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Abstract. The L-function of the curve O, : Y® = X* — aX over an algebraic
number field k which contains (o := exp(2%) is the inverse of a product of six
Hecke L-functions with Grossencharakter. The Euler factors at primes of good
reduction are determined by means of Jacobi sums associated to certain powers of
the 9-th power residue character. The number of points of Cy, over a finite field is
given in terms of such sums. The jacobian variety of C, over the field of complex

numbers has complex multiplication by the ring Z[(o].

Let k£ be a perfect field of characteristic different from 3. The curves
C, Y =X*"—aX,ack"

are smooth of genus 3 over k, with one point (0: 0 : 1) at infinity. The main
result of this paper is that the L-function of the curve C, over an algebraic
number field k which contains (y := exp(2%}) is the inverse of a product of
six Hecke L-functions with Grossencharakter (Theorem 1). As a consequence
of this it follows that Hasse’s conjecture on the meromorphic continuation
and the functional equation of the zeta function is true for the family C,.
Since the Jacobians of the curves C; have complex multiplication, the result
on the zeta function fits into the theory of zeta functions of abelian varieties
with complex multiplication ([De],[Ta]).

Let N; denote the number of points of the curve C, over a finite field
k=TF,. If ¢ # 1( mod 9) then N; = ¢ + 1. This is proved in propositions 1
and 2. If ¢ = 1( mod 9) then

Ni =g+ 1—Troe)0m),

where
=" (a)(*, ),

¢ a character of k* of order 9, «(¥»®,4) the Jacobi sum over F, associated to
Y® and 1. This is proved in proposition 3. Corollaries 1, 2 and proposition 4
give explicit forms of the L-polynomial of the curve C, over I, in all cases
¢( mod 9). Proposition 5 gives the arithmetic characterization of the algebraic
number +(¢)3,4) in the ring Z[(y].

Over the field k = C of complex numbers, all curves C, are isomorphic
to € : Y3 = X* — X. The moduli point of C; is the only orbitally isolated
singularity on the modular surface of Picard curves. The endomorphism ring
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of the jacobian variety J(C4) of Cy is the ring Z[(o]. Up to isomorphism, Cy
is the only Picard curve whose jacobian variety has a cyclotomic maximal
order as endomorphism ring. This is proved in proposition 7. In proposition
8 is given explicitly a period matrix of J(C):

—Co+10 —26>—26 —G -1 1 206>+

DT=1¢>-10 —G°+20 —C>+C+1 =167 20 | -6+
—Go+10 26" 26 —G° -1 1 2%+ Go

20" +(p+1 1 —Co+1 —2¢° = Co 0 (o> 4G —1
| =GP +20 1 -26°+2G+1 —(+1 —1(>-¢-1
200" + ¢ +1 1 —Co+1 —2¢° =G 0 (o> 4G —1

Picard curves of equation type Y? = X* — g are considered in [Lac].

This research was supported by the Deutsche Forschungsgemeinschaft.

1 The curves C, : Y® = X* — aX over F,

Let k = F, be a finite field of characteristic p # 3 with ¢ = p/ elements, and
let a € k*. The curve
Co:y® =2 —ax

is smooth of genus 3 over k. Let Fj,/k be the function field of C,, let Pp,
denote the set of places, and let DivF, denote the group of divisors of F,/k.
The absolute norm 9(*P) of a place P € Pg, is the cardinality of its residue
class field. Tt holds M(P) = ¢4°8*, with a natural number degP > 1, the
degree of . The Zeta function of the curve C, is a meromorphic function in
the complex plane, defined for s > 1 by

= [[ ——= %

1
SPEPF, 1 N(P)* AeDivF,, A>0

N(A)"

Denoting for n > 0 by A,, the number of positive divisors of degree n it holds

oo An
s) = .
AT T

n=0
The power series

Ze, (t) = i Apt"
n=0

I and represents a rational function

Lc,(t)
(I-1)(1—qt)’

is convergent for |t| < ¢~

Zo,(t) =
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where L¢, (t) is a polynomial with coefficients in Z of the form:
Le, (t) = 14 ait + ast® + ast® + qast* + ¢®art® + ¢*5.

For r > 1 let N, be the number of F,--rational points of the complete curve
Cq, and let S, := N, — (¢" + 1). It holds

ar = 517

2as = Sy + Slal,
3as = S3 + Sa2a; + Sias.

The plane curve C, has only one point at infinity, hence
Ni=N+1

where N is the number of solutions (z,y) in k of the equation

v =t —az.

Proposition 1. If ¢ = 2( mod 3) then Ny = ¢+ 1.

Proof: If ¢ =2(mod 3) the order ¢ — 1 of the cyclic multiplicative group
k* is not divisible by 3, so k* = k*3. This implies that for each x € k there
exists exactly one y € k with y® = 2* — az. Hence N = ¢q. O

Proposition 2. If ¢ =4(mod 9) or ¢ = 7( mod 9) then Ny = ¢+ 1.

Proof:If ¢ =4(mod9) or ¢ = 7( mod 9) then the cyclic multiplicative
group k* of order ¢ — 1 is equal to the internal direct product of its subgroup
of order 3, generated by (, and of its subgroup of order ‘I; denoted by
Uq 1. Each element ¢ € F can be uniquely written in the form ¢ = d{7 with
de Ugs and 0 < j <2 Let X be a character of k* of order 3. Put x(0) := 0.

The number of solutions in & of the equation y* = z* — az is

—q+z ¢t —ac +ZX ¢t —ac)=q+a+a,
ceF, ceF,

where

a=) x(c'-a)= Zxd‘*&f ad(’) =

celF, dEU%] 0
= 3 SN —ad) = S x(d - ad)] - [Sx(@)] =
deUg j=0 deUq_1 j=0

= Z d* —ad)] - [x(1) +x(¢) + x(¢)*].
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If g = 4(mod 9) or ¢ = 7( mod 9) then Q;Bl is prime to 3, so x is not trivial

on the subgroup of k* of order 3. This implies

X(1) + x(¢) +x(Q)* =0,
soa=0and N=¢. O
Corollary 1. If ¢ = 2(mod 9) or ¢ = 5( mod 9) then

Lo, (t) = 1+ ¢35,

Proof:If g =2(mod9) or ¢ = 5(mod9) then ¢ = 2(mod 3), ¢* =
4(mod 9) or ¢ = 7( mod 9), and ¢* = 2( mod 3). By Propositions 9 and 10
it holds N1 = ¢ + 1, N2=q2+1, N3=q3+1. SOSizNi—(qi+1)=0f0r
i=1,2,3and a; = as = a3 = 0. Hence L¢, (t) = 14+ ¢*t5. 0O

For a character ¢ of the multiplicative group k* let

(@) =— Y () exp(%mm,c)

cek*

be the corresponding Gauss sum ([Da-Hal). For an element d € k* define

(@) == 3 () exp(Z Ty, cd).
cEk* p
It holds
ra() = o~ (d)r(p) (1)

For two characters 1 and s of k* let

U1, 92) = =Y _pi(c)pa(1 =)

cek

be the corresponding Jacobi sum. If ¢ - 3 # 1 then

7(p1)7(p2)
Upr,p2) = ———~—. (2)
T(p192)
For each natural number m > 1 let (,, := exp % and let g, = {¢, | 0 <

I <m — 1} be the group of complex m-th roots of unity.
Proposition 3. If ¢ = 1( mod 9) then

Ni=q+1-Troe,o,

where
n =9t (a)u(®®, ),
Y a character of k* of order 9.
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The number of elements of a finite set X is denoted by |X|. It holds

Lemma 1. Let k =F, be a finite field of characteristic p # 3, and let £ be a
generator of the cyclic multiplicative group k*. If B(z) € k[z] is a polynomial
with a simple root 1 € k:

B(z) = (z — x1)Bi(z), Bi () € k[z], Bi(x1) #0,
then the number of solutions in k of the equation
y’ = B(z)

18

N = S (|Aun] + [Agez | + [Agze)),

Wl =

where
A = {(t,u) ckxk | Bl(tS +1‘1) = US},

A552 = {(t,u) ckxk | Bl(ftg +$1) = 2U3},
A£2£ = {(t,u) €ekxk | Bl(thg +x1) = fu3}

P roo f: I) The case ¢ = 1( mod 3). Let x be a character of k* of order 3
such that

Put x(0) := 0. It holds

with

o= ZX(B(C)) = ZX((C —r1)Bi(c)) = ZX(C —z1)x(Bi(c)) =

cek cek cek

Z Z Wit =

,J=0 c€A,x(c—z1)=w?,x(B1(c))=wi
= [An| + [Apez| + [Av2o] + w([Aro] + [Aut | + [Apze2 )+
+w? ([Arwe ]| + [Awo| + [Au21]),

i

where
A:={ce k| B(c) #0},

Ajivi={ceA|x(c—m) = wi,x(Bl(c)) = wj},
for ¢,57 =0,1,2. It follows that
a+a=2(JAul+[Avwz| + w2 ]) + (@ +©?) (1A + [Aur | + [Au2e )+

£ + ) (Arz] + [Auol +14u21D) = 20 A0] + [Aue] + Az, -
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_(|A1w| + |Aw1| + |Aw2w2|) - (|A1w2| + |Aww| + |Aw21|) =

2
= 3(|Au |+ [Auwe] + 14wz ]) = D [Awivi| =

i,7=0

3(|A11| + |Aww2| + |Aw2w|) - |A|a (3)

since the sets A, i, 7,7 = 0,1,2, form a partition of the set A.
It holds
A ={ce Al x(c—z1) =1,x(Bi(c)) =1

}
={ccA|@)(t,u) €k* xk*:c—z =13, Bi(c)

u’}.

Let
Bii:={(0,u) | u € k,u’® = By (1)} U{(£,0) | ¢ € k, By(t* + z1) = 0}.

The map
g11 A \ Bin = A

g1 (t,u) ==t + 2,
is precisely 9:1 : For ¢ € Ay; and (t,u) € g;;'(c) it holds:
g (@) ={(¢'t,¢u) [0 <, j <2},
where ( is an element of k* of order 3, so |g7;'(c)| = 9. Hence
1 1 R 1 R
| A1 | = gl Al = gee k| ¢” = Bi(z1)} — gl{ec € k | Bi(¢” + 21) = 0}].
9 9 9 (4)

It holds
Ay ={c€ A x(c—1) =w,X(Bi(¢)) = w*} =

={ce A| ) (t,u) €k* x k* :c —x1 = &, By (c) = E2u3}.
Let
Beex == {(0,u) | u € k,&u® = By (z1)} U{(t,0) | t € k, B1(&° + 1) = 0}

The map
Juw? - AggZ \8552 — A2

Juw2 (tyu) =& + 2y

is also precisely 9:1 : For ¢ € A2 and (t,u) € g;u;(c) it holds:

9o (@) = {(C't,Fu) |0 < i, j < 23,
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so |g L. (c)| = 9. Hence

ww?

1 1
[Auus] = glAeer] = gl{e € k| €268 = Bu(an)} -

1
—§|{c€k|Bl(§c3+az1)=0}|. (5)
Analogously:

1 1
|Aw2w| = §|A£2£| o §|{C €k | 503 = Bl(xl)H_

—%|{cek|Bl(52c3+az1)=0}|. (6)
From (3), (4), (5) and (6) it follows that

a+a=3(|An|+ |Apw2| + [Av2u]) — |A] =
1
= §(|A11| + [Age2| + [Agz¢])—

~5(e€ k1 & = B}l +1{c € k] & = Buen)}i+
Hiee k| €6 = Bi(a)})-
—2({e€ k| Bi(c +2) = 0} + e € k| By(ec® +21) = )|+
H{ee k| BUES +21) = 0)) — 4| =
= 24|+ el + | Acael) — 1~ [{d € k| By (d) = 0} — |4,
It holds
Al =g~ Ifee k| BE) =0} =q—1—|{de k| Bi(d) =0},

hence 1
ata= §(|A11| + [ Agez| +[Ae2e|) —a

and 1
N=g+a+a= §(|A11| + [Agez| + [Agze]).

IT) The case ¢ = 2( mod 3). Each element of k£ has one and only one third
root in k. It holds

N = q, |A11| = |A££2| = |A£2£| = q.D
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P r o o f of Proposition 3: The polynomial B(z) = z* — az = z(2® — azx)

has the root 21 = 0 in k. Let By (z) := 2® — a € k[z]. With the notations of
Lemma 1 it holds:

A ={(t,u) €k x k| Bi(t® + 1) =u’} = {(t,u) € k x k | —u® + t° = a},
Ager = {(t,u) € k x k | —€2u® + €4° = a},
Agrg = {(t,u) € k x k | —€u® + €5° = a}.

The equation
a1u3 + agt9 = ag

with a1,as,a3 € k'\ {0} has by ([Da-Ha], 6.2 and 6.5)

N(al,a2,a3) =
33y e GLy Tay (X)) Tay (9") _
=q-v (=)= > e =

XHFELPY AL xH Y #L

a1 Tay s Tao (VY
e L I DD DI e L T
ericvcimivry T
8 3 T v 8 Ta 6 Ta v
al)_X2(_Z_;)_ Z Tal(w ) az(w )_ Z 1(¢ ) z(w )

=a-x(=3, e () oa (051)

v=1,v#6 v=1,v#3

solutions in k. Hence

8
(W) (¥Y)
|Ai] =N(-1,1,a) =q¢—2— Tl(—u—
11 V:%;#ﬁ T (03+7)

S T2 (¥")

VT Ta (¢6+u) )
|A€€2| = N(_§27§35 a) =

=q—x(ENH =€ - > T (@) ()

3+
v=1,v#6 Ta (w V)

8
3 T_e2(PO)Tes (97)
Z Ta (¢6+V) B

v=1,v#3
N TeW)e) - Te@)ms ()
EEARD D T D P AT

v=1,v#6 v=1,v#3

and

| Ag2¢| = N(=¢,£5,a) =
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e 8 TG’QZJ 8 T_ ¢67's (I
S e () Tes (9Y) S e (§%)Tes (v07)
REARRIPY gw—ﬁ‘z#gw—ﬁ

v=1,v#6

It follows that
| Av1] + [ Aggz| + | Agze| =

8 3Ny (P¥ T_e2 (V¥ 1es (Y T_e (V¥ 16 (Y
39— Y T (7)) (¥Y) + gT(iﬁ(ip)giu()in e(7)es (V)

i 71 (%) (Y) + 7 §2(¢6)T§3(¢")+T—§(¢6)Tgﬁ(¢")_

Ta(15+7) (7)

=143
By (1) it holds
T ()T (") + o2 (V) es (V) + T (V) 10 () = 9T (1) 7(47) T (") +
+ P (=D ETW) T (W) + TP (=1 T (TP T () =
=7(@*)T(@") 1+ 770 () + v~ 73() =

= (@)@ L+ x" O +xTTHE) =
= (@)L +w 7+ W),

SO
28: T ()T () + T2 (7)) 78 () + T ($7)Te0 (%) _
v=1,v#6 Ta(wSJﬂ/)
_ L TWATW) L T@T@Y) (WP T(T)
= en PTaen TP am ®
Analogously:

T (W) (W) + Toe2 (V) Tes () + T ()70 () = O (=1)T (W) T (") +
+ S (=) OTWO) (V) + (=TT (@) T (v”) =
=7 T@") L+ + " 0() =

= TS L+ x O + X 3(9)
= r(O) (") (1 +w 1+w2< vy,
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SO
i 71 (PO)T1 (7)) 4+ T_e2 (°) Tes (V) + 7 (%) 70 (7) _
v=1,v#3 Ta(¢6+u)
LT T(?) (W)W | 7)1 (%)
B U IR 7 R 07 ®)

By (7), (8) and (9) it holds

|Aut| + [ Aeer| + [Acze| = 3¢ — JTW)T(W) LT TN

Ta(¥*) Ta(Y7) Ta(¥)
W) T W) r@)r(u®)
Ta(¥®) Ta(1?) Ta(¥®)
by Lemma 1
Nego TW)r) @) T

7a(¥*) 7a(¥7) 7a()
W) r@?) W) _ r@)T(F)
7a(¥®) 7a(¥?) Ta(¥?)
= q =9 (@)@, ¥) = " (@)e(¥®,¥*) — ¥(a)u(v®, ¥T)~
—%(a)e(¥°,¥?) — *(a)u(¥®, ¥°) — ¥ (@)u(v®, ¥,
by (1) and (2).

Let A be the automorphism of the field extension Q((y)/Q defined by ¢3! :=
¢2. It holds

)
(

nt = @ ()ue?, )t = Zw $(1— o))
%w (Y1 = 0)) = ¥ (a)u(y®, ),

= @* (@)u(@®, ¥)* = %p W1l — e =
%W Y- ) = o7 (@)u(?, ),

" = (W a)u@®, ) = gzﬁ W(1— A =

(=Y w1 = ¢) = (a)u(y®, 4®),

cEk
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A = @ @u(e?, )N = %w b1l — ) =
- gwcwu — o)) = Y(a)(¥®, ¢7),

" = @ (@)uw® v = (¥ %w W1 — A =
- %wﬁ(cwm =) = ¢* ()¢’ 9%),

hence

2 3 4 5
N=qg-n-n" =g =" =" =" =¢—Trg,) 0.0

Corollary 2. If g =4(mod9) or ¢ = 7(mod 9) then

1
Le, (t) =1— gTrQ«g)/Q(n)tS + ¢*t%,

where n = *(a)i(y3,4), 1 a character of order 9 of the multiplicative group
of the field Fys .
If ¢ = 8( mod 9) then

1 1
Le,(t) =1~ §TI" 0(¢o) /(M — qiTr ooy 0(mt* + ¢*to,

where n = *(a)i(y3,4), 1 a character of order 9 of the multiplicative group
of the field Fy> .

Proof:If g =4(mod9) or ¢ = 7(mod9) then ¢> = 7(mod 9) or ¢> =
4(mod 9) and ¢* = 1(mod 9). By proposition 2 it holds N; = ¢ + 1 and
Ny = ¢ +1, so the coefficients a; and as of L¢, (t) vanish and the coefficient
az equals %(Ng — ¢® — 1), which by proposition 3 equals —%Tr@(gg)/@(n) .
If ¢ = 8( mod 9) then ¢> = 1(mod 9) and ¢ = 2( mod 9). By proposition
1it holds Ny =g+ 1and N3 = ¢>+ 1,50 a1 = 0, a3 = 0 and as equals
3(N2 — ¢* — 1), which by proposition 3 equals —3Tr g(¢,)/0(n). O

Remark 1. Corollary 2 explains some computations done in ([CER]).
Proposition 4. If ¢ = 1( mod 9) then
Leu(t) = (1L=nt)(1 =1 =" D1 =y (1 =0 1)1 = n*"0),

where n = *(a)i(y3,4), 1 a character of order 9 of the multiplicative group
k*, A the automorphism of the field extension Q((o)/Q defined by (5' == 2.
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P r o o f: The L-polynomial of the curve C,/k can be written in the form

Lo, (t) = H?:1(1 — ajt), where a1,... ,as are algebraic integers. For r > 1
it holds
6
Ne=q +1-) of (10)
j=1

Let 1 be a character of order 9 of the cyclic group k*. The map
(U F;r = C* ¢ (x) := ¢(Nqu|Fq (z))
is a character of order 9 of the cyclic group Fy... It holds ([Da-Ha],0.8)
i (W) = ra(w') (1)

for 1 <1 < 8 and d € F,, where Tér) (L) denotes the Gauss sum of the
character . on F,-.
By Proposition 4 it holds

TO@HTO (W) O WHTI WY TP @HTD(y)

N.=q +1-
v o () o () ()
OO @) rOEHTO (ys) O @ TO (88)
" (1) " (12) s

hence by (11)
N, - qr 1 T(wS)rT(w)r B T(¢3)TT(¢4)T B T(¢3)TT(¢7)T_

Ta ()" Ta(P7)" Ta(Y)"
_T(¢6)TT(¢2)T B T(i/)ﬁ)TT(ile)r B T(i/JG)TT(i/JS r
Ta(YB)" Ta(Y?)" Ta(Y5)" ’

so one can choose in (10)

TWTW) _ @) _ e

)W) _

1= —— =

=1, -« n
) ST )
(08 (® (VO V (P (V87 (12
a2 TN e T e )
7a(¥?) Ta(1?) Ta(4?)
Let m > 1 be a natural number and let K be an algebraic number field
with ring of integers Ok such that (,, € Ok. Let p be a prime ideal of O

Ni/ole) -1

not dividing m, and let € Ok not divisible by p. The number z— =
is congruent modulo p to one and only one root of unity (!, € fi,,,. The map

(O /p)\ {0} = pm, x mod p — (,

is a character of order m of the multiplicative group of the finite field Ok /p
called the m-th power residue character modulo p.

= nA.EI
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Proposition 5. Let ¢ = 1( mod 9) and let p be a prime divisor of p in the
ring Z[(y—1]. Let ¢ be the 9-th power residue character modulo p in Z[(;—1].
Identifying the finite field B, with the residue class field Z[(4—1]/p it holds:
a) The absolute value of the complex number L(1>,1)) is

(4, 9)| = Va;

b) The prime ideal decomposition of the principal ideal generated by 1(13,))
in the ring of integers Z[(y] is

(P D) Z[G) = (g- g - g47)F 0l

where q := pN7Z[(], A is the automorphism of Q((o)/Q) defined by (' := (2

and No(c,_,)/0(¢) (p) = /P19,
¢) In the ring Z[Co] it holds

(¢, 9) = 1(mod (¢ — 1)*).

The number 1(y3,1)) € Z[() is uniquely determined by the properties a), b)
and c).

Proof:
a): Every Jacobi sum in a finite field with ¢ elements has absolute value ,/q.
b): By ([Hal], p.40, (6.)) it holds

W W)EIG) = (g0 ")l

where J runs over the set {A* | 0 < k < 5} of automorphisms of Q(¢y),
j mod 9 is defined by

Jt Cj

9 T 69
and

i3y, = TC D o)

r(z) the smallest non-negative residue of z mod 9. It holds

r(=3) +r(=1) —r(—4)

7 = G, d(-3,-1) = . 1,
G 15,5 = D) +r(;5) —r-20)
(et g o, 7y = T2 +r(;7) —r(-2m)
I S RN o 1) +r(;8) —r(=3)
Y PR G )ty o et o (o B

9 )
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5y—1 —
Gt = =2, d(-6,-2) = =1,

S D)Z[G] = (gAY (g gA" L gAY 1)
c): For ¢ € F; it holds
Y(c) = 1 mod ((o — 1)
and
¥*(c) = 1 mod (¢ — 1)°.

Indeed, if ¥(c) = (¥, 0 < k < 8, then ¢(c) — 1 = (¥ — 1 is divisible by ¢y — 1
in Z[(o] and 93(c) — 1 is divisible by ¢§ — 1 which is associate with (¢ — 1)3.
Then

WP, ) = =D PPl —c) = =Y () (1 —c) =

c€F, c€F,
= —Zw(@ - Z Pe)WP(1—c)—1) =
c#1 c¢#0,1
=1- > @1 -0-1)=1- > @*1-c)—1)mod (¢ —1)* =
c#0,1 c#0,1
=1- > ¢*(1-0¢)+ Y lmod ((—1)*=
c#0,1 c#0,1

=14+1+¢—2mod (¢ —1)*=¢gmod (¢ — 1)* =1mod ({ — 1)

Two numbers in Z[(g] with the same absolute value and the same prime ideal
decomposition differ by a root of unity. The group of roots of unity in Z[(o] is
p1s. The only element of p;5 which is = 1 mod (¢ — 1)* is 1. The properties
a), b), ¢) determine the number ¢(¢,4)) in Z[(y]. O

2 The curves C, : Y3 = X% — aX over an algebraic
number field

Let k£ be an algebraic number field which contains (o. Let a € k*, and let
m, be the product of 3 and of all prime divisors p of k£ which appear in the
decomposition of a. Let p be a prime divisor of £ which does not divide m,.
The curve C, has good reduction at p: By reducing modulo p the equation
y® = 2* — ax one obtains a curve Co(p) over the residue class field k(p) at p
with the equation

4

Cap) * y® =z* —a(p)z,a(p) := amod p € k(p)*
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which is smooth of genus 3 over k(p). Let Lc, ,, (t) be the L-polynomial of
Ca(py/k(p). By proposition 4 it holds

Le.(t) = T =n0)*'),

where n(p) := 1" (a(p))e(p>, ¥p), ¥y the 9-th power residue character mod-
ulo p, A the automorphism of the field extension Q((y )/Q defined by (gt := (2.
The L-function of C, over k is defined by

L(s,Cq, k) := H LCa(p)(N(p)is)- (12)
(p,ma)=1

The product on the right hand side of (12) is absolutely convergent for
Rs > 2 ([Hal], [We], [De]). It holds

where
Lis):= [ =um* N@)™), (13)
(p,mg)=1

for j = 0,...,5. Extend the function 7n(p) multiplicatively on the group
Divy,, k of divisors of k prime to m, and define

)V

A : Dive, k s C, ) (a) = 1O
N(a)

for j =0,...,5. The functions A, ..., A; are Grdssencharaktere of k ([Hal],
[We]) in the sense of Hecke ([He]). Let Divy; k denote the set of positive
divisors in Divy, k. By (13) it holds for s > g

Li)™ = [ @=-xmN@—=)~" =

)

(p,mg)=1
s
= Z ](aZL =L(s — 5,75, k)
aeDiv k (a)*= 2

where

Lis, Mo k) = 3 ]/\\Tj(ic;)s,%s>1,

aeDivy &
is the Hecke L-function corresponding to A;, j =0,...,5. So

Theorem 1. The L-function L(s,Cqy, k) of the curve C, over k equals the
product of the inverses of Hecke L-functions L(s — %, Ajy k), j=0,...,5.
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3 The curves C, : Y3 = X% —aX over C

A complex Picard curve is the projective closure of an affine plane curve of
equation type Y3 = ps(X), where ps(X) is a polynomial of degree 4. We ex-
clude all polynomials p4(X) with only one zero. So one avoids unstable curves
in order to get a compact algebraic moduli space M of (isomorphy classes of
semistable) Picard curves, which we choose in a very canonical way. Smooth
Picard curves have genus 3. They correspond to a Zariski-open part M # of
M. Let K = Q(v/=3) = Q), w := ", be the field of Eisenstein numbers.
The cyclic group Z/3Z of order 3 acts via (z,y) — (z,wy) on each Picard
curve C. If C is smooth, we get P! as quotient curve C/(Z/37Z) with Z /37
as Galois group of C'/P!. The action of Z /37 induces a K-multiplication of
type (2,1) on the jacobian variety J(C) of C, which means that the diago-
nalized representation group of Z /37 on the tangent space Ty.J(C) of J(C)

is generated by (§ % 8). Let
w

B:={z=(z1,22) € (ozF |z|2 = |z1|2 + |22|2 < 1},

be the two-dimensional complex unit ball. The moduli space of abelian three-
folds with K-multiplication of type (2, 1) is the Shimura surface B/I", I =
U((2,1),0), © = Og = Z + Zw the ring of Eisenstein integers. Define the
congruence subgroup I'(v/—3) by the exact group sequence

1 — I'(V/=3) — T —U((2,1),9/(1 —w)O) — 1.

In ([Hol], Ch. I, Prop. 3.2.3) it is proved the following

—

Theorem 2. The Baily-Borel compactification B/ I'(/—3) coincides with the
projective plane P2. The compactifying cusp points are four points

K., K>, K3, K, € P? in general position. The open part ]}”;‘7E C P2 coming from
smooth Picard curves is precisely the complement of the six projective lines
Li; = Lj; going through pairs K;, K; of different cusp points.

It turns out that
M# =P¥/S, , M =P?/S,, M =P%/S,,
where P3 := P2\ {K}, K5, K3, K;}. Now identify P? with
P = {(t1 sty : t3:ta) € PP by 4ty + t3 + t4 = 0},
and introduce projective coordinates such that

Ki=(-3:1:1:1), Ky =(1:-3:1:1),
Ky=(1:1:-3:1), K, =(1:1:1:-3).
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Each Picard curve is isomorphic to a normal form representative
Ce: V3= (X —t)(X —t2)(X —t3)(X —tq), ty + 1t +1t3+14 =0.
The correspondence
Ce t=(ty,ta,tg,t4) = (t1 1o t3 : ty) € P

restricted to ]P’;'#£ and composed with the Sy- quotient map yields the pre-
cise parametrisation of isomorphy classes ([Hol] I, Prop.5.2.3). Especially, all
curves of the family

C, : Y3 =X*—aX ,aeC,
are isomorphic over C to
C,:Y?=X*-X,

whose moduli point is the image of (0: 1:w : w?).

The Jacobians of smooth Picard curves are (principally polarized) abelian
threefolds. Via period matrices they are represented by points in the gener-
alized Siegel upper half plane

Hs = {2 € Mat3(C); 02 = 2, I'm 02 positive definite},
uniquely up to Sp(6, Z)-equivalence, where
Sp(6,Z) = {G € Gls(Z); 'G- (%, %) -G = (%, &)}, Bs :=diag(1,1,1),

denotes the symplectic group acting on Hs in the well-known manner. By
Torelli’s theorem there is a canonical algebraic embedding M# < s into the
moduli space 3 = Hz/Sp(6,7Z) of principally polarized abelian threefolds.
Restricting to the Zariski-open subspace ngf'E C 23 corresponding to Jacobians
of smooth genus 3 curves one gets a closed embedding M# — Qlf , which
determines M# uniquely, up to isomorphy. The closed algebraic embedding
M# — ngf'E can be uniformized in the following sense. In the analytic category
there is a commutative Shimura diagram

B — His
N s
B# s HY
\J 3 Lol
M# — q#

4 h
M — 9[3

where Hy — 23 is the Sp(6, Z)-quotient morphism, Hf is the preimage of
A¥ in Hy, B < Hs is a closed embedding, B¥ = BNHY, and B — M is
the analytic quotient morphism of the arithmetic group

Nsp(e,z)(B) :={G € Sp(6,7); G(B) = B}
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acting on B. In ([Ho3]) it is proved that this ball lattice coincides with I.
Identifying for a moment the ball with its image in Hs we call B the period
space of Picard curves and its points are called Picard period points (of the
family of Picard curves). An element v € I is called elliptic, iff v has an
isolated fixed point P € B. Let I" be a subgroup of I'. We call the elliptic
element v purely I''-elliptic, iff all non-trivially on B acting elements of the
stationary group I'p are elliptic. The images of purely I"-elliptic points on
B/I" are isolated (cyclic quotient) singularities. Notice that the fixed point
P is uniquely determined by the elliptic element 7y because the group of
biholomorphic automorphisms of B coincides with PU((2, 1), C), so 7y has only
one negative eigenline in V' = (C?, < ., . >) with respect to the hermitian
metric < ., . > of signature (2,1) on C3.
In ([Hol], Ch. I, 3.4.4) it is proved the following

Theorem 3. (see [Hol] I, Prop. 8.4.4). The only singularities of M are the
image points of S = (0:1:w:w?) and N := (1 :i:—1: —i), along the
Si-quotient morphism. O

This is a simple application of a theorem of Chevalley stating that the sin-
gularities of a finite (more generally: locally finite) Galois quotient X/G of a
smooth complex manifold X come precisely from points z € X with isotropy
group G, not generated by reflections at x, where reflections at = are defined
as elements of G, acting trivially on a submanifold of X through z of codi-
mension 1. Looking at finite subgroups of S; and their fixed points on P? one
finds up to Ss-equivalence the points S, N as only singular possibilities. The
Ss-isotropy group of S is generated by the cyclic permutation (234) of order
3. The Sy-isotropy group of N is generated by the cyclic permutation (1234)
of order 4. The (13)(24)-reflection line on P? contains N.

Proposition 6. The set of Picard period points of Cy coincides with the set
of purely I'-elliptic points on B. It coincides with the I"'-orbit of

Pry = (G —G%:1: 6" +G"—1)eB.

P r o o f: For an arbitrary group G let G;,, be the set of elements of finite
order of G (torsion elements), and let Gg—_so» be the subset of elements of
precise order k € Ny . G acts by conjugation on Gy and on Gy,,. It holds

Lemma 2. For I' =U((2,1),90) the set Ty_sor is not void. It consists of pre-
cisely siz I'-conjugation classes. They are projected onto two PI-conjugation
classes in (PI')3_tor.

P roofof Lemma 2: For the first statement we consider the element

—w? -1 W?
p1 = w 1 1
1 —1w?-1
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with
det o1 =w, p3 = wks.

found by Feustel in [Feu]. It is easy to check that ¢; belongs to I'. The eigen-
values are (o, Co*, (. The powers of k =1,2,4,5,7,8, yield six different
conjugation classes in I'y_4, (compare determinants and eigenvalues) and
two conjugation classes in (PI")3_¢0. O

Now let ¢ be an arbitrary element of Iy_¢,, with eigenvalues (o, {gj , Cgk,
say. The Galois group of F := K((o) over K is generated by o : (o —
¢o*. The characteristic polynomial Xo(T') of ¢ belongs to K[T]. Looking at
trace and determinant of ¢, which must belong to K, it is easy to see that
¢ has three different eigenvalues. They must be conjugated over K, hence
G’ = Go" = 0((o), " = Go" = 0((o)- The eigenvectors a, b, ¢ of (o, (o),
02((y), respectively, can be choosen in F2. They form an orthogonal basis of
F3 endowed with our hermitian (2, 1)-metric because of different eigenvalues.
From ¢(a) = (o - a it follows that

o(p(@) = o(Go)r(a) = G 'o(@)
because ¢ belongs to Mat3(K). Therefore
a, b =o0(a), c=o0?(a) € F?,
satisfying
<a,a><0,<b,b>>0, <c,c>>0, (14)

(without loss of generality) is an orthogonal ¢-eigenbasis of C* . The elliptic
element ¢ has the unique elliptic fixed point P = Pa € B. We show that
P is a purely I'-elliptic point. With I := I'(y/—3) we have a commutative
diagram of quotient morphisms

P

B/I" =Py —— P3/Sy=B/T

In [Hol] I, Prop. 3.4.4, there are listed on P% the p'- images of all I'-elliptic
points ) € B together with their (abstract) isotropy groups I'g. Our P cannot
be an intersection point of two I'-reflection discs because the reflections have
eigenvalues only in K. Otherwise P € B C P? would be the intersection
point of two projective lines (the projectivized orthogonal complements of the
one-dimensional eigenspaces) defined over K. This leads to Pa = P = Pda’,
o' € K3, o(P) = P, which contradicts to o(P) ¢ B = PV_, by (14). There
are precisely two I'-orbits I'N, I'S of I'elliptic points whose isotropy groups
are not generated by reflections. The projective isotropy groups PI'y, or PI'g
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are cyclic of order 4 or 3, respectively. Since Py € PI'p is elliptic of order 3
the point P must belong to the second orbit. The image p(S) coincides with
p'(S), which is an orbitally isolated singularity with respect to I'. This means
that S is a purely I-elliptic point, hence PI's =2< Py > of order 3. O

Let F' be a number field and A a complex abelian variety of dimension g.
We say that A has F-multiplication, if there is a Q-algebra embedding ¢ of F'
into the endomorphism algebra End°A = Q ® End A of A. If, moreover, the
degree [F : Q] of F is equal to 2¢g and ¢ is an isomorphism, then A is called an
abelian CM-wariety. It is well-known in this case that A is simple and F'is a
CM-field, which is, by definition, a totally imaginary quadratic field extension
of a totally real number field, see [La]. A CM-curve is a (smooth complex)
projective curve C' whose jacobian variety J(C) is an abelian CM-variety.

Proposition 7. The endomorphism ring End J(C}) is isomorphic to Z[(y)-
Up to isomorphy, C1 is the only Picard CM-curve with a cyclotomic mazimal
order as endomorphism ring.

P r o o f: Our special Picard curve C; : Y2 = X(X? — 1) has an obvious
non-trivial automorphism of 9-th order fixing co = (0:0: 1):

P =w).

(l’,y) = (w‘ra CQy) ) (CQ
It extends to an automorphism of the Jacobian threefold of C;. With Theo-
rem 6 below we will see that this automorphism generates a subfield in the
endomorphism algebra of the Jacobian. Therefore we get embeddings

Z[C) = End J(C1) , F = Q((o) < End®J(Ch). (15)

The representing period point Py = Pa € B is purely I'-elliptic by Propo-
sition 3, fixed by 1 of nine-th order. Therefore the ring Endg(a,a’) of
K-endomorphisms of V with eigenvector a and invariant subspace a* is big-
ger than K. Such ball points have been called exceptional in [Ho2], Corollary
7.10. Moreover, a is eigenvector of a simple eigenvalue of @1 € Endx (a,at).
Therefore P, is an isolated exceptional point in the sense of Definition 7.12 of
[Ho2]. The K-degree [K(P,) : K] of P, is equal to 3. Now apply the follow-
ing theorem to see that J(Cy) is a simple CM-threefold with multiplication
field K((o)-

Theorem 4. (see [Ho2|, section 7.) The endomorphism algebra of the ja-
cobian variety J, =2 J(Cy) of a Picard curve with period point 7 € B and
moduli point t = (t1 : t2 : t3 : t4) € P} is greater than K if and only if T
is exceptional. J. splits up to isogeny into abelian CM- subvarieties if and
only if T is an isolated exceptional point. Thereby Jacobians with CM-field
F (of degree 3 over K ) correspond to isolated exceptional points of K -degree
3 and F = K(1). All other isolated exceptional points (of K-degree 2 or 1)
ly on K-discs on B (defined as non-empty intersections L N B, L projective
lines on P? defined over K ). Thereby T € B(K) if and only if J, splits into
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E x E x E. The degree 2 case happens if and only if J. splits into E X (EIQ),
where E 1is an elliptic CM-curve with K-multiplication and E' elliptic CM

with imaginary quadratic multiplication field L # K. Moreover, it holds that
K(L) = K(7) in the latter case. O

The endomorphism ring of any abelian CM-variety is an order in the cor-
responding CM-field. Each order of a number field L is contained in the
maximal order, the ring 9Oy, of integers in L. The maximal order of a cyclo-
tomic field L = Q(¢) is equal to Z[(], ¢ a generating unit root, see e.g. [Neu],
I, Prop. 10.2. So the embeddings (15) must be isomorphisms, especially

DF = Z[Cg] = EndJ(C’l) g E?’LdoJ(Cl) = F.

The first part of Proposition 5 is proved.

F' is the only cyclotomic field of degree 3 over K. Therefore the Jacobian
threefolds of CM-Picard curves C' with cyclotomic endomorphism algebra
End®J(C), which must be isomorphic to F', have to be isogeneous. There is
a bijective correspondence between the ideal classes of O and the isomorphy
classes of principally polarized abelian CM-threefolds A (of same multiplica-
tion type) with endomorphism rings Op, see e.g. [La], III1.2, Cor. 2.7. It is
well-known that the class number of F' is equal to 1, see e.g. [Ha2], ITI, end of
29. Therefore, up to isomorphy, there is only one such A. Then, by Torelli’s
theorem, also the isomorphy class of Picard CM-curves with End J(C) & Op
is uniquely determined. This completes the proof of Proposition 5. O

Remark 2. The type of F-multiplication is a lift (F-extension) from the type
(2,1) of K-multiplication on J(C7). This lifted type is unique by [La], 1.3,
Theorem 3.6.

Proposition 8. A period matriz of the Jacobian J(Cy) is:

—Go+10 —26°—26% —G°—-1 1 2%+
IT=1G¢"-10 —(°+20 —C +C+1 -1 -2 | -wt
—Co+10 =267 —26 —G>—1 1 26>+

20" +¢o+1 1 (G +1 =26 =C 0 (4G —1
+ | =G +2¢0 1 —20°+20p+1 —C+1 —1¢°—( -1
20" +¢o+1 1 —Go+1 —2¢° = ¢ 0 (P4 G —1

The set of Hs - (Siegel-)period points of J(C1) coincides with the Sp(6,Z)-orbit
of

—2rs—1 1 rs—1 2rs—2 1 —rstl
3{2 r 372 371”2 r 3r12
I -1 0 |w+| £+ -1 =

rs—1 0 —2rs+42 —rs+1 —1 2rs41
3r2 372 372 r 372

with

ri= =Gt + 0P+ 207+ G+ 1, 5= — (6" + 6% + 26 + ).
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P roof: In [Ho3], sections 2.4-2.5, it is described a procedure to receive the
period matrices starting from the coordinates of the fixed point P,. First
one has to move the ”diagonal ball” B C P? by a plane projective linear
transformation to the ”"Picard ball” (Siegel domain) B’ C P2. This is done by
the inverse of

w 0-1
M = 0 10],
—w?0 -1

(see [Ho3], p. 28) acting on row-vectors from the right. Let P':= (a:b:¢c) €
B’ be the image point of Py, € B. Setting b = 1 and applying Proposition 3
one gets a, ¢ € Z[{y]. From the vector (a,1,c) one gets the period matrices
via orthogonal fillings and *-procedure coming from Picard period integrals,
all described in [Ho3] around Lemma 2.22. The numbers r, s appear in the
period matrix IT at places (1,1) or (1,4), respectively. O
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