fixing a subdisc D = Dσ of B pointwise. The disc
Dσ is uniquely determined by σ. It is called a Γ-reflection disc, if such σ ∈ Γ exists. If Γ is fixed we
omit the prefix Γ-, also for further notations depending on Γ. For given subdisc D of B we call σ a
D-reflection, if D = Dσ for a reflection σ. The group of D-reflections in Γ is finite cyclic. Its order is
called the Γ-reflection order at/of D. It coincides, say by definition, with the ramification index of the
natural locally finite quotient map p : B −→ B/Γ along D, and appears as weight of the orbital image
curve D/Γ on the orbital quotient surface B/Γ.

A Γ-cusp is a boundary point κ ∈ ∂B of B such that the unipotent elements of the isotropy group
Γκ form a lattice in the unipotent radical of the parabolic group Pκ(R) of all elements of SU((2, 1),C)
fixing κ. The set of all Γ-cusps is denoted by ∂ΓB. The quotient map p extends in a continuous
manner to a unique surjective map p∗ : B∗ ³ B̂/Γ from B∗ = B∗(Γ) := B ∪ ∂ΓB onto the Baily-Borel
compactification B̂/Γ of B/Γ, which is a projective surface adding a finite number of normal points to
B/Γ.

An element 1 6= γ ∈ Γ is called (honestly) elliptic if it has finite order and is not a reflection. It is
equivalent to say that γ has precisely one fixed point Q on B. In opposition we call Q ∈ B a Γ-elliptic
point, if it is an isolated fixed point of Γ, which means that an elliptic element γ ∈ Γ exists fixing Q.

Two subsets M, N of B∗ are called Γ-equivalent, iff there is a γ ∈ Γ such that N = γ(M). Two
points P, Q ∈ B∗ are said to be Γ-equivalent, iff {P} and {Q} are. The Γ-equivalence classes of Γ-elliptic
points, Γ-cusps or Γ-reflection discs are finite, see [H98].

We look for an arithmetic ball lattice Γ′ satisfying seven special conditions. For the subdiscs Di

below we will use the following notation for the subgroup of all elements acting on Di:

Γ′i := {γ ∈ Γ′; γ(Di) = Di}, i = 0, 1, 2, 3.

Postulates 8.1. for the ball lattice Γ′

(i) There are precisely three Γ′-inequivalent Γ′-cusps κ1, κ2, κ3 ∈ ∂B. The corresponding cusp points
K1,K2,K3 on X̂ := B̂/Γ′ are nonsingular.

(ii) There is up to Γ′-equivalence precisely one Γ′-reflection disc D0 ⊂ B with reflection order 4 such
that κ1, κ2, κ3 ∈ ∂D0 is a complete set of Γ′0-inequivalent cusps for the quotient curve D0/Γ′0.

(iii) Up to Γ′-equivalence there are precisely three Γ′-reflection discs D1, D2, D3 with reflection order
4 supporting at the boundary ∂Dj precisely one cusp up to Γ′j-equivalence, namely κj, j = 1, 2, 3,
respectively.
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(iv) Each Γ′-reflection disc is Γ′-equivalent to one of the four discs above.

(v) Up to Γ′-equivalence there are precisely three Γ′-elliptic points O1, O2, O3 ∈ B. They coincide
with the pairwise intersection points of D1, D2, D3 (for suitable choice of the three discs). The
isotropy group Γ′Oj

, Oj := Dk ∩ Dl, {j, k, l} = {1, 2, 3} coincides with the abelian group of order
16 generated by the reflections of order 4 fixing the points of Dk or Dl, respectively.

(vi) The Euler-Bergmann volume of a Γ′-fundamental domain is equal to 3
16 .

(vii) There is a subgroup Σ3 of AutholB isomorphic to S3 normalizing Γ′, which acts on D0 and permutes
D1, D2, D3.

We illustrate the situation in Picture 8 with a mixed 2- or 3-dimensional imagination (the latter around
D0 with boundary points κ1, κ2, κ3) of the real 4-dimensional unit ball B.

O1 O2

O3

D3

κ1

κ2

κ3

D0

D1

D2

B

Figure 8: Representative Γ′-fixed point configuration on B

Theorem 8.2. Under the conditions (i) - (vii) it holds that X̂ = B̂/Γ′ is the projective plane P2. The
compactified branch locus of the quotient map

p : B −→ X = B/Γ′

consists of a quadric Ĉ0 and three tangents Ĉj, j = 1, 2, 3. These curves are the (compactified) images
of the reflection discs D0 or Dj, j = 1, 2, 3, respectively. There is up to PGl3-equivalence an - up to
S3-symmetry - unique projective coordinate system on P2 such that the projective lines Ĉj, j 6= 0, are
the coordinate axes and the quadric has the equation

(47) Ĉ0 : (X + Y − Z)2 − 4XY = X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z = 0.

In orbital surface terms we will prove mainly that

8.3. The orbital ball quotient surface X̂ = B̂/Γ′ coincides, up to projective equivalence, with

X̂ = (X̂; Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3)

described in section 1, (1), (2), (3) with properties 1.1 (i), (ii) a),b),c),d) (omitting the symmetry
condition e) here).

The open curves Ci = Ĉi\{K1,K2,K3} are defined as images of the discs Di, i = 0, 1, 2, 3, the points
Pj are the images of the elliptic points Oj , and the cusp points Kj are the images of the cusps κj with
respect to the extended quotient map p∗ : B∗ −→ B̂/Γ′.
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We use again the height calculus for orbital surfaces developed in [H98] based on equivariant K-
theory. The orbital heights of orbital ball quotient surfaces are links between differential geometric
volumes of fundamental domains and algebraic-geometric invariants of surfaces or embedded curves.
Mainly Euler heights he and signature heights hτ are used. We dispose on the following strong

Theorem 8.4. ([H98], IV, Theorem 4.8.1, first part) For ball lattices Γ ⊂ U((2, 1),C) with open orbital
ball quotient B/Γ it holds that

He(B/Γ) = covolEB(Γ) := volEB(FΓ) := volγ2(FΓ).

¤

Thereby FΓ denotes a Γ-fundamental domain on B, and the volume is taken with respect to the
U((2, 1),C)-invariant Euler-Bergmann (volume) form γ2 = 1

3γ1 ∧ γ1 on B with γ1 = −3ω (Kähler-
Einstein relation) the Ricci form and ω the Kähler form of the Bergmann metric on B. For these details
we refer to [BHH], Appendix B.

From this theorem and condition (vi) for Γ′ we get

(48) covolEB(Γ′) =
3
16

The signature form on B can be proportionally defined to be σ = 1
3 (γ1 ∧ γ1− 2γ2). As for Euler heights

we have

Theorem 8.5. ([H98], IV, Theorem 4.8.1, second part) For ball lattices Γ ⊂ U((2, 1),C) it holds that

Hτ (B/Γ) =
1
3
covolEB(Γ) = covolσ(Γ) = volσ(FΓ).

¤

This is the origin of the proportionality relation (Prop 2) for orbital ball quotient surfaces B/Γ.
From condition (vi) for Γ′ we get now

(49) Hτ (B/Γ′) =
1
3
He(B/Γ′) =

1
16

Now we change our attention to orbital curves coming from discs. Let D ⊂ B be a (linearly embedded
complete) disc whose image on B is an algebraic curve D/Γ on B/Γ (Γ-disc). For the finer object, the
orbital curve D/Γ ⊂ B/Γ. Euler height and covolume are connected by

Theorem 8.6. ([H98], IV.7, first part of (4.7.7))

he(D/Γ) = covolEP (ΓD) := volEP (FΓD) := volη(FΓD),

¤

where

(50) ΓD := NΓ(D)/ZΓ(D)

is the effectivized subgroup of all elements of Γ acting on D,

(51) NΓ(D) = {γ ∈ Γ; γ(D) = D}, ZΓ(D) = {γ ∈ Γ; γD = idD}.
The volume of a ΓD-fundamental domain FΓD is taken with respect to the U((1, 1),C)-invariant Euler-
Poincaré form η on D. This explicitly well-known volume form is normalized in such a way that the
height he of any compact quotient curve C of D by a torsion free D-lattice N is nothing else but the
Euler number e(C) = 2−2g < 0, g the genus of C. Assume for a moment that N = NG(D) for a torsion
free cocompact ball lattice G and K is a canonical divisor of the smooth compact algebraic surface B/Γ.
By relative proportionality, see [BHH], appendix B.3.E, it holds that 3e(C) = −2(K · C). Together
with the adjunction formula −(K · C) = e(C) + (C2) one gets e(C) = 2(C2). In order to calculate
selfintersection numbers by means of volumes we define adequately the signature form on D to be 1

2η.
We proved also
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Theorem 8.7. ([H98], IV.7, second part of (4.7.7))

hτ (D/Γ) =
1
2
covolEP (ΓD) =

1
2
volη(FΓD).

¤

This is the origin of proportionality condition (Prop 1) for orbital disc quotients on ball quotient
surfaces. Especially we get

(52) 2hτ (D/Γ′i) = he(D/Γ′j) i = 0, 1, 2, 3.

Now we check the admissibility of our cusp conditions, see (Prop∞). There are precisely 3 cusp points
K1,K2,K3 on B̂/Γ′ coming from κ1, κ2, κ3 (condition (i)). The possible graphs of the corresponding
orbital cusp points K1,K2,K3 are classified in [H98], III.3.5. We denote one of these points, say the
first, by κ, K or K, respectively. In general, each cusp point is the quotient of an elliptic singularity by
a cyclic group Gκ of order 1, 2, 3, 4 or 6, see [H98], IV.4.5. Since two 4-reflection discs go through our
special κ and there are no 2-reflection discs (condition (iv) and (ii), (iii) before), the group Gκ is cyclic
of order 4, and the graph of K must look like

−1

g

〈4, 0〉

g

〈4, 0〉

g
〈2, 0〉

Figure 9: atomic graph of cusp point

(-1 in the box will be explained below, see (53). This means that K has a canonical smooth rational
resolution curve Eκ supporting a surface singularity of cyclic quotient type 〈2, 1〉. In [H98] we call it the
cusp curve corresponding to the center of the resolution graph 9 of κ. Remember that we have three
of them: E1, E2, E3 corresponding to κ1, κ2, κ3, which are contracted to K1,K2,K3, respectively, along
the birational morphism X ′ −→ X̂ = B̂/Γ′. Resolving the three singularities of type 〈2, 1〉 by rational
-2-curves we get a birational morphism X̃ −→ X ′ with three connected exceptional curves Lj + Ej on
X̃ contracted to the nonsingular points Kj along X̃ −→ X̂ by the last part of condition (i). Omitting
indices again, the smooth rational components L, E intersect each other transversally and (L2) = −2.
The contraction to a nonsingular point is only possible, if E has on X̃ selfintersection (E2)X̃ = −1. So
for all proper transforms of Ej on X̃ we get

(53) (E2
j )X̃ = −1, j = 1, 2, 3.

Proposition 8.8. The compactified ball quotient surface X̂ = B̂/Γ′ is smooth. Moreover, the closures
Ĉi of Ci := Di/Γ′, i = 0, 1, 2, 3, on X̂ are smooth curves.

Proof. The singularities of any Baily-Borel compactified ball quotient surface come from (honest)
elliptic points and cusps. The cusp points Kj are nonsingular by (i). By condition (v) there are only
three points Pj ∈ B/Γ′ with elliptic preimages, namely the images of Oj , j = 1, 2, 3. Let O be one
of them. The corresponding isotropy group Γ′O is generated by reflections, see condition (iv) again.
Therefore the points Pj are nonsingular (Chevalley criterion [Bou], V.5 Theorem 4); for our application,
see [H98], I.1, Lemma 1.1.1 and IV.5, proof of Lemma IV.5.9). Now it is clear that X̂ has to be smooth.

We denote by Ĉ be an arbitrary one of the curves Ĉi ⊂ X̂ and by C ′ its proper transform on X ′.
Assume that Ĉ goes through one of our cusp points K with canonical resolution curve E on X ′. Its
preimage on B is one of the Γ′-reflection discs D = Dj . It corresponds to one of the 〈4, 0〉 arrows in
the cusp diagram 9. Looking down again to X ′ this diagram teaches us that C ′ intersects E locally
transversal at (at most two) nonsingular surface points. By (ii) and (iii) E is intersected by precisely
two of the reflection curves C ′j because the cusps κi are boundaries of precisely two of the corresponding
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reflection discs, see picture 8. So C ′ intersects E at one point only. Because of transversality this is a
nonsingular point of C ′. This point remains nonsingular on Ĉ ⊂ X̂ after contraction of E (or of L + E
starting from X̃). Locally around E1, E2, E3 the intersection behaviour of these curves on X ′ with C ′j ,
j = 0, 1, 2, 3, is described in Picture 2.

It remains to be proved that the non-compact curves Cj ⊂ B/Γ′ are smooth. In [H98], IV.4,
we proved that for Γ′-rational discs D on B the natural map D/Γ′D −→ D/Γ′ is the normalization
(singularity resolution) of the latter curve on B/Γ′. Our Γ′-reflection discs are arithmetic because Γ′ is.
Curve singularities on D/Γ′ come from (honest) Γ′-cross points Q on D. Such a point Q is characterized
by the property that through Q goes a Γ′-equivalent disc D′ not being Γ′Q-equivalent, see [H98], IV,
Definition 4.4.5 and Proposition 4.4.6. Assume that Q is a Γ′-cross point of D. Then it is the intersection
point of two Γ′-reflection discs D = Dσ, D′ = Dδ belonging to reflections σ, δ ∈ Γ′, say. Then Q is
an elliptic point because it is fixed also by the elliptic element σδ, which is not a reflection, because
its representation on the tangent space TQ = TQ(B) at Q ∈ B has two non-trivial eigenvalues, namely
the non-trivial eigenvalue of σ and the non-trivial eigenvalue of δ. The only Γ′-elliptic points are the
Γ′-orbits of O1, O2, O3 by condition (iv). So we can assume without loss of generality that Q is one of
these points, say Q = O3 = D1 ∩ D2, D = D1 = Dσ. The disc D′ cannot coincide with D2 because the
latter disc is not Γ′-equivalent with D1 by (iii). Therefore Q is the intersection point of three different
reflection discs. But then the isotropy group Γ′Q is not abelian because their elements produce at least
three eigenlines in TQ by the directions of the three reflection discs through Q. This contradicts to
the second part of condition (iv). Hence, there is no Γ′-reflection disc D with Γ′-cross point; the image
curves are smooth. This finishes the proof of the proposition. ¤

It follows that the orbital quotient surface looks like

B̂/Γ′ = X̂ = (X̂; Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + P1 + P2 + P3 + K1 + K2 + K3)

we started with in section 1 not knowing until now that X̂ = P2. Moreover, we have to prove the
properties (i), (ii) a),. . . ,d) before definition 1.1. Let us start with

c′) P1, P2, P3 are the three different intersection points of the curves
C1, C2, C3.

This follows now immediately from (iv), because an intersection point of two of these reflection curves
is necessarily an image point of Γ′-elliptic point. Up to Γ′-equivalence there are only three of them,
namely O1, O2, O3.

d′) Ĉj and Ĉ0 touch each other at Kj (with local intersection number 2), j = 1, 2, 3.

Ĉ0 goes through each of the cusp points Kj by (ii). The other reflection curve through Kj is Ĉj by
(iii), see Figure 8. From the intersection graph 9 we deduced the intersection behaviour of the curves
C ′0, C

′
j , Ej locally around Ej , which is described in picture 2. Going back to X̃ we blow down first the

-1-curve Ej . On the corresponding surface the proper transforms of C ′0 and C ′j intersect each other
transversally. The proper transform of the -2-curve L becomes a smooth rational -1-curve denoted by
L again supporting this intersection point. The intersection of the two C-curves with L are transversal,
too. Now blow down the -1-curve L to Kj to see that the local situation of touching we look for is
well-described in picture 1.

Now we relate Euler numbers ei with selfintersections s′i of C ′i on X ′ for i = 0, 1, 2, 3 using geometric
height formulas (12), (13) for orbital curves C on open orbital surfaces:

he(C) = e(C ′)−
∑

(1− 1
vidi

)−#C ′∞ ,

hτ (C) =
1
v
[(C ′2) +

∑ ei

di
+

∑ ej

dj
] .

The sums on the right-hand side can be read off from the atomic graph of the orbital curve C (or
compact orbital curve C′ = (vC ′;

∑
Pi +

∑
Km) which have been already described in Figure 3.
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Filling these contributions in the height formulas we get together with (Prop 1), see (52),

(54)

he(C0) = e0 − 3,

he(Cj) = ej − (1− 1
4
)− (1− 1

4
)− 1 , j = 1, 2, 3;

hτ (C0) =
1
4
(s′0 + 0 + 0),

hτ (Cj) =
1
4
(s′j + 0 + 0) , j = 1, 2, 3.

It follows that
s′0 = 2e0 − 6 , s′j = 2ej − 5 , j = 1, 2, 3.

Blowing down the three rational -1-curves and the three rational -2-curves on X̃ to the cusp points
K1,K2,K3 we get on X̂ the selfintersections s0 = s′0 +6, s := sj = s′j +2 for the curves Ĉi, i = 0, 1, 2, 3,
because Ĉ0 goes through all three cusp points and each Ĉj only through one of them. It follows that

s0 = 2e0 , s = 2e− 3, e := ej = e(Ĉj), j > 0.

In a similar opposite use of height formulas in comparison with their calculation in the previous
section we can calculate now the Euler number and signature of X̂ using (16) and (17):

He(X) = e(X ′)−
∑

(1− 1
vi

)he(Ci)−
∑

he(Pj)− 2#{rational cusp points}

Hτ (X) = τ(X ′)− 1
3

∑
(vi − 1

vi
)hτ (Ci)−

∑
hτ (Pj)−

∑
hτ (Km)

The point contributions have been already substituted in 2, see (23). The left-hand sides are known
from (49). So we get with the above substitutions (hτ (Cj) = s′/4 = (2e− 5)/4 ...)

3
16

= e(X ′)− (1− 1
4
)(e0 − 3)− 3(1− 1

4
)(e− 5

2
)− 3 · 9

16
− 2 · 3

1
16

= τ(X ′)− 1
3
[(4− 1

4
)(2e0 − 6)/4 + 3(4− 1

4
)(2e− 5)/4]− 3 · 0− 3 · (−1

6
).

Set E := e(X̂) = e(X ′)− 3 and S := τ(X̂) = τ(X ′) + 3. After substitution we obtain

(55)
8E + 6(3− e0) + 9(5− 2e) = 39,

16S + 10(3− e0) + 15(5− 2e) = 41

Proposition 8.9. Let Y be a smooth compact complex algebraic surface supporting a configuration
L0 + L1 + L2 + L3 with smooth curves Li, i = 0, 1, 2, 3 intersecting pairwise in at least one point.
Assume that the invariants E = e(Y ), S = τ(Y ), e0 = e(L0) and e = e(Lj), j = 1, 2, 3 satisfy the
relations (55). Then Y = P2, and the curves L′is, i = 0, 1, 2, 3, are rational.

Proof. We need some basic facts of surface classification theory, which can be found in [BPV], for
instance. Adding the first to the second equation of (55) we get the relation

(56) 64χ + 22(3− e0) + 33(5− 2e) = 119

for the arithmetic genus χ = χ(Y ) = (E + S)/4 of Y . The integers

(57) 3− e0 = 2g0 + 1 , 5− 2e = 4g + 1 ,

where g0, g are the genera of L0 or Lj , j > 0, respectively, are positive. From (56) we get χ < 0 or

(58) χ(Y ) = 1, g0 = g(L0) = 0, g = g(Lj) = 0.

We exclude the former case: Assume that χ < 0. Then Y has negative Kodaira dimension. By
surface classification theory Y must be a (blown up) ruled surface over a smooth compact curve B of
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genus q, say. The arithmetic genus of Y is equal to χ = 1− q < 0. The fibres of the fibration Y −→ B
are linear trees of rational curves. Since, by assumption, L1 + L2 + L3 is a connected cycle it cannot
belong to any finite union of fibres. Therefore one of the components covers B finitely. It follows that
g ≥ q. The identity (56) yields

64(1− q) + 22(1 + 2g0) + 33(1 + 4g) = 119,

hence 11g0 + 33g = 16q, which contradicts to g ≥ q > 1.
We proved that the relations (58) must be satisfied. Altogether we solve(d) the simple linear system

(55) of diophantine equations coming from the Proportionality Theorem. We get the surface invariants

χ = 1, E = 3, S = 1, (K2) = 9, (K2)/E = 3,

where (K2) = 12χ−E is the selfintersection index of a canonical divisor K on Y . We proved also that
Li, i = 0, 1, 2, 3, is rational by (58).

The extreme Chern quotient (K2)/E = 3 with positive Euler number E is only possible for Y = P2

or for compact ball quotient surfaces B/Γ for torsion free ball lattices Γ by a theorem of Miyaoka-Yau,
Kodaira-classification of surfaces and fine classification of rational surfaces, see [H98], V.2, Proposition
5.2.4, and the references given there. But B, hence also B/Γ, is hyperbolic in the sense of Kobayashi.
Therefore it does not support any rational curve. The compact ball quotient case is excluded by the
rationality of Li ⊂ Y . Therefore Y must be the projective plane. ¤

Corollary 8.10. If Γ′ satisfies the conditions (i),...,(vii), then X̂ = B̂/Γ′ is the projective plane, P2, Ĉ0

is a quadric and Ĉ1, Ĉ2, Ĉ3 are tangent lines. In other words, Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 is a plane Apollonius
configuration.

Proof. We have only to summarize. X̂ is a smooth surface by 8.8. Moreover, as Baily-Borel
compactification X̂ is projective, hence algebraic. We proved already that our four curves Ĉi are
smooth, see Proposition 8.8. Together with c′), and (55) the assumptions of the proposition are satisfied.
Therefore hatX = P2 and our curves are rational. More precisely, from Bezout’s theorem and the
intersection behaviour described in c′, d′ follows that the configuration is of Apollonius type. ¤

Now we finish the proof of 8.3 and Theorem 8.2. The projective lines Ĉj can be used as coordinate
lines X = 0, Y = 0, Z = 0 of P2 such that the configuration divisor Ĉ0 + Ĉj + Ĉ1 + Ĉ1 is S3-invariant by
Proposition 1.3 and Corollary 1.4 with the natural projective action of S3 on P2 permuting coordinates.
The uniqueness of the equation (47) of Ĉ0 comes from (the proof) of Lemma 1.6 verifying that this
equation is the only S3-symmetric possibility. Theorem 8.2 is proved.

The weights for the orbital cycle of a smooth orbital ball quotient surface come from reflection
orders only, by definition. Therefore 8.3 follows now from these order postulates in 8.1 (ii),(iii) and from
postulate (iv) forbidding other branch curves beside of Ci, i = 0, 1, 2, 3. ¤

9 The Gauß congruence ball lattice

Let Q(i), i =
√−1, be the field of Gauss numbers and O = Z[i] = Z+Zi the (maximal) order of Gauss

integers in it. The center Z of the unitary group

Γ̃ := U((2, 1),O) = {g ∈ Gl3(O); tḡ
(

1 0 0
0 1 0
0 0 −1

)
g =

(
1 0 0
0 1 0
0 0 −1

)
}

with Gauss integers as coefficients is generated by
(

i 0 0
0 i 0
0 0 i

)
. The ineffective kernel of the action of Γ̃ on the

ball B coincides with Z. We concentrate our attention to the special Gauss ball lattice Γ := SU((2, 1),O),
which is an arithmetic ball lattice acting effectively on B. It holds that Γ̃ = Z · Γ. The isomorphisms

Γ̃/Z ∼= Γ ∼= PU((2, 1),O) ∼= PSU((2, 1), O)

allow us to identify (sometimes, if we want) these groups. The most important role plays the congruence
subgroup Γ′ := Γ(1+ i) (Gauss congruence ball lattice) of the prime ideal of Z[i] generated by the prime
divisor 1 + i of 2 with residue field F2.

We want to prove the following
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Theorem 9.1. The arithmetic ball lattice Γ′ satisfies all conditions (i),..,(vii) of 8.1. The Baily-Borel
compactification B̂/Γ′ is equal to P2 with Apollonius configuration 1 supporting the orbital cycle of B̂/Γ′.

An essential role in the proof plays the theory of hermitian lattices, which is not so difficult in the
case of O − lattices with small ranks, because O is an euclidean ring. The basic lattice is Λ := O3

endowed with the indefinite unimodular hermitian form

〈 , 〉 : Λ× Λ −→ O , 〈
(

a1
a2
a3

)
,

(
b1
b2
b3

)
〉 = a1b̄1 + a2b̄2 − a3b̄3.

We consider Γ as group of unimodular automorphisms of the hermitian O-lattice Λ := O3. Then Γ′

consists of all elements of Γ which restrict to an automorphism of the sublattice Λ′ := (1 + i)Λ. The
factor group Γ/Γ′ acts effectively on the residue space Λ/Λ′ ∼= F3

2. The hermitian structure on Λ
reduces to the canonical non-degenerate bilinear form on F3

2. Therefore Γ/Γ′ appears as subgroup of the
corresponding orthogonal group O(3,F2). This group consists of permutation matrices only, because the
canonical basis vectors of F3

2 are the only ones with (F2)-norm 1 and norm 1 vectors in its orthogonal
complement. Hence Γ/Γ′ ⊆ O(3,F2) ∼= S3.

We want to prove that the inclusion is the identity. It suffices to find two non-commuting elements
in Γ/Γ′. Let a ∈ O3 be a vector whose hermitian norm a2 := 〈a, a〉 is equal to ±1 or ±2. We define the
reflection Ra : O3 −→ O3 by

Ra : z 7→ z− 2
a2
〈z, a〉a.

It sends a to −a and each vector of the orthogonal complement

Λa := {u ∈ O3; u ⊥ a}

to itself. Therefore id 6= Ra is an isometry of Λ. Its reduction R̄a (modulo 1 + i) is the reflection
isometry

rā : F3
2 −→ F3

2 , z̄ 7→ z̄− (z̄, ā)ā,

where we overline by bar all kinds of reductions modulo 1 + i. This is a non-trivial isometry if and only
if a2 = ±2 and a 6≡ o modulo 1 + i.

The following examples yield two such reflections. Take

a =




1 + i
1
1


 , b =




1
i
0


 .

Both have norm 2. As reductions of the corresponding reflections we get r(0,1,1) or r(1,1,0) with matrix

representations
(

1 0 0
0 0 1
0 1 0

)
or

(
0 1 0
1 0 0
0 0 1

)
, respectively. Obviously, they generate O(3,F2).

Lemma 9.2. We have an exact group sequence

red
1 −→ Γ′ −→ Γ −→ S3 −→ 1.

with a section S3 −→ Γ sending S3
∼= O(3,F2) to the stationary group ΓPc := {γ ∈ Γ; γ(c) ∈ Oc} for a

vector c ∈ O3 with negative norm c2 = −3.

Proof. The left-exact part comes from the definition of Γ′ as kernel of the reduction homomorphism

red
Γ = SU((2, 1), O(1 + i)) −→ SU((2, 1), O/iO) ∼= O(3,F2) .

The surjectivity of the reduction homomorphism has just been verified. The reflections Ra and Rb (a, b

as above), act trivially on the orthogonal complements Λa or Λb, respectively, hence they fix c =
(

i
1

2−i

)

generating the rank one lattice Λa ∩ Λb. The norm 2 vectors a, b have been chosen in such a way that
their Gram matrix is (

a2 〈a, b〉
〈b, a〉 b2

)
=

(
2 1
1 2

)
,
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hence

Ra : a 7→ −a, b 7→ b− a, c 7→ c;
Rb : a 7→ a− b, b 7→ −b, c 7→ c.

Looking at the corresponding matrix representation it is clear that the subgroup of ΓPc generated by
−Ra, −Rb is isomorphic to S3. ¤

More generally we define reflections ρ ∈ U((2, 1),C) as elements of finite order with precisely two
different eigenvalues. The eigenspace E(ρ) of the double eigenvalue of ρ is called the reflection plane
of ρ. We call ρ a B-reflection, iff E(ρ) is an indefinite hermitian subspace of C3. In this case (only)
D(ρ) := PE(ρ) ∩ B is a complete (linear) subdisc of B called the reflection disc of ρ. The complete
linear subdisc D of B is called a Γ-reflection disc iff there exists a B-reflection ρ ∈ Γ such that D = D(ρ).
Starting from D the D-reflection group ZΓ(D) defined in (51) is finite and cyclic. Its order is called the
reflection order of D w.r.t. Γ. The latter definitions apply to any ball lattice Γ ⊂ U((2, 1),C).

Proof of Theorem 9.1(i). The second statement follows from the first by Theorem 8.2. So we have
to check step by step the properties (i),...,(vii) of 8.1.

(i) By a result of Shvartsman [Sv1],[Sv2], the surface B̂/Γ has only one cusp point. We refer to [Zin]
for the more general result, that the number of cusp points of Picard modular surfaces ̂B/U((2, 1), OL),
L an arbitrary imaginary quadratic number field, coincides with the class number of L. It is also known
that B∗ = B ∩ ∂B(L) setting ∂B(L) = ∂B ∩ P2(L) in this case.

With the above notations we get ∂ΓB = ∂B(Q(i)) = Γκ with κ = Pk, for each

k ∈ Λ0 := {a ∈ Λ; a2 = 0}

because ∂B(Q(i)) = PΛ0. The set Λ0 maps onto

V̄0 := {



0
0
0


 ,




0
1
1


 ,




1
0
1


 ,




1
1
0


} ⊂ F3

2

by reduction. The group S3 = Γ/Γ′ acts effectively on V̄0 with bi-transitive restriction on the non-zero
vectors. It follows that Γ acts bi-transitively on ∂ΓB/Γ′ completely represented by

k1 = (0 : 1 : 1), k2 = (1 : 0 : 1), k3 = (1 : 1 : 0)

with ineffective kernel Γ′. Especially we get up to Γ′-equivalence precisely three cusps. This proves the
first part of (i).

For the proof of the second part and later use we introduce the notations

X := B/Γ′ ⊂ X̂ := B̂/Γ′, Y := B/Γ ⊂ Ŷ := B̂/Γ.

We know that Y = X/S3 ⊂ Ŷ = X̂/S3 considering S3 = Γ/Γ′ now as subgroup of Aut X = Aut X̂. If
z = Pz, z ∈ C3, is a point of B∗ we denote its image on X by Z. The quotient map of B onto B/Γ′

is denoted by p′. These notations will be preserved also for the extensions of this projections to B∗.
Since the cusp points Ki = p′(ki) are S3-equivalent, it suffices to show that an arbitrary one of them
is non-singular. We move the ball inside of P2 such that ∞ := (0 : 0 : 1) becomes a Q(i)-rational
boundary point of the image ball gB. For this purpose we choose g ∈ Gl3(O) such that

tḡ




0 0 −i
0 1 0
i 0 0


 g =




1 0 0
0 1 0
0 0 −1


 .

Such choice is possible. Namely the Z-lattices (Z3,
(

1 0 0
0 1 0
0 0 −1

)
) and (Z3,

(
0 0 1
0 1 0
1 0 0

)
) are isometric because

they are unimodular, indefinite and have same rank, signature and type (defined by norms modulo 8).
We refer to ([Se70], V.2). The isometry can be extended to isometries of hermitian O-lattices

(O3, I) ∼= (O3,
(

0 0 1
0 1 0
1 0 0

)
) ∼= (O3,

(
1 0 0
0 1 0
0 0 −1

)
) = Λ, I =

(
0 0 −i
0 1 0
i 0 0

)
,
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where the added first one is obvious. We get the Siegel domain

gB = PV− : 2Imu− |v|2 > 0,

V = (C3, I) = C⊗ (O3, I) = C⊗ gΛ , V− = {x ∈ V ; 〈x, x〉I < 0}
On gB act G := gΓg−1 = SU(I, O) and its congruence subgroup G′ = G(1 + i) = gΓ′g−1 with quotient
group G/G′ = Γ/Γ′ = S3. The stationary group of Γ at ∞ is generated by

(
i 0 0
0 −1 0
0 0 i

)
and by its unipotent

part

U∞(O) = {



1 iā i
2 |a|2 + r

0 1 a
0 0 1


 =: [a, r]; a ∈ C, r ∈ R} ∩ Sl3(O),

see [H98], IV.2, also for the next considerations. As torsion free nilpotent group of rank 3 each unipotent
ball lattice has three generators. As generators of the unipotent congruence subgroup U∞(O)′ one finds
[1+i, 1], [1−i, 1] and [0, 2]. The covolume of Z(1+i)+Z(1−i) in C and the covolume of 2Z in R are both
equal to 2. The selfintersection of the elliptic curve T∞ = T∞(G′) in the cusp bundle F∞ = F∞(G′)
coincides with the characteristic number t of the unipotent lattice. This number can be calculated as
-2 times the covolume volume quotient 2

2 , hence (T 2
∞) = t = −2.

Now consider T∞ as embedded curve in F∞ . Endowed with trivial weight 1 it is an orbital curve
T∞. In order to get the canonical partial resolution of a cusp point K of X̂ we look at the canonical
abelization X′ −→ X̂ of the orbital surface X̂ = B̂/Γ. Following [H98], IV.5, the canonical orbital
resolution E = EK of K coincides with the orbital quotient curve T∞/Z4 with Z4 = 〈σ〉 generated by
the reflection σ =

(
i 0 0
0 −1 0
0 0 i

)
. From the classification of cusp points by resolution graphs in [H98], III.5,

we know that K has to be of type (2,4,4), which means that EK = (P1; P1 + P2 + P3) with abelian
points P1, P2, P3 of cyclic type 〈2, e1〉, 〈4, e2〉, 〈4, e3〉, respectively. We determine these types precisely
together with the selfintersection (E2) on the minimal resolution X̃ of X ′. For this purpose we calculate
the signature heights of our orbital curves, see (5). First we receive hτ (T∞) = (T 2

∞) = −2. Now we use
the following

Proposition 9.3. ([H98], Theorems II.2.4, II.4.2). If C −→ D is Galois-finite morphism of orbital
curves and h = he or h = hτ denote Euler heights or signature heights, respectively, then it holds that

h(C) = [C : D]h(D), [C : D] = deg(C −→ D).

¤

Applied to the Galois-covering T∞ −→ E of degree 4 we get

hτ (E) =
1
4
· hτ (T∞) =

1
4
· (−2) = −1

2
.

The explicit formula (5) for signature heights yields

−1
2

= (E2) +
e1

2
+

e2

4
+

e3

4
, ej ∈ N,

where the summands have to be smaller than 1. Since a Γ-reflection of order 4 belongs to the cusp
group at least one abelian point on E, say P3 has to be of type 〈4, 0〉. The last identity reduces to

(E2) = −1
2
− e1

2
− e2

4
> −2,

hence (E2) = −1 because the selfintersection must be negative (E is contractible to the cusp point K).
Below we will see that there is no Γ′-reflection disc with Γ′-reflection order 2, see 11.10. Therefore P1

cannot be of type 〈2, 0〉, hence e1 = 1, e2 = 0.
We proved that the graph of the orbital cusp point K is already drawn in figure 7. So E is a

projective line supporting precisely one singular surface point P = P1, (E2) = −1, P of type 〈2, 1〉 as it
has been drawn already, for E1 say, in figure 2. Therefore E contracts to the non-singular surface point
K. The proof of property (i) is finished. ¤
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10 Unimodular sublattices

In the next two sections we give basic definitions and results without proofs because the latter are of
purely arithmetic nature, not so interesting for algebraic geometers. For detailed proofs we refer to the
HU-preprint [HPV] available via INTERNET.

Let K = Q(i) be the Gauß number field, O = Z[i] the ring of Gauß integers, V a finite dimensional
K-vector space of dimension n with a hermitian metric < , > with values in K. An O-module Λ ⊂ V ,
more precisely (Λ, <,>|Λ), is called a sublattice of V , and a V -lattice, if moreover n coincides with
the rank (O− rank) of Λ. A hermitian O-module Λ is a torsion free O-module of finite rank together
with an hermitian form with values in K. It is a V -lattice in V = K ⊗ Λ endowed with the extended
hermitian form. The dual lattice of Λ is the V -lattice

Λ# = {x ∈ V = K ⊗ Λ;< x, l >∈ O for all l ∈ Λ}.

Notice that Λ ⊆ Λ# iff the hermitian form has (only) integral values on Λ. A hermitian O-lattice is
called unimodular iff Λ# = Λ. This happens if and only if the hermitian form has integral values on Λ
and the discriminant d(Λ) is a unit (±1). Two subsets M, N of a hermitian O-lattice are orthogonal,
iff < m, n >= 0 for all m ∈ M, n ∈ N . We write M⊥N in this case. The orthogonal complement of M
in Λ is the sublattice

M⊥ = M⊥
Λ = {l ∈ Λ; l⊥M}.

(We omit the index Λ if Λ is fixed and there is no danger of misunderstandings). Two sublattices M, N
of Λ are called orthogonal complementary (in Λ), iff M ∩N = O, M⊥ = N and N⊥ = M .

Proposition 10.1. Let (Λ, < , >) be a unimodular hermitian O-lattice, M and N orthogonal comple-
mentary sublattices of Λ, then M#/M ∼= N#/N as O-modules. ¤

Corollary 10.2. Under the conditions of the proposition, M is unimodular if and only if its Λ-
orthogonal complement N is unimodular. ¤

For arbitrary hermitian O-lattices Λ and sublattices M we denote by AutΛ ⊂ EndOΛ the isometry
group of Λ and by Aut(Λ, M) its subgroup of isometries sending M to M .

Corollary 10.3. Let Λ be a unimodular hermitian O-lattice, M a unimodular sublattice and N its
orthogonal complement in Λ. Then Λ = M ⊕N and

Aut(Λ, M) = Aut(Λ, N).

¤

We need classification results for unimodular lattices.

Proposition 10.4. (see Hashimoto [Has], Prop. 3.8). Let (V, < , >) be a hermitian space of dimension
r over K of signature (p+, p−) which contains a unimodular V -lattice (O-sublattice of V of rank r).

(i) If r is odd, then there is only one genus of unimodular V -lattices.

(ii) If r is even, then the set of unimodular V -lattices consists of at most two genera. The cardinality
of this set is 2 if and only if p− ≡ r/2 modulo 2.

¤

A genus consists, by definition, of all V -lattices which are locally U(V )-isometric at all natural primes
p. More precisely, two such lattices M , M ′ belong to the same genus iff for each natural prime p there
exists

γp ∈ U(Vp), Vp = V ⊗Qp = V ⊗Kp

endowed with the < , >-extending form, sending Mp = M ⊗ Zp = M ⊗Op to M ′
p. The V -lattices M ,

M ′ belong to the same class if and only if g(M) = M ′ for a suitable g ∈ U(V ).

Proposition 10.5. (see Hashimoto [Has], Theorem 3.9). If the hermitian metric on V is indefinite,
then each genus of unimodular V -lattices consists of one class. ¤
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Corollary 10.6. There are precisely two isometry classes of indefinite unimodular hermitian O-lattices
of rank 2; one is odd and the other even. They are represented by (O2,

(
1 0
0 −1

)
) or (O2, ( 0 1

1 0 )),
respectively. ¤

Corollary 10.7. All definite unimodular hermitian O-lattices Λ of rank 2 are isometric to the standard
lattice (O2, ( 1 0

0 1 )). ¤

We say that two hermitian O-lattices with integral values have the same parity, iff they are both odd
or both even, respectively. Let Γ̃ = Γ̃(Λ) be the automorphism group of a fixed hermitian O-lattice Λ,
and Γ′ a subgroup of finite index. A Γ′-class of sublattices of Λ is a Γ′-orbit of one (arbitrary) sublattice
of Λ. The normal subgroup of elements with determinant 1 of any subgroup G of the linear group of a
finite dimensional vector space is denoted by SG. Usually we set

(59) Γ = Γ(Λ) := SΓ̃ = SΓ̃(Λ).

Theorem 10.8. Let Λ be an indefinite unimodular O-lattice of signature (p+, p−) of odd rank r =
p+ + p−. With the above notations it holds that:

(i) If p+ ≥ 2, then there exists precisely one Γ̃ -class containing a definite unimodular sublattice of
rank 2.

(ii) If p− ≥ 2 or (p+, p−) = (2, 1), then there exist precisely two Γ̃-classes of indefinite unimodular
rank-2 sublattices.

The parity and discriminant form under the conditions of (ii) a complete invariant system for Γ̃-classes
of unimodular rank-2 sublattices of Λ. ¤

Let Λ ∼= Or be an indefinite unimodular lattice of odd rank r as in the above theorem. For two
unimodular rank-2 sublattices E, E′ of Λ of same discriminant and parity we denote by Isom(E, E′)
set of isometries of E onto E′ and set

Γ′(E, E′) = {γ ∈ Γ′; γ(E) = E′}.

Corollary 10.9. Under the conditions of the theorem the restriction maps

Γ̃(E, E′) −→ Isom(E, E′) , Γ(E, E′) −→ Isom(E,E′)

are surjective. The isometry class ClΛ(E) of sublattices of Λ containing E, the Γ̃-class Γ̃ · {E} and the
Γ-class Γ · {E} coincide. ¤

Now come back to the Picard modular group Γ = SU((2, 1),O), the special automorphism group of
the standard unimodular lattice Λ = O3 of signature (2, 1), and its congruence subgroup Γ(π).

Proposition 10.10. There are precisely three Γ-classes of unimodular rank-2 sublattices E of Λ com-
pletely represented by lattices with Gram matrices ( 1 0

0 1 ) (definite),
(

1 0
0 −1

)
(indefinite, odd) or ( 0 1

1 0 )
(even), respectively. The Γ-class splits into three Γ(π)-classes if and only if E is not even. In the even
case we have only one class Γ(π) · {E} = Γ · {E}. ¤

At the end of this section we draw a representative plane picture of projective images of unimodular
rank-2 lattices Ei representing Ei, i = 0, 1, 2, 3. We distinguish for i = 1, 2, 3 definite and indefinite
representatives by upper index + or −, respectively. By Proposition 10.10 we have a complete system of
representatives E0, E

+
1 , E+

2 , E+
3 , E−

1 , E−
2 , E−

3 of Γ(π)-classes. For the rest of this section we denote the
subplanes R ⊗ E±

i of the canonical hermitian signature (2,1) space C3 by E±
i and the projective lines

PE±
i ⊂ P2 = P2(C) by L±i . The orthogonal complements of a =

(
0
0
1

)
, b =

(
1
0
0

)
, c =

(
0
1
0

)
, e =

(−1
1
1

)

in C3 yield the special representatives E−
1 = a⊥, E−

2 = c⊥, E+
3 = a⊥ and E0 = e⊥. Using projective

coordinates (x : y : z) the corresponding lines are described by linear equations:
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κ1

κ2

κ3

L1

L2

L3

O1

O2

O3

L0 : X − Y + Z = 0, L−1 : Y = 0, L−2 : X = 0,
L+

3 = L∞ : Z = 0 (the infinite line)

on the (real) projective plane where the (real) ball
points lay inside of the (unit) circle, the Γ-cusps sit
on the circle. All intersection points of the lines are
real, hence all visible in the real picture. Restricting
to B we forget L+

3 and the marked points. Then
we get for the remaining lines and points the dual
unweighted graph left down.

e e

e

u
L0

u
L−3

uL−1 uL
−
2

Applying S3 ⊂ Γ (the alternating subgroup A3 ⊂ S3 is
sufficient) we get similar graphs including also L−3 = PE−

3 .
Altogether we get the Γ(π)-graph of indefinite unimodular
rank-2 lattices.

e

e

e

e

L0

L−1

L−2

L+
3

0
B

P2

11 Elements of finite order

In this section we determine positive weights as reflection orders, calculate (negative) heights as Euler-
Poincare volumes of fundamental domains in discs Di, i = 1, 2, 3, cutten out as intersections of L−i with
the ball B.

Let K be a number field, O = OK its ring of integers, Γ a subgroup of Glm(O), a ⊂ O an ideal and
Γ(a) ⊆ Γ the corresponding congruent subgroup defined as kernel of the natural group homomorphism

Γ −→ Glm(O) −→ Glm(O/a).

Lemma 11.1. If γn = 1 for γ ∈ Γ(a), Then a divides ζ − 1 in OL, L = K(ζ), where ζ is an arbitrary
eigenvalue of γ (a suitable n-th unit root). ¤

Corollary 11.2. In the special case of the field K = Q(i) of Gauß numbers there are at most two
possibilities for non-trivial ideals a ⊂ O such that Γ(a) contains non-trivial elements of finite order,
namely a = (π) = (1 + i) or a = (2). The only orders of such elements are 2 and 4. Elements of order
4 belong to Γ(π) \ Γ(2). Especially, Γ(π3) is a torsion free group. ¤

We concentrate our further considerations to subgroups of Γ̃ = U((2, 1),O), O = OK , K = Q(i),
especially to Γ = SΓ̃, again. Elements of order 4 in Γ belong to the Gl3(K)-conjugation classes
of diag(1, i,−i), diag(−1, i, i) or diag(−1,−i,−i), and elements of order two are conjugated to
diag(1,−1,−1). The conjugacy classes of the latter three types exhaust the set of all semisimple el-
ements 1 6= σ ∈ Γ with a double eigenvalue. This follows easily from the fact that the characteristic
polynomials χγ(T ) have to lay in O[T ]. Semisimple elements in Γ̃ with precisely two eigenvalues are
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called Λ-reflections. The reflection lattice E(σ) ⊂ Λ is defined to be the intersection of Λ = O3 with
the eigenspace of the double eigenvalue of σ. Obviously, it has O-rank 2.

Proposition 11.3. For each Λ-reflection σ ∈ Γ(π) is the reflection lattice E(σ) unimodular. ¤
For Γ′ ⊆ Γ̃ and any pair of orthogonal complementary sublattices Oa⊥E of Λ we have a pair of

restriction homomorphisms
AutE ←− Γ′(E, E) −→ Aut Oa

For unimodular E and Γ′ = Γ̃ one gets a pair of cartesian projections

AutE ←− Γ̃(E, E) = Γ̃(Oa, Oa) ∼= Aut E ×Aut Oa −→ Aut Oa ∼= O∗,

where the surjectivity on the left-hand side comes from Corollary 10.9 and the identity from Corollary
10.3. Restricting to Γ we get an exact sequence

1 −→ SAutE −→ Γ(E,E) = Γ(Oa,Oa) −→ Aut Oa ∼= O∗ −→ 1,
‖

AutE

where the vertical isomorphism sends ρ to ρ × detρ. It restricts via intersections with Γ(π) to the
obviously splitting exact sequence

(60)
1 −→ (SAutE)(π) −→ Γ(π)(E, E) = Γ(π)(Oa, Oa) −→ Aut Oa ∼= O∗ −→ 1,

‖
(AutE)(π)

Lemma 11.4. Each maximal finite subgroup G of (SAutE)(π) is cyclic of order 4.

¤
Theorem 11.5. (i) Each maximal finite subgroup T of Γ(π) is isomorphic to O∗ ×O∗.

(ii) The set of all these groups coincides with the set of intersections

Γ(π)(E,E) ∩ Γ(π)(E′, E′) = Γ(π)(Oc) ∩ Γ(π)(Ob),

where E = Λc and E′ = Λb are two different unimodular rank-2 sublattices of Λ with orthogonal
vectors b, c of hermitian norms ±1.

(iii) Each element δ ∈ Γ(π) of order 2 is a square of a reflection ρ ∈ Γ(π) of order 4.

(iv) Each element γ ∈ Γ(π) of finite order is a reflection or a product of two reflections.

(v) A non-trivial element of finite order of Γ(π) has order 2 if and only if it belongs to Γ(π2) = Γ(2).
It has order 4 if and only if it belongs to Γ(π) \ Γ(π2).

¤
Notation. ER := R⊗ E for each O-lattice E.

Definition-Remark 11.6. We call a Λ-reflection δ a B- reflection, iff L(δ) := PER(δ) intersects B.
We denote the corresponding (complete linear) subdisc D(δ) = L(δ) ∩ B or by Da, where a ∈ C3 is an
arbitrary non-trivial vector orthogonal to E. δ is a B-reflection if and only if a2 > 0 or, equivalently,
E(δ) is indefinite.

Corollary 11.7. Any three different projective lines

Lj = PEjR ⊂ P2 = P(ΛR)

of unimodular rank-2 sublattices of Λ have no common intersection point Q on B. ¤
Proposition 11.8. The surface B/Γ(π) is smooth. There are precisely three Γ(π)-orbits of Γ(π)-elliptic
points on B. Its union is the Γ-orbit of O = (0 : 0 : 1) ∈ B consisting of all q ∈ Λ with q2 = −1. Each
subgroup Σ ∼= S3 of Γ acts transitively as permutation group on the three orbits via conjugation. The
isotropy group Γ(π)Q of each Γ(π)- elliptic point Q is the product of two cyclic groups each generated
by a reflection of order 4. Oq is the intersection of the corresponding reflection lattices E and E′. Both
are unimodular, indefinite and odd. ¤
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Corollary 11.9. Each q ∈ Λ with hermitian norm q2 = −1 extends uniquely, up to O∗-factors and
order of enumeration, to an orthogonal basis (a1, a2, q) of Λ. The both unique unimodular (indefinite
odd) rank-2 sublattices of Λ with intersection Oq are the reflection planes

(61) E1 = Λa1 = Oa2 + Oq, E2 = Λa1 = Oa1 + Oq,

Moreover, we set
E3 := Λq = Oa1 + Oa2.

The set of residue planes of the lattices Ej, j = 1, 2, 3, coincides with the set of the three unimodular
odd subplanes in F3

2 = Λ/πΛ with possibly other enumeration. Two −1-vectors q, q′ belong to the same
Γ(π)-orbit if and only if q ≡ q′modπ. ¤

Proposition 11.10. The irreducible components of the branch locus of the quotient map B −→ B/Γ(π)
are smooth. It consists of 4 curves

(62) C0 = D0/Γ0, C1 = D1/Γ1, C2 = D2/Γ2, C3 = D3/Γ3,

where Dj = B ∩ Lj, Lj = P(EjR), Ej an arbitrary unimodular indefinite rank-2 sublattice of Λ with
(non- degenerate) residue subplane Ej of F3

2 and Γj = Γ(π)(Ej , Ej), j = 0, 1, 2, 3, respectively. The
ramification index is 4 for all four components. The action of S3 = Γ/Γ(π) on B/Γ(π) permutes the
curves C1, C2, C3 and restricts to an effective action on C0. Ck intersects Cl in precisely one point Pm

for any triple {k, l, m} = {1, 2, 3}. The intersection is transversal. The points P1, P2, P3 are the images
of all Γ(π)-elliptic points on B. The B-reflection discs D1,D2,D3 do not intersect D0. ¤

Proposition 11.11. Each Γ-cusp κ = Pk, k ∈ Λ a primitive isotropy vector, is the intersection of
precisely two Γ(π)-reflection lines L0, L1. Both come from unimodular indefinite lattices E0, E1, where
the first one is even and the other odd. Each unimodular even (hence indefinite) lattice E0 contains
isotropy vectors k1, k2, k3 representing all the possible non- trivial residue isotropy vectors

(
0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)
∈ F3

2.

They can be choosed as A3-orbit of k1, where A3 is the alternating subgroup of a group (isomorphic to and
identified with) S3 ⊂ Γ(E0, E0) acting on E such that the corresponding reflection lines L1, L2, L3 6= L0

through κ1, κ2 or κ3, respectively, intersect each other pairwise on B. These three elliptic intersection
points represent the three Γ(π)-orbits of all Γ(π)-elliptic points. ¤

Remark 11.12. Restricting to reflection discs Dj = Lj ∩B we realized the situation described in Figure
8.

Proof of Theorem 8.2. It remains to check the properties (ii),...,(vii) postulated in 8.1 For Γ′ = Γ(π).

(ii) Let κ1, κ2, κ3 ∈ ∂KD0 be an S3-orbit for S3 ⊂ Γ0 = Γ(E0, E0), see 11.11, and κ ∈ ∂KD0 arbitrary.
We have to show that κ ∈ Γ′0κj . Assume, for instance, that κ ≡ κ1 modπ. Then κ = L0 ∩ L′1, hence
κ = γκ1 for a suitable γ ∈ Γ with κ1 = L0 ∩ L1. Since pairs of reflection lines through one point are
unique, γ acts on L0 and transfers L1 to L′1. Therefore γ or γ ◦ (2, 3) sends Lj to L′j , j = 2, 3. This
property can be assumed now for our γ. Then γ ≡ E modπ which means that γ belongs to Γ′.

(iii) Take D1 = B∩L1 described in 11.11. Then κ1 = L1∩L0 ∈ ∂KD1 is fixed by (2, 3) ∈ S3 ⊂ Γ(E0, E0).
For arbitrary κ ∈ ∂KD0 take γ ∈ Γ such that κ = γκ1. By the same argument as above, γ acts on
L1 and sends L0, L2 to L′0 or L′2, respectively (if not take γ◦(2, 3)). It follows again that γ belongs to Γ′1.

(iv) see Proposition 10.10.

(v) see Proposition 11.8.

(vi) The proof of the following theorem is completely published in [H98].
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Theorem 11.13. ([H98], V, Theorem 5A.4.7). Let K be an imaginary quadratic number field with
ring of integers OK , discriminant D = DK/Q 6= −3, Dirichlet character χ(n) = (D

n ) (generalized

quadratic residue, Jacobi symbol) and corresponding Dirichlet series L(s, χ) =
∞∑

n=1
χ(n)n−s. Then for

Γ = SU((2, 1),OK) with fundamental domain FΓ on B it holds that

volEB(Γ) =
3|D|5/2

32π3
L(3, χ).

It is now easy to calculate for K = Q(i) the FΓ-volume 1
32 in the case of Gauß numbers. This was

first proved by Shvartsman [Sv1]. Since Γ/Γ(π) ∼= S3 it follows that volEB(Γ(π)) = 3
16 .

(vii) see Proposition 11.11.

Theorem 8.2 is proved.

¤
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