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It is impossible to separate a cube into two cubes, or a fourth power
into two fourth powers, or in general, any power higher than the
second, into two like powers. I have discovered a truly marvelous
proof of this, which this margin is too narrow to contain.1

Pierre de Fermat1

Timetable I

• 1799 Fundamental Theorem of Algebra: Each (non-constant) algebraic
equation has a (complex number) solution. Proved in the celebrated thesis
of C.F. Gauß .

• 1828 Invited by Alexander v. Humboldt (1769-1859) Gauß travels to
Berlin for fruitful communications with the great universal scientist.

• 2005 The German bestseller ”Measuring the World” (around the travel of
Gauß to Berlin) written by Daniel Kehlmann appears. In the meantime
(2013) film and DVD with same titles have been produced.

• 2012 Announcement in a German newspaper (November): First time the
schools of a German destrict (Barnim) has been completely equipped with
electronic (smart) tables.

0Translation of my German article: Mobile Gleichungsgeschichte(n), Forum d. Berliner
Math. Ges., Bd. 27 (2013), 5-27

1Around 1630, Fermat wrote his Last Theorem in the margin of his exemplar of Diophantos’
6-th book on Arithmetics. Unfortunately, the original has been lost. But Fermat’s son Samuel
reproduced the margin in his issue of Fermat’s work published in 1670, see [Si], [CF] S. 208.
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1 Introduction

In the beginning: The VISION

By analogy with Faust I (Goethe)

The history of mathematics includes a lot of visions appearing first nebu-
lously. Then, after many calculations, conjectures of formulas and proof at-
tempts the contures get clear. The useful results were held tight in documents,
in books which partly got famous and popular. The visions have been further
bequeathed to the next generations as sequences of pictures. Since last century
spectacular applications you can look in films and videos.

A studying scientist must know that films/videos are helpful, but induce
in any case only a passive learning. Especially in Mathematics there’s a long
way from resarch results to visible applications. Therefore it is important to
get to know the original visions of eminent authorities. The new mathematical
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softwares enable us to reconstruct in a simple way such basic master ideas by
ourselves as digital animations.

Twenty years after André Wiles proof of the millenium result (Fermat’s Last
Theorem) the time is high to track down the most important course settings
in the history of mathematics concerning algebraic equations. A combination
of this article with facebook is possible. It allows immediately to consider the
pictures and animations described in the text. You can find them on the side
announced on my homepage (choose: ”Rolf-Peter Holzapfel” on Google). The
list of all can be found at the end of the article before the references. Also
on my homepage you can find all MAPLE orders I have used for calculations
and animations. A lot of time was necessary to produce them. But, if they are
already there, then it is easy for the reader to use them writing creatively an own
version. For example, we recommend the reader to fill into the kit of our optical
procedure (with drones) for finding all solutions of a special equation, an own
equation (see Chapter 6). Moreover, our homepage kits can be also considered
as instructive foundations for further constructions of digital animation clips.
This allows an active and playful intervention into the learning process. That’s
what we need in the future.

2 Conica

Let’s go back to ancient times. Regard a rotary double cone. It is easy to
visualize it on each notebook with popular mathematical software (Mathema-
tica, Maple). Additionally, we consider sections with moving planes. The oldest
preserved work on conical sections is ”Conica” due to Apollonius of Perge (ca.
262 - ca. 190 b.C.). The names of the sectional curves appeared there: Ellipse,
parabola, hyperbola. The Animation [A10] shows the rotary motion of a plane
around a fixed axis together with the moving sections with a rigid double cone.

Of course, in the software blocks for calculating the animations we use carte-
sian coordinates. So we jump for a moment near to the Modern Times of mathe-
matics beginning with Newton (1643-1727) and Leibniz (1646-1716). A proof
without coordinates characterizing the three types of the sectional curves by fo-
cus properties was managed by the French officer and mathematician Germinal
P. Dandelin (1794-1847), [Da]. Instead of setting a ball into a cannon, he put
it into a cone touching simultaneously its coat and an intersecting plane, [B4].
First knowledge I gained as student in a beautiful presentation in Section IX
(Kegelschnitte) of the old German book [Bo]. Much later I observed that the
name of Dandelin was nowhere mentioned in the book. It remembers to times
when leaders of two countries regarded each other as enemies. They propagated
”Erbfeindschaft” for the preparation of terrible wars. Such hard nationalism
against other countries should never happen again.

Let’s do a further jump: into the 20-th century. The most significant mathe-
matician of this era was David Hilbert (1862-1943). He describes the practical
application of hyperbolas in mechanics. Two rotary hyperboloids touching each
other along a scew straight line transport rotation around one axis to another.
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We refer to the Animations [A7],[A6],[A5].
”Thus we receive a crushing (Abschrotung) of both surfaces, putting them

together in such a way that they touch each other along a straight line, and
spinning them around their rotation axes with suitable speed ratio. From this
results a technically applicable method of a cogwheel transmission between scew
lines. Since during the mutual sliding the material wears out, one has to restrict
the hyperboloids to congruent ones. Such a transmissen is shown in Picture
269.”
[HC], ch. 5 (Kinematics), 43 (Motion in 3-space), Abb. 269 (Mechanique model
with handle).

3 Cubic Algebraic Equations

Now we reduce the number of variables to only one, but we admit higher degrees.
More precisely, we will from now on consider mainly algebraic equations

xn + an−1x
n−1 + ... + a1x + a0 = 0, ai ∈ Q, i = 0...n− 1,

Even in the case of quadratic equations (n = 2) it is not possible to solve each
of them in terms of real numbers:

input : solve(x2 + 2px + q, x),

output : − p±
√

p2 − q

Already in school the solution formula was explained, if p2 ≥ q. The contrary
case has been supressed tacitly or declared as ”unsolvable”. G. Cardano (1601-
1676) is detectably the first who mentions solutions of seemingly unsolvable
types (captious quantities, lat. ”quantitas sophistica”). In his book [Ca], Ch.
39, he interpreted the equation x(10 − x) = 40 as task for finding a rectangle
with area 40 and scope 20. A geometrical solution doesn’t exist. Numerically
the equation can be solved by means of ”imaginary numbers”. The application
of such numbers has been denoted as ”useless gimmik” by Cardano himself,
cp. [FH]. René Descartes (1596-1650) shaped the term ”imaginary root”. The
introduction of the ”imaginary unit i =

√−1” is attributed to Leonhard Euler
(1707-1783), see Google/Wikipedia: Complex Numbers.

The extension of the story to cubic polynomials

x3 + ax2 + bx + c

became dramatically. By the method of cubic completing it is easily seen that
the search for solutions can be reduced to the equation type

x3 + 3px− 2q = 0

Now the following table will be given ahead:
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Timetable II

• Leonardo da Vinci (1452 - 1519): His friend, mathematician and Fran-
ciscan monk L. Pacciolli calculated the bronze amount for an equestrian
statue.

• Pacioli (1445 - 1514): States that there are cubic equations x3+bx+c = 0,
which are not solvable. He presented some explicit examples.

• del Ferro (1500) solves all these examples. He announces the solution
way to his student Fior.

• Tartaglia (1535) also states to be able to solve the cubic equations. He
demonstrated this to Fior, who gave him a list of examples.

• Cardano was introduced by Tartaglia into his method after promising
to keep it secret. Breaking oath Cardano published the procedure in his
book ”Ars magna” (1545).

• Public dispute duel Tartaglia - Cardano (represented by his student Fer-
rari together with two roughnecks).

At his time Luca Pacciolli’s statement about general unsolubility of cubic
equations had (for short time) a trendsetting effect. In contrast to the monks be-
lieve Scipione del Ferro (1465 - 1526) found solutions for all examples of Pacciolli.
Del Ferro transmitted his method to some friends, especially to Antonio Maria
Fior (end of 15-th century - middle of the 16-th). After Niccol Tartaglia’s (1499
- 1557) independent discovery a competence meeting with Fior and Tartaglia
was organized, which ended successfully for the latter mathematician, who
solved in acceptable time 30 cubic equations choosen by Fior. Geronimo Car-
dano (1501 - 1576) asks Tarataglia for his computational secret. After several
requests the latter revealed his approach to the former in terms of misty verses.
Mathematically disrobed they include the following instruction:

x3 + 3px = 2q, y − z = 2q, y · z = p3, x = 3
√

y − 3
√

z,

It leads to the solution

x = 3
√√

p3 + q2 + q − 3
√√

p3 + q2 − q

One year after Cardano’s sneaky publication Tartaglia (see Timetable) com-
plained the breach of promise in ”Questiti et inventione diverse”. Now Cardano
arranged his pupil Ludovico Ferrari (1522 - 1565) to accuse Tartaglia the (made-
up) theft of ideas from del Ferro. In the year 1548 the public debate of Tartaglia
and Ferrari (as agent of Cardano) had been organized. Because of Ferrari’s
powerful bodyguards Tartaglia prefered a piqued retraction.

A littlebit later Ferrari discovered how to solve algebraic equations of degree
4 (quartic). He reduced the problem to the resolution of a cubic equation, the
resolvent of the given quartic equation, see e.g. [QF], [MY]. In the Internet one
can find several articles with different instructions for solving equations of the
above types. A method of Euler is described in [Ni].
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4 Newton’s Dynamization in the Plane

In the mean time the coordinate method had been developed for the study of
geometric problems. Worth to read is René Descartes’ book ”La Geometrica”
printed in 1637. Already 1627/28 Descartes sketched how a quartic equation
can be solved intersecting a parabola with a circle.

On this R. Descartes (1596 - 1656) founded mainly the Analytic Geom-
etry bringing together Algebra and Geometry. However, rectengular coordi-
nates (called ”cartesian”) didn’t appear in his work. Originally, ”cartesian”
means: ”introduced by Descates”. But as creators of these coordinates should
be counted Apollonius of Perge, Nikolaus of Oresme (1330-1382), Pierre de Fer-
mat (1601-1665) and/or Jan de Witt (1625-1675).

In accordance with cubic equations none other than Isaac Newton (1643 -
1727) dealt with plane cubic curves in some detail. Following dynamical consi-
derations he divided them in five types looking at their normal form equations

(1) y2 = x3 + ax2 + bx + c ∈ R[x]

A German description of the Newtonian world of ideas can be found in [Wi]. It’s
a nice explanation of Newton’s Latin original work in [Ne]. The Animation [A8]
then illustrates dynamically Newton’s cubic curve family. For self construction
the corresponding digital building kit you can find on my homepage. Degene-
rated curves appear in the family. They consist of cubics with a singularity.
Two types of plane curve singularities have been discovered graphically on this
way by Newton: Double point and cusp. The curves on the right-hand side
have only one connected component, those on the left-hand have two of them:
An oval and a branch.

Descartes (as well Albert Girard, 1595 - 1632) begun to decompose polyno-
mials into linear factors. The types of cubics could be understood by the kind
of zeros of the corresponding cubic polynomial. Geometrically the real zeros
appear as intersection points of the curve (1) with the x-axis.

5 Quartic Examples: Fermat Quartic and Egg
of Columbus

Increasing the degree from 3 to 4 leads us to the world of plane quadrics. We
consider only two examples, namely the Fermat quartic (below) and the ”ovoid”
[A3] with equation

(x2 + y2)2 − x3 = 0,

([Fi], S. 32). With our digital kit (homepage) we draw this curve, then we
rotate it around the x-axis. For this purpose solving the equation for y is
necessary. Namely, the rotation command needs a function graph. With our
Mathe-notebook (MAPLE) we find

input : solve((x2 + y2)2 − x3, y),

output :
√
−x2 + x3/2,−

√
−x2 + x3/2,

√
−x2 − x3/2,−

√
−x2 − x3/2
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We choose the function
√
−x2 + x3/2 over the intervall [−1, 0]. After rotation of

the function curve the arising egg will be colored, illuminated and trimmed at
the top. Finally, you can regard a dynamical version of the ”Egg of Columbus”.

We are interested in rational solutions of the quartic ovoid equation, t.m.
in points with rational coordinates sitting on the curve. In general, a plane
equation of degree 4 has only finitely many Q-solutions. This was shown by
Faltings in a celebrated theorem proved in 1983: Smooth curves of genus g > 1
defined by equations with rational coefficients have at most finitely many ra-
tional points. Since the 19-th century one knows that almost all plane curves
of degree 4 have genus 3. More precisely, the smooth ones have this genus, the
others not.

Gerd Faltings received for his theorem the highest mathematical prize, the
Fields Medal, comparable with the Nobel Prize (not existing for mathematics).
Faltings’ Theorem was already conjectured in 1922 by the british mathematician
(born in the USA) Louis J. Mordell (1888-1972). But nobody could prove it
before 1983. Until then at international centers of mathematics high technics in
Algebraic and Arithmetic Geometry were developed. After all, the proof of the
Mordell conjecture has been accomplished. A littlebit more impression about
the methods you find in the closing remark of Section 12.

Looking again at the ovoid equation we check its rational solution set. First
one ascertain that the curve is not smooth finding out its singularities:

input : f := x4 + 2x2y2 + y4 − x3, singularities(f, x, y)
output : (0, 0)

Therefore it has exactly one singularity: It sits in the coordinate origin being
the top point of the ovoid. The determination of the curve genus is managed
by the following MAPLE command:

input : genus(f, x, y)
output : 0

Now we conclude that there must exist infinite many rational points on the
ovoid. Indeed, by a simple order one gets a parametrization of them:

input : parametrization(f, x, y, t)

output :
(

1
1 + 2 · t2 + t4

,
t

1 + 2 · t2 + t4
)
)

These rational points lie dense on the ovoid.
In contrast to the ovoid, the Fermat quartic x4 + y4 = 1 [B3] is smooth,

has therefore genus 3. Thus it contains only finitely many rational points by
Mordell-Faltings. Already Fermat knew all of them, namely (0,±1) and (±1, 0).
For the proof method see Section 9.
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6 The Solution Navigator

We start the section with the following

Timetable III

• 1895 H.Weber: First explicit presentation of an (by its radicals2) unsol-
vable algebraic equation (in a textbook): x5 + 5x + 5 = 0.

• 1783 L.Euler was convinced, till the end of his life, that all algebraic
equations of 5-th degree can be resolved by radicals.

• 1799 P.Ruffini states the existence of radically unsolvable equations of
5-th degree. But his publications contain some ambiguities. However, his
”proof” was not accepted by the leading mathematicians of his and later
times.

• 1799 C.F.Gauß proved in his dissertation that all (non-constant) alge-
braic equations are solvable with the help of imaginary numbers.

• 1824 N.H.Abel provided an exact proof for the existence of pentagonal
equations unsolvable in terms of radicals.

• 1832 E. Galois found for arbitrary algebraic equations a precise solvibility
criterion.

As already mentioned in the Timetable I, Carl-Friedrich Gauß (1777 - 1855)
submitted his thesis [GD] in 1799. Not only the result was a big bang for the
mathematical science around 1800, but also the skillful arithmetic - geometric
application of imaginary numbers, which were generally outlawed until then.
The domain of complex numbers C = R+R · i was not only necessary, but was
also proved to be sufficient for solving algebraic equations. In order to avoid
difficulties with his referees, Gauß avoided to mention imaginary numbers in his
main result: It was presented as ”Decomposition Theorem for real polynomials
into linear and quadratic factors”.

Only in 1931 Gauß introduced the name ”complex numbers” in his arti-
cle about the biquadratic reciprocity law. The geometric interpretation in the
plane together with the description of the four basic arithmetical operations he
presented carefully. In his paper (see Gauß’ Works 10, No. 1) he remarked:

”With all the considerations are the imaginary quantities, as long as their
fundament was only a fiction, not naturalized, rather considered as suffered,
They remained a lot of time far away from elevation to one level with the
real quantities. Now, there is no further reason for such a resetting, after the
metaphysics of imaginary quantities has been putted in its true light, and since
it has been proved that the imaginary numbers have an objective meaning as
the negative ones.”

2Radicals of a polynomial are numbers generated by means of the four basic arithmetic
and root operations starting from the coefficients of the polynomial (assumed to be rational
throughout this article.
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By virtue of the geometric interpretation as plane vectors, the complex num-
bers fitted into the well developed analytic geometry. Therefore the plane ge-
ometry together with trigonometric functions was available. We use the well-
known notations for polar and cartesien coordinates for the complex numbers
z = x + yi ∈ C:

polar coordinates :

absolute value r = |z| =
√

x2 + y2, argument ϕ = arg(z) = arcsin(x/|z|),
cartesian coordinates :

real part x = Re(z) = r · cos(ϕ), imaginary part y = Im(z) = r · sin(ϕ).
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Now we want to tinker a ”solving navigator” for algebraic equations, which
tracks down the zeros of any polynomial in a visible manner. More precisely, for
a given polynomial some animations allow us to read off the polar coordinates of
each root. On this way you can see in each case an optical proof of Gauß’ solution
theorem (Fundamental Theorem of Algebra). Let P (x) be the given poloynomial
with rational coefficients, say of degree d > 0. It provides a mapping z 7→ P (z)
of the (Gauß) z-plane to the image w-plane.

We let run (in mind) a wave of circles Cr : |z| = r with increasing radius
r. Our first animation shows the image wave Or := {P (z); |z| = r} on the
w-plane. It crosses ν times, 1 ≤ ν ≤ d, the origin of the coordinate plane. We
stop the wave at one of the ν moments. The ticker on the picture reveals the
preimage radius r. It is the absolute value of a zero lying on the ν-th circle of the
z-plane. We fix the image curve Or and use it as route for a drone, which starts
at the intersection point of Or with the positive part of the x-axis. This is the
image point of (r, 0) on the z-plane. Observe that Or consists of all image points
of (r, ϕ), 0 ≤ ϕ < 2π. We move the argument ϕ from 0 away till the image
point of (r, ϕ) flying (like a drone) along the route Or lands at the origin point
(0, 0) of the w-plane. The argument ϕ can be read from the ticker in circular
measure. The pair (r, ϕ) is one of the zeros of P(x) in polar coordinates. Along
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the ν orbital routes you find all zeros of the polynomial in the same manner.
Our watching precision of 3 digits can be enlarged to e.g. 20 digits by a simple
button pressure activating a short procedure based on Newton’s approximation.
By our eyes we find roughly the five zeros (in polar coordinates):

z1 = (0.89,−π)
z2 = (1.43, 2.18)
z3 = (1.655, 0.72)
z4 = (1.43,−2.18)
z5 = (1.655,−0.72)

With the commands Newton(x5 + 5x + 5, zi, 9), i = 1..5, we get the zeros
precisely up to a milliardth = 1

10−9 (after conversion in Gauß coordinates):

ζ1 = − 0.8889660370
ζ2 = − 0.8026283841 +1.185081859i

ζ3 = − 0.8026283841 −1.185081859i

ζ4 = + 1.247111403 +1.090967675i

ζ5 = + 1.247111403 −1.090967675i

In the MAPLE instructions one finds another (rigid) visual location of zeros
by means of the absolute value surface. Five pigots in 3-space are directed to
the zeros in the Gauß botton plane, see [A10]. The precision is low: It’s difficult
to read the numbers in an accurate manner. It’s only a sketch, and no proof
idea is visible.

We recommand the reader to apply the zero navigator (route finder with
drone flights) to the polynomial function

P (z) = z6 − 4z5 + 2z4 + 22z3 − 89z2 + 126z − 90

We reveal that all zeros are Gauß integers (belonging to Z+ Z · i). So one has
an easy control by polynomial factor command

evala(Factor(P (z), I))

decomposing P(z) in linear factors in the polynomial ring C[z] over the field of
complex numbers.

7 A View to Galois Theory

The zeros of any polynomial of degree ≤ 4 can be expressed by means of the four
(elementary) basic operations +,−, ·, : and the root operations, starting from
the coefficients. Generally, for higher degrees, this not possible. Finally, after
a half century of turmoils around equations of degree 5, the existence theorem
for unsolvable ones (by radicals) was proved precisely by the young norwegian
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mathematician Niels Henrik Abel (1802 - 1829) in 1824. He worked with a
polynomial factorization with indeterminated zeros. By some manipulations
with them he could conclude that a randomly chosen polynomial is unsolvable
in terms of its radicals. Unfortunately, one could not recognize in the first half
of the 19-th century an explicit polynomial with this unsolvable property. For a
concretely choosen pentagonal polynomial without obvious zeros one cannot be
sure whether it is a radically unsolvable or not. For the decision a criterion was
necessary. It was found some years later by the genial French mathematician
Evariste Galois (1811 - 1832), see below.

At the age of almost 27 years Abel’s life ended tragically. As a result of
hard scientific work in poverty his body expired more and more during his last
year of life. Until then his work found already highest respect among others by
C.G. Jacobi (1804 - 1851), Legendre (1752 - 1833) und Gauß. Strong support
came from A.L. Crelle (1780-1855). Only two days after the death of the young
Norwegian mathematician Crelle held the commitment to the vocation for a
chair at the University of Berlin (today Humboldt University) in his hands. It
came too late for one of the significantest mathematical geniuses of the world
history, see [Wu], 357-365.

The equally gifted French mathematician Evariste Galois found after Abel’s
work a necessary and sufficient criterion for the radical-solvibility of each alge-
braic equation. He considered substitutions of the abstract zeros among each
others. Moreover, he organized them in a new structure, later called ”group”,
more precisely, dealing with zeros of polynomials, ”Galois group”. This was the
birth of group theory, today applied successfully in many branches of mathe-
matics.
Proposition (Galois Criterion). An irreducible polynom is solvable if and
only if the its Galois group is solvable.

Thereby an irreducible polynomial is called solvable, if all zeros are radicals
of it. The notion of solvable group is explained in each algebra textbook, which
includes an introduction to group theory, see also Google/Wikipedia.

Also tragically ended the life of E. Galois. Political circumstances leaded to
the suicide of his father. Based on the background of such painful experience
Galois took part on demonstrations against King Louis Philippe. His provoca-
tive appearance had been registered by the Secret Service. Probably with help
of a whore Galois has been engaged in a duel he didn’t survive. In the night
before he wrote down his last important mathematical results. This manuscript
has been known in the world as his ”Mathematical Testament”. Evariste Galois
was only 20 years old. The physicist Leopold Infeld (1898 - 1868), a temporary
colleague of Albert Einstein (1870 - 1955), wrote an interesting Galois Bio-
graphy [In] allowing a deep insight into the French school system around 1830
embedded in the political circumstances.

To find an explicit simply built polynomial not solvable in radicals is by no
means an easy undertaking. The German mathematician Issai Schur (1875 -
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1941) found almost hundred years after the polynomial

(2) Q = 5! ·
5∑

k=0

xk

k!
= x5 + 5x4 + 20x3 + 60x2 + 120x + 120

with unsolvable Galois group S5 (permutation group of five elements), see Rus-
sian Encyclopedia [ME], I, S. 849. Immediately visible is the irreducibility of
Q. It comes from Eisenstein’s criterion for normalized polynomials with integral
coefficients:

There is a prime number p dividing - except for the highest - all coefficients,
but p2 does not divide the last (the constant term).

Obviously, p = 5 satisfies the condition for Schur’s polynomial. Also We-
ber’s polynomial in the introduction satisfies obviously the above irreducibility
criterion.

A speedy entry into Galois Theory, especially to line up the Galois group of
an irreducible polynomial, one finds in M.S. Milne’s [MG]. In the Appendix A-
35 is announced the formally simple example X5−6X4+3 with Galois group S5.
We recommend the reader to determinate its zeros by means of our navigator
drones.

An unsolved problem until now is to find for any given finite group G a
polynomial with rational coefficients and Galois group G, or only to prove its
existence. This is the Inverse Problem of Galois Theory. Restricting to some
special types of groups or admitting another number field for coefficients the
problem has been solved. For the general cases the number theorists will further
work hardly.

For the actual arithmetic-geometric level of Galois Theory we refer to [AG].

8 From Complex Logarithm to Riemann Sur-
face

A historical jump from dynamical elements of small graduated equations to the
proof of Fermat’s Last Theorem by Andrew Wiles at the end of last century
leads us to Euler’s investigations of the complex logarithm. The exponential
function is explained by extension of the well-known series expansion - together
with the necessary convergence check - from real to complex numbers:

exp(z) =
∞∑

n=0

zn

n!

In contrast, the familiar series expansion of the (natural) logarithm

ln(1 + x) = −
∞∑

k=1

(−x)k

k
= x− x2

2
+

x3

3
−+...
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converges only for absolutely small real numbers. The extension from real to
complex values came with some labor pains. Leonhard Euler wrote in [Eu],
Kap. II:

”Although the theory of logarithms is rather firmly established, such that
truths contained in it seem to be proven as strong as for basic facts of geometry,
several mathematicians have a very different view to the nature of logarithms
of negative and imaginary numbers.”

A special occassion to this remark gave the attempt of well-known mathe-
maticians to determine the value of negative and purely imaginary (Gauß )
integers. Johann Bernoulli (1667 - 1748) stated that for any real number a
should hold the identity ln(−a) = ln(a). In his correspondence with Euler he
offered weak arguments for his opinion. Leibniz, however, in his correspondental
dispute with Euler, believed that logarithms of negative numbers are (purely)
imaginary. Obviously, the above logarithm series is divergent for x = −2, e.g.
For this reason it was audacious trying to solve the equation

ey = −1

for detecting the value y = ln(−1). Only 35 years after the above correspon-
dences L. Euler clarified the situation. He gave four arguments supporting
Bernoulli’s belief and three for that of Leibniz. Subsequently he setted six re-
spectively three objections against, in order to formulate and prove the following

Proposition (Euler, 1747, [Eu], II). There is always an infinity of logarithms,
which correspond to a given number in the same manner, or in other words, if
the logarithm of the number x is denoted by y, then I claim that y includes an
infinite number of different values.

At the end of the essay one finds the formula

ef+g·√−1 = ef · eg·√−1 = ef · (cos g +
√−1 · sin g)

(with real numbers f, g), from where the trigonometric periodicity is readable.
We visualize this relation by an infinite spring. The latter represents the twisted
imaginary axis of the Gauß plane. The exponential map appears as animation
pressing the spring down to the unit circle of (complex) image plane.

The above proposition remained obscure for most of the mathematicians of
the 18-th and 19-th century: an obstruction for accepting imaginary numbers.
Only since the middle of the 19-th century a broader understanding of imaginary
sizes prevailed. Multivalued functions could been better understood with the
construction of ”Riemann surfaces”. The spring opens the door for illustrating
the later uses of such surfaces: Imagine our spring widened to a spiral staircase.
If you want to get all logarithms of a number x inside of the unit circular area,
then you have only to start from one logarithm - it sits on the string staircase
- and turn rounds up and down on our stair, siehe Animation [A4].

More precisely, let’s move in the basic plane on a circle around 0 starting
at x. We denote by y one logarithm value of x. It sits on the stair. Moving x
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on the circle induces a ride of y on the spring staircase over the basic points.
after one circulation of x the corresponding y’s run through a bow on our stair.
For several circulations the corresponding bows ly one over each other on the
spring stair case. This principle of moving along a bow on a Riemann surface
of a multivalued function over a bow in the argument plane is called analytic
extension or monodromy. On this way we can, for example, real functions, given
by series expansions, extend into a complex domain. Even if a real series is only
locally convergent, it happens that we can extend the function (multivalued)
around the critical point to a punctured complex neighbouhood. A first example
was the logarithm function.

Euler’s pioneering work is a launch platform for the building of modern
complex analysis around such essential notions as fundamental groups, universal
coverings, fundamental domains. Concerning logarithms, the map exp : C→ C∗
appears as universal covering of C∗. Thereby, the whole complex plane C is the
universal cover of the punctured plane C∗ = C \ {0}. The fundamental group is
Z (integers). It measures the multivalence of the inverse map of the universal
covering, in our special case: of the logarithm. A memorable one-dimensional
(real) example yields the restriction of the exponential map to the imaginary
axes. It is visualized by the above spring we started with. It has each bow
covering biunivoquely the unit circle in the image plane as fundamental domain
(fundamental bow in this case), look at [A4] again.

9 Numerical Prehistory of the Fermat Theorem

Theorem of Wiles (Fermat’s Conjecture, Fermat’s Last Theorem). It
is not possible to find three integers a, b, c 6= 0 and a natural number n > 2, such
that

an + bn = cn.

Generations of mathematicians worked hardly 360 years long on a proof of
Fermat’s conjecture, but without success. Fermat himself was able to prove
the statement for n = 4 by a new method called ”infinite descent”: If there
exists a positive solution tripel a, b, c, then one can construct from it a smaller
positive one. The contradiction to the existence assumption follows obviously.
Translated to geometry it means that the plane curve (Fermat quartic)

x4 + y4 = 1

supports no rational point except for the trivial ones (0, 1), (1, 0).
The case n = 3 was treated successfully by L. Euler (ca. 1770). Inde-

pendently confirmed P.G.L. Dirichlet (1805-1859) and A.M. Legendre (1752 -
1833) the conjecture for n = 5 in 1825. Both relied on the preliminary work
of the female French mathematician Sophie Germain (1776-1831). She found a
simultaneous approach for infinitely many special exponents n, see [Si], p. 128
ff. With a new conceptual approach E.E. Kummer (1810-1893) shifted impor-
tant points to further developments of number theory. At a stroke he proved
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Fermat’s conjecture for all prime exponents 5 ≤ n = p ≤ 43, p 6= 37. With
help of strong computers the conjecture could be acknowledged till 1993 for all
exponents n < 4000000, see [BCEM].

10 Non-Euclidean Preparations

Now we turn back again to Newton and Gauß .Henceforth, we allow in a cubic
equation complex solutions. The complex zero set EC appears as surface with
complex structure embedded in the 3-space R3. If there is no singularity, then,
after suitable choice of embedding, the image is a torus. The universal cover of
EC is the complex plane C. The universal covering C→ EC can be realized by a
double periodic complex function, a so called elliptic function. As fundamental
domain F in C one can choose a parallogram with the two periods as putting
up sides. We can translate F in both period directions such that the complex
plane C is (not overlapping) covered by fundamental domains congruent to F .
The shifts form an infinite group called group of deck transformations. It is
isomorphic to Z × Z. It is the fundamental group of our biperiodic universal
covering.

From F (assumed to be rectangular for simplicity) we can construct EC in
two steps: First put together two opposite sides of F to get a cylinder. The
latter will be twisted such that the opposite boundary circles come together and
we get a tyre (torus), see the pictures in [A2].

Before we come back to the non-euclidean geometry, we want to remember
the foresight of Gauß on this place. In a letter to Schumacher (see [GS]) he
wrote on the 17-th of Septembre 1808:

”To me, there is little intest in that aspect of integral calculus where we
use substitutions, transformations, etc. - merely clever mechanical tricks - in
order to reduce integrals to algebraic, logarithmic or trigonometric forms, as
compared with the deeper study of those transcendental functions which cannot
be so reduced. We are as familiar with circular and logarithmic functions as
with one times one, but the magnificient goldmine which contains the secret of
higher functions is still almost completely unknown territory. I have, formerly,
done a lot of work in this area and intend to devote a substantial treatise to
it, of which I have given a glimpse in my Disquisitiones Arithmeticae p. 593,
Art. 335. One cannot help but be astounded at the great richness of the new
and extremely interesting results and relations which these functions exhibit
(the functions associated with rectification of the ellipse and hyperbola being
included among them).”

The announced great work developed to become a neverending story. To
work on this program remained reserved to generations of subsequent mathe-
maticians of the 19-th and 20-th century and didn’t stop until now. We register
again the enormous thrust revealed in the above letter of Gauß .

Also in the 19-th century the non-euclidean geometry has been discovered.
Gauß again had a substantial portion on the first fundamental steps. For the
moment consider the following modular figure, see e.g. [B1]: It consists of
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infinitely many arc-limited triangles covering the unit disc, the closer to the
boundary the smaller they are. In the hyperbolic geometry on the unit circular
area D all these triangles have the same area size. They are congruent in the non-
euclidean (hyperbolic) sense. Indeed, there is - comparable with parallelograms
in C - a group moving each triangle to any other one. It consists of non-
euclidean isometries transforming the circle area in itself (automorphisms). In
their entirety we have to deal with the modular group

Sl2(Z) = {γ =
(

a b
c d

)
, a, b, c, d ∈ Z, det(γ) = 1}

It is easy to find subgroups Γ of finite index, which - for a suitable natural
number r > 0 - act as fundamental group of a r-times punctured elliptic curve
E∗
C = EC \ {r Punkte}. As fundamental domain of the universal covering
D → E∗

C appears a polygon area covered by m := [Sl2(Z) : Γ] triangles of
the modular figure3.

An important role play - for natural numbers N > 0 - the (special congru-
ence) subgroups of the modular group:

Γ0(N) = {γ =
(

a b
c d

) ∈ Sl2(Z), c ≡ 0 mod N}.
The elements act on the unit disc D as fractional linear transformations. The
(non-compact) Riemann (quotient) surface X∗

0 (N) := D/Γ0(N) has the quo-
tient map D → X∗

0 (N) as universal covering. By adding finitely many points
(compactification) one gets the compact Riemann surface X0(N)C. It can be
visualized as multi pretzel, that means a pretzel with g = g(N) ≥ 0 holes (in-
stead of two). To them belong tori (g = 1) and the Riemann sphere (g = 0). In
our phantasy we break out a connected field F of finitely many triangles from
our modular disk triangulation and turn them together to a closed surface with
some holes (multi pretzel). In [Sh], IX, 3.3 is visually remembered the classical
construction with special attention to the formation of holes. Independently
from our imagination the universal covering D → X∗

0 (N) can be realized by
suitable F -periodic complex-analytic functions on D called modular functions.
The field F ⊂ D of triangles is a fundamental domain of this map.

11 Jump into the 20-th Century

Already in the exponential series the sequence of coefficients is arithmetically
striking. Extending the view to the series of periodic modular functions opened
a large playground for outstanding mathematicians of the last two centuries.
Leopold Kronecker (1823-1891) experienced his liebsten Jugendtraum (dearest
dream of youth) intertwining deeply number and function theory. This has been
taken by David Hilbert (1862-1943) in his celebrated problem presentation at
the International Math. Congress in Paris, 1900. The central 12-th Problem
was a far-reaching generalization. Starting from Kronecker’s dream he saw a
futural development:

3We assume that diag(−1,−1) belongs to Γ. Otherwise take m/2 instead of m.
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”It will be seen that in the problem just scetched the three fundamental
branches of mathematics, number theory, algebra and function theory, come
into closest touch with one another, and I am certain that the theory of analytic
functions of several variables in particular would be notably enriched if one
should succeed in finding and discussing those functions which play the part for
any algebraic number field corresponding to that of the exponential function
in the field of rational numbers and of the eliptic modular functions in the
imaginary quadratic number field.”

Through a century the further development of mathematics had been in-
fluenced intensively by Hilbert’s problems. In the first half of the last century
the affirmative solution of Kronecker’s problem had been clarified essentially.
After World War II the Japanese mathematicians G. Shimura (born 1930) und
Y. Taniyama (1927-1958) advanced to higher dimensions. Still in the foreword
of their much observed book [ST] they announced Hilbert’s 12-th Problem as a
guiding star, although there cannot exist a closed solution of its higher dimen-
sional second part. We have to deal with a broad extension of Gauß’ infinite
story. Taniyama wrested a pregnant conjecture from there, see below.

12 The Great Fusion

Taniyama Conjecture, Modularity Theorem (1956, z.B. [MF], 11.22, p.112).
Let E be an elliptic curve over Q wth geometric conductor4 N . Then E is
modular of level N , this means that there is a non-constant Q-algebraic map
X0(N) → E.

E/Q (to read: E over Q) will be an abbreviation for the property of E to be
defined by an equation with rational coefficients. Q-algebraic means that the
map is defined by polynomials with rational coefficients.

For illustration we consider the complexification X0(N)C → EC of the Q-
algebraic map as in the above conjecture. We have to deal with a finite cover-
ing of Riemann surfaces. Let’s call back to our minds the triangulized torus.
Namely, the surface X0(N)C is also the image of the non-euclidean unit disc.
Along the complex-analytic composition map D→ X0(N)C → EC the triangu-
lation net of D is projected onto EC via X0(N)C. In [B2] you find a rough geo-
metric visualization (a finitely triangulated torus) of the Taniyama Conjecture5.

Over several decades, mathematical luminaries tried to prove the conjecture.
They were successful only for some special cases of elliptic curves. The inte-

4The geometric conductor of an elliptic curve E/Q is a squarefree natural number. The
precise general definition (see e.g. [MG]) is not needed in this top.

5In order to spiritualize the non-euclidean structure on the elliptic curves (tori) of the
Taniyama Conjecture we turn back to the lifetime of Jules Verne: Imagine a temperature
distribution on the disc D: It’s warm at the center but becomes colder and colder near to
the boundary with absolute small degree of cold there. This contribution is transfered to
the triangulated torus by means of the fundamental triangle field F . Now we dispose on a
location dependent continous measure on the triangulated torus. At some triangle vertices
it’s absolutely cold.
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rest diminished more and more until the German mathematician Gerhard Frey
discovered a connection between elliptic curves and Fermat’s conjecture:

Let a, b, c with abc 6= 0 be a coprime integer triple solving the Fermat equa-
tion xl + yl = zl, l > 2. Without loss of generality (easy to see) we can assume
that the exponent l can be assumed to be a prime number. Frey considered now
the elliptic curve

(3) Ea,b,c : y2 = x(x− al)(x + bl)

(Frey curve, should be a phantom). Its geometric conductor Na,b,c is a squarefree
factor of von abc.

Suddenly, after break downs of untiring experts of arithmetic, algebraic and
analytic geometry, the interest awoke once again. The following deep result was
a consequence of the new power:

Ribet’s Descent Theorem (Ribet [RT], 1990). Is the Frey-curve Ea,b,c modu-
lar of conductor level Na,b,c, then for any prime p of this level the curve is also
modular of the smaller conductor level Na,b,c/p, if vp(a2lb2lc2l/28) is divisible
by l.6

In the mean time the British number theorist Andrew Wiles worked six
years secluded: He recognized a connection between Taniyama’s and Fermat’s
conjecture, and he felt the time ripe enough to prove both with all the already
created techniques and some to be added by his own work. Wiles left the
collegues around completely in the dark about his intentions. At the end he
succeeded to verify Taniyama’s conjecture for a broad class of elliptic curves,
namely for semistable ones including those of Frey (if such exist). There was
a gap which could be removed a year later in cooperation with his collegue
R. Taylor (1995). The famous consequence was Fermat’s Last Theorem, the
change from conjecture to a proven fact. Before we draw it, let us indicate that
the Modularity Theorem (Taniyama Conjecture) had been proven completely a
littlebit later, that means for all elliptic curves E/Q, at turn of the millenium
(see [BCDT]).

Significant step of proof: From Taniyama to Wiles (Fermat).

Assume that there is a non-trivial solution triple a, b, c of a Fermat equation
and therefore exists a Frey curve as described in (3). We know already that the
geometric conductor Na,b,c is a squarefree product of prime divisors of Na,b,c.
Now it is a simple exercise to prove with the help of Ribet’s Descent Theorem
that one can go down to the modular level 2, if 2 is divisor of the above conductor
(even to 1, if 2 is not a divisor). Therefore, in any case there exists a complex-
analytic covering map X0(2)C → EC for E = Ea,b,c. It is known that X0(2)C
is nothing else but the Riemann sphere P1

C (also known as complex projective
line). In first lessons about Riemann surfaces one learns that there can never
be a covering map P1

C → EC for any elliptic curve E. Hence Ribet’s Descent

6 a2lb2lc2l/28 denotes the (generally for elliptic curves defined) minimal discriminant of
the Frey curve, where vp(M) denotes the maximal exponent m, satisfying pm|M .
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Theorem leads us to emptyness. Therefore the Frey curve must be a phantom.
Then the non-trivial solution triple of a Fermat curve is a Fata Morgana, too.
In other words there is no non-trivial Z-solution of any Fermat equation

xn + yn = zn, n > 2.

Fermat’s Last Theorem is proved.

Closing Remarks All the proofs required an intimate fusion of (sometimes
infinite) Galois theory of number fields, the (analytic-arithmetic) theory of L-
series, theory of modular forms and of algebraic geometry. This synthesis had
been advanced some decades before by leading experts of arithmetic geometry
in the world centers of mathematics. Already the Theorem of Faltings (Mordell
Conjecture) marked a high level of it. We dispense here with the appointment
of further involved mathematicians, in order to remain understandable for a
wide audience. For further deepening of knowledge we refer the reader to the
Google posts ”Taniyama-Shimura Conjecture - from Wolfram MathWorld” and
”Modularitätssatz, Wikipedia”.

A nice emotional access to the dramatic development of ideas leading at
long last to the spectacular proof of Fermat’s Great Theorem one can find in
the book [Si] of Simon Singh. Only basic mathematic knowledge (of highschool
level) is necessary to follow the exciting presentations of the author.

Ackknowledgement. I thank my Ex-Diplomand Dr. Thorsten Riedel (C-F.
Gauß Faculty of the Technical University Brunswick) for a lot of grammatical
correctures.
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[Ju] Juschkewitsch, A.P., Einführung zur Sammlung von Aufsätzen L. Eulers
zur Theorie der Funktionen komplexer Variabler,
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