Arithmetic on a Family of Picard Curves

Rolf-Peter Holzapfel and Florin Nicolae
Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, D-10099 Berlin, Germany

Abstract

The L-function of the curve $C_{a}: Y^{3}=X^{4}-a X$ over an algebraic number field k which contains $\zeta_{9}:=\exp \left(\frac{2 \pi i}{9}\right)$ is the inverse of a product of six Hecke L-functions with Grössencharakter. The Euler factors at primes of good reduction are determined by means of Jacobi sums associated to certain powers of the 9 -th power residue character. The number of points of C_{a} over a finite field is given in terms of such sums. The jacobian variety of C_{a} over the field of complex numbers has complex multiplication by the ring $\mathbb{Z}\left[\zeta_{9}\right]$.

Let k be a perfect field of characteristic different from 3. The curves

$$
C_{a}: Y^{3}=X^{4}-a X, a \in k^{*}
$$

are smooth of genus 3 over k, with one point $(0: 0: 1)$ at infinity. The main result of this paper is that the L-function of the curve C_{a} over an algebraic number field k which contains $\zeta_{9}:=\exp \left(\frac{2 \pi i}{9}\right)$ is the inverse of a product of six Hecke L-functions with Grössencharakter (Theorem 1). As a consequence of this it follows that Hasse's conjecture on the meromorphic continuation and the functional equation of the zeta function is true for the family C_{a}. Since the Jacobians of the curves C_{a} have complex multiplication, the result on the zeta function fits into the theory of zeta functions of abelian varieties with complex multiplication ([De],[Ta]).

Let N_{1} denote the number of points of the curve C_{a} over a finite field $k=\mathbb{F}_{q}$. If $q \not \equiv 1(\bmod 9)$ then $N_{1}=q+1$. This is proved in propositions 1 and 2 . If $q \equiv 1(\bmod 9)$ then

$$
N_{1}=q+1-\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta),
$$

where

$$
\eta:=\psi^{4}(a) \iota\left(\psi^{3}, \psi\right),
$$

ψ a character of k^{*} of order $9, \iota\left(\psi^{3}, \psi\right)$ the Jacobi sum over \mathbb{F}_{q} associated to ψ^{3} and ψ. This is proved in proposition 3 . Corollaries 1,2 and proposition 4 give explicit forms of the L-polynomial of the curve C_{a} over \mathbb{F}_{q} in all cases $q(\bmod 9)$. Proposition 5 gives the arithmetic characterization of the algebraic number $\iota\left(\psi^{3}, \psi\right)$ in the ring $\mathbb{Z}\left[\zeta_{9}\right]$.

Over the field $k=\mathbb{C}$ of complex numbers, all curves C_{a} are isomorphic to $C_{1}: Y^{3}=X^{4}-X$. The moduli point of C_{1} is the only orbitally isolated singularity on the modular surface of Picard curves. The endomorphism ring
of the jacobian variety $J\left(C_{1}\right)$ of C_{1} is the ring $\mathbb{Z}\left[\zeta_{9}\right]$. Up to isomorphism, C_{1} is the only Picard curve whose jacobian variety has a cyclotomic maximal order as endomorphism ring. This is proved in proposition 7. In proposition 8 is given explicitly a period matrix of $J\left(C_{1}\right)$:

$$
\begin{aligned}
& \Pi=\left(\begin{array}{cccccc}
-\zeta_{9}+1 & 0 & -2 \zeta_{9}{ }^{2}-2 \zeta_{9} & -\zeta_{9}{ }^{2}-1 & 1 & 2 \zeta_{9}{ }^{2}+\zeta_{9} \\
\zeta_{9}{ }^{2}-1 & 0 & -\zeta_{9}{ }^{2}+2 \zeta_{9} & -\zeta_{9}{ }^{2}+\zeta_{9}+1 & -1 & \zeta_{9}{ }^{2}-2 \zeta_{9} \\
-\zeta_{9}+1 & 0 & -2 \zeta_{9}{ }^{2}-2 \zeta_{9} & -\zeta_{9}{ }^{2}-1 & 1 & 2 \zeta_{9}{ }^{2}+\zeta_{9}
\end{array}\right) \cdot \zeta_{9}{ }^{3}+ \\
& +\left(\begin{array}{cccccc}
2 \zeta_{9}{ }^{2}+\zeta_{9}+1 & 1 & -\zeta_{9}+1 & -2 \zeta_{9}{ }^{2}-\zeta_{9} & 0 & \zeta_{9}{ }^{2}+\zeta_{9}-1 \\
-\zeta_{9}{ }^{2}+2 \zeta_{9} & 1 & -2 \zeta_{9}{ }^{2}+2 \zeta_{9}+1 & -\zeta_{9}+1 & -1 & \zeta_{9}{ }^{2}-\zeta_{9}-1 \\
2 \zeta_{9}{ }^{2}+\zeta_{9}+1 & 1 & -\zeta_{9}+1 & -2 \zeta_{9}{ }^{2}-\zeta_{9} & 0 & \zeta_{9}{ }^{2}+\zeta_{9}-1
\end{array}\right) .
\end{aligned}
$$

Picard curves of equation type $Y^{3}=X^{4}-a$ are considered in [Lac].
This research was supported by the Deutsche Forschungsgemeinschaft.

1 The curves $C_{a}: Y^{3}=X^{4}-a X$ over \mathbb{F}_{q}

Let $k=\mathbb{F}_{q}$ be a finite field of characteristic $p \neq 3$ with $q=p^{f}$ elements, and let $a \in k^{*}$. The curve

$$
C_{a}: y^{3}=x^{4}-a x
$$

is smooth of genus 3 over k. Let F_{a} / k be the function field of C_{a}, let $\mathbb{P}_{F_{a}}$ denote the set of places, and let $\operatorname{Div} F_{a}$ denote the group of divisors of F_{a} / k. The absolute norm $\mathfrak{N}(\mathfrak{P})$ of a place $\mathfrak{P} \in \mathbb{P}_{F_{a}}$ is the cardinality of its residue class field. It holds $\mathfrak{N}(\mathfrak{P})=q^{\operatorname{deg}} \mathfrak{P}$, with a natural number $\operatorname{deg} \mathfrak{P} \geq 1$, the degree of \mathfrak{P}. The Zeta function of the curve C_{a} is a meromorphic function in the complex plane, defined for $\Re s>1$ by

$$
\zeta_{C_{a}}(s)=\prod_{\mathfrak{P} \in \mathbb{P}_{F_{a}}} \frac{1}{1-\frac{1}{\mathfrak{N}(\mathfrak{P})^{s}}}=\sum_{\mathfrak{A} \in \operatorname{Div} F_{a}, \mathfrak{A} \geq 0} \frac{1}{\mathfrak{N}(\mathfrak{A})^{s}}
$$

Denoting for $n \geq 0$ by A_{n} the number of positive divisors of degree n it holds

$$
\zeta_{C_{a}}(s)=\sum_{n=0}^{\infty} \frac{A_{n}}{q^{n s}} .
$$

The power series

$$
Z_{C_{a}}(t):=\sum_{n=0}^{\infty} A_{n} t^{n}
$$

is convergent for $|t|<q^{-1}$ and represents a rational function

$$
Z_{C_{a}}(t)=\frac{L_{C_{a}}(t)}{(1-t)(1-q t)},
$$

where $L_{C_{a}}(t)$ is a polynomial with coefficients in \mathbb{Z} of the form:

$$
L_{C_{a}}(t)=1+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+q a_{2} t^{4}+q^{2} a_{1} t^{5}+q^{3} t^{6}
$$

For $r \geq 1$ let N_{r} be the number of $\mathbb{F}_{q^{r}}$-rational points of the complete curve C_{a}, and let $S_{r}:=N_{r}-\left(q^{r}+1\right)$. It holds

$$
\begin{gathered}
a_{1}=S_{1} \\
2 a_{2}=S_{2}+S_{1} a_{1} \\
3 a_{3}=S_{3}+S_{2} a_{1}+S_{1} a_{2}
\end{gathered}
$$

The plane curve C_{a} has only one point at infinity, hence

$$
N_{1}=N+1
$$

where N is the number of solutions (x, y) in k of the equation

$$
y^{3}=x^{4}-a x
$$

Proposition 1. If $q \equiv 2(\bmod 3)$ then $N_{1}=q+1$.
Proof: If $q \equiv 2(\bmod 3)$ the order $q-1$ of the cyclic multiplicative group k^{*} is not divisible by 3 , so $k^{*}=k^{* 3}$. This implies that for each $x \in k$ there exists exactly one $y \in k$ with $y^{3}=x^{4}-a x$. Hence $N=q$.

Proposition 2. If $q \equiv 4(\bmod 9)$ or $q \equiv 7(\bmod 9)$ then $N_{1}=q+1$.
Proof: If $q \equiv 4(\bmod 9)$ or $q \equiv 7(\bmod 9)$ then the cyclic multiplicative group k^{*} of order $q-1$ is equal to the internal direct product of its subgroup of order 3 , generated by ζ, and of its subgroup of order $\frac{q-1}{3}$, denoted by $U_{\frac{q-1}{3}}$. Each element $c \in \mathbb{F}_{q}^{*}$ can be uniquely written in the form $c=d \zeta^{j}$ with $d \in U_{\frac{q-1}{3}}$ and $0 \leq j \leq 2$. Let χ be a character of k^{*} of order 3 . Put $\chi(0):=0$. The number of solutions in k of the equation $y^{3}=x^{4}-a x$ is

$$
N=q+\sum_{c \in \mathbb{F}_{q}} \chi\left(c^{4}-a c\right)+\sum_{c \in \mathbb{F}_{q}} \chi^{2}\left(c^{4}-a c\right)=q+\alpha+\bar{\alpha}
$$

where

$$
\begin{gathered}
\alpha=\sum_{c \in \mathbb{F}_{q}} \chi\left(c^{4}-a c\right)=\sum_{d \in U_{\frac{q-1}{3}}} \sum_{j=0}^{2} \chi\left(d^{4} \zeta^{4 j}-a d \zeta^{j}\right)= \\
=\sum_{d \in U_{\frac{q-1}{3}}} \sum_{j=0}^{2} \chi\left[\zeta^{j}\left(d^{4}-a d\right)\right]=\left[\sum_{d \in U_{\frac{q-1}{3}}} \chi\left(d^{4}-a d\right)\right] \cdot\left[\sum_{j=0}^{2} \chi\left(\zeta^{j}\right)\right]= \\
=\left[\sum_{d \in U_{\frac{q-1}{3}}} \chi\left(d^{4}-a d\right)\right] \cdot\left[\chi(1)+\chi(\zeta)+\chi(\zeta)^{2}\right] .
\end{gathered}
$$

If $q \equiv 4(\bmod 9)$ or $q \equiv 7(\bmod 9)$ then $\frac{q-1}{3}$ is prime to 3 , so χ is not trivial on the subgroup of k^{*} of order 3. This implies

$$
\chi(1)+\chi(\zeta)+\chi(\zeta)^{2}=0
$$

so $\alpha=0$ and $N=q$.
Corollary 1. If $q \equiv 2(\bmod 9)$ or $q \equiv 5(\bmod 9)$ then

$$
L_{C_{a}}(t)=1+q^{3} t^{6}
$$

Proof: If $q \equiv 2(\bmod 9)$ or $q \equiv 5(\bmod 9)$ then $q \equiv 2(\bmod 3), q^{2} \equiv$ $4(\bmod 9)$ or $q^{2} \equiv 7(\bmod 9)$, and $q^{3} \equiv 2(\bmod 3)$. By Propositions 9 and 10 it holds $N_{1}=q+1, N_{2}=q^{2}+1, N_{3}=q^{3}+1$. So $S_{i}=N_{i}-\left(q^{i}+1\right)=0$ for $i=1,2,3$ and $a_{1}=a_{2}=a_{3}=0$. Hence $L_{C_{a}}(t)=1+q^{3} t^{6}$.

For a character φ of the multiplicative group k^{*} let

$$
\tau(\varphi):=-\sum_{c \in k^{*}} \varphi(c) \exp \left(\frac{2 \pi i}{p} \operatorname{Tr}_{k / \mathbb{F}_{p}} c\right)
$$

be the corresponding Gauss sum ([Da-Ha]). For an element $d \in k^{*}$ define

$$
\tau_{d}(\varphi):=-\sum_{c \in k^{*}} \varphi(c) \exp \left(\frac{2 \pi i}{p} \operatorname{Tr}_{k / \mathbb{F}_{p}} c d\right)
$$

It holds

$$
\begin{equation*}
\tau_{d}(\varphi)=\varphi^{-1}(d) \tau(\varphi) \tag{1}
\end{equation*}
$$

For two characters φ_{1} and φ_{2} of k^{*} let

$$
\iota\left(\varphi_{1}, \varphi_{2}\right):=-\sum_{c \in k} \varphi_{1}(c) \varphi_{2}(1-c)
$$

be the corresponding Jacobi sum. If $\varphi_{1} \cdot \varphi_{2} \neq 1$ then

$$
\begin{equation*}
\iota\left(\varphi_{1}, \varphi_{2}\right)=\frac{\tau\left(\varphi_{1}\right) \tau\left(\varphi_{2}\right)}{\tau\left(\varphi_{1} \varphi_{2}\right)} \tag{2}
\end{equation*}
$$

For each natural number $m \geq 1$ let $\zeta_{m}:=\exp \frac{2 \pi i}{m}$ and let $\mu_{m}:=\left\{\zeta_{m}^{l} \mid 0 \leq\right.$ $l \leq m-1\}$ be the group of complex m-th roots of unity.

Proposition 3. If $q \equiv 1(\bmod 9)$ then

$$
N_{1}=q+1-\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta),
$$

where

$$
\eta:=\psi^{4}(a) \iota\left(\psi^{3}, \psi\right),
$$

ψ a character of k^{*} of order 9 .

The number of elements of a finite set X is denoted by $|X|$. It holds
Lemma 1. Let $k=\mathbb{F}_{q}$ be a finite field of characteristic $p \neq 3$, and let ξ be a generator of the cyclic multiplicative group k^{*}. If $B(x) \in k[x]$ is a polynomial with a simple root $x_{1} \in k$:

$$
B(x)=\left(x-x_{1}\right) B_{1}(x), B_{1}(x) \in k[x], B_{1}\left(x_{1}\right) \neq 0
$$

then the number of solutions in k of the equation

$$
y^{3}=B(x)
$$

is

$$
N=\frac{1}{3}\left(\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right|+\left|\mathcal{A}_{\xi^{2} \xi}\right|\right)
$$

where

$$
\begin{aligned}
& \mathcal{A}_{11}:=\left\{(t, u) \in k \times k \mid B_{1}\left(t^{3}+x_{1}\right)=u^{3}\right\}, \\
& \mathcal{A}_{\xi \xi^{2}}:=\left\{(t, u) \in k \times k \mid B_{1}\left(\xi t^{3}+x_{1}\right)=\xi^{2} u^{3}\right\}, \\
& \mathcal{A}_{\xi^{2} \xi}:=\left\{(t, u) \in k \times k \mid B_{1}\left(\xi^{2} t^{3}+x_{1}\right)=\xi u^{3}\right\} .
\end{aligned}
$$

Proof: I) The case $q \equiv 1(\bmod 3)$. Let χ be a character of k^{*} of order 3 such that

$$
\chi(\xi)=\omega=e^{\frac{2 \pi i}{3}}
$$

Put $\chi(0):=0$. It holds

$$
N=q+\alpha+\bar{\alpha}
$$

with

$$
\begin{gathered}
\alpha=\sum_{c \in k} \chi(B(c))=\sum_{c \in k} \chi\left(\left(c-x_{1}\right) B_{1}(c)\right)=\sum_{c \in k} \chi\left(c-x_{1}\right) \chi\left(B_{1}(c)\right)= \\
=\sum_{i, j=0}^{2} \sum_{c \in A, \chi\left(c-x_{1}\right)=\omega^{i}, \chi\left(B_{1}(c)\right)=\omega^{j}} \omega^{i+j}= \\
=\left|A_{11}\right|+\left|A_{\omega \omega^{2}}\right|+\left|A_{\omega^{2} \omega}\right|+\omega\left(\left|A_{1 \omega}\right|+\left|A_{\omega 1}\right|+\left|A_{\omega^{2} \omega^{2}}\right|\right)+ \\
\quad+\omega^{2}\left(\left|A_{1 \omega^{2}}\right|+\left|A_{\omega \omega}\right|+\left|A_{\omega^{2} 1}\right|\right)
\end{gathered}
$$

where

$$
\begin{gathered}
A:=\{c \in k \mid B(c) \neq 0\} \\
A_{\omega^{i} \omega^{j}}=\left\{c \in A \mid \chi\left(c-x_{1}\right)=\omega^{i}, \chi\left(B_{1}(c)\right)=\omega^{j}\right\}
\end{gathered}
$$

for $i, j=0,1,2$. It follows that

$$
\begin{gathered}
\alpha+\bar{\alpha}=2\left(\left|A_{11}\right|+\left|A_{\omega \omega^{2}}\right|+\left|A_{\omega^{2} \omega}\right|\right)+\left(\omega+\omega^{2}\right)\left(\left|A_{1 \omega}\right|+\left|A_{\omega 1}\right|+\left|A_{\omega^{2} \omega^{2}}\right|\right)+ \\
+\left(\omega^{2}+\omega\right)\left(\left|A_{1 \omega^{2}}\right|+\left|A_{\omega \omega}\right|+\left|A_{\omega^{2} 1}\right|\right)=2\left(\left|A_{11}\right|+\left|A_{\omega \omega^{2}}\right|+\left|A_{\omega^{2} \omega}\right|\right)-
\end{gathered}
$$

$$
\begin{gather*}
-\left(\left|A_{1 \omega}\right|+\left|A_{\omega 1}\right|+\left|A_{\omega^{2} \omega^{2}}\right|\right)-\left(\left|A_{1 \omega^{2}}\right|+\left|A_{\omega \omega}\right|+\left|A_{\omega^{2} 1}\right|\right)= \\
=3\left(\left|A_{11}\right|+\left|A_{\omega \omega^{2}}\right|+\left|A_{\omega^{2} \omega}\right|\right)-\sum_{i, j=0}^{2}\left|A_{\omega^{i} \omega^{j}}\right|= \\
3\left(\left|A_{11}\right|+\left|A_{\omega \omega^{2}}\right|+\left|A_{\omega^{2} \omega}\right|\right)-|A| \tag{3}
\end{gather*}
$$

since the sets $A_{\omega^{i} \omega^{j}}, i, j=0,1,2$, form a partition of the set A.
It holds

$$
\begin{gathered}
A_{11}=\left\{c \in A \mid \chi\left(c-x_{1}\right)=1, \chi\left(B_{1}(c)\right)=1\right\}= \\
=\left\{c \in A \mid(\exists)(t, u) \in k^{*} \times k^{*}: c-x_{1}=t^{3}, B_{1}(c)=u^{3}\right\} .
\end{gathered}
$$

Let

$$
\mathcal{B}_{11}:=\left\{(0, u) \mid u \in k, u^{3}=B_{1}\left(x_{1}\right)\right\} \cup\left\{(t, 0) \mid t \in k, B_{1}\left(t^{3}+x_{1}\right)=0\right\}
$$

The map

$$
\begin{gathered}
g_{11}: \mathcal{A}_{11} \backslash \mathcal{B}_{11} \rightarrow A_{11} \\
g_{11}(t, u):=t^{3}+x_{1}
\end{gathered}
$$

is precisely 9:1: For $c \in A_{11}$ and $(t, u) \in g_{11}^{-1}(c)$ it holds:

$$
g_{11}^{-1}(c)=\left\{\left(\zeta^{i} t, \zeta^{j} u\right) \mid 0 \leq i, j \leq 2\right\}
$$

where ζ is an element of k^{*} of order 3 , so $\left|g_{11}^{-1}(c)\right|=9$. Hence

$$
\begin{equation*}
\left|A_{11}\right|=\frac{1}{9}\left|\mathcal{A}_{11}\right|-\frac{1}{9}\left|\left\{c \in k \mid c^{3}=B_{1}\left(x_{1}\right)\right\}\right|-\frac{1}{9}\left|\left\{c \in k \mid B_{1}\left(c^{3}+x_{1}\right)=0\right\}\right| . \tag{4}
\end{equation*}
$$

It holds

$$
\begin{gathered}
A_{\omega \omega^{2}}=\left\{c \in A \mid \chi\left(c-x_{1}\right)=\omega, \chi\left(B_{1}(c)\right)=\omega^{2}\right\}= \\
=\left\{c \in A \mid(\exists)(t, u) \in k^{*} \times k^{*}: c-x_{1}=\xi t^{3}, B_{1}(c)=\xi^{2} u^{3}\right\} .
\end{gathered}
$$

Let

$$
\mathcal{B}_{\xi \xi^{2}}:=\left\{(0, u) \mid u \in k, \xi^{2} u^{3}=B_{1}\left(x_{1}\right)\right\} \cup\left\{(t, 0) \mid t \in k, B_{1}\left(\xi t^{3}+x_{1}\right)=0\right\}
$$

The map

$$
\begin{gathered}
g_{\omega \omega^{2}}: \mathcal{A}_{\xi \xi^{2}} \backslash \mathcal{B}_{\xi \xi^{2}} \rightarrow A_{\omega \omega^{2}} \\
g_{\omega \omega^{2}}(t, u):=\xi t^{3}+x_{1}
\end{gathered}
$$

is also precisely 9:1: For $c \in A_{\omega \omega^{2}}$ and $(t, u) \in g_{\omega \omega^{2}}^{-1}(c)$ it holds:

$$
g_{\omega \omega^{2}}^{-1}(c)=\left\{\left(\zeta^{i} t, \zeta^{j} u\right) \mid 0 \leq i, j \leq 2\right\}
$$

so $\left|g_{\omega \omega^{2}}^{-1}(c)\right|=9$. Hence

$$
\begin{align*}
\left|A_{\omega \omega^{2}}\right|= & \frac{1}{9}\left|\mathcal{A}_{\xi \xi^{2}}\right|-\frac{1}{9}\left|\left\{c \in k \mid \xi^{2} c^{3}=B_{1}\left(x_{1}\right)\right\}\right|- \\
& -\frac{1}{9}\left|\left\{c \in k \mid B_{1}\left(\xi c^{3}+x_{1}\right)=0\right\}\right| \tag{5}
\end{align*}
$$

Analogously:

$$
\begin{align*}
\left|A_{\omega^{2} \omega}\right| & =\frac{1}{9}\left|\mathcal{A}_{\xi^{2} \xi}\right|-\frac{1}{9}\left|\left\{c \in k \mid \xi c^{3}=B_{1}\left(x_{1}\right)\right\}\right|- \\
& -\frac{1}{9}\left|\left\{c \in k \mid B_{1}\left(\xi^{2} c^{3}+x_{1}\right)=0\right\}\right| \tag{6}
\end{align*}
$$

From (3), (4), (5) and (6) it follows that

$$
\begin{gathered}
\alpha+\bar{\alpha}=3\left(\left|A_{11}\right|+\left|A_{\omega \omega^{2}}\right|+\left|A_{\omega^{2} \omega}\right|\right)-|A|= \\
=\frac{1}{3}\left(\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right|+\left|\mathcal{A}_{\xi^{2} \xi}\right|\right)- \\
-\frac{1}{3}\left(\left|\left\{c \in k \mid c^{3}=B_{1}\left(x_{1}\right)\right\}\right|+\left|\left\{c \in k \mid \xi c^{3}=B_{1}\left(x_{1}\right)\right\}\right|+\right. \\
\left.+\left|\left\{c \in k \mid \xi^{2} c^{3}=B_{1}\left(x_{1}\right)\right\}\right|\right)- \\
-\frac{1}{3}\left(\left|\left\{c \in k \mid B_{1}\left(c^{3}+x_{1}\right)=0\right\}\right|+\left|\left\{c \in k \mid B_{1}\left(\xi c^{3}+x_{1}\right)=0\right\}\right|+\right. \\
\left.+\left|\left\{c \in k \mid B_{1}\left(\xi^{2} c^{3}+x_{1}\right)=0\right\}\right|\right)-|A|= \\
=\frac{1}{3}\left(\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right|+\left|\mathcal{A}_{\xi^{2} \xi}\right|\right)-1-\left|\left\{d \in k \mid B_{1}(d)=0\right\}\right|-|A| .
\end{gathered}
$$

It holds

$$
|A|=q-|\{c \in k \mid B(c)=0\}|=q-1-\left|\left\{d \in k \mid B_{1}(d)=0\right\}\right|
$$

hence

$$
\alpha+\bar{\alpha}=\frac{1}{3}\left(\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right|+\left|\mathcal{A}_{\xi^{2} \xi}\right|\right)-q
$$

and

$$
N=q+\alpha+\bar{\alpha}=\frac{1}{3}\left(\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right|+\left|\mathcal{A}_{\xi^{2} \xi}\right|\right)
$$

II) The case $q \equiv 2(\bmod 3)$. Each element of k has one and only one third root in k. It holds

$$
N=q,\left|\mathcal{A}_{11}\right|=\left|\mathcal{A}_{\xi \xi^{2}}\right|=\left|\mathcal{A}_{\xi^{2} \xi}\right|=q . \square
$$

Proof of Proposition 3: The polynomial $B(x)=x^{4}-a x=x\left(x^{3}-a x\right)$ has the root $x_{1}=0$ in k. Let $B_{1}(x):=x^{3}-a \in k[x]$. With the notations of Lemma 1 it holds:

$$
\begin{gathered}
\mathcal{A}_{11}=\left\{(t, u) \in k \times k \mid B_{1}\left(t^{3}+x_{1}\right)=u^{3}\right\}=\left\{(t, u) \in k \times k \mid-u^{3}+t^{9}=a\right\} \\
\mathcal{A}_{\xi \xi^{2}}=\left\{(t, u) \in k \times k \mid-\xi^{2} u^{3}+\xi^{3} t^{9}=a\right\} \\
\mathcal{A}_{\xi^{2} \xi}=\left\{(t, u) \in k \times k \mid-\xi u^{3}+\xi^{6} t^{9}=a\right\}
\end{gathered}
$$

The equation

$$
a_{1} u^{3}+a_{2} t^{9}=a_{3}
$$

with $a_{1}, a_{2}, a_{3} \in k \backslash\{0\}$ has by ([Da-Ha], 6.2 and 6.5)

$$
\begin{gathered}
N\left(a_{1}, a_{2}, a_{3}\right)= \\
=q-\psi^{3}\left(-\frac{a_{1}}{a_{2}}\right)-\psi^{6}\left(-\frac{a_{1}}{a_{2}}\right)-\sum_{\chi^{\mu} \neq 1, \psi^{\nu} \neq 1, \chi^{\mu} \psi^{\nu} \neq 1} \frac{\tau_{a_{1}}\left(\chi^{\mu}\right) \tau_{a_{2}}\left(\psi^{\nu}\right)}{\tau_{a_{3}}\left(\chi^{\mu} \psi^{\nu}\right)}= \\
=q-\chi\left(-\frac{a_{1}}{a_{2}}\right)-\chi^{2}\left(-\frac{a_{1}}{a_{2}}\right)-\sum_{1 \leq \mu \leq 2} \sum_{1 \leq \nu \leq 8,3 \mu+\nu \neq 9} \frac{\tau_{a_{1}}\left(\psi^{3 \mu}\right) \tau_{a_{2}}\left(\psi^{\nu}\right)}{\tau_{a_{3}}\left(\psi^{3 \mu+\nu}\right)}= \\
=q-\chi\left(-\frac{a_{1}}{a_{2}}\right)-\chi^{2}\left(-\frac{a_{1}}{a_{2}}\right)-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{a_{1}}\left(\psi^{3}\right) \tau_{a_{2}}\left(\psi^{\nu}\right)}{\tau_{a_{3}}\left(\psi^{3+\nu}\right)}-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{a_{1}}\left(\psi^{6}\right) \tau_{a_{2}}\left(\psi^{\nu}\right)}{\tau_{a_{3}}\left(\psi^{6+\nu}\right)}
\end{gathered}
$$

solutions in k. Hence

$$
\begin{gathered}
\left|\mathcal{A}_{11}\right|=N(-1,1, a)=q-2-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{-1}\left(\psi^{3}\right) \tau_{1}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}- \\
-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{-1}\left(\psi^{6}\right) \tau_{1}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)}, \\
\left|\mathcal{A}_{\xi \xi^{2}}\right|=N\left(-\xi^{2}, \xi^{3}, a\right)= \\
=q-\chi\left(\xi^{-1}\right)-\chi^{2}\left(\xi^{-1}\right)-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{-\xi^{2}}\left(\psi^{3}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}- \\
-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{-\xi^{2}}\left(\psi^{6}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)}= \\
=q+1-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{-\xi^{2}}\left(\psi^{3}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{-\xi^{2}}\left(\psi^{6}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)}
\end{gathered}
$$

and

$$
\left|\mathcal{A}_{\xi^{2} \xi}\right|=N\left(-\xi, \xi^{6}, a\right)=
$$

$$
\begin{gathered}
q-\chi\left(\xi^{-5}\right)-\chi^{2}\left(\xi^{-5}\right)-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{-\xi}\left(\psi^{3}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{-\xi}\left(\psi^{6}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)}= \\
=q+1-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{-\xi}\left(\psi^{3}\right) \tau_{\xi}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{-\xi}\left(\psi^{6}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)} .
\end{gathered}
$$

It follows that

$$
\begin{gather*}
\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right|+\left|\mathcal{A}_{\xi^{2} \xi}\right|= \\
=3 q-\sum_{\nu=1, \nu \neq 6}^{8} \frac{\tau_{-1}\left(\psi^{3}\right) \tau_{1}\left(\psi^{\nu}\right)+\tau_{-\xi^{2}}\left(\psi^{3}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)+\tau_{-\xi}\left(\psi^{3}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}- \\
-\sum_{\nu=1, \nu \neq 3}^{8} \frac{\tau_{-1}\left(\psi^{6}\right) \tau_{1}\left(\psi^{\nu}\right)+\tau_{-\xi^{2}}\left(\psi^{6}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)+\tau_{-\xi}\left(\psi^{6}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)} . \tag{7}
\end{gather*}
$$

By (1) it holds

$$
\begin{gathered}
\tau_{-1}\left(\psi^{3}\right) \tau_{1}\left(\psi^{\nu}\right)+\tau_{-\xi^{2}}\left(\psi^{3}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)+\tau_{-\xi}\left(\psi^{3}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)=\psi^{-3}(-1) \tau\left(\psi^{3}\right) \tau\left(\psi^{\nu}\right)+ \\
+\psi^{-3}(-1) \psi^{-3 \nu-6}(\xi) \tau\left(\psi^{3}\right) \tau\left(\psi^{\nu}\right)+\psi^{-3}(-1) \psi^{-6 \nu-3}(\xi) \tau\left(\psi^{3}\right) \tau\left(\psi^{\nu}\right)= \\
=\tau\left(\psi^{3}\right) \tau\left(\psi^{\nu}\right)\left(1+\psi^{-3 \nu-6}(\xi)+\psi^{-6 \nu-3}(\xi)\right)= \\
=\tau\left(\psi^{3}\right) \tau\left(\psi^{\nu}\right)\left(1+\chi^{-\nu-2}(\xi)+\chi^{-2 \nu-1}(\xi)\right)= \\
=\tau\left(\psi^{3}\right) \tau\left(\psi^{\nu}\right)\left(1+\omega^{-\nu-2}+\omega^{2(-\nu-2)}\right)
\end{gathered}
$$

so

$$
\begin{align*}
\sum_{\nu=1, \nu \neq 6}^{8} & \frac{\tau_{-1}\left(\psi^{3}\right) \tau_{1}\left(\psi^{\nu}\right)+\tau_{-\xi^{2}}\left(\psi^{3}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)+\tau_{-\xi}\left(\psi^{3}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{3+\nu}\right)}= \\
& =3 \frac{\tau\left(\psi^{3}\right) \tau(\psi)}{\tau_{a}\left(\psi^{4}\right)}+3 \frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{4}\right)}{\tau_{a}\left(\psi^{7}\right)}+3 \frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{7}\right)}{\tau_{a}(\psi)} \tag{8}
\end{align*}
$$

Analogously:

$$
\begin{gathered}
\tau_{-1}\left(\psi^{6}\right) \tau_{1}\left(\psi^{\nu}\right)+\tau_{-\xi^{2}}\left(\psi^{6}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)+\tau_{-\xi}\left(\psi^{6}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)=\psi^{-6}(-1) \tau\left(\psi^{6}\right) \tau\left(\psi^{\nu}\right)+ \\
+\psi^{-6}(-1) \psi^{-3 \nu-12}(\xi) \tau\left(\psi^{6}\right) \tau\left(\psi^{\nu}\right)+\psi^{-6}(-1) \psi^{-6 \nu-6}(\xi) \tau\left(\psi^{6}\right) \tau\left(\psi^{\nu}\right)= \\
=\tau\left(\psi^{6}\right) \tau\left(\psi^{\nu}\right)\left(1+\psi^{-3 \nu-12}(\xi)+\psi^{-6 \nu-6}(\xi)\right)= \\
=\tau\left(\psi^{6}\right) \tau\left(\psi^{\nu}\right)\left(1+\chi^{-\nu-4}(\xi)+\chi^{-2 \nu-2}(\xi)\right)= \\
=\tau\left(\psi^{6}\right) \tau\left(\psi^{\nu}\right)\left(1+\omega^{-\nu-1}+\omega^{2(-\nu-1)}\right)
\end{gathered}
$$

So

$$
\begin{align*}
\sum_{\nu=1, \nu \neq 3}^{8} & \frac{\tau_{-1}\left(\psi^{6}\right) \tau_{1}\left(\psi^{\nu}\right)+\tau_{-\xi^{2}}\left(\psi^{6}\right) \tau_{\xi^{3}}\left(\psi^{\nu}\right)+\tau_{-\xi}\left(\psi^{6}\right) \tau_{\xi^{6}}\left(\psi^{\nu}\right)}{\tau_{a}\left(\psi^{6+\nu}\right)}= \\
& =3 \frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{2}\right)}{\tau_{a}\left(\psi^{8}\right)}+3 \frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{5}\right)}{\tau_{a}\left(\psi^{2}\right)}+3 \frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{8}\right)}{\tau_{a}\left(\psi^{5}\right)} \tag{9}
\end{align*}
$$

By (7), (8) and (9) it holds

$$
\begin{aligned}
\left|\mathcal{A}_{11}\right|+\left|\mathcal{A}_{\xi \xi^{2}}\right| & +\left|\mathcal{A}_{\xi^{2} \xi}\right|=3 q-3 \frac{\tau\left(\psi^{3}\right) \tau(\psi)}{\tau_{a}\left(\psi^{4}\right)}-3 \frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{4}\right)}{\tau_{a}\left(\psi^{7}\right)}-3 \frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{7}\right)}{\tau_{a}(\psi)}- \\
& -3 \frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{2}\right)}{\tau_{a}\left(\psi^{8}\right)}-3 \frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{5}\right)}{\tau_{a}\left(\psi^{2}\right)}-3 \frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{8}\right)}{\tau_{a}\left(\psi^{5}\right)}
\end{aligned}
$$

by Lemma 1

$$
\begin{gathered}
N=q-\frac{\tau\left(\psi^{3}\right) \tau(\psi)}{\tau_{a}\left(\psi^{4}\right)}-\frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{4}\right)}{\tau_{a}\left(\psi^{7}\right)}-\frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{7}\right)}{\tau_{a}(\psi)}- \\
-\frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{2}\right)}{\tau_{a}\left(\psi^{8}\right)}-\frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{5}\right)}{\tau_{a}\left(\psi^{2}\right)}-\frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{8}\right)}{\tau_{a}\left(\psi^{5}\right)}= \\
=q-\psi^{4}(a) \iota\left(\psi^{3}, \psi\right)-\psi^{7}(a) \iota\left(\psi^{3}, \psi^{4}\right)-\psi(a) \iota\left(\psi^{3}, \psi^{7}\right)- \\
-\psi^{8}(a) \iota\left(\psi^{6}, \psi^{2}\right)-\psi^{2}(a) \iota\left(\psi^{6}, \psi^{5}\right)-\psi^{5}(a) \iota\left(\psi^{6}, \psi^{8}\right),
\end{gathered}
$$

by (1) and (2).
Let A be the automorphism of the field extension $\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}$ defined by $\zeta_{9}^{A}:=$ ζ_{9}^{2}. It holds

$$
\begin{aligned}
\eta^{A}= & \left(\psi^{4}(a) \iota\left(\psi^{3}, \psi\right)\right)^{A}=\left(\psi^{4}(a)\right)^{A}\left(-\sum_{c \in k} \psi^{3}(c) \psi(1-c)\right)^{A}= \\
= & \psi^{8}(a)\left(-\sum_{c \in k} \psi^{6}(c) \psi^{2}(1-c)\right)=\psi^{8}(a) \iota\left(\psi^{6}, \psi^{2}\right), \\
\eta^{A^{2}}= & \left(\psi^{4}(a) \iota\left(\psi^{3}, \psi\right)\right)^{A^{2}}=\left(\psi^{4}(a)\right)^{A^{2}}\left(-\sum_{c \in k} \psi^{3}(c) \psi(1-c)\right)^{A^{2}}= \\
= & \psi^{7}(a)\left(-\sum_{c \in k} \psi^{3}(c) \psi^{4}(1-c)\right)=\psi^{7}(a) \iota\left(\psi^{3}, \psi^{4}\right), \\
\eta^{A^{3}}= & \left(\psi^{4}(a) \iota\left(\psi^{3}, \psi\right)\right)^{A^{3}}=\left(\psi^{4}(a)\right)^{A^{3}}\left(-\sum_{c \in k} \psi^{3}(c) \psi(1-c)\right)^{A^{3}}= \\
& =\psi^{5}(a)\left(-\sum_{c \in k} \psi^{6}(c) \psi^{8}(1-c)\right)=\psi^{5}(a) \iota\left(\psi^{6}, \psi^{8}\right),
\end{aligned}
$$

$$
\begin{aligned}
\eta^{A^{4}}= & \left(\psi^{4}(a) \iota\left(\psi^{3}, \psi\right)\right)^{A^{4}}=\left(\psi^{4}(a)\right)^{A^{4}}\left(-\sum_{c \in k} \psi^{3}(c) \psi(1-c)\right)^{A^{4}}= \\
& =\psi(a)\left(-\sum_{c \in k} \psi^{3}(c) \psi^{7}(1-c)\right)=\psi(a) \iota\left(\psi^{3}, \psi^{7}\right) \\
\eta^{A^{5}}= & \left(\psi^{4}(a) \iota\left(\psi^{3}, \psi\right)\right)^{A^{5}}=\left(\psi^{4}(a)\right)^{A^{5}}\left(-\sum_{c \in k} \psi^{3}(c) \psi(1-c)\right)^{A^{5}}= \\
& =\psi^{2}(a)\left(-\sum_{c \in k} \psi^{6}(c) \psi^{5}(1-c)\right)=\psi^{2}(a) \iota\left(\psi^{6}, \psi^{5}\right)
\end{aligned}
$$

hence

$$
N=q-\eta-\eta^{A}-\eta^{A^{2}}-\eta^{A^{3}}-\eta^{A^{4}}-\eta^{A^{5}}=q-\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta) .
$$

Corollary 2. If $q \equiv 4(\bmod 9)$ or $q \equiv 7(\bmod 9)$ then

$$
L_{C_{a}}(t)=1-\frac{1}{3} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta) t^{3}+q^{3} t^{6}
$$

where $\eta=\psi^{4}(a) \iota\left(\psi^{3}, \psi\right), \psi$ a character of order 9 of the multiplicative group of the field $\mathbb{F}_{q^{3}}$.
If $q \equiv 8(\bmod 9)$ then

$$
L_{C_{a}}(t)=1-\frac{1}{2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta) t^{2}-q \frac{1}{2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta) t^{4}+q^{3} t^{6}
$$

where $\eta=\psi^{4}(a) \iota\left(\psi^{3}, \psi\right), \psi$ a character of order 9 of the multiplicative group of the field $\mathbb{F}_{q^{2}}$.
Proof: If $q \equiv 4(\bmod 9)$ or $q \equiv 7(\bmod 9)$ then $q^{2} \equiv 7(\bmod 9)$ or $q^{2} \equiv$ $4(\bmod 9)$ and $q^{3} \equiv 1(\bmod 9)$. By proposition 2 it holds $N_{1}=q+1$ and $N_{2}=q^{2}+1$, so the coefficients a_{1} and a_{2} of $L_{C_{a}}(t)$ vanish and the coefficient a_{3} equals $\frac{1}{3}\left(N_{3}-q^{3}-1\right)$, which by proposition 3 equals $-\frac{1}{3} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta)$. If $q \equiv 8(\bmod 9)$ then $q^{2} \equiv 1(\bmod 9)$ and $q^{3} \equiv 2(\bmod 9)$. By proposition 1 it holds $N_{1}=q+1$ and $N_{3}=q^{3}+1$, so $a_{1}=0, a_{3}=0$ and a_{2} equals $\frac{1}{2}\left(N_{2}-q^{2}-1\right)$, which by proposition 3 equals $-\frac{1}{2} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}}(\eta)$.

Remark 1. Corollary 2 explains some computations done in ([CER]).
Proposition 4. If $q \equiv 1(\bmod 9)$ then

$$
L_{C_{a}}(t)=(1-\eta t)\left(1-\eta^{A} t\right)\left(1-\eta^{A^{2}} t\right)\left(1-\eta^{A^{3}} t\right)\left(1-\eta^{A^{4}} t\right)\left(1-\eta^{A^{5}} t\right)
$$

where $\eta=\psi^{4}(a) \iota\left(\psi^{3}, \psi\right), \psi$ a character of order 9 of the multiplicative group k^{*}, A the automorphism of the field extension $\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}$ defined by $\zeta_{9}^{A}:=\zeta_{9}^{2}$.

Proof: The L-polynomial of the curve C_{a} / k can be written in the form $L_{C_{a}}(t)=\prod_{j=1}^{6}\left(1-\alpha_{j} t\right)$, where $\alpha_{1}, \ldots, \alpha_{6}$ are algebraic integers. For $r \geq 1$ it holds

$$
\begin{equation*}
N_{r}=q^{r}+1-\sum_{j=1}^{6} \alpha_{j}^{r} \tag{10}
\end{equation*}
$$

Let ψ be a character of order 9 of the cyclic group k^{*}. The map

$$
\psi_{r}: \mathbb{F}_{q^{r}}^{*} \rightarrow \mathbb{C}^{*}, \psi_{r}(x):=\psi\left(N_{\mathbb{F}_{q^{r}} \mid \mathbb{F}_{q}}(x)\right)
$$

is a character of order 9 of the cyclic group $\mathbb{F}_{q^{r}}^{*}$. It holds ([Da-Ha],0.8)

$$
\begin{equation*}
\tau_{d}^{(r)}\left(\psi_{r}^{l}\right)=\tau_{d}\left(\psi^{l}\right)^{r} \tag{11}
\end{equation*}
$$

for $1 \leq l \leq 8$ and $d \in \mathbb{F}_{q}^{*}$, where $\tau_{d}^{(r)}\left(\psi_{r}^{l}\right)$ denotes the Gauss sum of the character ψ_{r}^{l} on $\mathbb{F}_{q^{n}}$.
By Proposition 4 it holds

$$
\begin{aligned}
& N_{r}= q^{r} \\
&+1-\frac{\tau^{(r)}\left(\psi_{r}^{3}\right) \tau^{(r)}\left(\psi_{r}\right)}{\tau_{a}^{(r)}\left(\psi_{r}^{4}\right)}-\frac{\tau^{(r)}\left(\psi_{r}^{3}\right) \tau^{(r)}\left(\psi_{r}^{4}\right)}{\tau_{a}^{(r)}\left(\psi_{r}^{7}\right)}-\frac{\tau^{(r)}\left(\psi_{r}^{3}\right) \tau^{(r)}\left(\psi_{r}^{7}\right)}{\tau_{a}^{(r)}\left(\psi_{r}\right)}- \\
&-\frac{\tau^{(r)}\left(\psi_{r}^{6}\right) \tau^{(r)}\left(\psi_{r}^{2}\right)}{\tau_{a}^{(r)}\left(\psi_{r}^{8}\right)}-\frac{\tau^{(r)}\left(\psi_{r}^{6}\right) \tau^{(r)}\left(\psi_{5}\right)}{\tau_{a}^{(r)}\left(\psi_{r}^{2}\right)}-\frac{\tau^{(r)}\left(\psi_{r}^{6}\right) \tau^{(r)}\left(\psi_{r}^{8}\right)}{\tau_{a}^{(r)}\left(\psi_{r}^{5}\right)}
\end{aligned}
$$

hence by (11)

$$
\begin{aligned}
N_{r}= & q^{r}+1-\frac{\tau\left(\psi^{3}\right)^{r} \tau(\psi)^{r}}{\tau_{a}\left(\psi^{4}\right)^{r}}-\frac{\tau\left(\psi^{3}\right)^{r} \tau\left(\psi^{4}\right)^{r}}{\tau_{a}\left(\psi^{7}\right)^{r}}-\frac{\tau\left(\psi^{3}\right)^{r} \tau\left(\psi^{7}\right)^{r}}{\tau_{a}(\psi)^{r}}- \\
& -\frac{\tau\left(\psi^{6}\right)^{r} \tau\left(\psi^{2}\right)^{r}}{\tau_{a}\left(\psi^{8}\right)^{r}}-\frac{\tau\left(\psi^{6}\right)^{r} \tau\left(\psi^{5}\right)^{r}}{\tau_{a}\left(\psi^{2}\right)^{r}}-\frac{\tau\left(\psi^{6}\right)^{r} \tau\left(\psi^{8}\right)^{r}}{\tau_{a}\left(\psi^{5}\right)^{r}}
\end{aligned}
$$

so one can choose in (10)

$$
\begin{gathered}
\alpha_{1}=\frac{\tau\left(\psi^{3}\right) \tau(\psi)}{\tau_{a}\left(\psi^{4}\right)}=\eta, \alpha_{2}=\frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{4}\right)}{\tau_{a}\left(\psi^{7}\right)}=\eta^{A^{2}}, \alpha_{3}=\frac{\tau\left(\psi^{3}\right) \tau\left(\psi^{7}\right)}{\tau_{a}(\psi)}=\eta^{A^{4}}, \\
\alpha_{4}=\frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{8}\right)}{\tau_{a}\left(\psi^{5}\right)}=\eta^{A^{3}}, \alpha_{5}=\frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{5}\right)}{\tau_{a}\left(\psi^{2}\right)}=\eta^{A^{5}}, \alpha_{6}=\frac{\tau\left(\psi^{6}\right) \tau\left(\psi^{2}\right)}{\tau_{a}\left(\psi^{8}\right)}=\eta^{A} . \square
\end{gathered}
$$

Let $m \geq 1$ be a natural number and let K be an algebraic number field with ring of integers \mathcal{O}_{K} such that $\zeta_{m} \in \mathcal{O}_{K}$. Let \mathfrak{p} be a prime ideal of \mathcal{O}_{K} not dividing m, and let $x \in \mathcal{O}_{K}$ not divisible by \mathfrak{p}. The number $x^{\frac{N_{K / /}(\mathfrak{p})-1}{m}}$ is congruent modulo \mathfrak{p} to one and only one root of unity $\zeta_{m}^{l} \in \mu_{m}$. The map

$$
\left(\mathcal{O}_{K} / \mathfrak{p}\right) \backslash\{0\} \rightarrow \mu_{m}, x \bmod \mathfrak{p} \mapsto \zeta_{m}^{l}
$$

is a character of order m of the multiplicative group of the finite field $\mathcal{O}_{K} / \mathfrak{p}$ called the m-th power residue character modulo \mathfrak{p}.

Proposition 5. Let $q \equiv 1(\bmod 9)$ and let \mathfrak{p} be a prime divisor of p in the ring $\mathbb{Z}\left[\zeta_{q-1}\right]$. Let ψ be the 9-th power residue character modulo \mathfrak{p} in $\mathbb{Z}\left[\zeta_{q-1}\right]$. Identifying the finite field \mathbb{F}_{q} with the residue class field $\mathbb{Z}\left[\zeta_{q-1}\right] / \mathfrak{p}$ it holds: a) The absolute value of the complex number $\iota\left(\psi^{3}, \psi\right)$ is

$$
\left|\iota\left(\psi^{3}, \psi\right)\right|=\sqrt{q}
$$

b) The prime ideal decomposition of the principal ideal generated by $\iota\left(\psi^{3}, \psi\right)$ in the ring of integers $\mathbb{Z}\left[\zeta_{9}\right]$ is

$$
\iota\left(\psi^{3}, \psi\right) \mathbb{Z}\left[\zeta_{9}\right]=\left(\mathfrak{q} \cdot \mathfrak{q}^{A^{4}} \cdot \mathfrak{q}^{A^{5}}\right)^{f(\mathfrak{p} \mid \mathfrak{q})}
$$

where $\mathfrak{q}:=\mathfrak{p} \cap \mathbb{Z}\left[\zeta_{9}\right]$, A is the automorphism of $\left.\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}\right)$ defined by $\zeta_{9}^{A}:=\zeta_{9}^{2}$ and $N_{\mathbb{Q}\left(\zeta_{q-1}\right) / \mathbb{Q}\left(\zeta_{9}\right)}(\mathfrak{p})=\mathfrak{q}^{f(\mathfrak{p} \mid \mathfrak{q})}$.
c) In the ring $\mathbb{Z}\left[\zeta_{9}\right]$ it holds

$$
\iota\left(\psi^{3}, \psi\right) \equiv 1\left(\bmod \left(\zeta_{9}-1\right)^{4}\right)
$$

The number $\iota\left(\psi^{3}, \psi\right) \in \mathbb{Z}\left[\zeta_{9}\right]$ is uniquely determined by the properties a), b) and c).

Proof:
a): Every Jacobi sum in a finite field with q elements has absolute value \sqrt{q}. b): By ([Ha1], p.40, (6.)) it holds

$$
\iota\left(\psi^{3}, \psi\right) \mathbb{Z}\left[\zeta_{9}\right]=\left(\mathfrak{q}^{\sum_{J} d(-3 j,-j) J}\right)^{f(\mathfrak{p} \mid \mathfrak{q})}
$$

where J runs over the set $\left\{A^{k} \mid 0 \leq k \leq 5\right\}$ of automorphisms of $\mathbb{Q}\left(\zeta_{9}\right)$, $j \bmod 9$ is defined by

$$
\zeta_{9}^{J^{-1}}=\zeta_{9}^{j}
$$

and

$$
d(-3 j,-j)=\frac{r(-3 j)+r(-j)-r(-4 j)}{9}
$$

$r(x)$ the smallest non-negative residue of $x \bmod 9$. It holds

$$
\begin{gathered}
\zeta_{9}^{\left(A^{0}\right)^{-1}}=\zeta_{9}, d(-3,-1)=\frac{r(-3)+r(-1)-r(-4)}{9}=1, \\
\zeta_{9}^{\left(A^{1}\right)^{-1}}=\zeta_{9}^{A^{5}}=\zeta_{9}^{5}, d(-15,-5)=\frac{r(-15)+r(-5)-r(-20)}{9}=0 \\
\zeta_{9}^{\left(A^{2}\right)^{-1}}=\zeta_{9}^{A^{4}}=\zeta_{9}^{7}, d(-21,-7)=\frac{r(-21)+r(-7)-r(-28)}{9}=0 \\
\zeta_{9}^{\left(A^{3}\right)^{-1}}=\zeta_{9}^{A^{3}}=\zeta_{9}^{8}, d(-24,-8)=\frac{r(-24)+r(-8)-r(-32)}{9}=0 \\
\zeta_{9}^{\left(A^{4}\right)^{-1}}=\zeta_{9}^{A^{2}}=\zeta_{9}^{4}, d(-12,-4)=\frac{r(-12)+r(-4)-r(-16)}{9}=1
\end{gathered}
$$

$$
\begin{gathered}
\zeta_{9}^{\left(A^{5}\right)^{-1}}=\zeta_{9}^{A}=\zeta_{9}^{2}, d(-6,-2)=\frac{r(-6)+r(-2)-r(-8)}{9}=1, \\
\iota\left(\psi^{3}, \psi\right) \mathbb{Z}\left[\zeta_{9}\right]=\left(\mathfrak{q}^{1+A^{4}+A^{5}}\right)^{f(\mathfrak{p} \mid \mathfrak{q})}=\left(\mathfrak{q} \cdot \mathfrak{q}^{A^{4}} \cdot \mathfrak{q}^{A^{5}}\right)^{f(\mathfrak{p} \mid \mathfrak{q})}
\end{gathered}
$$

c): For $c \in \mathbb{F}_{q}^{*}$ it holds

$$
\psi(c) \equiv 1 \bmod \left(\zeta_{9}-1\right)
$$

and

$$
\psi^{3}(c) \equiv 1 \bmod \left(\zeta_{9}-1\right)^{3}
$$

Indeed, if $\psi(c)=\zeta_{9}^{k}, 0 \leq k \leq 8$, then $\psi(c)-1=\zeta_{9}^{k}-1$ is divisible by $\zeta_{9}-1$ in $\mathbb{Z}\left[\zeta_{9}\right]$ and $\psi^{3}(c)-1$ is divisible by $\zeta_{9}^{3}-1$ which is associate with $\left(\zeta_{9}-1\right)^{3}$. Then

$$
\begin{gathered}
\iota\left(\psi^{3}, \psi\right)=-\sum_{c \in \mathbb{F}_{q}} \psi^{3}(c) \psi(1-c)=-\sum_{c \in \mathbb{F}_{q}} \psi(c) \psi^{3}(1-c)= \\
=-\sum_{c \neq 1} \psi(c)-\sum_{c \neq 0,1} \psi(c)\left(\psi^{3}(1-c)-1\right)= \\
=1-\sum_{c \neq 0,1} \psi(c)\left(\psi^{3}(1-c)-1\right) \equiv 1-\sum_{c \neq 0,1}\left(\psi^{3}(1-c)-1\right) \bmod \left(\zeta_{9}-1\right)^{4} \equiv \\
\equiv 1-\sum_{c \neq 0,1} \psi^{3}(1-c)+\sum_{c \neq 0,1} 1 \bmod \left(\zeta_{9}-1\right)^{4} \equiv \\
\equiv 1+1+q-2 \bmod \left(\zeta_{9}-1\right)^{4} \equiv q \bmod \left(\zeta_{9}-1\right)^{4} \equiv 1 \bmod \left(\zeta_{9}-1\right)^{4} .
\end{gathered}
$$

Two numbers in $\mathbb{Z}\left[\zeta_{9}\right]$ with the same absolute value and the same prime ideal decomposition differ by a root of unity. The group of roots of unity in $\mathbb{Z}\left[\zeta_{9}\right]$ is μ_{18}. The only element of μ_{18} which is $\equiv 1 \bmod \left(\zeta_{9}-1\right)^{4}$ is 1 . The properties a), b), c) determine the number $\iota\left(\psi^{3}, \psi\right)$ in $\mathbb{Z}\left[\zeta_{9}\right]$.

2 The curves $C_{a}: Y^{3}=X^{4}-a X$ over an algebraic number field

Let k be an algebraic number field which contains ζ_{9}. Let $a \in k^{*}$, and let \mathfrak{m}_{a} be the product of 3 and of all prime divisors \mathfrak{p} of k which appear in the decomposition of a. Let \mathfrak{p} be a prime divisor of k which does not divide \mathfrak{m}_{a}. The curve C_{a} has good reduction at \mathfrak{p} : By reducing modulo \mathfrak{p} the equation $y^{3}=x^{4}-a x$ one obtains a curve $C_{a(\mathfrak{p})}$ over the residue class field $k(\mathfrak{p})$ at \mathfrak{p} with the equation

$$
C_{a(\mathfrak{p})}: y^{3}=x^{4}-a(\mathfrak{p}) x, a(\mathfrak{p}):=a \bmod \mathfrak{p} \in k(\mathfrak{p})^{*}
$$

which is smooth of genus 3 over $k(\mathfrak{p})$. Let $L_{C_{a(\mathfrak{p})}}(t)$ be the L-polynomial of $C_{a(\mathfrak{p})} / k(\mathfrak{p})$. By proposition 4 it holds

$$
L_{C_{a}}(t)=\prod_{j=0}^{5}\left(1-\eta(\mathfrak{p})^{A^{j}} t\right)
$$

where $\eta(\mathfrak{p}):=\psi_{\mathfrak{p}}{ }^{4}(a(\mathfrak{p})) \iota\left(\psi_{\mathfrak{p}}{ }^{3}, \psi_{\mathfrak{p}}\right), \psi_{\mathfrak{p}}$ the 9 -th power residue character modulo \mathfrak{p}, A the automorphism of the field extension $\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}$ defined by $\zeta_{9}^{A}:=\zeta_{9}^{2}$.

The L-function of C_{a} over k is defined by

$$
\begin{equation*}
L\left(s, C_{a}, k\right):=\prod_{\left(\mathfrak{p}, \mathfrak{m}_{a}\right)=1} L_{C_{a(\mathfrak{p})}}\left(N(\mathfrak{p})^{-s}\right) \tag{12}
\end{equation*}
$$

The product on the right hand side of (12) is absolutely convergent for $\Re s>\frac{3}{2}$ ([Ha1], [We], [De]). It holds

$$
L\left(s, C_{a}, k\right)=\prod_{j=0}^{5} L_{j}(s),
$$

where

$$
\begin{equation*}
L_{j}(s):=\prod_{\left(\mathfrak{p}, \mathfrak{m}_{a}\right)=1}\left(1-\eta(\mathfrak{p})^{A^{j}} N(\mathfrak{p})^{-s}\right) \tag{13}
\end{equation*}
$$

for $j=0, \ldots, 5$. Extend the function $\eta(\mathfrak{p})$ multiplicatively on the group $\operatorname{Div}_{\mathfrak{m}_{a}} k$ of divisors of k prime to \mathfrak{m}_{a} and define

$$
\lambda_{j}: \operatorname{Div}_{\mathfrak{m}_{a}} k \mapsto \mathbb{C}^{*}, \lambda_{j}(\mathfrak{a}):=\frac{\eta(\mathfrak{a})^{A^{j}}}{\sqrt{N(\mathfrak{a})}},
$$

for $j=0, \ldots, 5$. The functions $\lambda_{0}, \ldots, \lambda_{5}$ are Grössencharaktere of k ([Ha1], [We]) in the sense of Hecke ([He]). Let $\operatorname{Div}_{\mathfrak{m}_{a}}^{+} k$ denote the set of positive divisors in $\operatorname{Div}_{\mathfrak{m}_{a}} k$. By (13) it holds for $\Re s>\frac{3}{2}$

$$
\begin{gathered}
L_{j}(s)^{-1}=\prod_{\left(\mathfrak{p}, \mathfrak{m}_{a}\right)=1}\left(1-\lambda_{j}(\mathfrak{p}) N(\mathfrak{p})^{-s+\frac{1}{2}}\right)^{-1}= \\
=\sum_{\mathfrak{a} \in \operatorname{Div}_{\mathfrak{m}_{a} k}^{+} k} \frac{\lambda_{j}(\mathfrak{a})}{N(\mathfrak{a})^{s-\frac{1}{2}}}=L\left(s-\frac{1}{2}, \lambda_{j}, k\right)
\end{gathered}
$$

where

$$
L\left(s, \lambda_{j}, k\right):=\sum_{\mathfrak{a} \in \operatorname{Div}_{m_{a}}^{+} k} \frac{\lambda_{j}(\mathfrak{a})}{N(\mathfrak{a})^{s}}, \Re s>1,
$$

is the Hecke L-function corresponding to $\lambda_{j}, j=0, \ldots, 5$. So
Theorem 1. The L-function $L\left(s, C_{a}, k\right)$ of the curve C_{a} over k equals the product of the inverses of Hecke L-functions $L\left(s-\frac{1}{2}, \lambda_{j}, k\right), j=0, \ldots, 5$.

3 The curves $C_{a}: Y^{3}=X^{4}-a X$ over \mathbb{C}

A complex Picard curve is the projective closure of an affine plane curve of equation type $Y^{3}=p_{4}(X)$, where $p_{4}(X)$ is a polynomial of degree 4 . We exclude all polynomials $p_{4}(X)$ with only one zero. So one avoids unstable curves in order to get a compact algebraic moduli space \hat{M} of (isomorphy classes of semistable) Picard curves, which we choose in a very canonical way. Smooth Picard curves have genus 3. They correspond to a Zariski-open part $M^{\#}$ of \hat{M}. Let $K=\mathbb{Q}(\sqrt{-3})=\mathbb{Q}(\omega), \omega:=e^{\frac{2 \pi i}{3}}$, be the field of Eisenstein numbers. The cyclic group $\mathbb{Z} / 3 \mathbb{Z}$ of order 3 acts via $(x, y) \mapsto(x, \omega y)$ on each Picard curve C. If C is smooth, we get \mathbb{P}^{1} as quotient curve $C /(\mathbb{Z} / 3 \mathbb{Z})$ with $\mathbb{Z} / 3 \mathbb{Z}$ as Galois group of C / \mathbb{P}^{1}. The action of $\mathbb{Z} / 3 \mathbb{Z}$ induces a K-multiplication of type $(2,1)$ on the jacobian variety $J(C)$ of C, which means that the diagonalized representation group of $\mathbb{Z} / 3 \mathbb{Z}$ on the tangent space $T_{0} J(C)$ of $J(C)$ is generated by $\left(\begin{array}{ccc}\omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \bar{\omega}\end{array}\right)$. Let

$$
\mathbb{B}:=\left\{z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ;|z|^{2}:=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}
$$

be the two-dimensional complex unit ball. The moduli space of abelian threefolds with K-multiplication of type $(2,1)$ is the Shimura surface $\mathbb{B} / \Gamma, \Gamma=$ $\mathbb{U}((2,1), \mathfrak{O}), \mathfrak{O}=\mathfrak{O}_{K}=\mathbb{Z}+\mathbb{Z} \omega$ the ring of Eisenstein integers. Define the congruence subgroup $\Gamma(\sqrt{-3})$ by the exact group sequence

$$
1 \longrightarrow \Gamma(\sqrt{-3}) \longrightarrow \Gamma \longrightarrow \mathbb{U}((2,1), \mathfrak{O} /(1-\omega) \mathfrak{O}) \longrightarrow 1
$$

In ([Ho1], Ch. I, Prop. 3.2.3) it is proved the following
Theorem 2. The Baily-Borel compactification $\mathbb{B} / \widehat{\Gamma(\sqrt{-3})}$ coincides with the projective plane \mathbb{P}^{2}. The compactifying cusp points are four points $K_{1}, K_{2}, K_{3}, K_{4} \in \mathbb{P}^{2}$ in general position. The open part $\mathbb{P}_{2}^{\#} \subset \mathbb{P}^{2}$ coming from smooth Picard curves is precisely the complement of the six projective lines $L_{i j}=L_{j i}$ going through pairs K_{i}, K_{j} of different cusp points.
It turns out that

$$
M^{\#}=\mathbb{P}_{2}^{\#} / S_{4}, \hat{M}=\mathbb{P}^{2} / S_{4}, M=\mathbb{P}_{2}^{*} / S_{4}
$$

where $\mathbb{P}_{2}^{*}:=\mathbb{P}^{2} \backslash\left\{K_{1}, K_{2}, K_{3}, K_{4}\right\}$. Now identify \mathbb{P}^{2} with

$$
\mathbb{P}_{0}^{3}=\left\{\left(t_{1}: t_{2}: t_{3}: t_{4}\right) \in \mathbb{P}^{3} ; t_{1}+t_{2}+t_{3}+t_{4}=0\right\}
$$

and introduce projective coordinates such that

$$
\begin{aligned}
& K_{1}=(-3: 1: 1: 1), K_{2}=(1:-3: 1: 1) \\
& K_{3}=(1: 1:-3: 1), K_{4}=(1: 1: 1:-3)
\end{aligned}
$$

Each Picard curve is isomorphic to a normal form representative

$$
C_{\mathrm{t}}: Y^{3}=\left(X-t_{1}\right)\left(X-t_{2}\right)\left(X-t_{3}\right)\left(X-t_{4}\right), t_{1}+t_{2}+t_{3}+t_{4}=0
$$

The correspondence

$$
C_{\mathfrak{t}} \mapsto \mathfrak{t}=\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \mapsto\left(t_{1}: t_{2}: t_{3}: t_{4}\right) \in \mathbb{P}_{2}^{*}
$$

restricted to $\mathbb{P}_{2}^{\#}$ and composed with the $S_{4^{-}}$quotient map yields the precise parametrisation of isomorphy classes ([Ho1] I, Prop.5.2.3). Especially, all curves of the family

$$
C_{a}: Y^{3}=X^{4}-a X, a \in \mathbb{C}^{*}
$$

are isomorphic over \mathbb{C} to

$$
C_{1}: Y^{3}=X^{4}-X
$$

whose moduli point is the image of $\left(0: 1: \omega: \omega^{2}\right)$.
The Jacobians of smooth Picard curves are (principally polarized) abelian threefolds. Via period matrices they are represented by points in the generalized Siegel upper half plane

$$
\mathbb{H}_{3}=\left\{\Omega \in \operatorname{Mat}_{3}(\mathbb{C}) ;{ }^{t} \Omega=\Omega, \text { Im } \Omega \text { positive definite }\right\},
$$

uniquely up to $\mathbb{S} p(6, \mathbb{Z})$-equivalence, where
$\mathbb{S} p(6, \mathbb{Z})=\left\{G \in \mathbb{G} l_{6}(\mathbb{Z}) ;{ }^{t} G \cdot\left(\begin{array}{cc}O & E_{3} \\ -E_{3} & O\end{array}\right) \cdot G=\left(\begin{array}{cc}O & E_{3} \\ -E_{3} & O\end{array}\right)\right\}, E_{3}:=\operatorname{diag}(1,1,1)$, denotes the symplectic group acting on \mathbb{H}_{3} in the well-known manner. By Torelli's theorem there is a canonical algebraic embedding $M^{\#} \hookrightarrow \mathfrak{A}_{3}$ into the moduli space $\mathfrak{A}_{3}=\mathbb{H}_{3} / \mathbb{S} p(6, \mathbb{Z})$ of principally polarized abelian threefolds. Restricting to the Zariski-open subspace $\mathfrak{A}_{3}^{\#} \subset \mathfrak{A}_{3}$ corresponding to Jacobians of smooth genus 3 curves one gets a closed embedding $M^{\#} \hookrightarrow \mathfrak{A}_{3}^{\#}$, which determines $M^{\#}$ uniquely, up to isomorphy. The closed algebraic embedding $M^{\#} \hookrightarrow \mathfrak{A}_{3}^{\#}$ can be uniformized in the following sense. In the analytic category there is a commutative Shimura diagram

where $\mathbb{H}_{3} \longrightarrow \mathfrak{A}_{3}$ is the $\mathbb{S} p(6, \mathbb{Z})$-quotient morphism, $\mathbb{H}_{3}^{\#}$ is the preimage of $\mathfrak{A}_{3}^{\#}$ in $\mathbb{H}_{3}, \mathbb{B} \hookrightarrow \mathbb{H}_{3}$ is a closed embedding, $\mathbb{B}^{\#}=\mathbb{B} \cap \mathbb{H}_{3}^{\#}$, and $\mathbb{B} \longrightarrow M$ is the analytic quotient morphism of the arithmetic group

$$
N_{\mathbb{S} p(6, \mathbb{Z})}(\mathbb{B}):=\{G \in \mathbb{S} p(6, \mathbb{Z}) ; G(\mathbb{B})=\mathbb{B}\}
$$

acting on \mathbb{B}. In $([\mathrm{Ho} 3])$ it is proved that this ball lattice coincides with Γ.
Identifying for a moment the ball with its image in \mathbb{H}_{3} we call \mathbb{B} the period space of Picard curves and its points are called Picard period points (of the family of Picard curves). An element $\gamma \in \Gamma$ is called elliptic, iff γ has an isolated fixed point $P \in \mathbb{B}$. Let Γ^{\prime} be a subgroup of Γ. We call the elliptic element γ purely Γ^{\prime}-elliptic, iff all non-trivially on \mathbb{B} acting elements of the stationary group Γ_{P}^{\prime} are elliptic. The images of purely Γ^{\prime}-elliptic points on $\mathbb{B} / \Gamma^{\prime}$ are isolated (cyclic quotient) singularities. Notice that the fixed point P is uniquely determined by the elliptic element γ because the group of biholomorphic automorphisms of \mathbb{B} coincides with $\mathbb{P} \mathbb{U}((2,1), \mathbb{C})$, so γ has only one negative eigenline in $\left.V=\left(\mathbb{C}^{3},<.,\right\rangle\right)$ with respect to the hermitian metric $<., .>$ of signature $(2,1)$ on \mathbb{C}^{3}. In ([Ho1], Ch. I, 3.4.4) it is proved the following
Theorem 3. (see [Ho1] I, Prop. 3.4.4). The only singularities of \hat{M} are the image points of $S:=\left(0: 1: \omega: \omega^{2}\right)$ and $N:=(1: i:-1:-i)$, along the S_{4}-quotient morphism.

This is a simple application of a theorem of Chevalley stating that the singularities of a finite (more generally: locally finite) Galois quotient X / G of a smooth complex manifold X come precisely from points $x \in X$ with isotropy group G_{x} not generated by reflections at x, where reflections at x are defined as elements of G_{x} acting trivially on a submanifold of X through x of codimension 1. Looking at finite subgroups of S_{4} and their fixed points on \mathbb{P}^{2} one finds up to S_{4}-equivalence the points S, N as only singular possibilities. The S_{4}-isotropy group of S is generated by the cyclic permutation (234) of order 3. The S_{4}-isotropy group of N is generated by the cyclic permutation (1234) of order 4 . The (13)(24)-reflection line on \mathbb{P}^{2} contains N .

Proposition 6. The set of Picard period points of C_{1} coincides with the set of purely Γ-elliptic points on \mathbb{B}. It coincides with the Γ-orbit of

$$
P_{\zeta_{9}}:=\left(\zeta_{9}{ }^{4}-\zeta_{9}{ }^{2}: 1: \zeta_{9}{ }^{5}+\zeta_{9}{ }^{4}-1\right) \in \mathbb{B} .
$$

Proof: For an arbitrary group G let $G_{t o r}$ be the set of elements of finite order of G (torsion elements), and let $G_{k-t o r}$ be the subset of elements of precise order $k \in \mathbb{N}_{+} . G$ acts by conjugation on G_{k} and on $G_{t o r}$. It holds

Lemma 2. For $\Gamma=\mathbb{U}((2,1), \mathfrak{O})$ the set $\Gamma_{9-t o r}$ is not void. It consists of precisely six Γ-conjugation classes. They are projected onto two $\mathbb{P} \Gamma$-conjugation classes in $(\mathbb{P} \Gamma)_{3-\text { tor }}$.

Proof of Lemma 2: For the first statement we consider the element

$$
\varphi_{1}:=\left(\begin{array}{ccc}
-\omega^{2} & -1 & \omega^{2} \\
\omega & 1 & 1 \\
1 & -1 & \omega^{2}-1
\end{array}\right)
$$

with

$$
\operatorname{det} \varphi_{1}=\omega, \varphi_{1}^{3}=\omega E_{3}
$$

found by Feustel in [Feu]. It is easy to check that φ_{1} belongs to Γ. The eigenvalues are $\zeta_{9}, \zeta_{9}{ }^{4}, \zeta_{9}{ }^{7}$. The powers $\varphi_{1}^{k}, k=1,2,4,5,7,8$, yield six different conjugation classes in $\Gamma_{9-t o r}$ (compare determinants and eigenvalues) and two conjugation classes in $(\mathbb{P} \Gamma)_{3-t o r}$.

Now let φ be an arbitrary element of $\Gamma_{9-t o r}$ with eigenvalues $\zeta_{9}, \zeta_{9}{ }^{j}, \zeta_{9}{ }^{k}$, say. The Galois group of $F:=K\left(\zeta_{9}\right)$ over K is generated by $\sigma: \zeta_{9} \mapsto$ $\zeta_{9}{ }^{4}$. The characteristic polynomial $\chi_{\varphi}(T)$ of φ belongs to $K[T]$. Looking at trace and determinant of φ, which must belong to K, it is easy to see that φ has three different eigenvalues. They must be conjugated over K, hence $\zeta_{9}{ }^{j}=\zeta_{9}{ }^{4}=\sigma\left(\zeta_{9}\right), \zeta_{9}{ }^{k}=\zeta_{9}{ }^{7}=\sigma^{2}\left(\zeta_{9}\right)$. The eigenvectors $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ of $\zeta_{9}, \sigma\left(\zeta_{9}\right)$, $\sigma^{2}\left(\zeta_{9}\right)$, respectively, can be choosen in F^{3}. They form an orthogonal basis of F^{3} endowed with our hermitian $(2,1)$-metric because of different eigenvalues. From $\varphi(\mathfrak{a})=\zeta_{9} \cdot \mathfrak{a}$ it follows that

$$
\sigma(\varphi(\mathfrak{a}))=\sigma\left(\zeta_{9}\right) \sigma(\mathfrak{a})=\zeta_{9}{ }^{4} \sigma(\mathfrak{a})
$$

because φ belongs to $\operatorname{Mat}_{3}(K)$. Therefore

$$
\mathfrak{a}, \mathfrak{b}=\sigma(\mathfrak{a}), \mathfrak{c}=\sigma^{2}(\mathfrak{a}) \in F^{3}
$$

satisfying

$$
\begin{equation*}
<\mathfrak{a}, \mathfrak{a}><0,<\mathfrak{b}, \mathfrak{b} \gg 0,<\mathfrak{c}, \mathfrak{c} \gg 0 \tag{14}
\end{equation*}
$$

(without loss of generality) is an orthogonal φ-eigenbasis of \mathbb{C}^{3}. The elliptic element φ has the unique elliptic fixed point $P=\mathbb{P a} \in \mathbb{B}$. We show that P is a purely Γ-elliptic point. With $\Gamma^{\prime}:=\Gamma(\sqrt{-3})$ we have a commutative diagram of quotient morphisms

In [Ho1] I, Prop. 3.4.4, there are listed on \mathbb{P}_{2}^{*} the p^{\prime} - images of all Γ-elliptic points $Q \in \mathbb{B}$ together with their (abstract) isotropy groups Γ_{Q}. Our P cannot be an intersection point of two Γ-reflection discs because the reflections have eigenvalues only in K. Otherwise $P \in \mathbb{B} \subset \mathbb{P}^{2}$ would be the intersection point of two projective lines (the projectivized orthogonal complements of the one-dimensional eigenspaces) defined over K. This leads to $\mathbb{P a}=P=\mathbb{P} \mathfrak{a}^{\prime}$, $\mathfrak{a}^{\prime} \in K^{3}, \sigma(P)=P$, which contradicts to $\sigma(P) \notin \mathbb{B}=\mathbb{P} V_{-}$, by (14). There are precisely two Γ-orbits $\Gamma \tilde{N}, \Gamma \tilde{S}$ of Γ-elliptic points whose isotropy groups are not generated by reflections. The projective isotropy groups $\mathbb{P} \Gamma_{\tilde{N}}$ or $\mathbb{P} \Gamma_{\tilde{S}}$
are cyclic of order 4 or 3 , respectively. Since $\mathbb{P} \varphi \in \mathbb{P} \Gamma_{P}$ is elliptic of order 3 the point P must belong to the second orbit. The image $p(\tilde{S})$ coincides with $p^{\prime}(S)$, which is an orbitally isolated singularity with respect to Γ. This means that \tilde{S} is a purely Γ-elliptic point, hence $\mathbb{P} \Gamma_{\tilde{S}} \cong<\mathbb{P} \varphi>$ of order 3 .

Let F be a number field and A a complex abelian variety of dimension g. We say that A has F-multiplication, if there is a \mathbb{Q}-algebra embedding ι of F into the endomorphism algebra $E n d^{\circ} A=\mathbb{Q} \otimes E n d A$ of A. If, moreover, the degree $[F: \mathbb{Q}]$ of F is equal to $2 g$ and ι is an isomorphism, then A is called an abelian CM-variety. It is well-known in this case that A is simple and F is a CM-field, which is, by definition, a totally imaginary quadratic field extension of a totally real number field, see [La]. A CM-curve is a (smooth complex) projective curve C whose jacobian variety $J(C)$ is an abelian CM-variety.
Proposition 7. The endomorphism ring End $J\left(C_{1}\right)$ is isomorphic to $\mathbb{Z}\left[\zeta_{9}\right]$. Up to isomorphy, C_{1} is the only Picard CM-curve with a cyclotomic maximal order as endomorphism ring.

Proof: Our special Picard curve $C_{1}: Y^{3}=X\left(X^{3}-1\right)$ has an obvious non-trivial automorphism of 9 -th order fixing $\infty=(0: 0: 1)$:

$$
(x, y) \mapsto\left(\omega x, \zeta_{9} y\right),\left(\zeta_{9}{ }^{3}=\omega\right) .
$$

It extends to an automorphism of the Jacobian threefold of C_{1}. With Theorem 6 below we will see that this automorphism generates a subfield in the endomorphism algebra of the Jacobian. Therefore we get embeddings

$$
\begin{equation*}
\mathbb{Z}\left[\zeta_{9}\right] \hookrightarrow \operatorname{End} J\left(C_{1}\right), F=\mathbb{Q}\left(\zeta_{9}\right) \hookrightarrow E n d^{\circ} J\left(C_{1}\right) \tag{15}
\end{equation*}
$$

The representing period point $P_{\zeta_{9}}=\mathbb{P a} \in \mathbb{B}$ is purely Γ-elliptic by Proposition 3, fixed by φ_{1} of nine-th order. Therefore the ring $\operatorname{End}_{K}\left(\mathfrak{a}, \mathfrak{a}^{\perp}\right)$ of K-endomorphisms of V with eigenvector \mathfrak{a} and invariant subspace \mathfrak{a}^{\perp} is bigger than K. Such ball points have been called exceptional in [Ho2], Corollary 7.10. Moreover, \mathfrak{a} is eigenvector of a simple eigenvalue of $\varphi_{1} \in \operatorname{End}_{K}\left(\mathfrak{a}, \mathfrak{a}^{\perp}\right)$. Therefore $P_{\zeta_{9}}$ is an isolated exceptional point in the sense of Definition 7.12 of [Ho2]. The K-degree [$K\left(P_{\zeta_{9}}\right): K$] of $P_{\zeta_{9}}$ is equal to 3 . Now apply the following theorem to see that $J\left(C_{1}\right)$ is a simple CM-threefold with multiplication field $K\left(\zeta_{9}\right)$.

Theorem 4. (see [Ho2], section 7.) The endomorphism algebra of the jacobian variety $J_{\tau} \cong J\left(C_{t}\right)$ of a Picard curve with period point $\tau \in \mathbb{B}$ and moduli point $t=\left(t_{1}: t_{2}: t_{3}: t_{4}\right) \in \mathbb{P}_{2}^{*}$ is greater than K if and only if τ is exceptional. J_{τ} splits up to isogeny into abelian CM- subvarieties if and only if τ is an isolated exceptional point. Thereby Jacobians with CM-field F (of degree 3 over K) correspond to isolated exceptional points of K-degree 3 and $F \cong K(\tau)$. All other isolated exceptional points (of K-degree 2 or 1) ly on K-discs on \mathbb{B} (defined as non-empty intersections $L \cap \mathbb{B}$, L projective lines on \mathbb{P}^{2} defined over $\left.K\right)$. Thereby $\tau \in \mathbb{B}(K)$ if and only if J_{τ} splits into
$E \times E \times E$. The degree 2 case happens if and only if J_{τ} splits into $E \times\left(E^{\prime 2}\right)$, where E is an elliptic CM-curve with K-multiplication and E^{\prime} elliptic CM with imaginary quadratic multiplication field $L \neq K$. Moreover, it holds that $K(L)=K(\tau)$ in the latter case .

The endomorphism ring of any abelian CM-variety is an order in the corresponding CM-field. Each order of a number field L is contained in the maximal order, the ring \mathfrak{O}_{L} of integers in L. The maximal order of a cyclotomic field $L=\mathbb{Q}(\zeta)$ is equal to $\mathbb{Z}[\zeta], \zeta$ a generating unit root, see e.g. [Neu], I, Prop. 10.2. So the embeddings (15) must be isomorphisms, especially

$$
\mathfrak{O}_{F}=\mathbb{Z}\left[\zeta_{9}\right] \cong E n d J\left(C_{1}\right) \subseteq \operatorname{End}^{\circ} J\left(C_{1}\right) \cong F
$$

The first part of Proposition 5 is proved.
F is the only cyclotomic field of degree 3 over K. Therefore the Jacobian threefolds of CM-Picard curves C with cyclotomic endomorphism algebra $E n d^{\circ} J(C)$, which must be isomorphic to F, have to be isogeneous. There is a bijective correspondence between the ideal classes of \mathfrak{O}_{F} and the isomorphy classes of principally polarized abelian CM-threefolds A (of same multiplication type) with endomorphism rings \mathfrak{O}_{F}, see e.g. [La], III.2, Cor. 2.7. It is well-known that the class number of F is equal to 1 , see e.g. [Ha2], III, end of 29. Therefore, up to isomorphy, there is only one such A. Then, by Torelli's theorem, also the isomorphy class of Picard CM-curves with End $J(C) \cong \mathfrak{O}_{F}$ is uniquely determined. This completes the proof of Proposition 5.
Remark 2. The type of F-multiplication is a lift (F-extension) from the type $(2,1)$ of K-multiplication on $J\left(C_{1}\right)$. This lifted type is unique by [La], I.3, Theorem 3.6.

Proposition 8. A period matrix of the Jacobian $J\left(C_{1}\right)$ is:

$$
\begin{gathered}
\Pi=\left(\begin{array}{cccccc}
-\zeta_{9}+1 & 0 & -2 \zeta_{9}{ }^{2}-2 \zeta_{9} & -\zeta_{9}{ }^{2}-1 & 1 & 2 \zeta_{9}{ }^{2}+\zeta_{9} \\
\zeta_{9}{ }^{2}-1 & 0 & -\zeta_{9}{ }^{2}+2 \zeta_{9} & -\zeta_{9}{ }^{2}+\zeta_{9}+1 & -1 & \zeta_{9}{ }^{2}-2 \zeta_{9} \\
-\zeta_{9}+1 & 0 & -2 \zeta_{9}{ }^{2}-2 \zeta_{9} & -\zeta_{9}{ }^{2}-1 & 1 & 2 \zeta_{9}{ }^{2}+\zeta_{9}
\end{array}\right) \cdot \omega+ \\
+\left(\begin{array}{cccccc}
2 \zeta_{9}{ }^{2}+\zeta_{9}+1 & 1 & -\zeta_{9}+1 & -2 \zeta_{9}{ }^{2}-\zeta_{9} & 0 & \zeta_{9}{ }^{2}+\zeta_{9}-1 \\
-\zeta^{2}{ }^{2}+2 \zeta_{9} & 1 & -2 \zeta_{9}{ }^{2}+2 \zeta_{9}+1 & -\zeta_{9}+1 & -1 & \zeta_{9}{ }^{2}-\zeta_{9}-1 \\
2 \zeta_{9}{ }^{2}+\zeta_{9}+1 & 1 & -\zeta_{9}+1 & -2 \zeta_{9}{ }^{2}-\zeta_{9} & 0 & \zeta_{9}{ }^{2}+\zeta_{9}-1
\end{array}\right) .
\end{gathered}
$$

The set of \mathbb{H}_{3}-(Siegel-) period points of $J\left(C_{1}\right)$ coincides with the $\mathbb{S} p(6, \mathbb{Z})$-orbit of

$$
\left(\begin{array}{ccc}
\frac{-2 r s-1}{3 r^{2}} & \frac{1}{r} & \frac{r s-1}{3 r^{2}} \\
\frac{1}{r} & -1 & 0 \\
\frac{r s-1}{3 r^{2}} & 0 & \frac{-2 r s+2}{3 r^{2}}
\end{array}\right) \cdot \omega+\left(\begin{array}{ccc}
\frac{2 r s-2}{3 r^{2}} & \frac{1}{r} & \frac{-r s+1}{3 r^{2}} \\
\frac{1}{r} & -1 & \frac{r^{2}}{r} \\
\frac{-r s+1}{3 r^{2}} & \frac{-1}{r} & \frac{2 r s+1}{3 r^{2}}
\end{array}\right)
$$

with

$$
r:=-\zeta_{9}{ }^{4}+\zeta_{9}{ }^{3}+2 \zeta_{9}{ }^{2}+\zeta_{9}+1, s:=-\left(\zeta_{9}{ }^{5}+\zeta_{9}{ }^{3}+2 \zeta_{9}{ }^{2}+\zeta_{9}\right)
$$

Proof: In [Ho3], sections 2.4-2.5, it is described a procedure to receive the period matrices starting from the coordinates of the fixed point $P_{\zeta_{9}}$. First one has to move the "diagonal ball" $\mathbb{B} \subset \mathbb{P}^{2}$ by a plane projective linear transformation to the "Picard ball" (Siegel domain) $\mathbb{B}^{\prime} \subset \mathbb{P}^{2}$. This is done by the inverse of

$$
M:=\left(\begin{array}{ccc}
\omega & 0 & -1 \\
0 & 1 & 0 \\
-\omega^{2} & 0 & -1
\end{array}\right)
$$

(see [Ho3], p. 28) acting on row-vectors from the right. Let $P^{\prime}:=(a: b: c) \in$ \mathbb{B}^{\prime} be the image point of $P_{\zeta_{9}} \in \mathbb{B}$. Setting $b=1$ and applying Proposition 3 one gets $a, c \in \mathbb{Z}\left[\zeta_{9}\right]$. From the vector ($a, 1, c$) one gets the period matrices via orthogonal fillings and $*$-procedure coming from Picard period integrals, all described in [Ho3] around Lemma 2.22. The numbers r, s appear in the period matrix Π at places $(1,1)$ or $(1,4)$, respectively.

References

[CER] Cherdieu, J.-P., Estrada-Sarlabous, J., Reinaldo-Barreiro, E., Efficient Reduction on the Jacobian Variety of Picard Curves, in: Coding Theory, Cryptography and Related Areas, Proceedings of the ICCC-98, J. Buchmann, T. Hohold, H. Stichtenoth, H. Tapia-Recillas (eds.), pp. 13-28, SpringerVerlag, 2000.
[Da-Ha] Davenport, H., Hasse, H., Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J.Reine Angew. Math. 172(1934), 151-182.
[De] Deuring, M., Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, Nachr. Akad. Wiss. Göttingen, 1953, 85-94.
[Feu] Feustel, J.M., Kompaktifizierung und Singularitäten des Faktorraumes einer arithmetischen Gruppe, die in der zweidimensionalen Einheitskugel wirkt, Diplomarbeit, Humboldt-Univ. Berlin, 1976 (unpublished)
[Ha1] Hasse, H., Zetafunktion und L-Funktionen zu einem arithmetischen Funktionenkörper vom Fermatschen Typus, Abhandlungen der Deutschen Akademie der Wissenschaften Berlin, Math.-Nat. Kl. 1954, Nr. 4, 5-70
[Ha2] Hasse, H., Zahlentheorie, Akademie Verlag, Berlin, 1963
[He] Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Zeitschr. 1(1918), 357-376, 6(1920), 1151.
[Ho1] Holzapfel, R.-P., Geometry and Arithmetic around Euler partial differential equations, Dt. Verlag d. Wiss., Berlin/Reidel Publ. Comp., Dordrecht, 1986
[Ho2] Holzapfel, R.-P., Hierarchies of endomorphism algebras of abelian varieties corresponding to Picard modular surfaces, Schriftenreihe Komplexe Mannigfaltigkeiten 190, Univ. Erlangen, 1994
[Ho3] Holzapfel, R.-P., The ball and some Hilbert problems, Lect. in Math. ETH Zürich, Birkhäuser, Basel-Boston-Berlin, 1995
[Lac] Lachaud, G., Courbes diagonales et courbes de Picard, Prétirage No. 97-30, Institut de Mathematiqués de Luminy, 1997
[La] Lang, S., Complex multiplication, Grundl. Math. Wiss. 255, Springer, 1983
[Neu] Neukirch, J., Algebraische Zahlentheorie, Springer, Berlin-Heidelberg, 1992
[Ta] Taniyama, Y., L-functions of number fields and zeta functions of abelian varieties, J. Math. Soc. Japan 9(1957), 330-366.
[We] Weil, A., On Jacobi sums as "Grössencharaktere", Transact. Amer. Math. Soc. 73(1952), 487-495.

