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Abstract

In previous papers we found neat Picard modular surfaces with abelian
minimal model and, conversely, a divisor criterion on abelian surface A for
such a situation. For the corresponding ball lattices we prove dimension
formulas for modular forms depending on the intersection numbers of
components of the contracted compactification divisor on A.

1 Introduction: Main results and motivations

We look for explicite structures of rings R(Γ) of modular forms for Picard mod-
ular groups Γ , especially in cases when the corresponding Picard modular sur-
faces are well determined by explicitly known algebraic equations. The quotient
surface Γ�B, B the complex two- dimensional unit ball, can be compactified by
means of finitely many cusp singularities to a (normal complex projective) alge-
braic surface Γ̂�B, the Baily-Borel compactification. By Baily-Borel’s theorem
[B-B] one has

Γ̂�B = Proj R(Γ).

Generators of R(Γ) and relations between them define a projective model of
Γ̂�B. It is not a simple problem to discover the ring structure in connection
with the algebraic equations assumed to be known.

If, moreover, Γ is a neat ball lattice, then we are in a comfortable situation.
Namely, there is a natural ring isomorphism

(1) R(Γ) ∼=
∞⊕

n=0

H0(X ′
Γ,Ω2(logT ′))
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onto the ring of logarithmic pluricanonical forms of the (smooth compact) Picard
modular surface X ′

Γ with compactification divisor

(2) T ′ =
h∑

j=1

T ′j ,

which is a disjoint sum of elliptic curves. For a cofinite group extension Γ1 of
Γ, defined by an exact sequence of groups

(3) 1 −→ Γ −→ Γ1 −→ G −→ 1

with finite group G, we get isomorphisms

(4) R(Γ1) ∼= R(Γ)G ∼=
∞⊕

n=0

H0(X ′
Γ,Ω2(logT ′))G

Assume, we know the ring structure in the neat case and the representation of
G on R(Γ). Then it is ”only” a matter of invariant theory for finite groups to
get the structure of R(Γ1). For this latter step good software as ”SINGULAR”
or ”GAP” should be used. For the first step, it is necessary to determine the
dimensions

h0(X ′
Γ, Ω2(logT ′)) := dim H0(X ′

Γ, Ω2(logT ′))

Knowing some important cases (e.g. Picard modular surfaces of Gauss and
Eisenstein numbers, see [Ho00]) we concentrate our attention in this paper to
abelian ball quotient surface models X ′

Γ with neat ball lattices Γ, which are not
cocompact.

Definition 1.1 . A ball lattice is called coabelian iff the corresponding com-
pactified quotient surface is abelian up to birational equivalence.

Remark 1.2 . Neat coabelian ball lattices are not cocompact, because the quo-
tient surfaces of neat cocompact lattices are known to be of general type.

An abelian surface is the (unique) minimal model in its birational equivalence
class (of smooth surfaces). Therefore, for any neat coabelian ball lattice Γ there
exist birational morphisms

(5) A A′ := X ′
Γ X̂Γ XΓ := Γ�B¾ σ - ¾ ι

where X̂Γ is the (normal projective) Baily-Borel compactification of XΓ with
(minimal) singularity resolution X ′

Γ, ι the natural embedding and A is an abelian
surface. In [Ho00], Cor. 2.8, we proved the first part of
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Proposition 1.3 . The abelian surface A, which is a contracted ball quotient
as described in (5), is isogeneous to E × E for a suitable elliptic curve E. If,
moreover, E has complex multiplication, e.g. in the case of a Picard modular
surface, then A is isomorphic to E × E.

¤

The second part follows from the first by a theorem of Shioda-Mitani [SM], see
also [BL], X, Corollary (6.3). So the determination of the structure of the ring
of Picard modular forms in the neat abelian case can be reduced to the theory
of elliptic functions. Namely, looking back to (1) we get

(6) R(Γ) ∼=
∞⊕

n=0

H0(A′, Ω2(logT ′)),

where A′ = X ′
Γ is a blown up abelian surface A ∼ E × E, where ”∼” means

isogeny. Using obvious notations (omitting ′) the image divisor of the compact-
ification divisor T ′

(7) T := σ(T ′) =
h∑

j=1

Tj

is an elliptic divisor on A. This means that T is a reduced divisor with elliptic
curves as components. On the universal covering C2 of A they are lifted to
affine complex lines. Therefore the components Tj intersect each other (at
most) transversally. The set of all intersection points is the singular locus

(8) S = S(T ) :=
⋃

j 6=k

Sj ∩ Sk

of T . We consider also the subsets of S on the components

(9) Sj = Sj(T ) := S ∩ Tj .

Remark 1.4 . The morphism σ =: σS in (5) is nothing else but the blowing
up of all points of S.

Surprisingly, abelian ball quotient surface models (A, T ) can be recognized
by an intersection property of the elliptic divisor T . Namely, we proved

Theorem 1.5 ([Ho00], Theorem 2.5). Let (A, T ) be an abelian surface with an
elliptic divisor T and σ : A′ −→ A the blowing up of A at the singular locus
S = S(T ) of T with proper transform T ′ of T on A′. The following conditions
are equivalent:
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(i) (A′, T ′) is a neat (coabelian) ball quotient surface with compactification
divisor T ′;

(ii)
4s =

∑
sj

with cardinalities s := #S, sj := #Sj and Sj defined in (9).

¤

Let

(10) L = L1 + ... + Ls

be the exceptional divisor of σ : A′ −→ A. It is a disjoint sum of s projective
lines on A′ with selfintersection index −1.

Theorem 1.6 . Let Γ be a neat coabelian ball lattice with smoothly compacti-
fied quotient surface A′ = X ′

Γ ∼ E × E, E a suitable elliptic curve. With the
notations around Theorem (1) the dimensions of spaces [Γ, n] of Γ-automorphic
forms of weight n are

dim[Γ, n] =

{
h0(A′,OA′(L + T ′)), if n = 1
3
(
n
2

)
s + h, if n > 1

For the dimensions of spaces [Γ, n]0 of Γ-cusp forms of weight n we get the
following explicit formulas:

Proposition 1.7 . In the situation of Theorem 1.6 it holds that

dim[Γ, n]0 = 3
(

n

2

)
s + δn,1, n ∈ N,

where δn,1 ∈ {0, 1} is the Kronecker symbol.

Example 1 (Hirzebruch [Hi] and Holzapfel [Ho86], [Ho00]). Neat coabelian
Picard modular group of Eisenstein numbers:
A = E×E, E elliptic CM-curve with K = Q(

√−3) = Q(ω)− multiplication, ω
primitive 3-rd unit root, Γ commensurable with the full Picard modular groups
U((2, 1), OK) of Eisenstein numbers

T ′ = T ′1 + ... + T ′4, h = 4, L = L1, s = 1,

on A′ = (E × E)′;

dim[Γ, 1] = h0(O(E×E)′(L1 + T ′1 + ... + T ′4))

dim[Γ, n] = dim[Γ, n]0 + 4 = 3
(

n

2

)
+ 4, n > 1.
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Example 2 ([Ho00]). Neat coabelian Picard modular group of Gauss numbers:
A = E × E, E elliptic CM-curve with K = Q(i)- multiplication, Γ commensu-
rable with the full Picard modular groups U((2, 1), OK) of Gauss numbers,

T ′ = T ′1 + ... + T ′8, h = 8, L = L1 + ... + L6, s = 6,

on A′ = (E × E)′;

dim[Γ, 1] = h0(O(E×E)′(L1 + ... + L6 + T ′1 + ... + T ′8))

dim[Γ, n] = dim[Γ, n]0 + 8 = 9n2 − 9n + 8, n > 1.

Example 3 (Vladov). Neat coabelian Picard modular group of Gauss numbers:
A = E × E, E elliptic CM-curve with K = Q(i)- multiplication, Γ group
extension of index 2 of the ball lattice in Example 2, hence also commensurable
with the full Picard modular groups U((2, 1), OK) of Gauss numbers,

T ′ = T ′1 + ... + T ′6, h = 6, L = L1 + ... + L3, s = 3,

on A′ = (E × E)′;

dim[Γ, 1] = h0(O(E×E)′(L1 + ... + L3 + T ′1 + ... + T ′6))

dim[Γ, n] = dim[Γ, n]0 + 6 = 9
(

n

2

)
+ 6, n > 1.

In the forthcoming article [Ho] we compose lifted quotients of elliptic Jacobi
theta functions to abelian functions on hyperbolic biproducts of elliptic curves.
We are able to transform them to explicit Picard modular forms. Basic alge-
braic relations of basic forms come from different multiplicative decompositions
of these abelian functions in simple ones of same lifted type. Especially, for
Vladov’s example we can show that the explicitly constructed basic modular
forms yield a Baily-Borel embedding into P22 together with explicit relations
(homogeneous equations) for the Picard modular image surface.

2 Proof of dimension formulas

For the sake of clearness we remember to precise definitions. By U((2, 1),C)
we denote the unitary group U(V ) of a hermitian vector space (V, <,>) with
dimC(V ) = 3 and a hermitian form <,> of signature (2, 1). The ball B appears
as subspace

B = PV− := P{v ∈ V ; < v, v > < 0} ⊂ PV ∼= P2(C)

of all complex lines in V generated by a ”negative” vector v. The group
U((2, 1),C) acts on B via the natural composition
(11)
U((2, 1),C) ⊂ Gl(V ) −→ PGl(V ) = Authol(PV ) ∼= PGl3(C) ∼= AutholP2(C).
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Let K = Q(
√−d) be an imaginary quadratic number field, d a square-free pos-

itive integer, and OK the ring of integers in K. A Picard modular group (of the
field K) is, by definition, commensurable with the the full Picard modular group
U((2, 1), OK). All Picard modular groups are ball lattices. This means that they
act proper discontineously on B and the volume of a Γ-fundamental domain with
respect to the G(R)-invariant hermitian (Bergmann) metric on B (uniqely deter-
mined up to a non-trivial constant factor) is finite. The quotient surface Γ�B
can be compactified by means of finitely many cusp singularities to a (normal
complex projective) algebraic surface Γ̂�B, the Baily-Borel compactification.
Now let Γ ⊂ U((2, 1),C) be a ball lattice. It acts via AutholB = PU((2, 1),C)
on the C-vector space H0(B,OB) of holomorphic functions on B corresponding
to each f(z1, z2) the function γ*(f)(z1, z2) = f(γ(z1, z2)). For each n one gets
a representation

(12) ρn : Γ −→ AutH0(B,OB), Γ 3 γ : f 7→ j−n
γ · γ∗(f)

with the Jacobi determinants

jγ(z1, z2) = det(
∂γ(z1, z2)
∂(z1, z2)

)

Then [Γ, n] ⊂ H0(B,OB) is defined to be the eigensubspace of ρn(Γ) of the
eigenvalue 1, that means

(13) [Γ, n] = {f ∈ H0(B,OB); γ∗(f) = jn
γ · f for all γ ∈ Γ}

Γ-cusp forms are Γ-automorphic forms which vanish at infinity, this means at
the cusps. To be more precise, let us first interprete automorphic forms as
holomorphic sections of sheaves of higher differential form bundles K = Kn

B :=
K⊗n
B with the sheaf KB of holomorphic differential forms on B. The canonical

action of Γ on B is defined by

γ : ω = fdz1 ∧ dz2 7→ γ∗(ω) = γ∗(f)γ∗(dz1 ∧ dz2) = γ∗(f) · j−n
γ · dz1 ∧ dz2.

The embeddings

(14) H0(B,OB) −→ H0(B, Kn), f 7→ f · (dz1 ∧ dz2)⊗n

are compatible with the corresponding Γ-actions (ρn on the preimage space)
and

(15) [Γ, n] ∼= H0(B, Kn)Γ.

The latter space has the advantage to go down to the quotient space Γ�B:

(16) H0(B, Kn
B)

Γ ⊆ H0(Γ�B, Kn
Γ�B),

if we assume that Γ acts freely on B, that means B −→ Γ�B is a universal
covering. The space of cusp forms [Γ, n]0 ⊆ [Γ, n] is defined by corresponding
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to forms ω ∈ H0(Γ�B,Kn
Γ�B) which can be extended to zero at all boundary

(cusp) points P ∈ Γ̂�B \ (Γ�B).
Now let Γ be a neat ball lattice and X ′ = X ′

Γ the corresponding minimal
smoothly compactified ball quotient surface as in (5) (forgetting the arrow on
the left-hand side there) with compactification divisor T ′, which has disjoint
elliptic curve components. The link between sections of line bundles on X ′ with
Γ-automorphic forms used in (1) is:

(17) [Γ, n] ∼= H0(X, (KX′ ⊗ T′)n), [Γ, n]0 ∼= H0(X, Kn
X′ ⊗ T′n−1),

where KX′ = OX′(K) is the canonical bundle of X ′, K a canonical divisor, and
T′ = OX′(T ′) the line bundle corresponding to T ′. We refer to (33) of [Ho98]
or, more originally to Hemperly [Hem]. The Riemann-Roch formula expresses
the Euler characteristics for arbitrary line bundles V on X ′ as

χ(V) :=
∑

j

(−1)jhj(X ′,V) =
1
2
(V · (V⊗ K−1

X′ )) + χ(X ′),

where
χ(X ′) =

∑

i

(−1)ihi(OX′) =
∑

i

(−1)i dim Hi(X ′,OX′)

is the arithmetic genus of X ′. Using intersections of divisors we want to calculate
the Euler characteristics of

(18) Gn := (KX′ ⊗ T)n and Fn := Kn
X′ ⊗ Tn−1.

(19) χ(Gn) = χ(Fn) =
(

n

2

)
((K + T ′)2) + χ(X ′),

Namely, by the above Riemann-Roch formula we have

χ(Gn) =
1
2
(n(K + T ′) · ((n− 1)(K + T ′) + T ′))

=
1
2
n(n− 1)(K + T ′)2 +

1
2
n((K + T ′) · T ′)

χ(Fn) =
1
2
((n(K + T ′)− T ′) · (n− 1)(K + T ′))

=
1
2
n(n− 1)(K + T ′)2 − 1

2
(n− 1)(T ′ · (K + T ′))

For each neat ball quotient surface X ′ with (elliptic) compactification divisor T ′

it holds that (T ′ · (T ′ + KX′)) = 0, see the proof of (iii) in the next propostion.
So the second summands of both identities vanishes. This proves (19).

Now we concentrate our attention to neat coabelian ball lattices Γ and the
corresponding quotient surfaces.

7



Proposition 2.1 . Consider a neat coabelian ball quotient surface (X ′
Γ, T ′) =

(A′, T ′) with compactification divisor T ′ and exceptional divisor L of σ. With
the notations around Theorem 1.5 it holds that

(i) K = KX′ = L is a canonical divisor of X ′;

(ii) (K2) = (L2) = −s;

(iii) (T ′ · (T ′ + K)) = (T ′ · (T ′ + L)) = 0;

(iv) −(T
′2) = (L · T ‘′) = (K · T ′) = 4s;

(v) ((K + T ′)2) = ((L + T ′)2) = (K2)− (T
′2) = 3s;

(vi) ((K + T ′) ·K) = ((L + T ′) ·K) = ((L + T ′) · L) = 3s.

Proof. (i): The canonical divisor of the abelian surface A is trivial. The cano-
nical divisor of a blown up surface is the sum of the exceptional divisor and the
inverse image of the original surface, see [BPV], I, Theorem (9.1), (vii). This
means in our situation: KX′ = σ∗(O) + L = L.
(ii) follows immediately from (i) and (10).
(iii) needs the adjunction formula (see e.g. [BPV], II.11, (16))

−(C · (C + KY )) = e(C) (Euler number)

for smooth curves C on smooth compact surfaces Y . For the elliptic curves T ′j
we get

0 = −e(Tj) = (T ′j · (T ′j + K)),

hence

(T ′ · (T ′ + K)) =
h∑

j=1

(T ′j · (K +
h∑

m=1

T ′m) =
h∑

j=1

(T ′j · (K + T ′j)) = 0.

(iv) The first two identities come from (iii) and (i). With the help of Theorem
1.5, (ii), we get

(T
′2) =

∑
(T

′2
j ) = −

∑
Sj = −4s.

(v), (vi) follow immediately from the relations proved just before:

((K + T ′)2) = (T ′ · (T ′ + K)) + (K · (T ′ + K))

= 0 + (K · T ′) + (K2) = 4s− s = 3s.

¤

The Hodge diamond (hpq) = (hp(Ωq)) of the abelian surface A is well-known
to be 


h00 h01 h02

h10 h11 h12

h20 h21 h22


 (A) =




1 q p
q h11 q
p q 1


 (A) =




1 2 1
2 4 2
1 2 1


 .
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Since the geometric genus p and the irregularity q are birational invariants and
the Euler number e =

∑
(−1)p+qhpq increases by 1 after applying a σ-process

at one point, we get the following Hodge diamond for A′ = X ′:

(20)




1 q p
q h11 q
p q 1


 (X ′) =




1 2 1
2 4 + s 2
1 2 1


 .

Notice that

(21)
χ(X ′) = 1− q + p = 0 (arithmetic genus)

e(X ′) = 2 · 1 + 2 · p + h11 − 4 · q = s (Euler number).

Recall that
hp,0 = h0,p = hp(Ω0(Y )) = hp(OY )

for each compact complex algebraic manifold Y . By Serre duality our Hodge
diamond contains also the following dimensions of cohomology groups:

(22)

h2(KX′) = h0(OX′) = h00 = 1,

h1(KX′) = h1(OX′) = h10 = q = 2,

h0(KX′) = h2(OX′) = h20 = p = 1.

With (20) and (v) of Poposition 2.1 we make the relations of (20) more
explicit:

Proposition 2.2 For the line bundles Fn, Gn defined in (18) on X ′ = X ′
Γ, Γ

a neat coabelian ball lattice, it holds that

χ(Gn) = χ(Fn) = 3
(

n

2

)
s

for all n ∈ N+.

¤

Proof of Proposition 1.7.

The case n = 1 is easy because F1 is the canonical bundle K = KX′ . With
(17) and (22) one gets

[Γ, 1]0 = h0(F1) = h0(KX′) = 1,

in general. For n > 1 we need the following Kodaira vanishing result:

Proposition 2.3 (see [Ho98], Prop. 3.6; [Hem], Thm. 9.1). For any neat ball
quotient surface X ′

Γ the invertible sheaves Fn, n > 1, are cohomologically trivial
(acyclic) in the sense that the (higher) cohomology groups Hj(X, Fn), j > 0,
vanish.
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¤

Together with (17) and Proposition 2.2 it follows that

dim[Γ, n]0 = h0(Fn) = χ(Fn) = 3
(

n

2

)
s

for all n > 1.

¤

Proof of Theorem 1.6.

The second cohomology group of Gn vanishes because of Serre duality:

H2(X ′,Gn) ∼= H0(X ′,K⊗G−1
n ) = H0(X ′,O(−nT ′ − (n− 1)K) = 0, n > 0.

Namely, −nT ′ − (n − 1)KX′ is a negative divisor on X ′ because T ′ > 0 and
also K = L > 0 by choice, see (i) of Proposition 2.1. Proposition 2.2, (17), the
definitions of Gn and Euler characteristics yield

(23)
dim [Γ, n] = h0(X ′,Gn) = χ(Gn) + h1(Gn)

= χ(Fn) + h1(Gn) = h1(Gn) + 3
(

n

2

)
s.

for all n ∈ N+.
We have to calculate the first cohomology group of Gn. Consider the exact

residue sequence (see [BPV], II.1, (6)) of sheaves

0 −→ KX′ −→ KX′ ⊗ T′ −→ ωT ′ −→ 0

with canonical sheaf ω on a smooth curves (written as index). Since T ′ =
∑

T′j
is a disjoint sum of s elliptic curves can we identify

(24) ωT′ =
⊕

ωT ′j =
⊕

OT ′j = OT ′

Tensor products with the sheaves

Gn−1 = Kn−1
X′ ⊗ T′n−1 ∼= Gn−1

1

yield the exact sequences

(25) 0 −→ Fn −→ Gn −→ Gn−1 ⊗OT′ −→ 0

We deduce long exact sequences of cohomology groups:

(26)
0 −→ H0(X ′, Fn) −→ H0(X ′, Gn) −→ H0(T ′, (G1 ⊗OT′)n−1)

−→ H1(X ′, Fn) −→ H1(X ′, Gn) −→ H1(T ′, (G1 ⊗OT′)n−1)
−→ H2(X ′, Fn) −→ H2(X ′,Gn) = 0.
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Especially, for n = 1 this sequence coincides with

0 −→ H0(X ′, K) −→ H0(X ′, G1) −→ H0(T ′,OT′)
−→ H1(X ′, K) −→ H1(X ′, G1) −→ H1(T ′,OT′)
−→ H2(X ′, K) −→ H2(X ′, G1) = 0

From (24) it is clear that

(27)
H0(T ′,OT ′) ∼= ⊕h

j=1 H0(Tj ,OT ′j )
∼= Ch,

H1(T ′,OT ′) ∼= ⊕h
j=1 H1(Tj ,OT ′j )

∼= ⊕h
j=1 H0(Tj , ωT ′j )∼= ⊕h

j=1 H0(Tj ,OT ′j )
∼= Ch,

Together with (22) our long exact sequence looks like

0 −→ C −→ H0(X ′,G1) −→ Ch

−→ C2 −→ H1(X ′,G1) −→ Ch

−→ C −→ H2(X ′,G1) = 0.

The alternating sum of dimensions of all vector spaces in an exact sequence
vanishes. Therefore h1(G1) = h0(G1) and finally

[Γ, 1] = 3
(

1
2

)
s + h0(G1) = h0(X ′, G1)

by (23), which proves together with (i) of Proposition 2.1 the case n = 1 of
Theorem 1.6.

For n > 1 we remark that the canonical sheaf on T ′ is obtained by restriction

ωT ′ = KX′ ⊗ T′ ⊗OT ′ = G1 ⊗OT ′ ,

(adjunction formula, see [Ha], II.8, Proposition 8.20). This sheaf coincides with
OT ′ by (24). Taking tensor powers we get identifications

(G1 ⊗OT′)n−1 = On−1
T ′ = (

h⊕

j=1

OT ′j )
⊗(n−1) =

h⊕

j=1

O⊗(n−1)
T ′j

=
h⊕

j=1

OT ′j = OT ′ .

Taking also into account the vanishing of Hp(X ′, Fn), p = 1, 2 (Proposition 2.3),
the exact sequence (26) splits into two short exact sequences

0 −→ H0(X ′,Fn) −→ H0(X ′, Gn) −→ H0(T ′,OT′) ∼= Ch −→ 0

0 −→ H1(X ′,Gn) −→ H1(T ′,OT′) ∼= Ch −→ 0

Now use the second row and (23) or the first row to get

[Γ, n] = h0(X ′, Gn) = h0(X ′,Fn) + h = 3
(

n

2

)
s + h.

which was to be proved.

¤
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