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1 Preface

We start with a simple example of an Picard orbiface. The Apollonius config-
uration consists of a quadric together with three tangent lines on the complex
projective plane P2. Explicitly, for instance, we can take the projective curve
described by the equation

XY Z(X2 + Y 2 + Z2 − 2XY − 2XZ − 2Y Z) = 0
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P2

(1)

We endow the points of the plane with weights

• ∞ for the 3 touch points;

• 16 for the 3 intersection points of lines;

• all other points on the 4 curves get weight 4;

• the remaining points of the plane have trivial weight 1.

In the mean time it is known that the picture represents an orbital Picard mod-
ular plane together with weighted branch locus of a hyperbolic (complex ball)
uniformization. A Picard modular plane is a Baily-Borel compactified Picard
modular surface, which is a projective plane. Without weights, but in connec-
tion with ball uniformization, I saw the Apollonius configuration first in the
paper [Y-S]. The corresponding Picard modular group acting on the complex
2-ball has been determined precisely first in the HU-preprint [HPV] as congru-
ence subgroup of the full Picard modular group of the imaginary quadratic field
Q(
√
−1) of Gauß numbers. It has been published in [HV].

Surprisingly, in a pure algebraic geometric manner and with a finite number
of steps, we are able to read off almost from this weighted projective plane the
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Fourier series

HeegC(τ) =

∞∑

N=0

(
(
3N

2
− 1

8
)a2(N) + 3

N∑

m=1

σ(m)a2(N −m)

)
qN ∈ M3(4, χ),

= −1

8
· ϑ6 − 17

2
· ϑ2θ,

q = exp(2πiτ), τ ∈ H (complex upper halfplane).
(2)

with Jacobi’s modular form ϑ and Hecke’s modular form θ described in the ap-
pendix. This is an elliptic modular form of certain level, weight and Nebentypus
χ. The N -th coefficient counts (with intersection multiplicities) the arithmetic
curves of norm N on the Picard-Apollonius orbiplane. Thereby C is the orbital
arithmetic curve (with above weights) sitting in the Apollonius cycle, where
σ(m) denotes the sum of divisors of m, and a2(k) is the number of Z-solutions
of x2 + y2 = k, and χ = χ8 is the Dirichlet character on Z extending multiplica-

tively
(

2
p

)
= (−1)(p

2−1)/8 for odd primes p ∈ N and 0 for even numbers. More

precisely, let us extend the cycle and consider
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P2

(3)

where all arithmetic curves of smallest norms 1 and 2 are drawn. One has the
most dif and only ificulties with the algebraic geometric calculation of the con-
stant coefficient of the Heegner series. For this purpose one has to consider
rational orbital self-intersections on the so-called released Picard-Apollonius or-
biplane. We draw the released Apollonius cycle:
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In the mean time we found another simple example. We call it the Hilbert-
Cartesius orbiplane. The supporting Cartesius configuration lies also on P2.
It consists of three quadrics touching each other (and nowhere crossing) together
with four lines, each of them joining three of the six touch points. Take, for
example, the projective closure of the affine curve described by the equation

(X2 + Y 2 − 2)(XY − 1)(XY + 1)(X2 − 1)(Y 2 − 1) = 0

consisting in the real affine plane of a circle, two hyperbolas and four lines
parallel two the axis through pairs of the points (±1,±1). Not visible are two
further intersection points of same quality (two quadrics meet two lines) at
infinity. It is easy to draw these seven curves.
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We endow the points of the plane with the following weights:

• ∞ for the six intersection points;

• all other points on the 7 curves get weight 2;

• the remaining points of the plane have ”trivial weight” 1.

The picture represents an orbital Hilbert modular plane together with weighted
branch locus of a bi-disc uniformization. A Hilbert modular plane is a Baily-
Borel compactified Hilbert modular surface, which is a projective plane. The
corresponding Hilbert modular group acting on the bi-product H2 of the upper
half plane H can be found in [Hir1], [Hir2], [vdG]. It is commensurable with the
full Hilbert modular group of the real quadratic number field Q(

√
2). Also in

this case it is possible in almost the same purely algebraic geometric manner in
finite steps to read of the Fourier series

HeegC(τ) = −1 + 2 ·
∞∑

N=1


∑

d|N
χ(d)d


 qN ∈ M2(8, χ), (5)

connected with the plane quadric C : X2+Y 2−2Z2 = 0. This is again an elliptic
modular form of certain level, weight and Nebentypus χ. More precisely, this
is an Eisenstein series. The coefficients again count (with degree multiplicities)
the arithmetic curves of fixed norms and of Humbert type. We also need for
the calculation of the rational constant coefficient of the series an orbital curve
self-intersection on the released Hilbert-Cartesius orbiface, whose non-trivially
weighted curves we draw in the following picture:
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2 Introduction

We only consider normal surfaces, analytic or algebraic over the complex num-
bers. We need a precise geometric language. More precisely, we need objects,
which are a little finer than varieties but not so abstract as Shimura varieties
over number fields or stacks. The latter notions make much sense for fine number
theoretic considerations. But here we are near only to the original geometric
Shimura varieties over C, especially to Picard and Hilbert modular surfaces,
called Shimura surfaces in common, and modular or Shimura curves on them,
which we call also arithmetic curves. For example, a Picard modular surfaces is
a ball quotient Γ\B by a lattice Γ, which is a discrete subgroup Γ of PU((2, 1), C)
acting properly discontinuously on the 2-dimensional complex unit ball B. Let
D be a linear disc on the ball B such that Γ\D is an algebraic curve on Γ\B.
Invariant metrics on the ball B (Bergmann) go down to metrics on the surfaces
with degeneration cycles (join of irreducible curves and points). These curves
and points are endowed with natural weights coming from ramification indices
of the locally finite covering B→ Γ\B. It can be proved that on canonical sur-
face models (in Shimura’s sense) these curves are defined over a ring the integers
of a number field. At the same time these disc quotient curves are geodesics
with respect to the degenerate metric. In the mean time it was proved (A.M.
Uludag,[Ul]) that there are infinitely many Picard modular projective planes.

Especially, it would be very interesting to find plane equations with integral
coefficients for the above arithmetic geodesics. At the moment we are only able
to give a numerical characterization of such curves. Looking back to history
we know Plücker’s formula for plane curves C with only cusps or transversal
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self-intersection points joining the numbers of them, the curve degree and the
genus. Together with the idea of proof we remember Plücker’s explicit relation

d(d − 1)− 2δ − 3κ = d∗ = 2d + (2g − 2)− κ, (6)

where g denotes the genus, d the degree of C, d∗ the number of tangents of
C through a fixed general point of P2, δ the number of double points and κ
the number of cusps of the curve. Forgetting d∗ we get a relation between the
degree d, the genus g, δ and κ.

We will define orbifaces, especially Picard and Hilbert modular orbifaces,
and orbital curves C on the latter, all with help of branch weights. We will
introduce orbital invariants for them, which are rational numbers explicitly ex-
pressed in terms of algebraic geometry. Of special interest are the two orbital
invariants E and S, which are singularity modifications of the Euler number
and the selfintesection of the curve algebraically calculable on a special surface
model, the so-called release model, which we must introduce. Restricting, for
example to Picard orbifaces we get in analogy to (6) the relations

Eul(C) = vol(ΓD) = 2 · Self(C), (7)

with supporting curve C = Γ\D. Forgetting the Euler-Bergman volume vol(ΓD)
of a fundamental domain of the subgroup ΓD of Γ of all elements operating on
D one gets a characteristic relation between the orbital Euler invariant and the
orbital self-intersection of C:

Theorem 2.1 With the above notations (and definitions of orbital invariants
below) it holds that

Eul(C) = 2 · Self(C).

The relation (7) generalizes the Relative Proportionality for modular curves
and Shimura curves on neat ball quotient surfaces, see [H98]. For their impor-
tance we show that the relative orbital Euler invariants are the constant terms
of Fourier series of modular quality joining infinitely many orbital invariants.
Moreover, the (orbital invariant) coefficients count (with multiplicity depending
on C embedded on X ) the number of arithmetic geodesics on X , see citeH02.

It is not difficult to prove and write down the relative Proportionality Rela-
tion

Eul(C) = Self(C) (8)

for orbital modular or Shimura curves on any Hilbert orbiface (including also
symmetric Hilbert modular groups). It is also clear that the orbital invariant
in (8) is the constant coefficient of a Hirzebruch-Zagier modular form [HZ].
The aim of the next section is to develop a common language for Hilbert and
Picard modular surface with a common algebraic geometric understanding of
the involved elliptic modular Hirzebruch-Zagier series [HZ] and Kudla-Cogdell
series (ball case) [Cog]. To use this fine geometric language for common proofs
and explicit calculations is the aim of the whole paper.
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For a clear definition of orbital invariants we need a category C with a mul-
tiplicatively closed set of ”finite coverings” D/C and ”degrees” [D : C] of the
latter, satisfying the degree formula

[E : C] = [E : D] · [D : C]

for all double coverings E/D/C. A rational orbital invariant on C is simply
a non-constant map

h : Ob C −→ Q

from the objects of our ”orbital category” satisfying the ”orbital degree formula”

h(D) = [D : C] · h(C)

for all finite coverings D/C. Part of the work is to clarify, which orbital cate-
gories we can construct. In the paper [Ul] by A.M. Uludag I saw him working
with weighted surfaces X = (X, w), w : X → N+ a map from the surface X
to the natural numbers. These object we will basically use for the construction
of our orbital categories. After the definition procedure we are able to find ex-
plicitly infinitely many orbital invariants. We combine the rational intersection
theory and Heegner cycles. But all these invariants are ”modular dependent”,
which means, that they are connected by modular forms of known and fixed
type with each other. It follows that it suffices only to know finitely many of
the orbital invariants to determine the others together with the corresponding
modular form. The interpretation of counting arithmetic curves on Picard or
Hilbert modular surfaces is then general. Until now the series were only known
in neat cases. So it was e.g. until now not possible to count arithmetic curves
on modular planes. The extension from neat to general cases is the progress
described in this paper. In contrast, in the neat Picard case the corresponding
quotient surfaces are never rational. Explicit calculations there seem to be very
difficult. But in the plane case the situation is much better, especially with a
view to coding theory on explicit arithmetic curves.

Remark 2.2 : Volumes of fundamental domains of Picard or Hilbert modu-
lar groups with respect to fixed volume forms on the the uniformizing domains
are obviously orbital invariants. If we take the Euler volume form, then these
volumes coincide with the orbital Euler invariants of the corresponding orbital
surfaces. This is a theorem (Holzapfel, [H98]), in the ball case, to be written
down in the Hilbert case). The same is true for the signature volume form,
which leads to the corresponding orbital signature invariants. The Euler and
the signature forms are distinguished by a factor. This leads to a proportion-
ality relation between the orbital invariants with different factors in the Picard
and Hilbert surface cases.

For explicit calculations it is important to know that the orbital invariants
of the modular surfaces of the full lattices can be expressed by special values
of Zeta-functions (or L-series) of corresponding number fields. (Maass in the
Hilbert case, Holzapfel [H98] in the Picard case.)
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3 The Language of Orbifaces

3.1 Galois weights

A weighted (algebraic) surface X = (X, w) is defined by:

• an irreducible normal complex algebraic surface X

• and a weight map w : X −→ N+ ∪ {∞}

with conditions

• almost everywhere (i.e. up to a proper closed algebraic subvariety of X)
one has absolute trivial weight 1:

• w is almost constant on each closed irreducible curve C of X (t.m. up to
a finite set of points P1, ..., Pr on C);

The corresponding constant w(C) := w(C \ {P1, ..., Pr}) is called the weight
of C on X.

• If P ∈ C, C an irreducible curve on X , then w(C) divides w(C).

A point P on X is relatively non-trivial weighted if w(P ) > w(C) for
all irreducible curves C though P . Otherwise it is called relatively trivial
weighted . The formal (finite) double sum

B = B(X, w) :=
∑

w(C)C +
∑

w(P )P = B1 + B0

over all irreducible curves C with non-trivial weight (> 1) respectively all rela-
tively non-trivial weighted points P on X is called the weight cycle of X. If
the double sum is restricted to (all) finite non-trivial weights, then we call it
the finite weight cycle of X, denoted by Bfin = Bfin(X, w). As above we
have two partial sums, one over the curves, the other over the points of finite
non-trivial weights:

Bfin = Bfin
1 + Bfin

0 .

Complementarily, we define the infinite cycle of X by

B∞ = B∞(X, w) := B −Bfin = B∞
1 + B∞

0

together with its 1, 0 - dimensional decomposition in obvious manner.
As usual we call the union of component sets of a cycle D on X the support

of D and denote it by supp D. The weighted surface
o

X = (
o

X,
o
w) with

o

X =

X \ supp B∞ and
o
w = w| o

X
is called open finite part of X. We get the first

examples of open subsurfaces
o

X⊆ X and open embeddings
o

X →֒ X of weighted
surfaces in this way. Generally, we take open subsurfaces U of X instead of
o

X and define in analogous manner open weighted subvarieties U ⊆ X and
open embeddings U →֒ X using restrictions of the weight map w.
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Let C be an irreducible curve on X . The system of open neighbourhood U
of C defines the surface germ of X along C. We imagine it as a small open
neighbourhood of C or, more precisely, as refinement (equivalence) class of such
neighbourhoods. Working additionally with weight restrictions we define the
weighted surface germ C of X along C as refinement class of all U =
(U, w|U ) with open neighbourhoods U of C. We write C ↼ X in this situation
and consider it as closed embedding of weighted objects (supported by the
closed embedding of C into X in the usual sense).

The same can be done with open neighbourhoods of a point P ∈ X . Working
with weight restrictions again we define the weighted surface germ P of X
at P as refinement class of all U = (U, w|U ) with open neighbourhoods U of
P . We write P εX in this situation. If P is a point on C, then we write P εC
instead of the pair (C,P) and consider it as (closed) embedding of weighted
surface germs.

Remark 3.1 We left it to the reader to work with complex or with Zariski
topology. In the later definitions of orbital invariants there will be no difference.
But there will be numerical differences between the embedded germs P εX, P εC,
P εD, where D is another irreducible curve through P . This is not surprising
because already for unweighted surfaces it can happen that P is a singularity of
one or two of the objects X, C or D, but may be a regular point of the other
one(s).

An isomorphism of weighted surfaces f : X
∼−→ Y, Y = (Y, v), X = (X, w)

as above, is nothing else but a surface isomorphism f : X
∼−→ Y , which is weight

compatible, that means v ◦ f = w. If the isomorphism sends the irreducible
curve C to D and the point P to Q ∈ Y , then it induces weighted surface germ
isomorphisms C

∼−→ D and P
∼−→ Q. They are not globally depending on

X or Y but only on small open neighbourhoods U respectively V of the curves
or points and on the isomorphic compatible weights around. For P ∈ C we
have Q ∈ D and isomorphisms of embedded objects (C,P)

∼−→ (D,Q). As
in scheme theory we visualize the situation by a commutative diagram:

P ε C ↼ U →֒ X

Q ε D ↼ V →֒ Y
?
≀

?
≀

?
≀

?
≀

Trivially weighted surfaces (Y,1), 1 the constant weight map (with
weight 1 for each point), are identified with the surfaces Y themselves. So
we will write Y again instead of (Y,1). A smooth surface Y together with a
finite covering p : Y → X is called a finite uniformization of X = (X, w),
if and only if p = pG is the Galois covering with Galois group G ⊆ Aut Y ,
X ∼= Y/G, w(P ) = #GQ (number of elements of the stabilizer subgroup of G
of all elements fixing Q) for any p-preimage point Q ∈ Y of P . We write also
p : Y → Y/G in this situation and consider p as a uniformization mor-
phism in the category of weighted surfaces. The weighted surface X is called
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(finitely) uniformizable if and only if a (finite) uniformization Y → X exists.
The weights w(P ) are called Galois weights. The weight of an irreducible
curve on X coincide with the corresponding rami-fication index. It is also called
branch weight . The branch weight of such a curve is non-trivial if and only if
the curve belongs to the branch locus of pG.

Point surface germs P on uniformizable weighted surfaces are called orbital
quotient points. This definition is extended to isomorphic objects. With the
following local-global diagram we introduce further notations.

Q ε V →֒ Y

Q/GQ = P ε U →֒ X = Y/G
?
GQ

?
GQ

?
G (9)

using small open neighbourhoods and quotient maps by GQ or G in the columns
(local and global uniformizations). The left column (together with the middle)
is called a uniformization of P. The orbital point P is called smooth if
and only if the supporting point P is a smooth surface point of X (or U). Or-
bital quotient points realized as above by abelian groups GQ are called abelian
orbital points. The others are called non-abelian .

A finitely weighted surface X is called orbiface (or finitely weighted orb-
iface), if each of its point surface germs P is an orbital quotient point. If thereby

X is not compact, we call it an open orbiface. Let Y
H−→ Z be a uniformization

of the orbiface Z with subgroup H of G ⊆ Aut Y . Then pG factors through pH

defining a finite covering f : Z → X with pG = f ◦ pH . We get a commutative
orbital diagram

Y

Z X
?
H
@

@
@R

G

-f

(10)

defining a uniformizable orbital covering or uniformizable finite orbital
morphism f = fG:H on this way on the bottom. Working with Galois weight
maps wH : Z → N+ and wG : X → N+ we define f∗wG := wG ◦ f . This lifted
weight map is obviously pointwise divisible by wH , which means that wH(z)
divides f∗wG(z) = wG(f(z)) for all z ∈ Z. We write wH | f∗wG and define

the quotient weight map wG:H := f∗wG

wH
: Z → N+ pointwise. The curve

weights on Z coincide with the corresponding ramification indices along f . If
wG:H is constant on the fibres of f , then we can push it down to the weight
map wf : X → N+. This happens, if H is a normal subgroup of G. Then we
have wf = wG/H on X and a new (reduced) kind of finite orbital covering
Z → (X, wf ). We call it the reduction of f : (Z, wH) → (X, wG) and wf

the reduction of wG through Z. A geometric Galois problem for a given
finite covering f : Z → X looks for a common uniformization Y as described in

11



diagram (10). For this purpose it is worth to notice that

wH =
f∗wG

f∗wf
(=

f∗wG

wG:H
).

So, if one knows wG and f (hence wf ) one recognizes already the branch weights
and curves of the possible uniformization pH .

Weighted surface germs C ↼ X along irreducible curves C on X are called
(open) orbital curves if X is open orbital. The definition does not depend on
X but, more precisely, on open neighbourhoods U of C on X . It may happen
that X is not orbital but U →֒ X is. Then C is orbital.

The notions of uniformization and of finite morphisms restrict to orbital
curves and points. From scheme theory it is well-known that finite morphisms
are surjective and open. So for orbital points, curves and orbifaces (open) we
get restriction diagrams along finite coverings f : Y → X via restrictions on
germs

Q ε D ↼ V →֒ Y

P ε C ↼ U →֒ X
?

fD,Q

?
fD

?
f |V

?
f (11)

with vertical finite orbital coverings. These are orbitalizations of well-known
diagrams in scheme theory or complex algebraic geometry. Here we used pairs
(VQ, V ) of small open neighbourhoods of Q or D, respectively, to define finite
coverings fD,Q of orbital points on orbital curves. Working only with
small open neighbourhoods V of Q we define finite orbital point coverings
fQ algebraically visualized in the diagram

Q ε V →֒ Y

P ε U →֒ X
?

fQ

?
f |V

?
f (12)

In the special case of uniformizations we dispose on Diagram (9) for orbital
points. Working with Galois group G again, the normalizer group (decom-
position group)

NG(D) := {g ∈ G; g(D) = D}
of D and NG(D)-invariant small open neighbourhoods V of D. Orbital curves
are said to be smooth if and only if the supporting curve is smooth and the
supporting surface is smooth around the curve. Let D be a smooth curve on a
trivially weighted surface Y with G-action such that the orbital curve D ↼ Y
is smooth. Then we define an orbital curve uniformization fD of C by the
vertical arrow on the left-hand side of the diagram

12



D ↼ V →֒ Y

C ↼ U →֒ X
?
NG(D)

?
NG(D)

?
G (13)

The weight of C is equal to the order of the cyclic centralizer group (inertia
group)

ZG(D) := {g ∈ G; g|D = id|D}.
The curve C is isomorphic to the quotient curve D/GD, where GD is the effec-
tively on D acting group defined by the exact group sequence

1 −→ ZG(D) −→ NG(D) −→ GD = NG(D)/ZG(D) −→ 1. (14)

3.2 Orbital releases

We want to introduce special birational morphisms for orbital points, curves
and orbifaces. Changing special curve singularities by numerically manageable
surface singularities. These will be abelian singularities, which are defined as
supporting surface singularities of orbital abelian points P. The latter are well-
understood by linear algebra. Let G be a finite abelian subgroup of Gl2(C). It
acts effectively on the complex affine plane C2 and around the origin O = (0, 0)
of C2, hence on the trivially weighted smooth orbital point O ε C2. Working in
the analytic category, that means with small open analytic neighbourhoods of
points, it is true that for each orbital quotient point P there is uniformization
O → P ∼= O/G for a suitable finite subgroup G of Gl2(C) (H. Cartan). Let
us call it a linear uniformization of P. If G is not abelian, then there are
precisely three G-orbits of eigenlines in C2 of non-trivial elements of G. Going
down to P = O/G they define precisely three orbital curve germs through P
called eigen germ triple at P. There are precisely two of them, called eigen
germ pair at P if and only if G is an abelian group not belonging to the
center of Gl2(C). If G is central then we declare the germs of the images of
any two different lines through O as eigen germ pair at P. Different choices are
isomorphic.

By the way, orbital curve germs on orbifaces X at a point P are defined
in the same manner as orbital curves but working with orbital curve germs at
P and small analytic open neighbourhoods of them instead of global curves and
their open neighbourhoods. More precisely, it is the weighted analytic surface
germ around a curve germ on X through P . Now let P be an orbital point on
the orbital curve C on X. If C is smooth at P , then C defines a unique orbital
curve germ CP at P. Now let P be an abelian orbital point. We say that two
orbital curve(germ)s C1 and C2 on X cross (each other) at P εX if and only
if they form an eigen germ pair there. Necessarily C1 and C2 have to be smooth
at P .

A curve C on a surface X is called releasable at P ∈ C if and only if there
is a birational morphism ϕP : X ′ → X such that the exceptional curve EP
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of ϕP is smooth, irreducible, ϕP (EP ) = P and the proper transform C′ of C
on X ′ crosses EP at any common point. Observe that C′ must be smooth at
these intersection points. So X ′ → X resolves the (releasable) curve singularity
P . If P is thereby a curve singularity, then we call ϕP the (honest) release
of C at P . If P is a smooth curve and surface point then one could take the
σ-process at P , but this is not a honest release. Honest releases are only applied
to curve singularities. Using the uniqueness of minimal singularity resolution
for surfaces (here applied to the abelian surface singularities on EP ⊂ X ′) it is
easy to see that this local release ϕP is uniquely determined by P ∈ C ⊂ X .
The curve C ⊂ X is called releasable if and only if it is releasable at each of
its points. There are only finitely many honestly releasable points on each fixed
curve. Therefore, if C is releasable, there exists a unique birational morphim
ϕ = ϕC : X ′ → X releasing all singular points of C. This morphism is called
the release of X along C.

Remark 3.2 The surface singularities on X of released curve points P are of
special type. They are contractions of one curve EP supporting finitely many
abelian singularities (of X ′). So P has a surface singularity resolution con-
sisting of a (central) irreducible curve (the proper transform of EP ) crossed by
some disjoint linear trees of lines (that means isomorphic to P1) with negative
self-intersections smaller than −1. The linear trees are minimal resolutions of
abelian surface singularities. Such a singularity resolutions of P is called re-
leased . It can happen that it is bigger than the minimal singularity resolution
of P ; for instance, if we are forced to release a smooth surface point, an abelian
singularity or, more generally, a quotient singularity P .

Example 3.3 Let P be an ordinary singularity of a curve C on a surface X
smooth at P . By definition, the branches of C at P cross each other there. Then
the curve singularity P is released by the σ-process at P . The curve branches
appear as (transversal) intersection points of the proper transform of C with the
exceptional line over P .

Example 3.4 Hypercusp singularities of curves at smooth surface points
are defined by local equations yn = xm, m, n > 0. They are releasable by
a line (smooth rational curve) supporting at most two abelian surface points.
This releasing line cuts the proper transform of the curve in precisely gcd(m, n)
smooth points. These intersections are transversal.

Proof idea: Stepwise resolution of the curve singularity by σ-processes. At the
end one gets a tree of lines with negative self-intersections. One discovers that
the proper transform of the curve crosses only one component of the tree. The
two (or less) partial trees meeting this component contract to an abelian point.
The resolution steps reduce the exponent pairs (m, n) following the euclidean
algorithm. It stops by arriving equal exponents in the singularity equation, yd =
xd, d = gcd(m, n). This is the local equation of an ordinary curve singularity
with d branches.

14
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Definition 3.5 An orbital curve C is releasable if and only if the supporting
surface embedded curve C is.

The definition does not depend on the choice of orbiface X defining C by re-
striction.

3.6 Examples

• Release of a curve cusp at smooth surface point.
Let [−3,−1,−2] represent a linear tree of three smooth rational curves on
a smooth surface with the indicated self-intersections. It is contractable
(stepwise) to the regular surface point P . But let us contract the first
and last line to cyclic singularities P1, P2 of types < 3, 1 > respectively
< 2, 1 > on the middle line L. Now consider a curve C′ intersecting L
transversally at one point P ′ 6= P1, P2. Contracting L, the image point P
is a curve cusp on the image curve C of C′. Altogether L→ P is a release
of (C, P ) with exactly one branch point (C′, P ′), and P ′ ∈ C′ is totally
smooth.

• A more complicated release of smooth point.
Let P be a smooth surface point again. There is a release L → P with
two honest cyclic singularities

P ′ : < 93, 76 > ← [−2,−2,−2,−2,−4,−2,−2,−2,−2,−2,−2,−2],

P ′′ : < 106, 17 > ← [−7,−2,−2,−2,−5],

on L numerically resolved by continued fractions (Hirzebruch-Jung singu-
larities). As in the previous example one has only to consider the composed
linear resolution tree connected by a (−1)-line and its stepwise blowing
down to a smooth point:

Ẽ′ : [−2,−2,−2,−2,−4,−2,−2,−2,−2,−2,−2,−2,−1,−7,−2,−2,−2,−5]

→ [−2,−2,−2,−2,−4,−1,−2,−2,−2,−5]

→ [−2,−2,−2,−2,−1,−5] → [−1] → P,
(15)

Remark 3.7 It is easy to see now that each abelian point has infinitely many
different releases.

• Hilbert cusps.
An irreducible neat Hilbert cusp curve is a contractible rational curve
H on a surface with a double point P as one and only curve singularity.
Moreover, P has to be a cyclic surface point (including smooth ones), and
the two branches of H cross each other at P . By the above remark each
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irreducible Hilbert cusp curve has infinitely many releases which - by abuse
of language - are also called called releases of neat Hilbert cusp points.
The irreducible Hilbert cusp curves are also called simple releases of neat
Hilbert cusp points. There are also infinitely many simple releases of one
and the same cusp point. One has only to consider the minimal resolution
of such cusp point with smooth transversally intersecting components.
It consists of a cycle of smooth rational curves. Orbital Hilbert cusp
points in general are finite quotients of neat Hilbert cusp points. A release
of one of them is nothing else but the quotient of a neat Hilbert cusp point
release.

We say that the birational morphism Y ′ → Y is a smooth release of the
curve D ⊂ Y , if it is a release of D and Y ′ is a smooth surface. Thereby we
allow also non-honest releases at some points. Let G be a finite group acting
effectively on Y and assume that the action lifts to Y ′ permuting the released
points. The (smooth) proper transform of D on Y ′ is denoted by D′. Let
C =: D/G and C′ =: D′/G be the image curve of D on X := Y/G or of D′ on
X ′ := Y ′/G, respectively. We say that the release Y ′ → Y is G-stable if and
only if additionally the induced morphism X ′ → X is a release of C (with proper
transform C′). We endow X’ and X with Galois weights by means of orders of
stabilizer groups at points. Then we get an orbiface X′ and its contraction
X. Such contractions will shortly also be called orbifaces. The induced orbital
curve C′ contracts to the weighted weighted surface germ C, which we will also
call orbital curve. Altogether we get a commutative diagram of orbital curves

D′ D

C′ C
?
NG(D)

-

?
NG(D)

-

(16)

with trivially weighted release on the top, an orbital curve release on the bottom
and an orbital curve uniformization on the left-hand side.

Definition 3.8 The orbital curve C is called uniform releasable if and only
if there exist a commutative diagram (16). The corresponding quotient release
C′ → C is called an orbital release of C. The ambient map X′ → X is called
the orbital release of X along C. The morphisms D′ → D, Y ′ → Y are called
release uniformizations of C′ → C or of X′ → X, respectively.

Notice that a release uniformization of C endows automatically the surface
around C′ with (Galois) weights. Therefore we get an orbital curve in this case.
Starting from a smooth surface Y with G-action it is interesting to ask, which
curves D ⊂ Y have a releasable quotient curve C = D/G ⊂ X = Y/G ? Keep
in mind the example 3.10 below, because it will play a central role.
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Definition 3.9 The action of G on Y as above is ordinary at D if and only
if the curve

GD :=
⋃

g∈G

g(D)

has at most ordinary singularities. The action is smooth at D if and only if
GD is smooth. The action is separating at D if and only if for all g ∈ G the
curve g(D) is either equal to D or has no common point with D.

Obviously, a smooth action at D must be separating at D. For smooth curves
D both notions coincide.

Example 3.10 Let Y be a smooth surface with G-action and D a smooth curve
on X. If G acts ordinarily at D, then the orbital curve C = D/G is uniform
releasable.

Proof . We release simultaneously the ordinary singularities of GD by σ-
processes. Let Y ′ → Y be this simultaneous releasing morphism, and denote
the proper transform of D on Y ′ by D′. Then G acts on Y ′ and thereby
smoothly at D′. With C′ = D′/G = D′/NG(D) = D′/GD′ we get a uniform
release diagram (16).

�

Example 3.11 Let Y be a smooth surface with G-action separating at D, D
a curve on X with at most hypercusp singularities. Then the orbital curve
C = D/G is uniform releasable.

Proof . Because of the separating property we can assume that G = NG(D).
Then G acts on the set of singularities of D. In a G-equivariant manner we
resolve stepwise the curve singularities as described in Example 3.4, each by a
linear tree of lines such that the smooth proper transform D′ of D on the arising
surface Y ′ intersects precisely one (central) line of the tree. All intersections of
tree lines and such lines with D′ are empty or transversal. The G-action on Y
transfers to a G-action on Y ′. Since NG(D′) = G the quotient curve C′ = D′/G
is smooth, or in other words, G acts smoothly at D′. Let Q ∈ D be a curve
singularity and EQ ⊂ Y ′ the resolving linear tree over Q. Then the Q-stabilizing
group GQ acts on EQ and especially on the D′-crossing central line LQ of EQ.
Now it is clear that G acts (via GQ) separately, hence smooth at LQ. This
property refers also to the other line components of EQ. The isotropy groups
GQ′ at points Q′ ∈ EQ must be abelian because of transversal intersections of
the components of EQ ∪ D′. Therefore the image of EQ on Y ′/G is again a
linear tree of lines intersecting at abelian quotient singularities. If we take the
minimal singularity resolutions of them, then we get again a linear tree of lines
crossing each other. Now blow down the two partial linear trees outside of the
proper transform of the central line LQ/G = LQ/GQ crossing C′ = D′/G in
at most abelian singularities. Altogether one gets a uniform release diagram
(16) for the orbital curve C = D/G. The upper release D′ → D is that of
hypercusps of curves locally described in Example 3.4.

�
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3.3 Homogeneous points

Definition 3.12 A simple surface singularity is a singularity, whose min-
imal resolution curve consists of one (smooth) irreducible curve only. A simple
surface point is a simple singularity or a regular surface point.

In the latter case we consider the exceptional line of the σ-process as resolution
curve.

Now let G be a finite group acting on a surface Y with only simple points,
and let Q ∈ Y be one of them. The group action extends to the simultaneous
minimal resolution Y ′ of all points of the orbit GQ, and the stabilizer group GQ

acts on the resolving curve EQ ⊂ Y ′. Moreover, GQ acts on the normal bundle
over EQ respecting fibres. Therefore the stationary subgroups of GQ at points
on EQ must be abelian (fibres and EQ are diagonalizing). Take a GQ-invariant
open neighbourhood V ⊂ Y of Q, smooth outside of Q. Locally the situation is
described by the following commutative local coniform release diagram :

V ′ V

U ′ = V ′/GQ U = V/GQ

-

? ?
-

(17)

with vertical quotient morphisms and upper horizontal resolution. Let P ∈ U
be the image point of Q. We endow U ′, U \ {P} with Galois weights coming
from the finite GQ-uniformizations V ′ → U ′, V \ {Q} → U \ {P}. Finally, we
set w(P ) := w(EQ). The corresponding orbifaces are denoted by U′ or U,
respectively. Our diagram can be written as

V ′ V

U′ = V′/GQ U = V/GQ

-

? ?
-

(18)

Again, we have a refinement equivalence class of weighted open neighbourhoods
of P denoted by P = Q/GQ ∈ U.

Definition 3.13 Weighted surface points P constructed on this way are called
(orbital) homogeneous points.

It is clear that orbital quotient points are homogeneous. The morphism Q→ P
of orbital points, defined as refinement class of V → U, is called a coniformiza-
tion of P. It is a uniformization , if the preimage point Q is regular on V .
Homogeneous points which are coniformable but not uniformizable are called
honest homogeneous points.
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Remark 3.14 The supporting surface point P of homogeneous point P is in
any case a so-called quasihomogeneous singularity . The resolutions of these
quasihomogeneous singularities are precisely known. We refer to [P], [D]. For
graphical descriptions with weights see [H98].

Remark 3.15 Simple singularities are ”cone like”. Namely, up to isomorphy
(look at normal bundle of EQ), they are contractions of a section C of a line
bundle over C with negative self-intersection contractible to a singularity Q. In
our imagination the contracting surface looks like a cone around the singularity
Q. Therefore we introduced the notion ”coniformization”.

Remark 3.16 Observe that the U′ supports finitely many abelian points sitting
on the smooth quotient curve EQ/G. These simpler orbital points ”release” the
homogeneous point P, which explains our calling. Notice also that an abelian
point P can loose its original weight after a coniformization. The old one is
”released” by the new ”coniform weight”.

A global coniform release diagram looks like

Y ′ Y

X′ = Y′/G X = Y/G

-

? ?
-

(19)

Thereby Y is a surface with only simple singularities, G a finite group acting
effectively on Y , Y ′ → Y resolves minimally all simple singularities of Y and,
possibly, G-orbits of finitely many regular points by σ-processes. The weights
of X′ are Galois weights. We push forward the weights of the quotients of the
exceptional curves of Y ′ → Y to get a birational morphism of weighted surfaces
in the bottom of the diagram.

Definitions 3.17 Y −→ X supported by a a quotient morphism Y −→ X =
Y/G is called a (global) coniformization , if and only if one can extend it to
a coniform release diagram (19). Morphisms in the bottom of (19) are called
coniform releases, and Y ′ −→ Y is a coniformization of X′ −→ X.

An (finitely weighted) orbiface is a weighted surface supporting (finitely
weighted) homogeneous points only.

At the end of this section we want to describe orbital cusp points. A neat
hyperbolic cusp point is a simple elliptic surface point Q ∈ V endowed with
weight ∞. Its resolution curve C ⊂ V is, by definition, elliptic. We use the
notations of the diagrams (17) and (18) to get the homogeneous quotient point
P of the elliptic point Q. We change the finite Galois weight of P by ∞ to get
a hyperbolic orbital cusp point P∞. Notice that the weights of U outside
of P will not be changed. Also the weights of all points of the preimage curves
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of Q and P in diagram (17) will be changed to ∞. Then we get local coniform
release diagrams (18) for hyperbolic orbital cusp points P∞.

A neat Hilbert cusp singularity Q is a normal surface singularity which
has a cycle of transversally intersecting smooth rational curves as resolution
curve. The minimal resolution curve EQ is of the same type or a rational
curve with only one curve singularity which is an ordinary self-intersection of
this curve. Locally, we have diagrams of type (17) again with a finite group
action around Q. Endowing Q with weight∞ and all other points on V outside
Q with trivial weight 1, we get a neat Hilbert cusp point Q∞. As in the
hyperbolic cusp case we endow the quotient point P , the points of EQ and of
its quotient curve also with weight ∞ and all other points with the usual finite
Galois weights to get a diagram (18) in the category of weighted surfaces called
local Hilbert cusp release diagrams. The corresponding orbital point P∞
itself is called a Hilbert orbital cusp point . After pulling back the weight
∞ to the points on the preimage curve of P we get, with obvious notations,
representatives U′∞ → U∞ called orbital cusp releases of P∞.

Altogether, in the category of orbifaces Orb2 we dispose on orbital re-
leases, orbital release diagrams, coniform releases, finite orbital mor-
phisms, orbital open embeddings, birational orbital morphisms by com-
position of orbital releases, orbital morphisms by composition of birational
and finite orbital morphisms, and on orbital correspondence classes, which
consist of orbital objects connected by finite orbital coverings.

The notions restrict in obvious manner to orbital curves on orbifaces via
representative neighbourhoods. So we dispose on category of orbital curves
Orb2,1 (on orbifaces) with all the types of orbital morphisms above.

Remark 3.18 Restricting to algebraic objects and morphisms one can work
with Zariski-open sets only to define refinement classes and corresponding weighted
(orbital) points. There will be no difference for the later definitions of orbital
invariants.

3.4 Picard and Hilbert orbifaces

Let B ⊂ C2 be a bounded domain and Γ a group of analytic automorphisms of
B acting properly discontinuously. Then the quotient Γ\B together with Galois
weights is a finitely weighted orbiface, which we denote by Γ\B.

There are two symmetric subdomains of C2: The irreducible complex unit
ball

B |z1|2 + |z2|2 < 1

and the product D2 of two unit discs. The latter is biholomorphic equivalent to
the product

H2 = H×H, H : Im z > 0,

of two upper half planes H of C.
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The automorphism groups are the projectivizations of the unitary group
U((2, 1), C) ⊂ Gl3(C) or of the symmetric extension (by transposition of coordi-
nates) GS+

2 (R) of Gl+2 (R)×Gl+2 (R), respectively. Both groups act transitively
on the corresponding domain.

Now let K = Q(
√

D) be a quadratic number field with discriminant D =
DK/Q ∈ Z and ring of integers OK . In the ball case we let K be an imaginary
quadratic field and in the splitting case a real quadratic field. The arithmetic
groups acting (non-effectively) on B or H2,

ΓK =

{
SU((2, 1),OK), if K imaginary quadratic,

Sl2(OK), if K real quadratic,

are called full Picard modular or full Hilbert modular group of the field
K, respectively. To be precise, we use, if nothing else is said, in the Picard
case the hermitian metric on C3 of signature (2, 1) represented by the diagonal

matrix
(

1 0 0
0 1 0
0 0 −1

)
. The action on B restricts the Gl3-action on P2 in obvious

manner. In the Hilbert case we have to restrict the action on P1 × P1 of

Gl+2 (K) ∋ g : (z, w) 7→ (g(z), g′(w)),

where ′ denotes the non-trivial field automorphism of K applied to each coeffi-
cient of g.

Definitions 3.19 A Picard modular group (of the imaginary quadratic field
K) is a subgroup of Gl3(C) commensurable with ΓK .
A Hilbert modular group (of the real quadratic field K) is a subgroup of
GS+

2 (R) commensurable with ΓK .

Definitions 3.20 The finitely weighted orbital quotient surfaces

o

XΓ =

{
Γ\B = PΓ\B
Γ\H2

= PΓ\H2

are called the open Picard orbiface of Γ, if Γ is a Picard modular group,
respectively the open Hilbert orbiface of Γ, if Γ is a Hilbert modular group.

Forgetting Galois weights, the surfaces
o

XΓ= Γ\B or Γ\H2 are called open
Picard modular or open Hilbert modular surfaces, respectively. Each

of them has a unique analytic Baily-Borel compactification X̂Γ := Γ̂\B
adding finitely many hyperbolic respectively Hilbert cusp ”singularities” (which
may be regular). These are projective normal surfaces. We extend the Galois
weight map of XΓ to X̂Γ endowing the cusps with weight ∞ to get the orbital

Baily-Borel model X̂Γ of
o

XΓ or
o

XΓ. Releasing all cusp points we get the
cusp released models XΓ with orbital versions XΓ.

Each arithmetic group Γ has a neat normal subgroup ∆ of finite index.
By definition, the eigenvalues of each element of a neat arithmetic linear group
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generate a free abelian subgroup of C∗ (which may be trivial). Especially,
because of absence of unit roots, a neat Picard and Hilbert modular group acts
fixed point free on B or H2, respectively. Moreover, the cusp points of the
corresponding modular surfaces are neat. With the groups ∆ and G := Γ/∆
we get the global cusp release diagrams

X∆ X̂∆

XΓ X̂Γ

-

?

/G

?
/G

-

(20)

Notice that X∆ is a smooth projective surface. Moreover, the objects and the
orbital release morphism on the bottom of the diagram do not depend on the
choice of ∆. In the Picard case we refer to [H98] for the complete classification
of orbital hyperbolic cusps and their local releases working on X̂Γ only. The
analogous work for the Hilbert case has not been done until now, but seems
to be not difficult. Since X∆ is smooth, all finitely weighted orbital points on
X̂Γ are quotient points, also well-classified in [H98]. The non-abelian ones have
also unique releases. Locally, they come from σ-processes at their preimage
points on X∆, not depending on the choice of ∆ again. The complete release
of non-abelian orbital quotient points of XΓ is denoted by X′

Γ. We get global
commutative orbital release diagrams

X ′
∆ X∆

X′
Γ XΓ

-

?
/G

?

/G

-

(21)

Altogether we get orbital release diagrams

X ′
∆ X∆ X̂∆

X′
Γ XΓ X̂Γ

-

?

-

?

/G

?
- -

(22)

We can shorten them to one diagram

X ′
∆ X̂∆

X′
Γ X̂Γ

-

? ?
-

(23)
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with the releases of precisely all non-abelian orbital points, because all hyper-
bolic orbital cusp points are homogeneous, hence releasable.

Visualization:

• 1) Released Picard modular Apollonius plane (4);

• 2) Released Hilbert modular Cartesius plane (??).

From Orb2 we single out the correspondence classes

•
o

Pic
2

K of open Picard orbifaces of the field K,

with objects
o

XΓ, Γ a Picard modular group of the field K;

• P̂ic
2

K of Picard orbifaces of the field K,
with objects X̂Γ;

• Pic2′

K of released Picard orbifaces of the field K,
with objects X′

Γ.

As surviving orbital morphisms in each of these correspondence classes we take
only the finite ones coming from pairs ∆ ⊂ Γ of Picard modular groups of the
same field K.

In the same manner we dispose in Orb2 on correspondence classes

•
o

Hilb
2

K of open Hilbert orbifaces of the field K,

with objects
o

XΓ, Γ a Hilbert modular group of the field K;

• Ĥilb
2

K of Hilbert orbifaces of the field K,
with objects X̂Γ;

• Hilb2′

K of released Hilbert orbifaces of the field K,
with objects X′

Γ.

In difference to the Picard case, the neat objects of HilbK come from mini-

mal singularity resolution of the corresponding neat objects of ĤilbK . One
has to plug in at the Baily-Borel cusps a cycle of rational curves with negative
self-intersection. In general we must plug in finite quotients of such cycles. For
Picard and Hilbert cases we call it cusp released in common.

We denote by Pic2 or Hilb2 the complete subcategories of Orb2 with the
above three types of Picard- or Hilbert objects, respectively. Both kinds of
objects together form the complete subcategory Shim2 of irreducible Shimura
orbifaces.
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Aim:
Volumes of fundamental domains of Picard or Hilbert modular groups with re-
spect to fixed volume forms on the uniformizing domains are obviously orbital
invariants. If we take the Euler volume form, then these volumes coincide with
the orbital Euler invariants of the corresponding orbifaces. This is a theorem
(Holzapfel, [H98], in the ball case; to be written down in the Hilbert case). The
same is true for the signature volume form, which leads to the corresponding or-
bital signature invariants. The Euler and the signature forms are distinguished
by a factor. This leads to a proportionality relation between the orbital invari-
ants with different factors in the Picard and Hilbert cases.

For explicit calculations it is important to know that the orbital invariants
of the modular surfaces of the full lattices can be expressed by special values of
Zeta-functions (or L-series) of corresponding number fields. (Maass in the neat
Hilbert case; Holzapfel [H98] in the general Picard case.)

3.5 Orbital arithmetic curves

Let Γ be a Picard or Hilbert modular group of a quadratic number field K.
We say that D ⊂ B or H2 is a K-arithmetic disc, if and only if there is a
holomorphic embedding of of the unit disc D1 →֒ B with image D such that D
is closed in B and the D-normalizing subgroup (decomposition group) of Γ

NΓ(D) := {γ ∈ Γ; γ(D) = D}

is a D-lattice, that means NΓ(D)\D = ΓD\D is a quasiprojective algebraic curve,
where

ΓD = NΓ(D)/ZΓ(D), the effective decomposition group of D,

ZΓ(D) = {γ ∈ Γ; γ|D = idD}, D− centralizing (or inertia) group.

To be more precise, we have commutative diagrams with algebraic groups de-
fined over Q in the upper two rows

NΓ(D) N G Γ

SNΓ(D) SN SG SΓ

D B

- - �

-

6

-

?

6

?

6

�

6

-

(24)

with algebraic Lie groups N, G acting on the symmetric domains below. The
algebraic groups in the middle are special: SN(R) isomorphic to Sl2(R) or
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SU((1, 1), C). The Q-algebraic group embeddings are lifted from the bottom
row.

We denote the image curve of D on
o

XΓ= Γ\B by Γ\D or
o

DΓ. Its closure on
XΓ or X̂Γ is denoted by DΓ or D̂Γ, respectively, and their proper transform on
X ′

Γ by D′
Γ. We have birational curve morhisms

Γ̂D\D −→ D′
Γ −→ DΓ −→ D̂Γ.

with (unique) smooth compact model on the left.

The corresponding weighted orbital curves on
o

XΓ,X′
Γ,XΓ or X̂Γ are denoted

by
o

DΓ,D′
Γ,DΓ or D̂Γ, respectively. We have birational orbital curve morphisms

D′
Γ −→ DΓ −→ D̂Γ,

o

DΓ →֒ D′
Γ,

o

DΓ →֒ DΓ.

If
o

DΓ is non-compact, then
o

DΓ,D′
Γ,DΓ, D̂Γ, are (weighted) orbital modular

curves. If it is compact, then
o

DΓ,D′
Γ,DΓ, D̂Γ =

o

DΓ are orbital Shimura
curves. Altogether they are called orbital arithmetic curves. Their sup-
porting curves are defined over an algebraic number field because these are
one-dimensional Shimura varieties.

Theorem 3.21 Each open orbital arithmetic curve
o

DΓ on a Picard or Hilbert
modular surface has a smooth model in its correspondence class. More precisely,

one can find a finite uniformization of
o

DΓ.

In the Picard case also DΓ has a finitely covering smooth model in its corre-
spondence class.

Theorem 3.22 All orbital arithmetic curves DΓ are orbital releasable.

Proof steps for the last two theorems (e.g. for B):

Definition 3.23 A B-lattice Γ is called neat if and only if each stationary group
ΓP , P ∈ B, is torsion free.

It is well-known by a theorem of Borel, that each lattice Γ contains a normal
sublattice Γ0 (of finite index), which is neat. Especially, Γ0 is torsion free.

Definition 3.24 Let D be a K-disc on B. A neat B-lattice ∆ is called D-neat ,
if and only if the implication

γ(D) ∩ D 6= ∅ =⇒ γ(D) = D

holds for all γ ∈ ∆.

Since ∆ is assumed to be neat there are no honest Galois weights, hence
o

X∆=
o

X∆. Then our D-neat condition is equivalent to the regularity of the

image curve
o

D∆= ∆\D on
o

X∆. Thus Theorem 3.21 follows from the following
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Proposition 3.25 Γ has a normal D-neat sublattice.

It is well-known that the arithmetic group Γ has a neat subgroup of finite index.
Therefore we can assume Γ to be neat, hence ΓD = NΓ(D). Without loss of
generality we can also assume that all elements of Γ are special, hence

ΓD ⊂ SN(Z) ⊂ SG(Z) ⊃ Γ (25)

with the notations of diagram (24).
Proof . We call a point Q ∈ D a Γ-singular point on D, if and only if it
belongs to D ∩ γ(D) for a γ ∈ Γ not belonging to ΓD. The Γ-singular points
on D are precisely the preimages on D of the singular points of Γ\D. Therefore
there are only finitely many ΓD-equivalence classes of Γ-singular points on D.
The branch set at Q of the orbit curve ΓD ⊂ B corresponds bijectively to the
set of branches of Γ\D at the image point P . Let Q1, ..., Qs be a complete set
of ΓD- representatives of Γ-singular points on D and Dij = γij(D), γij ∈ ΓD,
j = 1, ..., ki, all different ΓD-branches at Qi excluding D.

It is a fact of algebraic group theory, see e.g. [B], II.5.1, that N is the
normalizing group of a line L in a faithful linear representation space E of G,
all defined over Q. Each X ∈ L(Q) defines, over Q again, a weight character
ρ = ρX = ρL : N→ Gl1.

α : G −→ Gl(E), α(g)X = ρ(g)X, g ∈ N(Q),

Since SN is simple, ρ restricts to the trivial character on SN, hence ρ(ΓD) = {1}.
With the above chosen elements we define

E ∋ Xij := γijX 6= X.

The latter non-incidence holds because each γij does not normalize D, hence
does not belong to N , so it cannot normalize L. We can assume (by choice of
Q-base) that all X , Xij belong to E(Z). We find a natural number a such that

X 6≡ Xij mod (a), for all i = 1, ..., s, j = 1, ..., ki.

Now we show that Γ(a) is D-neat:
Assume the existence of γ′ ∈ Γ(a) such that γ′D intersects D properly at P . The
intersecting pair (D, γ′D) has to be ΓD-equivalent to one of the representative
intersection pairs (D, γijD), say

δγ′D = γijD, δ ∈ ΓD.

Therefore γ−1
ij δγ′ ∈ N because it normalizes D.

γ−1
ij δγ′X = X, δγ′X = Xij , γ1X = Xij ,

with γ1 := δγ′δ−1 ∈ Γ(a). Since γ1 ≡ id mod (a), we get the contradiction

X = id(X) ≡ γ1(X) = Xij mod (a).

�
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4 Neat Proportionality

We want to define norms of orbital arithmetic curves
o

DΓ and their birational
companions on Picard or Hilbert modular surfaces. They sit in the specification

of the discs D = DV →֒ B or H2 defining the supporting curve as
o

DΓ= Γ\D,
namely

DV = P(V ⊥) ∩ B or P× P(V ⊥) ∩H2,

where in the Picard case : V ∈ K3, < V, V > positive, ⊥ with respect to unitary
(2, 1)-metric on C3.

In the Hilbert case the situation is more complicated: Let V ∈ Gl+2 (K) be
scew-hermitian with respect to the non-trivial K/Q-isomorphism ′, that means
tV ′ = −V , explicitly

V =
(

a
√

D λ

−λ′ b
√

D

)
, (26)

a, b ∈ Q, λ ∈ K. By abuse of language we define ”orthogonality” with elements
of C2 × C2 in the following manner:

C2 × C2 ∋ (z1, z0; w1, w0)⊥ V : (z1, z0)V ( w1
w0

) = 0

and the ”bi-projectivization” of C2 × C2 by

P× P(z1, z0; w1, w0) := (z1 : z0)× (w1 : w0) ∈ P1 × P1 ⊃ H×H

DV ⊂ P(V ⊥) or P×P(V ⊥) is complex 1-dimensional and analytically isomorphic
to the upper half plane H.

For later use of Heegner divisors we define norms of subdiscs and their quo-
tient curves on this place.

Definition 4.1 of norms

Picard case: N(V ) := < V, V > ∈ N+, V ∈ O
3,+
K ,

Hilbert case: N(V ) := det V ∈ N+, V ∈ Scew+
2 (OK).

and of norm sets of arithmetic curves:

N (Γ̂\D) = N (D) := {N(V ); D = DV , V integral} ⊂ N+

Definition 4.2 For N ∈ N+ the Weil divisor

HN = HN (Γ) :=
∑

D
N (D)∋N

Γ̂\D

is called the N -th Heegner divisor on X̂Γ.

The scew-symmetric elements (26) with fixed K form a quadratic vector
space VQ := (Scew2(K), det) with signature (2, 2) as well as VR

∼= R2,2. The
group Sl2(K) acts on Scew2(K) and on the positive part Scew+

2 (K):

Sl2(K) ∋ g : V 7→ tg′V g
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It defines an embedding

H2 −→ Grass+(2, VR) ⊂ Grass(2, VR)

(z, w) 7→ (z, w)⊥ := {V ∈ VR; (z1, z0; w1, w0)⊥V }
and a homeomorphism

H2 ←→ SOe(2, 2)/(SO(2)× SO(2)),

where the lower index e denotes the unit component. The normalizer of DV in
Γ ⊆ Sl2(OK) is

NΓ(DV ) = ΓV = {g ∈ Γ; tg′V g = ±V }
In the special case V =

(
0 λ

−λ′ 0

)
, λ ∈ OK , primitive, λ · λ′ = N , Γ = Sl2(OK)

the action on DV is (conjugation) equivalent to the action of

( λ 0
0 1 ) Sl2(O)

(
λ−1 0
0 1

)

on the diagonal of H2. Then for K = Q(
√

d)

NΓ(DV ) ∼=
{

Sl2(Z)(N)0 := {
(

a b
c d

)
; a, b, c, d ∈ Z, N | c}, if

√
d ∤ λ

index 2 extension of Sl2(Z)(N)0, if
√

d | λ in OK .

Any hermitian symmetric domain B is embedded in its dual symmetric space
B̌, which is compact, hermitian and of same dimension as B. For B, D ∼= H or
H2 the duals are simply:

ˇB = P2, Ď = Ȟ = P1 Ȟ2 = P1 × P1.

The Lie algebra of the Lie group GC of the dual symmetric space B̌ is the
complexification of the Lie algebra corresponding to the Lie group G of B. For
the splitting case H2 we use the isomorphy of Lie algebras
so(2, 2) ∼= sl2(R)× sl2(R) to get the pairs

G ⊂ GC

SU((2, 1), C) ⊂ Sl3(C),

SOe(2, 2) ⊂ Sl2(C)× Sl2(C)

The conjugation classes of commutators of normalizing Lie group pairs N ′ =
[N, N ] with complexifications N ′

C corresponding to D ⊂ B or D ⊂ H2 are repre-
sented by:

G ⊃ N ′ ⊂ N ′
C ⊂ GC

SU((1, 1), C) ⊂ Sl2(C),

Sl2(R) ⊂ Sl2(C) diagonal in Sl2(C)2.

We have the following corresponding commutative embedding diagrams

B̌ ←֓ B GC ←֓ G
↑ ↑ ↑ ↑
Ď ←֓ D N ′

C ←֓ N ′
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To be more explicit we consider the point-curve-surface flags

0× 0 = O ∈ 0× D ⊂ B , O ∈ ∆ ⊂ H×H (diagonal);

O ∈ 0× P1 ⊂ P2 , O ∈ ∆′ ⊂ P1 × P1 (diagonal).

with embeddings

N ′
C →֒ GC :

{
Sl2(C) ∋ h 7→ ( 1 o

o h ) , Picard case

Sl2(C) ∋ g 7→ (g, g) , Hilbert case.

The (special) compact stabilizer groups with complexifications are
Picard case:

K = StabO(G) = S(U(2)× U(1)) , KC = S(Sl2(C)×Gl1(C));

k = StabO(N ′) = S(U(1)× U(1)) , kC = S(Gl1(C)×Gl1(C))

Hilbert case:

K = StabO(G) = SO(2)× SO(2) , KC = Gl1(C))×Gl1(C) ⊂ StabOGC;

k = StabO(N ′) = SO(2) , kC = S(Gl1(C)×Gl1(C)) ⊂ StabON ′
C,

Lie group diagram for O ∈ D ⊂ B:

K = GO G

k = N ′
O N ′

-

-

6 6

Complexification diagram for O ∈ Ď = P1 ∈ B̌ = P2 or P1 × P1:

KC P+ ·KC = GC,O GC

kC p+ · kC = N ′
C,O N ′

C

- -

-

6

-

6 6

with suitable stabilizer splitting complex parabolic groups P+ ⊂ GC or p+ ⊂ N ′
C,

respectively. These are the unipotent radicals of the corresponding stabilizer
groups.

Example 4.3 2-ball case:

P+ = {
(

1 0 0
0 1 0
a b 1

)
; a, b ∈ C} , p+ = {( 1 0

c 1 ) ; c ∈ C}
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Now take a G-vector bundle
o

E on B. The stabilizer K = GO acts on the fibre

EO of E, and
o

E together with the G-action is received by extension of the

K-action along the G/K-transport:
o

E= EO ×K G.
We extend the (really represented, bi-unitary or bi-orthogonal) K-action

on
o

E by complexification to a KC-action. Putting together with the trivially
defined action of P+ on EO we get the GC-bundle

Ě := EO ×P+K GC on B̌.

Now let Γ be a neat arithmetic subgroup of G, and Γ\B −→ Γ̂\B a singularity
resolution of the Baily-Borel compactification of Γ\B (already smooth) with

(componentwise) normal crossing compactification divisor. The G-bundle
o

E

goes down to the quotient bundle E := Γ\
o

E.

We endow
o

E with a G-equivariant hermitian metric
o

h. It extends along the
above GC/P+KC transport from EO to a hermitian GC-equivariant metric ȟ on
Ě. On the other hand it goes down along the quotient map B → Γ\B to a
hermitian metric h on E.

Theorem 4.4 (Mumford). Up to isomorphy there is a unique hermitian vector
bundle Ē extending E on Γ\B, such that h is ”logarithmically restricted” around
the (smooth) compactification divisor X∞

Γ .

This means: Using coordinates zi on a small polycylindric neighbourhood
Ū = Da+b around Q ∈ X∞

Γ with finite part U = (D \ 0)a ×Db, and a basis ej of
Ē over Ū , then

|h(ej , ek)|, | det(h(ej , ek))| ≤ C ·
(

a∑

i=1

log |zi|
)2N

with constants C, N > 0. Altogether we get bundle diagrams

Ě
o

E E Ē

B̌ B Γ\B Γ\B
?

-�

?

-

? ?
-� -

(27)

Let
1 + c1(F ) + .. + cr(F ) ∈ Heven(V, R)

be the total Chern class of a holomorphic vector bundle of rank r on the compact
smooth complex algebraic variety V of dimension n, say. By Hodge theory we
interpret cj(F ) (uniquely up to exact forms) as a differential form γj = γj(F )
of degree 2j on X . We have the differential forms

γj(F ) := γj1 ∧ ... ∧ γjk
, j = (j1, ..., jk),

∑

i

ji ≤ n;
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in particular the Chern forms, if
∑
i

ji = n. In the latter cases the Chern

numbers are defined as

cj(F ) :=

∫

V

γj(F ).

Especially, the Chern number cn(V ) = cn(TV ), where TV is the tangent bundle
on V , is the Euler number of V .

Coming back to our neat arithmetic quotient variety Γ\B and vector bundle
quadruples described in diagram (27), we come to the important

Theorem 4.5 (Mumford’s Proportionality Theorem). The Chern numbers of
Ě and Ē are related as follows:

cj(Ē) · cn(B̌) = cj(Ě) · cn(Γ\B),

where cn(Γ\B) denotes the Euler volume (with respect to Euler-Chern volume
form of the Bergmann metric on B) of a Γ-fundamental domain on B.

Now take a symmetric subdomain D of B such that ΓD is a neat arithmetic
D-lattice. We have an extended commutative diagram with vertical analytic
embeddings

B̌ B Γ\B Γ\B

Ď D ΓD\D ΓD\D

-� -

6

-�

6

-

6 6
(28)

satisfying the

Absolute and relative normal crossing conditions:

• All varieties in the diagram are smooth;

• the compactification divisor X∞
Γ = Γ\B \ (Γ\B) is normal crossing;

• the compactification divisor X∞
ΓD

= ΓD\D \ (ΓD\D) is normal crossing,

• at each common point, the (small) compactification divisor X∞
ΓD

crosses
transversally the big one X∞

Γ .

As described in the beginning of this section we work with the (special) Lie
group N ′ ⊂ G acting on D and containing ΓD. Starting with a N ′-equivariant

hermitian vector bundle
o
e on D we get a commutative diagram as (27)

ě o
e e ē

Ď D Γ\D Γ\D
?

-�

?

-

? ?
-� -

(29)
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Mumford’s Proportionality Theorem yields the Chern number relations

cj(ē) · cm(Ď) = cj(ě) · cm(Γ\D) (30)

with m = dim D, j = (j1, ..., jk),
∑
i

ji = m.

If we start with a G-bundle
o

E on B and restrict it to the N ′-bundle
o
e=

o

E|D
on D, then we get two quadruples of bundles described in the diagrams (27) and
(29). By construction, it is easy to see that the bundles ě, e, ē are restrictions
of the bundles Ě, E or Ē, respectively. The relations (30) specialize to the

Theorem 4.6 (Relative Proportionality Theorem). For
o
e=

o

E|D, with the above
notations, it holds that

cj(Ē |Γ\D
) · cm(Ď) = cj(Ě |Ď) · cm(Γ\D). (31)

Corollary 4.7 In particular, for dim B = 2 and dim D = 1 we get with the
conditions of the theorem the relations

c1(Ē |Γ\D
) · c1(Ď) = c1(Ě |Ď) · c1(Γ\D). (32)

Knowing Ď = P1 and its Euler number c1(P1) = 2 we get

2 · c1(Ē |Γ\D
) = c1(Ě |Ď) · volEP (ΓD), (33)

where volEP denotes the Euler-Poincaré volume of a fundamental domain of a
D-lattice.

Now we work with canonical bundles K = T ∗∧T ∗, T the tangent bundle on a
smooth analytic variety with dual cotangent bundle T ∗. The above construction
yields

o

E= KB, Ě = KB̌, E = KΓ\B,

For the restriction of Ě to Ď we get

c1(Ě |Ď) = (KB̌·Ď) =

{
(KP2 · L) = −3(L2) = −3, Picard case

(KP1×P1 ·∆′) = ((−2H − 2V ) ·∆′) = −4, Hilbert case

Thereby, H = P1×0 (horizontal line), V = 0×P1 (vertical line), ∆′ the diagonal
on P1 × P1 and L is an arbitrary projective line on P2. Substituting in (33) we
receive

c1(Ē |Γ\D
) =

{
− 3

2 · volEP (ΓD), Picard case

−2 · volEP (ΓD), Hilbert case
(34)

One knows that for cotangent bundles that T̄ ∗ is the extension of T ∗
Γ\B

by

logarithmic forms along the compactification divisor X∞
Γ (allowing simple poles

there). Wedging them we see that the Mumford-extended canonical bundle is
nothing else but the logarithmic canonical bundle

Ē = Ω2
Γ\B

(log X∞
Γ )
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corresponding to the logarithmic canonical divisor KΓ\B
+ X∞

Γ , where the

first summand is a canonical divisor of Γ\B and the second summand is the com-
pactification divisor (reduced divisor with the compactification set as support).
Therefore we get

c1(Ē |Γ\D
) = ((KΓ\B

+ X∞
Γ ) · Γ\D).

Together with (34) we get

(KΓ\B
· Γ\D) + (Γ\D ·X∞

Γ ) = −
{

3
2 · volEP (ΓD), Picard case

2 · volEP (ΓD), Hilbert case
(35)

The adjunction formula for curves on surfaces relates the Euler number of Γ\D
with intersection numbers as follows:

−eul(Γ\D) = (Γ\D2
) + (KΓ\B

· Γ\D).

On the other hand, by a very classical formula, the Euler number can be read off
from the volume of a fundamental domain and the number of compactification
points:

eul(Γ\D) = volEP (ΓD) + (Γ\D ·X∞
Γ ) = eul(ΓD\D) + (Γ\D ·X∞

Γ ). (36)

Adding the last two relations we get

(KΓ\B
· Γ\D) + (Γ\D ·X∞

Γ ) = −(Γ\D2
)− volEP (ΓD). (37)

We define and obtain by substitution in (35)

Self(Γ\D) := (Γ\D2
) =

{
1
2 · volEP (ΓD), Picard case

1 · volEP (ΓD), Hilbert case
(38)

We call Self(Γ\D) the orbital self-intersection and define also the orbital
Euler number

Eul(Γ\D) := eul(Γ\D) = volEP (ΓD)

of Γ\D ↼ Γ\B in the in the case of D-neat lattices Γ. Then, together with (36),
one gets

volEP (ΓD) = eul(Γ\D) = Eul(Γ\D) =

{
2 · (Γ\D2

) = 2 · Self(Γ\D),

1 · (Γ\D2
) = 1 · Self(Γ\D),

(39)

in the Picard or Hilbert case, respectively.
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5 The General Proportionality Relation

5.1 Ten rules for the construction of orbital heights and

invariants

We introduce relative orbital objects, and the corresponding notations:
These are finite orbital coverings: Y/X (surfaces), D/C (curves) Q/P (points)
and also birational ones (relative releases, mainly) X′

→X, C′
→C, P′

→P.

The relative orbital morphisms joining these relative objects are commutative
diagrams. We use the notations:

Y′/X′
→Y/X , D′/C′

→D/C , Q′/P′
→Q/P,

Definition 5.1 A rational orbital invariant on Orb2,1 is a non-constant
map h corresponding each orbital curve a rational number

O 6= h : Orb2 −→ Q with

R.1 deg(1/1)
[D : C]h(C)h(D) = [D : C] · h(C)
for all finite orbital curve coverings D/C. Thereby [D : C] := wD

wC
[D : C]

is the orbital degree of the covering with usual covering degree [D : C].

If 0 6= h : Orb2 −→ Q satisfies

R.1 deg(1/1)
h(D) = [D : C] · h(C),
for all finite orbital curve coverings D/C, then we call it an orbital
height .

Remark 5.2 It is easy to see that we get immediately from an orbital height h
an orbital invariant h setting h(C) := wC · h(C).

Convention: In this paragraph we restrict ourselves to compact curves or

to open orbital curves
o

C with cusp point compactification Ĉ. For simplicity we

will write C instead of Ĉ and set h(
o

C) := h(Ĉ) = h(C) (same for h).
For constructions we need:

• h(P) local orbital invariants,

• relative orbital heights such that:

– for orbital curves:

h(C′
→C) := h(C′)− h(C) , h(D/C) := h(D)− [D : C] · h(C)
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– for orbital curve points:

h(P′
→P) := h(P′)− h(P) , h(Q/P) := h(Q)− [Q : P ] · h(P),

where [Q : P ] has to be defined later.

and the Decomposition laws (absolute and relative):

R.2 Dec(1,0)
h(C) = h1(C) + h0(C) , h0(C) =

∑
P∈C

h(P)

R.3 Dec(11,00)
h(C′

→C) = h1(C
′
→C) + h0(C

′
→C)

h0(C
′
→C) =

∑

P′→P∈C′→C

h(P′
→P)

with finite sums h0 and local incidence diagrams

P′ C′

P C

-

? ?
-

Relative orbital rules:

R.4 deg(11/11)

h(D′
→D) = [D : C] · h(C′

→C)

R.5 deg(00/00)

h(Q′
→Q) = [Q : P ] · h(P′

→P)

Initial relations:

R.6 deg(1/1)sm

deg(00/00) holds for totally smooth D, C
(no curve and no surface singularities);

R.7 deg(00/00)sm

deg(00/00) holds for smooth releases of abelian point uniformizations
(background: stepwise resolution of singularities)

Shift techniques along releases:

R.8 (Shift)ab

shifts deg(1/1) along locally abelian releases;
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R.9 (Shift)ab
∗

shifts deg(1/1) to all finitely weighted releasable orbital curves;

R.10 (Shift)∗∞
shifts deg(1/1) to all releasable orbital curves including infinite weights.

Implications (Geometric Local-Global Principle):

(Imp 1) Dec(11,00), deg(00/00) =⇒ deg(11/11) =⇒ (Shift)ab;

(Imp 2) deg(1/1)sm, (Shift)sm
ab =⇒ deg(1/1)ab;

Later (via definitions)

(Imp 3) (Shift)ab
∗ , deg(1/1)ab =⇒ deg(1/1)∗;

(Imp 4) (Shift)∗∞, deg(1/1)∗ =⇒ deg(1/1);

5.2 Rational and integral self-intersections

We need rational intersections of curves on (compact algebraic) normal surfaces.
Let ν : Y −→ X be a birational morphism of normal surfaces. We denote by
Div X the space of Weil divisors on X with coefficients in Q. There is a rational
intersection theory for these divisor groups together with canonically defined
orthogonal embeddings ν# : Div X −→ Div Y extending the integral intersec-
tion theory on smooth surfaces and the inverse image functor. Via resolution of
singularities the intersection matrices are uniquely determined by the postulate
of preserving intersections for all ν#-preimages. Namely, let E = E(ν) the ex-
ceptional (reduced) divisor on Y , DivEY the Q-subspace of Div Y generated by
the irreducible components of E. For any Weil divisor C on X the generalized
inverse image ν#C satisfies the conditions

DivEY ⊥ ν#C = ν′C + ν#
E C , ν#

E C ∈ DivEY,

where ν′C is the proper transform of C on Y . Before proofs one has to define
the rational intersections on normal surfaces. Let ν be a singularity resolution,
( · ) the usual intersection product on smooth surfaces, here on Y , and E =
E1 + · · · + Er the decomposition into irreducible components. There is only
one divisor ν′C +

∑
ciEi ∈ Div Y orthogonal to DivEY because the system of

equations ∑
ci(E1 ·Ei) = −(E1 · ν′C),

· · · · · ·
∑

ci(Er ·Ei) = −(Er · ν′C),

has a regular coefficient matrix (negative definite by a theorem of Mumford).
The unique Q-solution determines ν#C. Then the rational intersection product
on X is well-defined by

< C ·D > := (ν#C · ν#D) , C, D ∈ Div X
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Using orthogonality we get for self-intersections the relations

< C2 > = (ν#C · ν#C) = ((ν′C + ν#
E C) · ν#C)) = (ν′C · ν#C)

= (ν′C · (ν′C + ν#
E C)) = (ν′C · ν′C) + (ν′C · ν#

E C),

hence
(ν′C)2 := (ν′C · ν′C) = < C2 > −(ν′C · ν#

E C). (40)

For minimal singularity resolutions µ we write shortly (C2) := (µ′C)2 and notice

(C)2 = < C2 > −(µ′C · µ#
EC). (41)

This number is called the minimal self-intersection of C. The difference
(C)2− < C2 > splits into a finite sum of point contributions (µ′C · µ#

EC)Q at
intersection points Q of µ′C and E.

Now we compare self-intersections of locally abelian orbital curves and their
releases. The release at P is supported by a birational surface morphism, also
denoted by ρ, precisely ρ : (X ′, C′) −→ (X, C). The intersection point of the
proper transform C′ of C and the exceptional line L is denoted by P ′. With
the weights w(C′) = w(C) and of L it supports a well-defined abelian point P′

of C′. Let µ : X̃ → X , µ1 : X ′′ → X ′ be the minimal resolutions of P or P ′,
respectively and µ2 : X̃ ′ → X ′ that of X ′. (We have to resolve in general two
cyclic singularities lying on L). For further notations we refer to the following
commutative diagram

X̃ ′ X̃

X ′ X

-ρ̃

?
µ2

@
@

@R

ν

?
µ

-
ρ

It restricts to morphisms along exceptional divisors

Ẽ′ Ẽ

L P

-ρ̃

?
µ2

@
@

@R

ν

?
µ

-
ρ

Since < C2 > is a birational constant we get from (40), (41) and by definition
of minimal self-intersections the relation

(C
′2)− (C2) = ((C

′2)− (C2))P := (ν′C)2− (C)2 = −(ν′C ·ν#
E C)+ (µ′C ·µ#

EC)

with obvious notations. (The index E stands for the corresponding exceptional
divisor).
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Lemma 5.3 The relative self-intersection

s(P ′
→P ) := ((C

′2)− (C2))P ≤ 0

does only depend on the local release P ′
→P , not on the choice of C, C′ crossing P

or P ′, respectively. More precisely, it only depends on the exceptional resolution
curves EP (ν), EP (µ), even only on the intersection graphs of E(ν) = EP (ν)
and E(µ) = EP (µ).

Proof . Both linear trees resolve P , the latter minimally. Therefore E(ν) →
E(µ) splits into a sequence of σ-processes. The stepwise contraction of a (−1)-
line ascends (C̃

′2) by 1 if and only if this exceptional line crosses C̃′. If not, then
(C̃
′2) is not changed. By stepwise blowing down (−1)-lines we see that s(P ′

→P )
is equal to the number of steps contracting a line to a point on the image of C̃′.
The curve C̃′ crossing the first line of E(ν) can be chosen arbitrarily.

�

Definitions 5.4 A release P′
→P of an abelian orbital curve point is called

smooth, if and only if P ′ is a smooth surface point. A release C′
→C of a

locally abelian orbital curve C is called smooth, if and only if it is smooth
at each released abelian point on C. A smooth release of the finite cover-
ing Q/P is a relative finite covering Q′

→Q/P′
→P with smooth releases Q′

→Q
and P′

→P. A smooth release of the finite covering D/C is a relative finite
covering D′

→D/C′
→C with only smooth local releases Q′

→Q/P′
→P.

Example 5.5 (stepwise resolution of cyclic singularities) . Let (D, Q) be a
uniformization of the abelian curve point (C, P ), the latter of cyclic type

< d, e >. It is realized by cyclic group action of Zd,e :=
〈(

ζd 0
0 ζe

)〉
⊂ Gl2(C),

where ζg denotes a g-th primitive unit root. Blow e times up the point (D, Q),
each time at intersection point of the exceptional line with the proper transform
of C′. Blow down the arising e − 1 exceptional (−2)-lines. Then we get a
smooth release (D′, Q′)→(D, Q). The exceptional line E supports a cyclic surface
singularity Q′′ of type < e, e−1 >. Factorizing by Zd.e one gets a smooth release
P ′
→P with singularity P ′′ = Q′′/Zd,e of type < e, d′ > on the exceptional line L

over P , where d′ ≡ −d mod e. Altogether we get a smooth release Q′
→Q/P ′

→P
of the uniformization Q/P of P .

For the proof we enlarge Zd,e by the reflection group S generated by < 1, ζe >,
< ζe, 1 > to an abelian group A acting around O ∈ C2. We consider the σ-
release O′

→O by blowing up O to the (−1)-line N. The directions of x- or y-axis
through O correspond to points O′ and O′′ on N , respectively. Easy coordinate
calculations show that the double release O′

→O←O′′ goes down via factorization
by S to the double release Q′

→Q←Q′′. Thereby Q′
→Q is a smooth release of

the smooth abelian point Q, and Q′′ is of type < e, e − 1 >. Furthermore,
factorizing by A yields the double release P′

→P←P′′ with smooth release P′
→P

and P ′′ of type < e, d′ > =< e,−d >. Now forget the weights and the upper
σ-double release to get P ′

→P←P ′′ = Q′
→Q←Q′′/ < d, e >.
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Proposition 5.6 Let D/C be a finite cover of orbital curves with smooth D.
There exists a smooth relative release D′

→D/C′
→C.

Proof . Essentially, we have only to find local smooth relative releases
Q′
→Q/P′

→P over Q/P ∈ D/C, if P is not smooth. If the weights around Q
and P are trivial (equal to 1), then we refer to the above proof. Otherwise
the weights w(C) and w(D) are Galois weights coming from a common local
uniformization O of Q, P. Since Q is smooth it is a quotient point of O by an
abelian reflection group Σ. We lift Q′

→Q to a release O′
→O by normalization

along the Σ-quotient map around the exceptional line supporting Q′. Then we
get the coverings O′

→O/Q′
→Q/P′

→P with the original weights we need.

�

5.3 The decomposition laws

Definition 5.7 Let P′
→P be a release of the abelian cross point P of the abelian

curve C of weight w, and < d′, e′ > respectively < d, e > the cyclic types of P ′

or P . The number

h(P′
→P) = h1(P

′
→P) + h0(P

′
→P) :=

s(P ′/P )

w
+ (

e′

wd′
− e

wd
) (42)

is called the (relative local) orbital self-intersection of the (local) release.

For global releases C′
→C of locally abelian orbital curves C we take sums over

the (unique) local branches (C′,P′) pulled back from (C,P) along local releases:

h0(C
′
→C) :=

∑

P′→P

h0(P
′
→P)

h1(C
′
→C) :=

∑

P′→P

h1(P
′
→P)

5.8 Relative Decomposition Law Dec(11/00)ab.

h(C′
→C) := h1(C

′
→C) + h0(C

′
→C) =

∑

P′→P

h(P′
→P)

Definition 5.9 The rational number h(C′
→C) is called the (relative) self-

intersection height of the release C′
→C.

On this way we presented us the relative Decomposition Law Dec(11/00)ab

for releases of locally abelian orbital curves by definition. Now we are well-
motivated for the next absolute Decomposition Law given by definition again:
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Definition 5.10 Decomposition Law Dec(1,0)ab.
Let C be a locally abelian orbital curve of weight w = w(C). The signature
height of C is

h(C) = h1(C) + h0(C) = h1(C) +
∑

P∈C

h(P) :=
1

w
(C2) +

∑

P∈C

eP

wdP
,

For a further motivation we refer to the rather immediately resulting relative
degree formula (43) below for local releases.

We shift this definition now to general (finitely weighted locally releasable)
orbital curves C. By definition, there exists a (geometrically unique minimal)
locally abelian release C′

→C. Splitting C at each blown up point P into finitely
many orbital branch points (C′,P′) we are able to generalize the above definition
to the

Definition 5.11 Decomposition Law Dec(1,0)∗ for releasable orbital curves.
Set

h1(C) := h1(C
′) =

1

w
· (C ′2),

h0(C) :=
∑

P∈C

h(P) with h(P) :=
∑

P′→P

(h(P′) + δrls
P ′ ),

h(C) = h1(C) +
∑

h(P) =
1

w

(
(C
′2) +

∑

P′→P

(δrls
P ′ +

eP ′

dP ′
)

)

with the local release branch symbol

δrls
P ′ = δrls

P ′ (C
′) :=

{
1, if P ′ ∈ EP ∩ C′, EP exceptional release curve over P ),

0, else.

We call h(C) the orbital self-intersection of C.

Remark 5.12 If w = w(C) > 1, then each abelian point on C is automatically
an abelian cross point of C. In this case do not release C or consider the
identical map as trivial release. So δrls

P ′ 6= 0 appears only in the trivial weight
case w = 1.

5.4 Relative local degree formula for smooth releases

Proof of deg(00/00)sm.

We start with a uniformization of a cyclic singularity P of type < d, e >
unramified outside P , see Example 5.5. From the covering exceptional lines

(E; Q′, Q′′)→ Q : < 1, 0 > over (L; P ′, P ′′)→ P : < d, e >
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supporting singular points Q′′ :< e, e− 1 > respectively P ′′ :< e,−d > we read
off:

h(Q′/Q) = s(Q′/Q) +
0

1
− 0

1
= −e + 0− 0 = −e,

h(P ′/P ) = s(Q′/Q) +
0

1
− e

d
= 0 + 0− e

d
= − e

d
,

hence
h(Q′/Q) = d · h(P ′/P ) = [Q : P ] · h(P ′/P ). (43)

Now we allow P ∈ C to come with honest weight w = w(C) > 1. As demon-
strated in the proof of Proposition 5.6 the situation is the same as above with
additional weight w at C,C′,D,D′. So we have only to divide the above iden-
tities by w to get

h(Q′/Q) =
1

w
· d · h(P ′/P ) =

1

w
· [Q : P ] · h(P ′/P ) = [Q : P ] · h(P′/P).

�

5.5 Degree formula for smooth coverings

Proof of deg(1/1)sm.

Let D/C be a finite covering of totally smooth orbital curves. By definition
of orbital finite coverings and multiplicativity of covering degrees it suffices to
assume that D =: D is trivially weighted and C = D/G with Galois group
G. The supporting surfaces Y , X of D or C, respectively, are assumed to be
smooth along D or C, and the Galois covering D → C is the restriction of a
global Galois covering p : Y → X = Y/G. We can assume that G = NG(D)
because the self-intersection of a smooth curve on a smooth surface is locally
defined as degree of its normal bundle restricted to the curve. Looking at the
normal bundle surfaces we can also assume that D is the only preimage of C
along p. The ramification index is equal to w = w(C), hence p∗C = w ·D. Now
we apply the well-known degree formula for inverse images of curves on smooth
surface coverings to our situation:

w2 · (D2) = (p∗C)2 = [Y : X ] · (C2) = #NG(D) · (C2) = [D : C] · w · (C2)

Division by w2, together with the definition of the orbital self-intersection in-
variants and absence of singularities, yields finally

h(D) = [D : C] · 1

w
· (C2) = (

1

w
· [D : C]) · (w · h(C)) = [D : C] · h(C).

�
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5.6 The shift implications and orbital self-intersection

Proof of Implication (Imp 1), first part.
Suppose Dec(11,00), deg(00/00) to be satisfied for locally abelian orbital curves.
Consider relative releases D′

→D/C′
→C, locally Q′

→Q/P′
→P, supported by rel-

ative finite orbiface coverings Y′
→Y/X′

→X. For degree formulas it is sufficient
to consider uniformizing orbital Galois coverings D′

→D of C′
→C with trivially

weighted objects D′, D (omitting fat symbols) and Galois weights on C′,C.

X = Y/G , X′ = Y′/G , P = Q/GQ , P′ = Q′/GQ′

We use notations of the following orbiface and orbital curve diagrams around
orbital points.

Y ′ Y

X′ X

-

? ?
-

restricting to

D′ D

C′ C

-

? ?
-

restricting to

Q′ Q

P′ P

-

? ?
-

with vertical quotient morphisms and horizontal releases. The joining incidence
diagram on the released side can be understood as locally abelian Galois dia-
gram:

Q′
D′

P′ C′

-

? ?
-

∼=

Q′
D′

Q′/A(Q′) D′/NG(D)

-

? ?
-

Especially we restrict to work along D, D′ with

G = NG(D), abelian A := GQ = GQ′ ,

[Q : P ] :=
#A

#ZA(D)
=

#A

w(C)
,

the number of preimage points of P on D around Q w.r.t. the local A-covering
(D, Q)→ (C, P ).
For fixed P it holds that

∑

D∋Q/P

[Q : P ] = [G : GQ] · #GQ

w
=

#G

w
(44)

Applying Dec(11,00), deg(00/00) and (44) we get

h(D′
→D) =

∑

Q∈D

h(Q′
→Q) =

∑

P

∑

Q/P

h(Q′
→Q)

=
∑

P

∑

Q/P

[Q : P ] · h(P′
→P) =

#G

w

∑

P

h(P′
→P)

= [D : C] · h(C′
→C).

(45)
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Proof of Implication (Imp 1), second part.
Together with the definitions of h for relative objects one gets

h(D′/C′) = h(D′)− [D′ : C′] · h(C′) = h(D′)− [D : C] · h(C′)

= (h(D) + h(D′
→D))− [D : C] · (h(C) + h(C′

→C))

= (h(D) + h(D′
→D)− [D : C] · h(C)− h(D′

→D)

= h(D)− [D : C] · h(C) = h(D/C).

The degree formula deg(1/1) translates to the vanishing of relative degrees, by
definition. This vanishing condition is shifted by the above identity.

�

Remark 5.13 Via stepwise resolutions and contractions it is not difficult to ex-
tend the relations deg(11/11)sm, deg(00/00)sm for smooth releases to deg(11/11)ab,
deg(00/00)ab for all abelian releases. Since we don’t need it for the proof of
deg(1/1)ab, the proof is left to the reader.

Proof of deg(1/1)ab via implication (Imp 2).
Especially we dispose on the shifting principle (Shift)sm

ab for smooth releases
D′/C′

→D/C with locally abelian objects D,C. The implication (Imp 2) is a
simple application of (Shift)sm

ab . Since we proved already deg(1/1)sm, this degree
formula shifts now to the covering D/C.

�

Proof of deg(1/1) via implication (Imp 3), (Imp 4) in the coniform case.

We want to shift the main orbital property deg(1/1)ab to orbital curves
supporting honest ∗-singularities for given coniform releasable orbital curve Ĉ ⊂
X̂. More precisely, we have globally the following situation:

Y ′ Y Ŷ

X′ X X̂

?

-

?

-

?
- -

(46)

with horizontal releases, vertical quotient maps by a Galois group G, Y →Ŷ
releases all honest cone singularities, such that Y is smooth. Let D̂ be a com-
ponent of the preimage of Ĉ on Ŷ and D its proper transform assumed to be
smooth. The next release Y ′

→Y takes care for a smooth action of G along the
proper transform D′ of D by equivariant blowing up of some points of Y . Take
the minimal set of such σ-processes. Locally along the orbital curves we get the
following commutative diagram:
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D′ D D̂

C′ C Ĉ

?

-

?

-

?
- -

(47)

Already C is smooth at (honest) ∗-points (contraction points of X → X̂), and
C′ is smooth everywhere. The surface singularities of X and X ′ are cyclic. All of
them around C′ are abelian cross points of C with released exceptional curves
as opposite cross germ. Remember that we already defined h(C) in 5.11 via
releases C′

→C which are unique up to weights of released exceptional curves.
These weights play no role in 5.11.

We verify the degree property

h(D) = [D : C] · h(C),

which is sufficient for our coniform category (defining orbital curve coverings via
smooth releasable coniformizations). In the case of w > 1 it is easy to see that
the minimal release C′

→C is the identity because all points on C are already
abelian cross points of C, see Remark 5.12. The degree formula is already
proved. So we can assume that w = 1, hence

GD = NG(D) = NG(D′), #NG(D) = #NG(D′) = #GD = [D : C].

Using the same counting procedure as in (45) we can also assume that C′
→C

releases only one point P. Choosing a preimage Q of P on D we have

h(D′) = (D
′2) = (D2)−#G ·Q, hence h(D) = h(D′) + #G ·Q.

On the other hand, from (45) we get

h(C) = h(C′) + brls
P (C′

→C), brls
P (C′

→C) = #{(released) branches of C at P}

This number of branches multiplied with #NG(D) coincides with #G ·Q:

brls
P ·#GD = #G ·Q, hence h(D) = h(D′) + brls

P · [D : C].

Now divide the latter identity by [D : C] to get

h(D)

[D : C]
=

h(D′)

[D : C]
+ brls

P = h(C′) + brls
P = h(C),

which proves the degree formula deg(1/1)∗.
The last shift to deg(1/1) including infinitely weighted points is simply done

by definitions. Observe that for the definition of orbital self-intersections of or-
bital curves we never needed weights of points and of released exceptional curves.
For points only the singularity types (of curves and points) were important.
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Definitions 5.14 If the orbital point R ∈ Ĉ ⊂ X̂ is not a quotient point, then
we set w(R) =∞. The same will be done for any exceptional curve E releasing
R: w(E) :=∞.

We break the releases X→ X̂ and C→ Ĉ - and of its coniform Galois coverings
- in the diagrams (46), (47) into two releases starting with releases X∗ → X at
infinitely weighted points. Altogether we get commutative orbital diagrams

Y ′ Y Y ∗
Ŷ

X′ X X∗
X̂

?

-

?

-

?

-

?
- - -

(48)

D′ D D∗
D̂

C′ C C∗
Ĉ

?

-

?

-

?

-

?
- - -

(49)

Definition 5.15 With the above notations, the signature height of Ĉ is de-
fined to be

h(Ĉ) := h(C∗) =
1

w
(C
′2) +

∑

P∈C

h(P), w = w(C),

h(P) =
∑

P′→P

(h(P′) + δrls
P ′ ) = brls

P +
∑

P′→P

h(P′), h(P′) =
eP ′

wdP ′
,

brls
P the number of (released) curve branches of C at P .

For the general degree formula (deg(1/1) there is nothing new to prove. We can
restrict ourselves to Galois coverings as described in the above diagrams. Then
we get

h(D̂) = h(D∗) = [D : C] · h(C∗) = [D : C] · h(Ĉ)

by definition.

�

For the signature height alone it makes not much sense to introduce infinite
weights because it works only with the internal curve weights w(C). But in the
next section we will introduce orbital Euler invariants working with external
weights around C. Then infinite weights will become useful.
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5.7 Orbital Euler heights for curves

Let first C′ be an orbital curve with weight w having only abelian cross points. It
follows that the supporting C′ is a smooth curve. We follow the proof line of the
ten rules. In detail it is then not difficult to follow the proof of degree formula
of the signature height for orbital curves on orbifaces in the last subsection.
Notice that we distinguish in this subsection h and ĥ for local reasons.

Definition 5.16

h(C′) := h1(C
′)− h0(C

′),

h1(C
′) := eul(C′) (Euler number), h0(C

′) :=
∑

P′∈C′

h(P′),

h(P′) := 1− 1

dP ′vP ′
,

where < dP ′ , eP ′ > is the type of the cyclic singularity P ′ and vP ′ is the weight
of curve germ at P ′ opposite to C′. The proof is given in [H98] by the same
procedure as for orbital self-intersections through the first eight commandments.
Basically, Hurwitz genus formula for the change of Euler numbers along finite
curve coverings has to be applied.

Now we shift the definition as above along C′ → C along a coniform orbital
release as described in diagrams (48), (49), to the finitely weighted orbital curve
C setting

h(C) := h(C′) = h1(C)− h0(C),

h1(C) := h1(C
′) = eul(C′), h0(C) :=

∑

P∈C

h(P),

h(P) :=
∑

C′∋P′→P

h(P′) = brls
P −

1

vP

∑ 1

dP ′
,

(50)
where vP is the released weight of P defined as weight of the exceptional release
curve EP over P and brls

P is the number of exceptional curve branches of C at
P .
(Shift)ab

∗ : deg(1/1)sm = deg(1/1)ab ⇒ deg(1/1)∗

Let D′/C′ → D/C a locally abelian (coniform) release. Then

h(D) = h(D′) = [D′ : C′] · h(C′) = [D : C] · h(C).

(Shift)∗∞: deg(1/1)∗ ⇒ deg(1/1) =: deg(1/1)∞.

We have only to check what happens at points R with new weight ∞. Chang-
ing to ∞ at some points we write Ĉ instead of C and define h(Ĉ) as in (50)
substituting the new weights ∞. So we get with obvious notations
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ĥ(Ĉ) = eul(C′)−
∑

P∈Ĉfin

ĥ(P) −
∑

R∈Ĉ∞

ĥ(R)

= eul(C′)−
∑

P

(
brls
P −

1

vP

∑

P′→P

1

dP ′

)
−
∑

R

brls
R

(51)

defining ĥ for orbital points and curves. In order to prove that ĥ is orbital we
have only to check the realtive local degree formula the following deg(00/00)∗∞
over infinitely weighted points R for coniform coverings D/C.

∑

D∋S/R

(ĥ(S)− h(S)) =
∑

D∋S/R

bS

ĥ(R̂)− h(R) =
1

vR

∑

R′→R

1

dR′

The weight #ZG(D) of C doesn’t play any role. So we can assume that

G = NG(D) = NG(D′) = GD = GD′ = [D′ : C′] = [D : C]

is the Galois group acting smoothly on D′, where we find all the curve branches
of D at points S over R we need. With the above notations we get

∑

D∋S/R

(ĥ(S)− h(S)) = [G : GS ] · bS = [D : C] · bS

#GS

ĥ(R̂)− h(R) =
∑

R′→R

1

#GS′
=

brls
P∑

i=1

1

#GS′
i

,

where S′ is a (D-branch) point on the release curve LS of S over R′ ∈ ER =
LS/GS and S′

i over R′
i after numeration. Since

bS =

brls
P∑

i=1

|GS · S′
i| =

brls
P∑

i=1

#GS

#GS′
i

= #GS ·
brls

P∑

i=1

1

#GS′
i

,

the relative local orbital property

(ĥ(S)− h(S))R =
∑

D∋S/R

(ĥ(S)− h(S)) = [D : C] · ĥ(R̂)− h(R)

follows immediately, and also the global one after summation over all infinitely
weighted R ∈ Ĉ:

ĥ(D) = h(D) + (ĥ(D)− h(D)) = [D : C] ·
(
h(C) + ((ĥ(C)− h(C))

)

= [D : C] · ĥ(C).

We have to distinguish abelian points P ∈ X̂, which will not be released
along X′

→X̂ and those P′, which arise from releasing. The former appear in
(50) by identifying P′ = P.
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Convention 5.17 For an abelian point Q = (C, Q,D), C, D crossing curve
germs at Q with maximal weight product w(C) · w(D) around, we set in any
case

w(Q) := dQ · w(C) · w(D),

where < dQ, eQ > is the cyclic singularity type of Q. If Q is, more distinguished,
understood as abelian cross point on C, then we set

wQ := w(C), vQ := w(D), hence w(Q) := dQ · wQ · vQ (52)

and call vQ the opposite weight to wQ (or to w(C)) at Q

Definition 5.18 We call the abelian point Q on Ĉ a general point of Ĉ if
and only if w(Q) = w(Ĉ). The other orbital points on Ĉ are called special.
We use the notations Ĉgen for the open orbital curve of general points and Ĉsp

for the complementary (orbital) cycle (or set) of special orbital points.

Each abelian cross point P on Ĉ yields the contribution 1 − 1
dQ·vQ

in the

middle sum of (51), and the general points of Ĉ are precisely those with contri-
bution 0. The summands 1 in the point contributions disappear, if we change
to the open curve Ĉgen ∼= Cgen ∼= C

′gen and its Euler number:

ĥ(Ĉ) = eul(Ĉgen) +
∑

P∈Ĉsp

∑

P′→P

1

dP · vP

= eul(Ĉgen) +
∑

P∈C
sp

fin

∑

P′→P

1

dP · vP
,

(53)

the latter because vP = ∞ outside of the set Csp
fin of finitely weighted special

points.

�

We will write he for the orbital Euler height ĥ and ĥe for the corresponding
orbital Euler invariant.

5.8 Released weights

Denote by v = w(EP ) the released weight of P defined as weight of the ex-
ceptional release curve EP over P and brls

P is the number of exceptional curve
branches of C at P , as above. The weight w(EP ) is uniquely determined by
the coniform release. This follows from the self-intersection and Euler degree
formulas applied to L = LQ → E = EP = LQ/GQ, LQ the releasing resolution
curve of the cone singularity Q ∈ D over P . Namely, the orbital degree formulas
yield

0 > (L2) = [L : E] · hτ (L) =
#GQ

v
· 1
v

(
(E2) +

∑

i

ei

di

)

2− 2g(L) = eul(L) = [L : E] · he(L) =
#GQ

v
·
(

eul(E)−
∑

i

(1− 1

vidi
)

)
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where the sum runs through the branches P′
i ∈ C′ of (C,P). It follows that

eul(L)

(L2)
= v ·

eul(E)−∑
i

(1 − 1
vidi

)

(E2) +
∑
i

ei

di

,

from where one gets v uniquely, if the numerators on both sides do not vanish.
In the opposite case of an elliptic curve we work with the cusp weight v =∞.

For uniform releases we have L ∼= P1, (L2) = −1, hence

−2 = v ·
2−∑

i

(1− 1
vidi

)

−1 +
∑
i

ei

di

,

w(EP ) =

{
2(1− e1

d1
− e2

d2
)/( 1

v1d1
+ 1

v2d2
), if P is abelian,

2(1− e1

d1
− e2

d2
− e3

d3
)/(−1 + 1

v1d1
+ 1

v2d2
+ 1

v3d3
), if P is non-abelian.

6 Relative proportionality relations,

explicit and general

Now we change notations to connect these numbers with the algebraically de-
fined orbital invariants. We write DΓ for the compactification of Γ\D on the
minimal surface singularity resolution XΓ of the Baily-Borel compactification
X̂Γ of Γ\B. Since Γ is D-neat we have Γ\D = ΓD\D (smooth) and we have only
to resolve the cusp singularities. In the Picard case the curve DΓ is already
smooth, but in the Hilbert case we have to release in general curve hypercusps
at infinity. In any case we have a release diagram

o

XΓ

X ′
Γ X̂Γ

D′
Γ D̂Γ

o

DΓ

?

@
@

@R
-

6

-

6

6

�
�

��

with horizontal birational morphisms (releases) and vertical embeddings, closed
in the middle part and open in the top and bottom parts. The only non-trivial
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weights are at infinity, especially DΓ has weight 1. Therefore we get the algebraic
orbital Euler height and orbital signature as volumes:

he(DΓ) = eul(Reg DΓ) +
∑

P∈D∞
Γ

∑

P ′→P

w(DΓ)

w(P ′)

= eul(Γ\D) +
∑

P∈D∞
Γ

∑

P ′→P

1

∞

= eul(Γ\D) = volEP (ΓD).

(54)

hτ (DΓ) = #Sing1
o

D + (D
′2
Γ ) +

∑

P∈D∞
Γ

∑

P ′→P

e(P ′)
d(P ′)

= (D
′2
Γ ) +

∑

P∈D∞
Γ

∑

P ′→P

0

1

= (D
′2
Γ ) = (Γ\D2

) =

{
1
2 · volEP (ΓD), Picard case

1 · volEP (ΓD), Hilbert case

(55)

Comparing the identities (54) and (55) we come to

Theorem 6.1 If Γ is a D-neat arithmetic group of Picard or Hilbert modular
type acting on B = B or H2, respectively, then the orbital Euler and signature
heights of DΓ are in the following relative proportionality relation :

he(DΓ) =

{
2 · hτ (DΓ) Picard case

1 · hτ (DΓ) Hilbert case

In the last paragraph we extended the heights to arbitrary Picard and Hilbert
orbifaces satisfying the defining height rule R.1. With Remark 5.2 we orbitalize
the heights of arithmetic curves C = ĈΓ or C′

Γ to get the orbital Euler and
self-intersection invariants setting

Eul(C) := he(C) =
1

wC

he(C) , Self(C)) := hτ (C) =
1

wC

hτ (C).

They satisfy the defining orbital height rule R.1, also called orbital degree
formula (see also subsection 5.1). The Main Theorem of the article is the

Relative Orbital Proportionality Theorem 6.2 If Γ is an arbitrary arith-
metic group of Picard or Hilbert modular type acting on B or H2, respectively,
then the orbital Euler and self-intersection of the orbital arithmetic curve DΓ

satisfy the following relative proportionality relation :

Eul(DΓ) =

{
2 · Self(DΓ) Picard case

1 · Self(DΓ) Hilbert case
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7 Orbital Heegner Invariants and

Their Modular Dependence

We denote by Pic2 and Hilb2 the categories of all Picard respectively Hilbert
orbifaces, including releases, finite orbital coverings and open embeddings corre-
sponding to ball lattices commensurable with a group ΓK , K a quadratic number
field. If we restrict ourselves to Baily-Borel compactifications and orbital finite

coverings only, then we write P̂ic
2
. By restrictions we get the categories P̂ic

2,1
,

Ĥilb
2,1

, of orbital arithmetic curves on the corresponding surfaces. Disjointly
joint we denote the arising category by Shim2,1 because the objects are sup-
ported by surface embedded Shimura varieties of (co)dimension 1. We admit
as finite coverings only those, which come from a restriction X∆ → XΓ with
objects from Shim2, where ∆ is a sublattice of Γ. The notations for the subcat-

egories Ŝhim
2,1

,
o

Shim
2,1

, Shim2,1,′ of Shim2,1, should be clear, also for the

correspondence classes Ŝhim
2,1

K ,
o

Shim
2,1

K , Shim2,1,′

K in Shim2,1
K , K a quadratic

number field.
We look for further orbital invariants for orbital arithmetic curves.

0 6= h : Shim2,1 −→ Q

satisfying, by definition, the orbital degree formula

h(D̂) = [D̂ : Ĉ] · h(Ĉ)

with orbital degree

[D̂ : Ĉ] :=
w(D̂)

w(Ĉ)
· [Ĉ : D̂]

for orbital finite coverings D̂/Ĉ of orbital arithmetic curves (in Ŝhim
2,1

). For
each level group Γ we dispose on the Q-vector space DivarX̂Γ of orbital divisors
generated by the (irreducible) arithmetic ones. The rational intersection product
extends to the orbital intersection product

< · >: DivarX̂×DivarX̂ −→ Q

defined by

< Ĉ · D̂ > :=
< Ĉ · D̂ >

w(Ĉ)w(D̂)

for (irreducible) arithmetic curves and Q-linear extension.

For finite orbital coverings f : Ŷ → X̂ in Ŝhim
2

we dispose also on Q-linear
orbital direct and orbital inverse image homomorphisms

f# : DivarŶ −→ DivarX̂, f# : DivarX̂ −→ DivarŶ
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Restricting to coverings of arithmetic orbital curves D̂/Ĉ, the former is basically
defined by

f#D̂ := [D̂ : Ĉ] · Ĉ, (Ĉ = f(D̂)).

The orbital inverse image of Ĉ is nothing else but the reduced preimage divisor
f−1C endowed componentwise with the weights on Ŷ. In the orbital style of
writing we set

f#Ĉ := f−1Ĉ.

In [H02] we proved the projection formula in the Picard case. The proof transfers
without difficulties to the Hilbert case, because it needed only the general orbital
language. So

< f#B ·A > = < B · f#A >

holds for all arithmetic orbital divisors B on Ŷ or B on X̂, respectively. It
follows by Q-linear extension after proving it for arithmetic orbital curves.

Definition 7.1 The N -th Heegner divisor HN on X̂ = X̂(Γ) is the reduced

(Weil-) divisor with irreducible components Γ̂\D, D a K-disc on B of norm
N ∈ N+ with respect to a maximal hermitian OK-lattice in K3. The N -th
orbital Heegner divisor HN = HN (Γ) ∈ DivarX̂ is the sum of the orbitalized

components Γ̂\D ⊂ Γ̂\B of HN .

For finite coverings f : Ŷ → X̂ corresponding to Picard lattices Γ′ ⊂ Γ it
holds that

f#HN(Γ) = HN (Γ′),

This property is called the orbital preimage invariance of Heegner divisors
along finite coverings.

Theorem 7.2 The correspondences

hN : Ŝhim
2,1
−→ Q, Ĉ 7→< Ĉ ·HN >,

where Ĉ ⊂ X̂(Γ) and HN = HN (Γ) are taken on the same level Γ, are orbital
invariants.

We use the neutral notation h. We should denote it by ĥ, and introduce
o

h
and h′ by same values on corresponding open or released orbital surfaces. The
reader should keep it in mind.

Proof . Let f : D̂ → Ĉ be a finite covering in Ŝhim
2,1

K corresponding to
Γ′ ⊂ Γ, then

hN (D̂) = < D̂ ·HN (Γ′) > = < D̂ · f#HN (Γ) > = < f#D̂ ·HN (Γ) >

= [D̂ : Ĉ]· < Ĉ ·HN (Γ) > = [D̂ : Ĉ] · hN (Ĉ).
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We look for a normalization of the three equal orbital invariants in the
Proportionality Theorem 2.1 of Part 5 and a synchronization with the orbital
Heegner invariants for establishing orbital power series.

Definition 7.3 We call h0 : Ŝhim
2,1

K → Q with

h0(Ĉ) := Eul(Ĉ) = (1−sign DK/Q)/2)·Self(Ĉ) = volEP(ΓD) :=
1

w(Ĉ)
volEP (ΓD)

for all orbital arithmetic curves Ĉ = Γ̂\D, the 0-th orbital Heegner invari-
ant.

We define the Heegner Series of Ĉ by

HeegĈ(τ) :=

∞∑

N=0

hN (Ĉ) · qN , q = exp(2πiNτ), Im τ > 0

Theorem 7.4 The Heegner series are elliptic modular forms belonging to
M3(DK/Q, χK) in the Picard case or M2(DK/Q, χK) in the Hilbert case of the
corresponding quadratic number field K with discriminant DK/IQ.

A detailed explanation of the vector spacesMk(m, χK) of elliptic modular forms
of weight k, level m and Nebentypus χK you find in the appendix.

Proof . We can refer to [H02] again. We used simply the orbital degree formula
working simultaneously for each coefficient. We proved, that we find a D-neat
covering in any case. But then we get a Hirzebruch-Zagier series in the Hilbert
case, or a Kudla-Cogdell series in the Picard case. These are elliptic modular
forms of described type. The Heegner series we started with distinguish from
the latter by the orbital property (orbital degree formula) for the coefficients
only by a constant factor.

�

Definition 7.5 An infinite series {hN}∞N=0 of orbital invariants on an orbital
category (or correspondence class only) is called modular dependent , if the
corresponding series

∑∞
N=0 hN (Ĉ) · qN are elliptic modular forms of same type

(weight, level, Nebentypus character) for all objects Ĉ of the category. A count-
able set of orbital invariants is called modular dependent , if and only if there
is a numeration such that the corresponding series is.

Since the spaces of modular forms of same type are of finite dimension, it suffices
to know the first coefficients of the series to know them completely, if the space
is explicitly known. We proved

Theorem 7.6 On each correspondence class Pic2,1
K or Hilb2,1

K are the corre-
sponding orbital Heegner invariants hN modular dependent. For each quadratic
number field there is up to a constant factor only one Heegner series. The
coefficients are rational numbers.
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8 Appendix: Relevant Elliptic Modular Forms

of Nebentypus

We consider the congruence subgroups

Γ0(m) := {
(

a b
c d

)
∈ Sl2(Z); c ≡ 0 mod m}

of the modular group Sl2(Z) acting on the upper half plane H ⊂ C. We also need
characters χ = χK : Z → {±1} of quadratic number fields K. They factorize
through residue class rings of the corresponding discriminants. A holomorphic
functions f = f(τ), τ ∈ H, is called (elliptic) modular form of weight k, (scew)
level m and Nebentypus χ, if and only if it satisfies the following functional
equations:

f(
aτ + b

cτ + d
) = (cτ + d)kχ(d)kf(τ) ∀

(
a b
c d

)
∈ Γ0(m),

and it must be regular at cusps. The space of these modular forms is denoted
byMk(m, χ). This is a finite dimensional C-vector space, which is O for k < 0.
In [H02] we explained how to get

Example 8.1 . Take weight k = 3, level m = 4 = |DK/Q| and the Dirichlet
character χ = χK of the Gauß number field K = Q(i).

M3(4, χ) = Cϑ6 + Cϑ2θ

with

ϑ :=
∑

n∈Z

qn2

= 1 + 2
∑

n>0

qn2

, (Jacobi) ,

θ :=
∑

0<u odd

σ(u)qu = q ·
∞∏

m=1

(1− q4m)4
∞∏

n=1

(1 + 2qn)4, (Hecke).

In [H02] we explained how to get the ”Heegner-Apollonius modular form” (2)
in the Introduction from the extended orbital Apollonius cycle on the projective
plane, visualized in picture 3.

Examples 8.2 . Let D be the discriminant of a real quadratic number field K.
Hecke [Heck] defined Eisenstein series in M2(D, χK) for prime discriminants.
From [vdG], V, Appendix, we take more generally:

1

2
L(−1, χK) +

∞∑

N=1


 ∑

0<d|N
χK(d)d


 qN ,

=

∞∑

N=1


 ∑

0<d|N
χD1

(d)χD2
(N/d) · d


 qN ,

with honest decompositions D = D1 ·D2 in two smaller discriminants.
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Knowing dimensions of M2(D, χK) (see tables at the end of [vdG] and the
first coefficient of the Heegner series for the Hilbert-Cartesius orbiplane (K =
Q(
√

(2)) of the introduction we come in the same manner as in the Picard-
Apollonius orbiplane to the Heegner series (5).

On the orbiplanes we have a simple intersection theory. The intersection of
an arbitrary plane curve with a quadric is nothing else but the double degree of
the curve. In general for orbiplanes we left it as exercise for the reader to define
the orbital degree degree C of arithmetic curves there, such that the following
result holds.

Theorem 8.3 For each orbital arithmetic curve C on an Picard or Hilbert
orbiplane of the quadratic number field K, say, the Heegner series

HeegC(τ) = Eul(C) + degree C ·
∞∑

N=1

(degree HN)qN (56)

is an elliptic modular form belonging to M2(DK/Q, χK) or M2(DK/Q, χK),
respectively.

Comparing the coefficients in (56) with those of the explicit arithmetic el-
liptic modular forms of Picard-Apollonius (2) and Hilbert-Cartesius (5) in the
introduction we get a convenient counting of arithmetic curves sitting all in
Heegner divisors with orbital degree multiplicities.
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