
Arithmetic on a Family of Picard CurvesRolf-Peter Holzapfel and Florin NicolaeHumboldt-Universit�at zu Berlin, Institut f�ur Mathematik, Rudower Chaussee 25,D-10099 Berlin, GermanyAbstract. The L-function of the curve Ca : Y 3 = X4 � aX over an algebraicnumber �eld k which contains �9 := exp( 2�i9 ) is the inverse of a product of sixHecke L-functions with Gr�ossencharakter. The Euler factors at primes of goodreduction are determined by means of Jacobi sums associated to certain powers ofthe 9-th power residue character. The number of points of Ca over a �nite �eld isgiven in terms of such sums. The jacobian variety of Ca over the �eld of complexnumbers has complex multiplication by the ring Z[�9].Let k be a perfect �eld of characteristic di�erent from 3. The curvesCa : Y 3 = X4 � aX; a 2 k�are smooth of genus 3 over k, with one point (0 : 0 : 1) at in�nity. The mainresult of this paper is that the L-function of the curve Ca over an algebraicnumber �eld k which contains �9 := exp( 2�i9 ) is the inverse of a product ofsix Hecke L-functions with Gr�ossencharakter (Theorem 1). As a consequenceof this it follows that Hasse's conjecture on the meromorphic continuationand the functional equation of the zeta function is true for the family Ca.Since the Jacobians of the curves Ca have complex multiplication, the resulton the zeta function �ts into the theory of zeta functions of abelian varietieswith complex multiplication ([De],[Ta]).Let N1 denote the number of points of the curve Ca over a �nite �eldk = Fq . If q 6� 1( mod 9) then N1 = q + 1. This is proved in propositions 1and 2. If q � 1( mod 9) thenN1 = q + 1� Tr Q(�9)=Q(�);where � :=  4(a)�( 3;  ); a character of k� of order 9, �( 3;  ) the Jacobi sum over Fq associated to 3 and  . This is proved in proposition 3. Corollaries 1, 2 and proposition 4give explicit forms of the L-polynomial of the curve Ca over Fq in all casesq( mod 9). Proposition 5 gives the arithmetic characterization of the algebraicnumber �( 3;  ) in the ring Z[�9].Over the �eld k = C of complex numbers, all curves Ca are isomorphicto C1 : Y 3 = X4 �X . The moduli point of C1 is the only orbitally isolatedsingularity on the modular surface of Picard curves. The endomorphism ring



2 Rolf-Peter Holzapfel and Florin Nicolaeof the jacobian variety J(C1) of C1 is the ring Z[�9]. Up to isomorphism, C1is the only Picard curve whose jacobian variety has a cyclotomic maximalorder as endomorphism ring. This is proved in proposition 7. In proposition8 is given explicitly a period matrix of J(C1):� = 0@��9 + 1 0 �2�92 � 2�9 ��92 � 1 1 2�92 + �9�92 � 1 0 ��92 + 2�9 ��92 + �9 + 1 �1 �92 � 2�9��9 + 1 0 �2�92 � 2�9 ��92 � 1 1 2�92 + �91A � �93++ 0@2�92 + �9 + 1 1 ��9 + 1 �2�92 � �9 0 �92 + �9 � 1��92 + 2�9 1 �2�92 + 2�9 + 1 ��9 + 1 �1 �92 � �9 � 12�92 + �9 + 1 1 ��9 + 1 �2�92 � �9 0 �92 + �9 � 11A :Picard curves of equation type Y 3 = X4 � a are considered in [Lac].This research was supported by the Deutsche Forschungsgemeinschaft.1 The curves Ca : Y 3 = X4 � aX over FqLet k = Fq be a �nite �eld of characteristic p 6= 3 with q = pf elements, andlet a 2 k�. The curve Ca : y3 = x4 � axis smooth of genus 3 over k. Let Fa=k be the function �eld of Ca, let PFadenote the set of places, and let DivFa denote the group of divisors of Fa=k.The absolute norm N(P) of a place P 2 PFa is the cardinality of its residueclass �eld. It holds N(P) = qdegP, with a natural number degP � 1, thedegree of P. The Zeta function of the curve Ca is a meromorphic function inthe complex plane, de�ned for <s > 1 by�Ca(s) = YP2PFa 11� 1N(P)s = XA2DivFa;A�0 1N(A)s :Denoting for n � 0 by An the number of positive divisors of degree n it holds�Ca(s) = 1Xn=0 Anqns :The power series ZCa(t) := 1Xn=0Antnis convergent for jtj < q�1 and represents a rational functionZCa(t) = LCa(t)(1� t)(1� qt) ;



Arithmetic on a Family of Picard Curves 3where LCa(t) is a polynomial with coe�cients in Z of the form:LCa(t) = 1 + a1t+ a2t2 + a3t3 + qa2t4 + q2a1t5 + q3t6:For r � 1 let Nr be the number of Fqr -rational points of the complete curveCa, and let Sr := Nr � (qr + 1). It holdsa1 = S1;2a2 = S2 + S1a1;3a3 = S3 + S2a1 + S1a2:The plane curve Ca has only one point at in�nity, henceN1 = N + 1where N is the number of solutions (x; y) in k of the equationy3 = x4 � ax:Proposition 1. If q � 2( mod 3) then N1 = q + 1.P r o o f: If q � 2( mod 3) the order q � 1 of the cyclic multiplicative groupk� is not divisible by 3, so k� = k�3. This implies that for each x 2 k thereexists exactly one y 2 k with y3 = x4 � ax. Hence N = q. �Proposition 2. If q � 4( mod 9) or q � 7( mod 9) then N1 = q + 1.P r o o f: If q � 4( mod 9) or q � 7( mod 9) then the cyclic multiplicativegroup k� of order q� 1 is equal to the internal direct product of its subgroupof order 3, generated by �, and of its subgroup of order q�13 , denoted byU q�13 . Each element c 2 F�q can be uniquely written in the form c = d�j withd 2 U q�13 and 0 � j � 2. Let � be a character of k� of order 3. Put �(0) := 0:The number of solutions in k of the equation y3 = x4 � ax isN = q + Xc2Fq �(c4 � ac) + Xc2Fq �2(c4 � ac) = q + �+ ��;where � = Xc2Fq �(c4 � ac) = Xd2U q�13 2Xj=0�(d4�4j � ad�j) == Xd2U q�13 2Xj=0 �[�j(d4 � ad)] = [ Xd2U q�13 �(d4 � ad)] � [ 2Xj=0�(�j)] == [ Xd2U q�13 �(d4 � ad)] � [�(1) + �(�) + �(�)2]:



4 Rolf-Peter Holzapfel and Florin NicolaeIf q � 4( mod 9) or q � 7( mod 9) then q�13 is prime to 3, so � is not trivialon the subgroup of k� of order 3. This implies�(1) + �(�) + �(�)2 = 0;so � = 0 and N = q. �Corollary 1. If q � 2( mod 9) or q � 5( mod 9) thenLCa(t) = 1 + q3t6:P r o o f: If q � 2( mod 9) or q � 5( mod 9) then q � 2( mod 3), q2 �4( mod 9) or q2 � 7( mod 9), and q3 � 2( mod 3). By Propositions 9 and 10it holds N1 = q + 1, N2 = q2 + 1, N3 = q3 + 1. So Si = Ni � (qi + 1) = 0 fori = 1; 2; 3 and a1 = a2 = a3 = 0. Hence LCa(t) = 1 + q3t6. �For a character ' of the multiplicative group k� let�(') := �Xc2k� '(c) exp(2�ip Tr k=Fpc)be the corresponding Gauss sum ([Da-Ha]). For an element d 2 k� de�ne�d(') := �Xc2k� '(c) exp(2�ip Tr k=Fpcd):It holds �d(') = '�1(d)�('): (1)For two characters '1 and '2 of k� let�('1; '2) := �Xc2k '1(c)'2(1� c)be the corresponding Jacobi sum. If '1 � '2 6= 1 then�('1; '2) = �('1)�('2)�('1'2) : (2)For each natural number m � 1 let �m := exp 2�im and let �m := f�lm j 0 �l � m� 1g be the group of complex m-th roots of unity.Proposition 3. If q � 1( mod 9) thenN1 = q + 1� Tr Q(�9)=Q(�);where � :=  4(a)�( 3;  ); a character of k� of order 9.



Arithmetic on a Family of Picard Curves 5The number of elements of a �nite set X is denoted by jX j. It holdsLemma 1. Let k = Fq be a �nite �eld of characteristic p 6= 3, and let � be agenerator of the cyclic multiplicative group k�. If B(x) 2 k[x] is a polynomialwith a simple root x1 2 k:B(x) = (x� x1)B1(x); B1(x) 2 k[x]; B1(x1) 6= 0;then the number of solutions in k of the equationy3 = B(x)is N = 13(jA11j+ jA��2 j+ jA�2�j);where A11 := f(t; u) 2 k � k j B1(t3 + x1) = u3g;A��2 := f(t; u) 2 k � k j B1(�t3 + x1) = �2u3g;A�2� := f(t; u) 2 k � k j B1(�2t3 + x1) = �u3g:P r o o f: I) The case q � 1( mod 3). Let � be a character of k� of order 3such that �(�) = ! = e 2�i3 :Put �(0) := 0. It holds N = q + �+ ��;with� =Xc2k �(B(c)) =Xc2k �((c� x1)B1(c)) =Xc2k �(c� x1)�(B1(c)) == 2Xi;j=0 Xc2A;�(c�x1)=!i;�(B1(c))=!j !i+j == jA11j+ jA!!2 j+ jA!2!j+ !(jA1!j+ jA!1j+ jA!2!2 j)++!2(jA1!2 j+ jA!! j+ jA!21j);where A := fc 2 k j B(c) 6= 0g;A!i!j = fc 2 A j �(c� x1) = !i; �(B1(c)) = !jg;for i; j = 0; 1; 2. It follows that�+ �� = 2(jA11j+ jA!!2 j+ jA!2! j) + (! + !2)(jA1! j+ jA!1j+ jA!2!2 j)++(!2 + !)(jA1!2 j+ jA!!j+ jA!21j) = 2(jA11j+ jA!!2 j+ jA!2!j)�



6 Rolf-Peter Holzapfel and Florin Nicolae�(jA1! j+ jA!1j+ jA!2!2 j)� (jA1!2 j+ jA!!j+ jA!21j) == 3(jA11j+ jA!!2 j+ jA!2!j)� 2Xi;j=0 jA!i!j j =3(jA11j+ jA!!2 j+ jA!2!j)� jAj; (3)since the sets A!i!j , i; j = 0; 1; 2, form a partition of the set A.It holds A11 = fc 2 A j �(c� x1) = 1; �(B1(c)) = 1g == fc 2 A j (9)(t; u) 2 k� � k� : c� x1 = t3; B1(c) = u3g:LetB11 := f(0; u) j u 2 k; u3 = B1(x1)g [ f(t; 0) j t 2 k;B1(t3 + x1) = 0g:The map g11 : A11 n B11 ! A11g11(t; u) := t3 + x1is precisely 9:1 : For c 2 A11 and (t; u) 2 g�111 (c) it holds:g�111 (c) = f(�it; �ju) j 0 � i; j � 2g;where � is an element of k� of order 3, so jg�111 (c)j = 9. HencejA11j = 19 jA11j � 19 jfc 2 k j c3 = B1(x1)gj � 19 jfc 2 k j B1(c3 + x1) = 0gj:(4)It holds A!!2 = fc 2 A j �(c� x1) = !; �(B1(c)) = !2g == fc 2 A j (9)(t; u) 2 k� � k� : c� x1 = �t3; B1(c) = �2u3g:LetB��2 := f(0; u) j u 2 k; �2u3 = B1(x1)g [ f(t; 0) j t 2 k;B1(�t3 + x1) = 0g:The map g!!2 : A��2 n B��2 ! A!!2g!!2(t; u) := �t3 + x1is also precisely 9:1 : For c 2 A!!2 and (t; u) 2 g�1!!2(c) it holds:g�1!!2(c) = f(�it; �ju) j 0 � i; j � 2g;



Arithmetic on a Family of Picard Curves 7so jg�1!!2(c)j = 9. HencejA!!2 j = 19 jA��2 j � 19 jfc 2 k j �2c3 = B1(x1)gj��19 jfc 2 k j B1(�c3 + x1) = 0gj: (5)Analogously: jA!2!j = 19 jA�2� j � 19 jfc 2 k j �c3 = B1(x1)gj��19 jfc 2 k j B1(�2c3 + x1) = 0gj: (6)From (3), (4), (5) and (6) it follows that�+ �� = 3(jA11j+ jA!!2 j+ jA!2!j)� jAj == 13(jA11j+ jA��2 j+ jA�2�j)��13(jfc 2 k j c3 = B1(x1)gj+ jfc 2 k j �c3 = B1(x1)gj++jfc 2 k j �2c3 = B1(x1)gj)��13(jfc 2 k j B1(c3 + x1) = 0gj+ jfc 2 k j B1(�c3 + x1) = 0gj++jfc 2 k j B1(�2c3 + x1) = 0gj)� jAj == 13(jA11j+ jA��2 j+ jA�2�j)� 1� jfd 2 k j B1(d) = 0gj � jAj:It holdsjAj = q � jfc 2 k j B(c) = 0gj = q � 1� jfd 2 k j B1(d) = 0gj;hence �+ �� = 13(jA11j+ jA��2 j+ jA�2� j)� qand N = q + �+ �� = 13(jA11j+ jA��2 j+ jA�2� j):II) The case q � 2( mod 3). Each element of k has one and only one thirdroot in k. It holds N = q; jA11j = jA��2 j = jA�2� j = q:�



8 Rolf-Peter Holzapfel and Florin NicolaeP r o o f of Proposition 3: The polynomial B(x) = x4 � ax = x(x3 � ax)has the root x1 = 0 in k. Let B1(x) := x3 � a 2 k[x]. With the notations ofLemma 1 it holds:A11 = f(t; u) 2 k � k j B1(t3 + x1) = u3g = f(t; u) 2 k � k j �u3 + t9 = ag;A��2 = f(t; u) 2 k � k j ��2u3 + �3t9 = ag;A�2� = f(t; u) 2 k � k j ��u3 + �6t9 = ag:The equation a1u3 + a2t9 = a3with a1; a2; a3 2 k n f0g has by ([Da-Ha], 6.2 and 6.5)N(a1; a2; a3) == q �  3(�a1a2 )�  6(�a1a2 )� X�� 6=1; � 6=1;�� � 6=1 �a1(��)�a2( �)�a3(�� �) == q � �(�a1a2 )� �2(�a1a2 )� X1���2 X1���8;3�+� 6=9 �a1( 3�)�a2( �)�a3( 3�+�) == q��(�a1a2 )��2(�a1a2 )� 8X�=1;� 6=6 �a1( 3)�a2 ( �)�a3( 3+�) � 8X�=1;� 6=3 �a1( 6)�a2( �)�a3( 6+�)solutions in k. HencejA11j = N(�1; 1; a) = q � 2� 8X�=1;� 6=6 ��1( 3)�1( �)�a( 3+�) �� 8X�=1;� 6=3 ��1( 6)�1( �)�a( 6+�) ;jA��2 j = N(��2; �3; a) == q � �(��1)� �2(��1)� 8X�=1;� 6=6 ���2( 3)��3( �)�a( 3+�) �� 8X�=1;� 6=3 ���2( 6)��3( �)�a( 6+�) == q + 1� 8X�=1;� 6=6 ���2( 3)��3( �)�a( 3+�) � 8X�=1;� 6=3 ���2( 6)��3 ( �)�a( 6+�)and jA�2�j = N(��; �6; a) =



Arithmetic on a Family of Picard Curves 9q � �(��5)� �2(��5)� 8X�=1;� 6=6 ���( 3)��6( �)�a( 3+�) � 8X�=1;� 6=3 ���( 6)��6( �)�a( 6+�) == q + 1� 8X�=1;� 6=6 ���( 3)��6 ( �)�a( 3+�) � 8X�=1;� 6=3 ���( 6)��6 ( �)�a( 6+�) :It follows that jA11j+ jA��2 j+ jA�2�j == 3q � 8X�=1;� 6=6 ��1( 3)�1( �) + ���2( 3)��3 ( �) + ���( 3)��6( �)�a( 3+�) �� 8X�=1;� 6=3 ��1( 6)�1( �) + ���2( 6)��3( �) + ���( 6)��6( �)�a( 6+�) : (7)By (1) it holds��1( 3)�1( �) + ���2( 3)��3( �) + ���( 3)��6 ( �) =  �3(�1)�( 3)�( � )++ �3(�1) �3��6(�)�( 3)�( �) +  �3(�1) �6��3(�)�( 3)�( � ) == �( 3)�( � )(1 +  �3��6(�) +  �6��3(�)) == �( 3)�( �)(1 + ����2(�) + ��2��1(�)) == �( 3)�( � )(1 + !���2 + !2(���2));so 8X�=1;� 6=6 ��1( 3)�1( �) + ���2( 3)��3 ( �) + ���( 3)��6 ( �)�a( 3+�) == 3�( 3)�( )�a( 4) + 3�( 3)�( 4)�a( 7) + 3�( 3)�( 7)�a( ) : (8)Analogously:��1( 6)�1( �) + ���2( 6)��3( �) + ���( 6)��6 ( �) =  �6(�1)�( 6)�( � )++ �6(�1) �3��12(�)�( 6)�( � ) +  �6(�1) �6��6(�)�( 6)�( �) == �( 6)�( �)(1 +  �3��12(�) +  �6��6(�)) == �( 6)�( �)(1 + ����4(�) + ��2��2(�)) == �( 6)�( � )(1 + !���1 + !2(���1));



10 Rolf-Peter Holzapfel and Florin Nicolaeso 8X�=1;� 6=3 ��1( 6)�1( �) + ���2( 6)��3 ( �) + ���( 6)��6 ( �)�a( 6+�) == 3�( 6)�( 2)�a( 8) + 3�( 6)�( 5)�a( 2) + 3�( 6)�( 8)�a( 5) : (9)By (7), (8) and (9) it holdsjA11j+ jA��2 j+ jA�2�j = 3q � 3�( 3)�( )�a( 4) � 3�( 3)�( 4)�a( 7) � 3�( 3)�( 7)�a( ) ��3�( 6)�( 2)�a( 8) � 3�( 6)�( 5)�a( 2) � 3�( 6)�( 8)�a( 5) ;by Lemma 1N = q � �( 3)�( )�a( 4) � �( 3)�( 4)�a( 7) � �( 3)�( 7)�a( ) ���( 6)�( 2)�a( 8) � �( 6)�( 5)�a( 2) � �( 6)�( 8)�a( 5) == q �  4(a)�( 3;  )�  7(a)�( 3;  4)�  (a)�( 3;  7)�� 8(a)�( 6;  2)�  2(a)�( 6;  5)�  5(a)�( 6;  8);by (1) and (2).Let A be the automorphism of the �eld extension Q(�9 )=Q de�ned by �A9 :=�29 . It holds�A = ( 4(a)�( 3;  ))A = ( 4(a))A(�Xc2k  3(c) (1� c))A ==  8(a)(�Xc2k  6(c) 2(1� c)) =  8(a)�( 6;  2);�A2 = ( 4(a)�( 3;  ))A2 = ( 4(a))A2(�Xc2k  3(c) (1� c))A2 ==  7(a)(�Xc2k  3(c) 4(1� c)) =  7(a)�( 3;  4);�A3 = ( 4(a)�( 3;  ))A3 = ( 4(a))A3(�Xc2k  3(c) (1� c))A3 ==  5(a)(�Xc2k  6(c) 8(1� c)) =  5(a)�( 6;  8);



Arithmetic on a Family of Picard Curves 11�A4 = ( 4(a)�( 3;  ))A4 = ( 4(a))A4(�Xc2k  3(c) (1� c))A4 ==  (a)(�Xc2k  3(c) 7(1� c)) =  (a)�( 3;  7);�A5 = ( 4(a)�( 3;  ))A5 = ( 4(a))A5(�Xc2k  3(c) (1� c))A5 ==  2(a)(�Xc2k  6(c) 5(1� c)) =  2(a)�( 6;  5);hence N = q � � � �A � �A2 � �A3 � �A4 � �A5 = q � TrQ(�9)=Q(�):�Corollary 2. If q � 4( mod 9) or q � 7( mod 9) thenLCa(t) = 1� 13Tr Q(�9)=Q(�)t3 + q3t6;where � =  4(a)�( 3;  ),  a character of order 9 of the multiplicative groupof the �eld Fq3 .If q � 8( mod 9) thenLCa(t) = 1� 12TrQ(�9)=Q(�)t2 � q 12TrQ(�9)=Q(�)t4 + q3t6;where � =  4(a)�( 3;  ),  a character of order 9 of the multiplicative groupof the �eld Fq2 .P r o o f: If q � 4( mod 9) or q � 7( mod 9) then q2 � 7( mod 9) or q2 �4( mod 9) and q3 � 1( mod 9). By proposition 2 it holds N1 = q + 1 andN2 = q2+1, so the coe�cients a1 and a2 of LCa(t) vanish and the coe�cienta3 equals 13 (N3 � q3 � 1), which by proposition 3 equals � 13TrQ(�9)=Q(�) .If q � 8( mod 9) then q2 � 1( mod 9) and q3 � 2( mod 9). By proposition1 it holds N1 = q + 1 and N3 = q3 + 1, so a1 = 0, a3 = 0 and a2 equals12 (N2 � q2 � 1), which by proposition 3 equals � 12TrQ(�9)=Q(�). �Remark 1. Corollary 2 explains some computations done in ([CER]).Proposition 4. If q � 1( mod 9) thenLCa(t) = (1� �t)(1� �At)(1� �A2t)(1� �A3t)(1� �A4 t)(1� �A5t);where � =  4(a)�( 3;  ),  a character of order 9 of the multiplicative groupk�, A the automorphism of the �eld extension Q(�9 )=Q de�ned by �A9 := �29 .



12 Rolf-Peter Holzapfel and Florin NicolaeP r o o f: The L-polynomial of the curve Ca=k can be written in the formLCa(t) = Q6j=1(1� �jt), where �1; : : : ; �6 are algebraic integers. For r � 1it holds Nr = qr + 1� 6Xj=1 �rj (10)Let  be a character of order 9 of the cyclic group k�. The map r : F�qr ! C � ;  r(x) :=  (NFqr jFq (x))is a character of order 9 of the cyclic group F�qr . It holds ([Da-Ha],0.8)� (r)d ( lr) = �d( l)r (11)for 1 � l � 8 and d 2 F�q , where � (r)d ( lr) denotes the Gauss sum of thecharacter  lr on Fqr .By Proposition 4 it holdsNr = qr + 1� � (r)( 3r )� (r)( r)� (r)a ( 4r ) � � (r)( 3r)� (r)( 4r )� (r)a ( 7r ) � � (r)( 3r)� (r)( 7r)� (r)a ( r) ��� (r)( 6r )� (r)( 2r)� (r)a ( 8r ) � � (r)( 6r )� (r)( 5)� (r)a ( 2r ) � � (r)( 6r )� (r)( 8r )� (r)a ( 5r) ;hence by (11)Nr = qr + 1� �( 3)r�( )r�a( 4)r � �( 3)r�( 4)r�a( 7)r � �( 3)r�( 7)r�a( )r ���( 6)r�( 2)r�a( 8)r � �( 6)r�( 5)r�a( 2)r � �( 6)r�( 8)r�a( 5)r ;so one can choose in (10)�1 = �( 3)�( )�a( 4) = �; �2 = �( 3)�( 4)�a( 7) = �A2 ; �3 = �( 3)�( 7)�a( ) = �A4 ;�4 = �( 6)�( 8)�a( 5) = �A3 ; �5 = �( 6)�( 5)�a( 2) = �A5 ; �6 = �( 6)�( 2)�a( 8) = �A:�Let m � 1 be a natural number and let K be an algebraic number �eldwith ring of integers OK such that �m 2 OK . Let p be a prime ideal of OKnot dividing m, and let x 2 OK not divisible by p. The number xNK=Q(p)�1mis congruent modulo p to one and only one root of unity �lm 2 �m. The map(OK=p) n f0g ! �m; x mod p 7! �lmis a character of order m of the multiplicative group of the �nite �eld OK=pcalled the m-th power residue character modulo p.



Arithmetic on a Family of Picard Curves 13Proposition 5. Let q � 1( mod 9) and let p be a prime divisor of p in thering Z[�q�1]. Let  be the 9-th power residue character modulo p in Z[�q�1].Identifying the �nite �eld Fq with the residue class �eld Z[�q�1]=p it holds:a) The absolute value of the complex number �( 3;  ) isj�( 3;  )j = pq;b) The prime ideal decomposition of the principal ideal generated by �( 3;  )in the ring of integers Z[�9] is�( 3;  )Z[�9] = (q � qA4 � qA5)f(pjq);where q := p\Z[�9], A is the automorphism of Q(�9 )=Q) de�ned by �A9 := �29and NQ(�q�1)=Q(�9)(p) = qf(pjq).c) In the ring Z[�9] it holds�( 3;  ) � 1( mod (�9 � 1)4):The number �( 3;  ) 2 Z[�9] is uniquely determined by the properties a), b)and c).P r o o f:a): Every Jacobi sum in a �nite �eld with q elements has absolute value pq.b): By ([Ha1], p.40, (6.)) it holds�( 3;  )Z[�9] = (qPJ d(�3j;�j)J)f(pjq);where J runs over the set fAk j 0 � k � 5g of automorphisms of Q(�9 ),j mod 9 is de�ned by �J�19 = �j9and d(�3j;�j) = r(�3j) + r(�j)� r(�4j)9 ;r(x) the smallest non-negative residue of x mod 9. It holds�(A0)�19 = �9; d(�3;�1) = r(�3) + r(�1)� r(�4)9 = 1;�(A1)�19 = �A59 = �59 ; d(�15;�5) = r(�15) + r(�5)� r(�20)9 = 0;�(A2)�19 = �A49 = �79 ; d(�21;�7) = r(�21) + r(�7)� r(�28)9 = 0;�(A3)�19 = �A39 = �89 ; d(�24;�8) = r(�24) + r(�8)� r(�32)9 = 0;�(A4)�19 = �A29 = �49 ; d(�12;�4) = r(�12) + r(�4)� r(�16)9 = 1;



14 Rolf-Peter Holzapfel and Florin Nicolae�(A5)�19 = �A9 = �29 ; d(�6;�2) = r(�6) + r(�2)� r(�8)9 = 1;�( 3;  )Z[�9] = (q1+A4+A5)f(pjq) = (q � qA4 � qA5)f(pjq):c): For c 2 F�q it holds  (c) � 1 mod (�9 � 1)and  3(c) � 1 mod (�9 � 1)3:Indeed, if  (c) = �k9 , 0 � k � 8, then  (c)� 1 = �k9 � 1 is divisible by �9 � 1in Z[�9] and  3(c)� 1 is divisible by �39 � 1 which is associate with (�9 � 1)3.Then �( 3;  ) = �Xc2Fq  3(c) (1� c) = �Xc2Fq  (c) 3(1� c) == �Xc6=1  (c)� Xc6=0;1 (c)( 3(1� c)� 1) == 1� Xc6=0;1 (c)( 3(1� c)� 1) � 1� Xc6=0;1( 3(1� c)� 1) mod (�9 � 1)4 �� 1� Xc6=0;1 3(1� c) + Xc6=0;1 1 mod (�9 � 1)4 �� 1 + 1 + q � 2 mod (�9 � 1)4 � q mod (�9 � 1)4 � 1 mod (�9 � 1)4:Two numbers in Z[�9] with the same absolute value and the same prime idealdecomposition di�er by a root of unity. The group of roots of unity in Z[�9] is�18. The only element of �18 which is � 1 mod (�9 � 1)4 is 1. The propertiesa), b), c) determine the number �( 3;  ) in Z[�9]. �2 The curves Ca : Y 3 = X4 � aX over an algebraicnumber �eldLet k be an algebraic number �eld which contains �9. Let a 2 k�, and letma be the product of 3 and of all prime divisors p of k which appear in thedecomposition of a. Let p be a prime divisor of k which does not divide ma.The curve Ca has good reduction at p: By reducing modulo p the equationy3 = x4 � ax one obtains a curve Ca(p) over the residue class �eld k(p) at pwith the equationCa(p) : y3 = x4 � a(p)x; a(p) := a mod p 2 k(p)�



Arithmetic on a Family of Picard Curves 15which is smooth of genus 3 over k(p). Let LCa(p)(t) be the L-polynomial ofCa(p)=k(p). By proposition 4 it holdsLCa(t) = 5Yj=0(1� �(p)Aj t);where �(p) :=  p4(a(p))�( p3;  p),  p the 9-th power residue character mod-ulo p,A the automorphism of the �eld extension Q(�9 )=Q de�ned by �A9 := �29 .The L-function of Ca over k is de�ned byL(s; Ca; k) := Y(p;ma)=1LCa(p)(N(p)�s): (12)The product on the right hand side of (12) is absolutely convergent for<s > 32 ([Ha1], [We], [De]). It holdsL(s; Ca; k) = 5Yj=0Lj(s);where Lj(s) := Y(p;ma)=1(1� �(p)AjN(p)�s); (13)for j = 0; : : : ; 5. Extend the function �(p) multiplicatively on the groupDivmak of divisors of k prime to ma and de�ne�j : Divmak 7! C � ; �j(a) := �(a)AjpN(a) ;for j = 0; : : : ; 5. The functions �0; : : : ; �5 are Gr�ossencharaktere of k ([Ha1],[We]) in the sense of Hecke ([He]). Let Div+mak denote the set of positivedivisors in Divmak. By (13) it holds for <s > 32Lj(s)�1 = Y(p;ma)=1(1� �j(p)N(p)�s+ 12 )�1 == Xa2Div+mak �j(a)N(a)s� 12 = L(s� 12 ; �j ; k);where L(s; �j ; k) := Xa2Div+mak �j(a)N(a)s ;<s > 1;is the Hecke L-function corresponding to �j , j = 0; : : : ; 5. SoTheorem 1. The L-function L(s; Ca; k) of the curve Ca over k equals theproduct of the inverses of Hecke L-functions L(s� 12 ; �j ; k), j = 0; : : : ; 5.



16 Rolf-Peter Holzapfel and Florin Nicolae3 The curves Ca : Y 3 = X4 � aX over CA complex Picard curve is the projective closure of an a�ne plane curve ofequation type Y 3 = p4(X), where p4(X) is a polynomial of degree 4. We ex-clude all polynomials p4(X) with only one zero. So one avoids unstable curvesin order to get a compact algebraic moduli space M̂ of (isomorphy classes ofsemistable) Picard curves, which we choose in a very canonical way. SmoothPicard curves have genus 3. They correspond to a Zariski-open part M# ofM̂ . Let K = Q(p�3) = Q(!), ! := e 2�i3 , be the �eld of Eisenstein numbers.The cyclic group Z=3Z of order 3 acts via (x; y) 7! (x; !y) on each Picardcurve C. If C is smooth, we get P1 as quotient curve C=(Z=3Z) with Z=3Zas Galois group of C =P1. The action of Z=3Z induces a K-multiplication oftype (2; 1) on the jacobian variety J(C) of C, which means that the diago-nalized representation group of Z=3Z on the tangent space T0J(C) of J(C)is generated by � ! 0 00 ! 00 0 �! �. LetB := fz = (z1; z2) 2 C 2 ; jzj2 := jz1j2 + jz2j2 < 1g;be the two-dimensional complex unit ball. The moduli space of abelian three-folds with K-multiplication of type (2; 1) is the Shimura surface B=� , � =U((2; 1);O), O = OK = Z+ Z! the ring of Eisenstein integers. De�ne thecongruence subgroup � (p�3) by the exact group sequence1 �! � (p�3) �! � �! U((2; 1);O=(1 � !)O) �! 1:In ([Ho1], Ch. I, Prop. 3.2.3) it is proved the followingTheorem 2. The Baily-Borel compacti�cation \B=� (p�3) coincides with theprojective plane P2. The compactifying cusp points are four pointsK1;K2;K3;K4 2 P2 in general position. The open part P#2 � P2 coming fromsmooth Picard curves is precisely the complement of the six projective linesLij = Lji going through pairs Ki;Kj of di�erent cusp points.It turns out thatM# = P#2 =S4 ; M̂ = P2=S4 ; M = P�2=S4;where P�2 := P2 n fK1;K2;K3;K4g. Now identify P2 withP30 = f(t1 : t2 : t3 : t4) 2 P3; t1 + t2 + t3 + t4 = 0g;and introduce projective coordinates such thatK1 = (�3 : 1 : 1 : 1); K2 = (1 : �3 : 1 : 1),K3 = (1 : 1 : �3 : 1); K4 = (1 : 1 : 1 : �3):



Arithmetic on a Family of Picard Curves 17Each Picard curve is isomorphic to a normal form representativeCt : Y 3 = (X � t1)(X � t2)(X � t3)(X � t4); t1 + t2 + t3 + t4 = 0:The correspondenceCt 7! t = (t1; t2; t3; t4) 7! (t1 : t2 : t3 : t4) 2 P�2restricted to P#2 and composed with the S4- quotient map yields the pre-cise parametrisation of isomorphy classes ([Ho1] I, Prop.5.2.3). Especially, allcurves of the family Ca : Y 3 = X4 � aX ; a 2 C � ;are isomorphic over C to C1 : Y 3 = X4 �X;whose moduli point is the image of (0 : 1 : ! : !2).The Jacobians of smooth Picard curves are (principally polarized) abelianthreefolds. Via period matrices they are represented by points in the gener-alized Siegel upper half planeH 3 = f
 2Mat3(C ); t
 = 
 ; Im
 positive definiteg;uniquely up to Sp(6;Z)-equivalence, whereSp(6;Z) = fG 2 G l6 (Z); tG � � O E3�E3 O � �G = � O E3�E3 O �g; E3 := diag(1; 1; 1);denotes the symplectic group acting on H 3 in the well-known manner. ByTorelli's theorem there is a canonical algebraic embeddingM# ,! A3 into themoduli space A3 = H 3=Sp(6;Z) of principally polarized abelian threefolds.Restricting to the Zariski-open subspace A#3 � A3 corresponding to Jacobiansof smooth genus 3 curves one gets a closed embedding M# ,! A#3 , whichdetermines M# uniquely, up to isomorphy. The closed algebraic embeddingM# ,! A#3 can be uniformized in the following sense. In the analytic categorythere is a commutative Shimura diagramB ,! H 3- %B# ,! H#3# # # #M# ,! A#3. &M ! A3where H 3 �! A3 is the Sp(6;Z)-quotient morphism, H#3 is the preimage ofA#3 in H 3 , B ,! H 3 is a closed embedding, B# = B \ H#3 , and B �! M isthe analytic quotient morphism of the arithmetic groupNSp(6;Z)(B ) := fG 2 Sp(6;Z); G(B ) = Bg



18 Rolf-Peter Holzapfel and Florin Nicolaeacting on B . In ([Ho3]) it is proved that this ball lattice coincides with � .Identifying for a moment the ball with its image in H 3 we call B the periodspace of Picard curves and its points are called Picard period points (of thefamily of Picard curves). An element  2 � is called elliptic, i�  has anisolated �xed point P 2 B . Let � 0 be a subgroup of � . We call the ellipticelement  purely � 0-elliptic, i� all non-trivially on B acting elements of thestationary group � 0P are elliptic. The images of purely � 0-elliptic points onB=� 0 are isolated (cyclic quotient) singularities. Notice that the �xed pointP is uniquely determined by the elliptic element  because the group ofbiholomorphic automorphisms of B coincides with PU((2; 1); C ), so  has onlyone negative eigenline in V = (C 3 ; < : ; : >) with respect to the hermitianmetric < : ; : > of signature (2; 1) on C 3 .In ([Ho1], Ch. I, 3.4.4) it is proved the followingTheorem 3. (see [Ho1] I, Prop. 3.4.4). The only singularities of M̂ are theimage points of S := (0 : 1 : ! : !2) and N := (1 : i : �1 : �i), along theS4-quotient morphism. �This is a simple application of a theorem of Chevalley stating that the sin-gularities of a �nite (more generally: locally �nite) Galois quotient X=G of asmooth complex manifold X come precisely from points x 2 X with isotropygroup Gx not generated by reections at x, where reections at x are de�nedas elements of Gx acting trivially on a submanifold of X through x of codi-mension 1. Looking at �nite subgroups of S4 and their �xed points on P2 one�nds up to S4-equivalence the points S, N as only singular possibilities. TheS4-isotropy group of S is generated by the cyclic permutation (234) of order3. The S4-isotropy group of N is generated by the cyclic permutation (1234)of order 4. The (13)(24)-reection line on P2 contains N.Proposition 6. The set of Picard period points of C1 coincides with the setof purely � -elliptic points on B . It coincides with the � -orbit ofP�9 := (�94 � �92 : 1 : �95 + �94 � 1) 2 B :P r o o f: For an arbitrary group G let Gtor be the set of elements of �niteorder of G (torsion elements), and let Gk�tor be the subset of elements ofprecise order k 2 N+ . G acts by conjugation on Gk and on Gtor. It holdsLemma 2. For � = U((2; 1);O) the set �9�tor is not void. It consists of pre-cisely six � -conjugation classes. They are projected onto two P� -conjugationclasses in (P� )3�tor.P r o o f of Lemma 2: For the �rst statement we consider the element'1 := 0@�!2 �1 !2! 1 11 �1 !2 � 11A



Arithmetic on a Family of Picard Curves 19with det '1 = ! ; '31 = !E3:found by Feustel in [Feu]. It is easy to check that '1 belongs to � . The eigen-values are �9, �94, �97. The powers 'k1 , k = 1; 2; 4; 5; 7; 8, yield six di�erentconjugation classes in �9�tor (compare determinants and eigenvalues) andtwo conjugation classes in (P� )3�tor. �Now let ' be an arbitrary element of �9�tor with eigenvalues �9; �9j ; �9k,say. The Galois group of F := K(�9) over K is generated by � : �9 7!�94. The characteristic polynomial �'(T ) of ' belongs to K[T ]. Looking attrace and determinant of ', which must belong to K, it is easy to see that' has three di�erent eigenvalues. They must be conjugated over K, hence�9j = �94 = �(�9), �9k = �97 = �2(�9). The eigenvectors a, b, c of �9, �(�9),�2(�9), respectively, can be choosen in F 3. They form an orthogonal basis ofF 3 endowed with our hermitian (2; 1)-metric because of di�erent eigenvalues.From '(a) = �9 � a it follows that�('(a)) = �(�9)�(a) = �94�(a)because ' belongs to Mat3(K). Thereforea; b = �(a); c = �2(a) 2 F 3;satisfying < a; a >< 0; < b; b >> 0; < c; c >> 0; (14)(without loss of generality) is an orthogonal '-eigenbasis of C 3 . The ellipticelement ' has the unique elliptic �xed point P = Pa 2 B . We show thatP is a purely � -elliptic point. With � 0 := � (p�3) we have a commutativediagram of quotient morphismsBB=� 0 = P�2 P�2=S4 = B=�?p0HHHHHHHjp -�In [Ho1] I, Prop. 3.4.4, there are listed on P�2 the p0- images of all � -ellipticpointsQ 2 B together with their (abstract) isotropy groups �Q. Our P cannotbe an intersection point of two � -reection discs because the reections haveeigenvalues only in K. Otherwise P 2 B � P2 would be the intersectionpoint of two projective lines (the projectivized orthogonal complements of theone-dimensional eigenspaces) de�ned over K. This leads to Pa = P = Pa0,a0 2 K3, �(P ) = P , which contradicts to �(P ) =2 B = PV�, by (14). Thereare precisely two � -orbits � ~N , � ~S of � -elliptic points whose isotropy groupsare not generated by reections. The projective isotropy groups P� ~N or P� ~S



20 Rolf-Peter Holzapfel and Florin Nicolaeare cyclic of order 4 or 3, respectively. Since P' 2 P�P is elliptic of order 3the point P must belong to the second orbit. The image p( ~S) coincides withp0(S), which is an orbitally isolated singularity with respect to � . This meansthat ~S is a purely � -elliptic point, hence P� ~S �=< P' > of order 3. �Let F be a number �eld and A a complex abelian variety of dimension g.We say that A has F -multiplication, if there is a Q-algebra embedding � of Finto the endomorphism algebra End�A = Q 
EndA of A. If, moreover, thedegree [F : Q] of F is equal to 2g and � is an isomorphism, then A is called anabelian CM-variety. It is well-known in this case that A is simple and F is aCM-�eld, which is, by de�nition, a totally imaginary quadratic �eld extensionof a totally real number �eld, see [La]. A CM-curve is a (smooth complex)projective curve C whose jacobian variety J(C) is an abelian CM-variety.Proposition 7. The endomorphism ring EndJ(C1) is isomorphic to Z[�9].Up to isomorphy, C1 is the only Picard CM-curve with a cyclotomic maximalorder as endomorphism ring.P r o o f: Our special Picard curve C1 : Y 3 = X(X3 � 1) has an obviousnon-trivial automorphism of 9-th order �xing 1 = (0 : 0 : 1):(x; y) 7! (!x; �9y) ; (�93 = !):It extends to an automorphism of the Jacobian threefold of C1. With Theo-rem 6 below we will see that this automorphism generates a sub�eld in theendomorphism algebra of the Jacobian. Therefore we get embeddingsZ[�9] ,! EndJ(C1) ; F = Q(�9 ) ,! End�J(C1): (15)The representing period point P�9 = Pa 2 B is purely � -elliptic by Propo-sition 3, �xed by '1 of nine-th order. Therefore the ring EndK(a; a?) ofK-endomorphisms of V with eigenvector a and invariant subspace a? is big-ger than K. Such ball points have been called exceptional in [Ho2], Corollary7.10. Moreover, a is eigenvector of a simple eigenvalue of '1 2 EndK(a; a?).Therefore P�9 is an isolated exceptional point in the sense of De�nition 7.12 of[Ho2]. The K-degree [K(P�9) : K] of P�9 is equal to 3. Now apply the follow-ing theorem to see that J(C1) is a simple CM-threefold with multiplication�eld K(�9).Theorem 4. (see [Ho2], section 7.) The endomorphism algebra of the ja-cobian variety J� �= J(Ct) of a Picard curve with period point � 2 B andmoduli point t = (t1 : t2 : t3 : t4) 2 P�2 is greater than K if and only if �is exceptional. J� splits up to isogeny into abelian CM- subvarieties if andonly if � is an isolated exceptional point. Thereby Jacobians with CM-�eldF (of degree 3 over K) correspond to isolated exceptional points of K-degree3 and F �= K(�). All other isolated exceptional points (of K-degree 2 or 1)ly on K-discs on B (de�ned as non-empty intersections L \ B , L projectivelines on P2 de�ned over K). Thereby � 2 B (K) if and only if J� splits into



Arithmetic on a Family of Picard Curves 21E�E�E. The degree 2 case happens if and only if J� splits into E� (E02),where E is an elliptic CM-curve with K-multiplication and E0 elliptic CMwith imaginary quadratic multiplication �eld L 6= K. Moreover, it holds thatK(L) = K(�) in the latter case. �The endomorphism ring of any abelian CM-variety is an order in the cor-responding CM-�eld. Each order of a number �eld L is contained in themaximal order, the ring OL of integers in L. The maximal order of a cyclo-tomic �eld L = Q(�) is equal to Z[�], � a generating unit root, see e.g. [Neu],I, Prop. 10.2. So the embeddings (15) must be isomorphisms, especiallyOF = Z[�9] �= EndJ(C1) � End�J(C1) �= F:The �rst part of Proposition 5 is proved.F is the only cyclotomic �eld of degree 3 over K. Therefore the Jacobianthreefolds of CM-Picard curves C with cyclotomic endomorphism algebraEnd�J(C), which must be isomorphic to F , have to be isogeneous. There isa bijective correspondence between the ideal classes of OF and the isomorphyclasses of principally polarized abelian CM-threefolds A (of same multiplica-tion type) with endomorphism rings OF , see e.g. [La], III.2, Cor. 2.7. It iswell-known that the class number of F is equal to 1, see e.g. [Ha2], III, end of29. Therefore, up to isomorphy, there is only one such A. Then, by Torelli'stheorem, also the isomorphy class of Picard CM-curves with EndJ(C) �= OFis uniquely determined. This completes the proof of Proposition 5. �Remark 2. The type of F -multiplication is a lift (F -extension) from the type(2; 1) of K-multiplication on J(C1). This lifted type is unique by [La], I.3,Theorem 3.6.Proposition 8. A period matrix of the Jacobian J(C1) is:� = 0@��9 + 1 0 �2�92 � 2�9 ��92 � 1 1 2�92 + �9�92 � 1 0 ��92 + 2�9 ��92 + �9 + 1 �1 �92 � 2�9��9 + 1 0 �2�92 � 2�9 ��92 � 1 1 2�92 + �91A � !++ 0@2�92 + �9 + 1 1 ��9 + 1 �2�92 � �9 0 �92 + �9 � 1��92 + 2�9 1 �2�92 + 2�9 + 1 ��9 + 1 �1 �92 � �9 � 12�92 + �9 + 1 1 ��9 + 1 �2�92 � �9 0 �92 + �9 � 11A :The set of H 3 -(Siegel-)period points of J(C1) coincides with the Sp(6;Z)-orbitof 0@�2rs�13r2 1r rs�13r21r �1 0rs�13r2 0 �2rs+23r2 1A � ! +0@ 2rs�23r2 1r �rs+13r21r �1 �1r�rs+13r2 �1r 2rs+13r2 1Awith r := ��94 + �93 + 2�92 + �9 + 1 ; s := �(�95 + �93 + 2�92 + �9):



22 Rolf-Peter Holzapfel and Florin NicolaeP r o o f: In [Ho3], sections 2.4-2.5, it is described a procedure to receive theperiod matrices starting from the coordinates of the �xed point P�9 . Firstone has to move the "diagonal ball" B � P2 by a plane projective lineartransformation to the "Picard ball" (Siegel domain) B 0 � P2. This is done bythe inverse of M := 0@ ! 0 �10 1 0�!2 0 �11A ;(see [Ho3], p. 28) acting on row-vectors from the right. Let P 0 := (a : b : c) 2B 0 be the image point of P�9 2 B . Setting b = 1 and applying Proposition 3one gets a; c 2 Z[�9]. From the vector (a; 1; c) one gets the period matricesvia orthogonal �llings and �-procedure coming from Picard period integrals,all described in [Ho3] around Lemma 2.22. The numbers r; s appear in theperiod matrix � at places (1; 1) or (1; 4), respectively. �References[CER] Cherdieu, J.-P., Estrada-Sarlabous, J., Reinaldo-Barreiro, E., E�cient Re-duction on the Jacobian Variety of Picard Curves, in: Coding Theory, Cryp-tography and Related Areas, Proceedings of the ICCC-98, J. Buchmann,T. Hohold, H. Stichtenoth, H. Tapia-Recillas (eds.), pp. 13-28, Springer-Verlag, 2000.[Da-Ha] Davenport, H., Hasse, H., Die Nullstellen der Kongruenzzetafunktionen ingewissen zyklischen F�allen, J.Reine Angew. Math. 172(1934), 151-182.[De] Deuring, M., Die Zetafunktion einer algebraischen Kurve vom GeschlechteEins, Nachr. Akad. Wiss. G�ottingen, 1953, 85-94.[Feu] Feustel, J.M., Kompakti�zierung und Singularit�aten des Faktorraumeseiner arithmetischen Gruppe, die in der zweidimensionalen Einheitskugelwirkt, Diplomarbeit, Humboldt-Univ. Berlin, 1976 (unpublished)[Ha1] Hasse, H., Zetafunktion und L-Funktionen zu einem arithmetischenFunktionenk�orper vom Fermatschen Typus, Abhandlungen der DeutschenAkademie der Wissenschaften Berlin, Math.-Nat. Kl. 1954, Nr. 4, 5-70[Ha2] Hasse, H., Zahlentheorie, Akademie Verlag, Berlin, 1963[He] Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zurVerteilung der Primzahlen, Math. Zeitschr. 1(1918), 357-376, 6(1920), 11-51.[Ho1] Holzapfel, R.-P., Geometry and Arithmetic around Euler partial di�erentialequations, Dt. Verlag d. Wiss., Berlin/Reidel Publ. Comp., Dordrecht, 1986[Ho2] Holzapfel, R.-P., Hierarchies of endomorphism algebras of abelian varietiescorresponding to Picard modular surfaces, Schriftenreihe Komplexe Man-nigfaltigkeiten 190, Univ. Erlangen, 1994[Ho3] Holzapfel, R.-P., The ball and some Hilbert problems, Lect. in Math. ETHZ�urich, Birkh�auser, Basel-Boston-Berlin, 1995[Lac] Lachaud, G., Courbes diagonales et courbes de Picard, Pr�etirage No. 97-30,Institut de Mathematiqu�es de Luminy, 1997[La] Lang, S., Complex multiplication, Grundl. Math. Wiss. 255, Springer, 1983[Neu] Neukirch, J., Algebraische Zahlentheorie, Springer, Berlin-Heidelberg, 1992
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