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1 Preface

An important guideline for our common work at the Berlin Academy were the
words of D. Hilbert: ”Wie wir sehen, treten in dem eben gekennzeichneten Prob-
lem die drei grundlegenden Disziplinen der Mathematik, nämlich Zahlentheorie,
Algebra und Funktionentheorie in die innigste gegenseitige Berührung,...” They
were given during his talk 1900 in Paris reflecting a deep understanding of the
mathematical developments in the 18-th and 19-th century with a view to the
future. Recently you can find the intimate touch in [HUY 07], indeed.

What I found in the 1970-th was a ditch between the highly developed
monodromy theory of complex analysis and Shimura’s very arithmetic moduli
theory. With modern techniques of algebraic geometry it should be possible
to build a bridge between differential equations and class field constructions in
dimension > 1. On the analytic side we found hyperbolic lattices generated
by some well-represented monodromy elements; on the other hand arithmetic
lattices, e.g. of unitary type, played the main role in the fruitful Shimura
theory. Feustel and me began with a study of single objects on the complex
two-dimensional unit ball hoping for a successful synthesis. After first progress
we called our objects ”Picard modular groups”, ”Picard modular surfaces”, in
honor of the analytic work of Picard, at the end of the 19-th century, and the
modular work of Shimura. These are brothers of the Hilbert modular surfaces,
which were fascinating models for our purposes, reflecting also Hilbert’s guide-
line. The research center for these objects was in Bonn with Hirzebruch as head
of an international team. But beside of the hidden mathematical ditch there
was a cold war wall through Germany. Our mathematics overjumped this wall
in a remarkable manner. I learned at the Steklov-Institut of Mathematics of the
Academy of Sciences of the USSR, that the best developments in mathematics
in Germany happened during the 70-s without any doubt in Bonn. There were
two political axioms in the GDR:
1.) To learn from Soviet Union, 2.) Don’t follow calls from a NATO country.
Contradiction !

1This note is based on a lecture in the Arithmetic Geometry Seminar at Humboldt-
University Berlin, January 2009. It was held in English because of the international audience.
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Finally, we learned from both, from Soviet Union and from Bonn. After
some years we were able to give also an impuls over the wall. I remember that
Hirzebruch himself reviewed a paper of Feustel in the ”Mathematical Reviews”.
At the end of Feustel’s mathematical activities his foto appeared in ”The Math-
ematical Intelligencer” at the begin of 1990, shortly after breaking the wall.

In order to localize Feustel’s work inside of a longtime development, I start
with a historical background. I could take Euler as starting point (see [Ho 86]).
But I choosed two young mathematicians of legendary schools in Berlin and
Paris as starting points. The first, H.A. Schwarz, comes from the Weierstraß
school and the second, E. Picard, from Hermite’s school. Next we describe the
Proportionality Principle, which was actual during our common work. In the
last section I establish the recent and finer Orbital Principle with application
motivited by coding theory: I announce the first classification of the Picard
modular surface of a (honest) natural congruence subgroup.

2 Historical Background

Complex dimension 1

We remember to Berlin’s celebrated Weierstraß school. From there came Her-
mann Amandus Schwarz. After Gauß - with a breaking through case in complex
function theory - he studied more generally hypergeometric functions as solu-
tions of the ordinary hypergeometric differential equations

(1) z(1 − z)f ′′ + (c − (a + b + 1))f ′ − ab · f = 0.

with function f = f(z) of a complex variable z and constants a, b, c. For them
the Inverse Integer Condition was introduced:

There exist positive integers l,m, n such that

(IIC 1) 1 − c = 1

l
, c − a − b = 1

m
, a − b = 1

n
,

holds.

The Inverse Integer Relation (IIC 1) is interpreted as system of diophantine
equations for integers l,m, n and rationals a, b, c with numerators restricted by
2lmn (by Cramer’s Rule).

Assume that (IIC 1) is satisfied for a triple l,m, n. We fix it (together with
the corresponding triple a, b, c). Moreover, we assume that

1

l
+

1

m
+

1

n
< 1.

By the Gauß -Schwarz theory, one gets hypergeometric integral solutions of (1)

f(z) =

∫
ua−c(u − 1)c−b−1(u − z)du,
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taken over some special pathes. Among them there are two linearly independent
ones. The quotient of both around a point of C \ {0, 1} determines holomorphic
function germs. Take one of them. It can be analytically extended (monodromy)
to a multivalued function from P1 \ {0, 1∞} to the disc D : |ζ| < 1. The inverse
function is a univalent holomorphic function ϕ = ϕ(ζ). This is an automorphic
function. Precisely, it realizes analytically the quotient map

ϕ : D −→ Γ\D = P1 \ {0, 1,∞}

where Γ = Γl,m,n is a well-determined discrete subgroup of AutholD = PSl2(R).
The fundamental domain of Γ is a hyperbolic triangle in D with angles π

l
, π

m
, π

n
.

The D-lattices Γl,m,n are called Schwarz triangle groups. 2

Complex dimension 2

The work of the Weierstraß school in Berlin (also Kummer, Kronecker) was
carefully studied by the members of the Hermite school in Paris. Émil Picard
tried to lift the Schwarz theory to the second dimension with visible success.
He presented first results in the 1880-s. Picard considered two-dimensional
hypergeometric integrals

(2) f(z1, z2) =

∫
uλ1−1(u − 1)λ2−1(u − z1)

λ3−1(u − z2)
λ4−1du,

along special pathes avoiding z1, z2 = 0, 1,∞ and z1 = z2. Values and inte-
grations go around the 7 lines drawn in the following picture on the complex
biproduct surface P1 × P1:

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

•

•

•

Λ = P1 × P1 \ {7 lines}

Figure 1

They are solutions of an ”Euler-Picard system of partial differential equations”
(EP2) of two complex variables z1, z2. We refer to [Ho 86] for explicit equations
and mention here only that they have rational functions of 2 variables as coef-
ficients with poles at most on the 7 lines drawn in the above picture.
Picard introduced the following Inverse Integral Condition 2 for the exponents
in the integrand of (2):

2For more details we refer to [Y 97] and all the references given there.
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(IIC 2)





λi + λj = 1

mij
∈ N−1, i 6= j

2 −
∑
j 6=i

λj = 1

nj
∈ N−1, i = 1, .., 4.

with convention ∞ = 0−1 ∈ N−1 = { 1

0
, 1

1
, 1

2
, ...}. We remark that this has

been also allowed earlier in the 1-dimensional case (Gauß, Schwarz, Riemann).

Theorem 2.1 (stated by Picard). If and only if the 2-dimensional Inverse In-
tegral Condition (IIC 2) is satisfied, then

i) At each point on

Λ = (C∗ \ {1})2 \ {diagonal} = P1 × P1 \ {7 lines}

there is a basis of local solutions U0(z1, z2), U1(z1, z2), U2(z1, z2) of the
Euler-Picard DE-system (EP2) consisting of hypergeometric integrals (2)
(along different pathes).

ii) By monodromy around the 7 lines we can extend the quotients Ui/U0,
i = 1, 2, to locally holomorphic functions along pathes in P1×P1\{7 lines}.
Following different pathes, one gets multivalued functions.

iii) Choosing suitable coordinates, each projective map germ (U1 : U2 : U0)
has values only in the complex ball B : |u1|

2 + |u|2 < |u0|
2.

iv) There is a discrete subgroup Γ = Γλ1,λ2,λ3,λ4
of the projective unitary

group PU((2, 1), C) = AutholB uniformizing the multivalued map
U = (U1 : U2 : U0). This means that for the (local finite analytic) quotient
morphism p : B −→ Γ\B ⊃ Λ it holds that Γ\B contains Λ and p◦U = idΛ.

The 19-th century was not ripe enough for giving a complete proof. The main
gap was the statement, that the factorization in iv) leads back (up to a small
set) to Λ. Hundred years later this gap has been closed by some work of Mostow
and Deligne [DM 86] by means of the theory of Gauß-Manin connections. But
already in 1896 LeVavassur solved completely in his thesis [LV 1896], advised
by Picard, the Inverse Integer System (IIC 2).

Hirzebruch a.o. gave in [BHH 86] a nice geometric interpretation. After
blowing up the 3 triple points of the 7-line curve in Figure 1 one gets the
del Pezzo surface of degree 4. The inverse image of the curve is supported
by 10 exceptional lines. The solutions of the Inverse Integer System are now
transformed to ramification indices vi of the coverings B → Γλ1,λ2,λ3,λ4

\B, at
the 10 curves (i = 1..., 10). The finitely many solution tupels (v1, ...v10) of
a transformed Inverse Integer System allow some vi to be ∞. The ∞-lines
appear as compactification lines of the quotient surfaces. For the ball lattices
only monodromy generators were known. At the end of the lecture we give an
example in terms of arithmetic groups in Shimura theory.
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3 The Proportional Principle

We consider pairs (X ′, C ′+T ) with a smooth compact complex algebraic surface
X ′ supporting a reduced divisor

C ′ + T = C ′
1 + ... + C ′

n + T1 + ... + TH

with normal crossings. This means (in our context) that all irreducible com-
ponents C ′

i and Tj of C ′ or T , respectively, are smooth, the intersections of
two components are transversally and C ′ + T has no other singularities than
double points. We call the pair a normal crossing model of a smooth orbital ball
quotient surface, say of Γ\B, if there exists a contraction ρ̂ : X ′ → X̂ onto the

Baily-Borel compactified ball quotient surface X̂ = Γ̂\B = Γ\B ∪ {K1, ...,KH}
such that

a) Two different curves on X ′ have different images on X̂;

b) the curves Tj ’s are contracted to cusp points Kj ∈ X̂;

c) The finite part X̂ \ {K1, ...,KH} = X ′ \ supp(T ′) is smooth;

d) The image curve Ĉ of C ′ is the compactified branch divisor Ĉ of the
quotient morphism p : B → Γ\B;

Consequences (see e.g. [Ho 98], ch. IV):

e) Each of the curves Tj is an elliptic curve or isomorphic to the complex
projective line P1;

f) The image curve Ĉ of C ′ has at most (ordinary) triple points as singula-
rities on the finite part;

g) the restriction ρ of ρ̂ to the finite part is the simultaneous σ-process at all
finite triple points of Ĉ. Altogether, the exceptional divisor of ρ̂ can be
written as

Eρ̂ = L1 + ... + LR+T1 + ... + TH ,

R := #{ finite triple points of Ĉ} , H = #{ cusp points of X̂}

with exceptional curves of first kind Li
∼= P1 (selfintersection −1).

The attached Intersection Space

Consider the space DivQX ′ of Weil-Divisors on X ′ with coefficients in Q
endowed with the symmetric intersection form (., .). We restrict the form to the
n-dimensional subspace

Qn ◦ C
′ := Q · C ′

1 + .... + Q · C ′
n, C

′ := (C1, ..., Cn).
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The Gram matrix with respect to the basis C
′ is nothing else but the intersection

matrix G := ((Ci · Cj))i,j=1..n. Sending the basis C
′ to the canonical basis we

get an isomorphy of quadratic spaces

(Qn ◦ C
′, (., .)) ∼= (Qn, G)

from the C
′-intersection space onto its coordinate space. We decompose the

intersection matrix G in the sum D + S, where D is the diagonal matrix with
same diagonal as D, called selfintersection matrix of C

′. The pair (Qn,D) is
called selfintersection space of C

′. The complementary matrix S := G − D is
called the honest intersection matrix and (Qn, S) the honest intersection space
of C

′.
We deduce from C

′ some numerical vectors in Qn, namely

(i) the selfintersecion vector s = (s′1, ..., s
′
n) := ((C

′
2

1 ), ..., (C
′
2

n ));

(ii) the Euler vector e := (e1, ..., en), where ei denotes the Euler number of
C ′

i.

(iii) the cusp vector h := (h1, ..., hn), where hi is the number of cusps on C ′
i,

defined as #(C ′
i ∩ supp T );

(iv) the branch vector v := (v1, ..., vn) with branch (ramification) index vi ≥ 2
of Ĉi with respect to p (defined in d)).

We consider vector space Qn also as Q-algebra with componentwise multipli-
cation ◦. The unit element is 1 := (1, ..., 1), and v has the inverse v

−1 =
(v−1

1
, ..., v−1

1
).

Now we can formulate our first ”Inverse Integer Conditions” for Ĉ being the
branch divisor of a ball quotient surface. In [Ho 98] we called them ”Relative
Proportionality Conditions”

(Prop 1)

{
e − (1 − v

−1) · S − h = 2S ◦ v;

the selfintersection space (Qn,D) is negative definit.

Observe that (Prop 1) consists of n diophantine equations for all unknown
values. In practice a part will be known. Then one has to solve the system
for the remaining ones. More or less (Prop 1) is a heritage from dimension 1
with additional intersection numbers coming from surface embeddings. For our
surfaces X ′ we denote the Euler number by e(X ′) and the signature by τ(X ′).
In a similar elementary manner we establish the diopantine equation

(Prop 2)

{
e(X ′) − 2H0 − 2(1 − v

−1) · D ·t v
−1 − 1

2
(1 − v

−1) · S ·t (1 − v
−1)

= 3τ(X ′) − (v − v
−1) · D ·t v

−1 − (T 2) > 0,

where H0 denotes the number of cusp curves on X ′ of genus 0 (cusp lines P1).
For the proofs one needs Riemann-Roch theory for surfaces with singula-

rities. We refer to [Ho 98], from where we deduced (Prop 1) and (Prop 2) for
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smooth X ′, X̂\{cusp points}. Observe that (Prop 2) simplifies to e(X ′) =
3τ(X ′) − (T 2), if there is no branch divisor and no rational cusp line. This
was first proved by Hirzebruch (case without cusp curves) and Mumford. That
(Prop 2) is sufficient in these simplified cases for being a ball quotient were
celebrated results by Yau and Miyaoka.

We want to classify the surface X ′ in a fine sense of Kodaira. We look for
contracting morphism µ : X ′ → X onto a well-known surface, say a minimal
model of X ′. For simplicity we assume that µ blows down M exceptional curve
of first kind. Altogether we have a birational transformation from X to X̂,
precisely

X X ′ X̂¾µ -ρ̂

If we can calculate e(X ′) and τ(X ′) from (Prop 2), then we get the important
Euler and signature invariant of X by the relations

e(X ′) = e(X) + M , τ(X ′) = τ(X) − M.

Conversely, we could start with a surface X, blow up M points to get X ′ and

choose curves C ′, T on X ′ such that the properties a),b),c),e),f),g),(Prop 1) and

(Prop 2) are satisfyed. Conjecture. In this case X̂ is a ball quotient surface

with (compactified) branch divisor Ĉ. Problem). For/after affirmative
answer of the conjecture for a special (X ′, C ′ + T ) one has to find

the ball lattice Γ such that X̂ = Γ\B. If possible, find Γ in Shimura’s
theory, especially among Picard modular groups.

In the next section we present a way for solving this problem and
give a new example.

4 The Orbital Principle

In [Ho 98] we introduced the category of orbital surfaces, see also
[Ho 07]. The main objects look like X′ := (X ′,vC′) with properties
a),b),c) of the last section. Thereby vC′ := v1C

′
1 + ... + vnC

′
n is

called an orbital divisor. Most important in orbital categories are
orbital coverings accompanied with orbital coverings. These notions
allow to define orbital invariants in a functorial manner, namely, e.g.
numerical ones, as maps

c : {objects} −→ R

with the property
c(Y′) = d · c(X′)

for all orbital coverings Y′ → X′ of degree d.
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Theorem 4.1 ([Ho 98]). Both sides in (Prop 2) are orbital invari-
ants on the category of orbital surfaces. The upper part is called
orbital Euler invariant of X′ and will be denoted by Eul(X′). The
lower part is called orbital signature invariant of X′ and will be
denoted by Sig(X′).

Now we consider the purely arithmetic category Pic. It consists,
for simplicity of this talk, of all orbital Picard modular surfaces

Γ̂\B = (Γ̂\B,vĈ),

where vĈ denotes the (Bailey-Borel compactified) orbital branch
divisor of the quotient map B → Γ\B, and Γ is a Picard modular
group. The vector v collects the branch indices at the components
Ĉi of the branch divisor Ĉ as before. We only allow as orbital

finite coverings in Pic, say onto Γ̂\B, those which are induced by

sublattices Γ′ of Γ. Then Γ̂′\B → Γ̂\B is simply supported by the

finite factor morphism Γ̂′\B → Γ̂\B. We restrict ourselves to the
complete subcategory PicN of natural Picard modular congruence
surfaces. To describe the objects, we let

ΓK = SU((2, 1),OK) = {G ∈ Gl3(OK); tḠI3G = I3},

with I3 =
(

1 0 0
0 1 0
0 0 −1

)
be the full Picard modular group of the imaginary

quadratic field (with coefficients in its ring OK of integers). For each
natural number N > 0 the natural congruence subgroup ΓK(N) is
defined as kernel of the reduction map ΓK → SU((2, 1),OK/NOK).

Now, the objects of PicN are all surfaces ̂ΓK(N)\B. On this orbital
category we have an arithmetically defined orbital nvariant, namely

(3) λ : ̂ΓK(N)\B 7→ δK,N · N8 ·
L(3, χK)

∏
p|N

(1 − 1
p2 )−1 ·

∏
p|N

(1 − χK(p)
p3 )−1

,

where L(s, χK) is the L-series of the Dirichlet character χK , the
numerators are partial (Euler) products of Riemann’s zeta function
or of the just mentioned L-series, respectively. The first factor is

elementary: δK,N =

{
1
4
, if 2|m and 2|DK/Q (discriminant)

1, else.

8



The proof of (3) needs p-adic analysis, the globalizing strong ap-
proximation theorem, Tamagawa measure and Tamagawa number,
see [Ho 98].

Also the numerator in (3) can be written in easily calculable
terms. Namely, we remember to the functional equation for our
L-series. It says that the the functions L(1 − s, χK) and L(s, χK)
coincide up to an elementary factor depending on K, see e.g. [I-R].
There one finds also the formula

L(1 − m,χK) = −
1

m
· Bm,χK

, m ∈ N

which transfers together with the functional equation the L-value at
s = m = 3 into the calculable higher Bernoulli number B3,χK

. Our
highlight is the Orbital Formula

(Orb 2) Eul(X′) = qN,χ · B3,χ = 3 · Sig(X′),

where χ = χK , X′ is the orbital normal crossing model of the smooth
orbital (assumed) quotient ΓK(N)\B,

Eul(X′) = e(X ′)−2H0−2(1−v−1)·D·tv−1− 1
2
(1−v−1)·S ·t(1−v−1)

Sig(X′) = 3τ(X ′) − (v − v−1) · D ·t v−1 − (T 2) > 0

with the notations of (Prop 2) and qN,χ is a rational number, which
can be explicitely expressed by the above L-value relations. This is
an elementary exercise for the reader.

Idea of Proof of (Orb 2). Each of the three numbers compared
in (Orb 2) can be expressed as integral of an SU((2, 1), C)-invariant
volume form over a fundamental domain (in B) of the ball lattice.
But all invariant volume forms are real multiples of one. By local
considerations we recognized the factors we need for (Orb 2).

The double equation (Orb 2) is obviously a refinement of
(Prop 2). From one diophantine equation we changed to two of
them. For solving the system uniquely for a given Picard modular
group, one needs a littlebit finite geometry, namely the reduction
group ΓK/ΓK(N) together with its representation on (O/NO)3.
What we need is: (Prop 1), (Orb 2), finite geometry with Galois
group ΓK/ΓK(N) and Feustel’s results. For instance, we can count

the cusp number of ΓK(N) (= cusp point number of ̂ΓK(N)\B) , if
we know the following

9



Theorem 4.2 (Feustel) The cusp number of ΓK coincides with the
class number of the imaginary quadratic field K.

Knowing this theorem we get the cusp number of ΓK(N) via the
isotropy vectors in ΓK/ΓK(N) with respect to the reduction (2, 1)-
metric. In a similar manner we can use Feustel’s class number for-
mulas for elliptic points and for branch curves. Knowing more and
more values in our orbital diophantine equation system we get the
solution. If we are happy enough - and we were successful in several
cases - we get precise surface invariants with a classifying system of
curves.

Recent Example

Let K = Q(i) be the field of Gauß numbers, OK = Z[i], Γ =
SU((2, 1), Z[i]), where (2, 1) stands for the hermitian metric on C3

representet by the diagonal matrix
(

1 0 0
0 1 0
0 0 −1

)
. We will describe pre-

cisely the Baily-Borel compactified quotient surface Γ̂(2)\B of the
natural congruence subgroup Γ(2). We start with the (complex) pro-
jective plane P2. On the plane we consider a classically well-known
configuration of nine projective lines. In old times it was used to
construct harmonic point quadruples on a line, see e.g. [Ha 67]. We
call it the harmonic configuration on P2. It is drawn in the following
picture:
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¢
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C
C
C
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¡
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A
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on P2
configuration

harmonic

• •

•

•

•

•

•

Figure 2

We mark the seven intersection points of more than two lines. After
blowing them up, one gets the normal crossing model of the smooth
orbital quotient (Γ(2)\B)′. There are six lines supporting three of
the marked points. After our blowing up, they get selfintersection
index -2. After contracting these lines on (Γ(2)\B)′ we finally receive

10



Γ̂(2)\B. This is a rational surface with precisely six singularities,
namely, the cusp points.

The complete proof will be found in the thesis [P 09] of my last
doctorand Maria Petkova in the framework of optimal codes by
means of Shimura curves. By the way, we can now precisely de-
scribe a Picard modular group with the del Pezzo surface of degree
4 as quotient surface, mentioned at the end of section 3. It turns
out that it is not a principal congruence subgroup of Γ; we found

< Γ(2), σ1, σ2 > instead, with σ1 = −i ·
(

i 0 0
0 1 0
0 0 1

)
, σ2 = −i ·

(
1 0 0
0 i 0
0 0 1

)
.

The door is open now for refinements of the theory of modular
forms of these groups (Shiga, Matsumoto), special values genera-
ting class fields (Riedel), explicit Shimura curves (Petkova) and uni-
formizations of special hypergeometric functions. I propose also for
further classifications to accompany (Orb 2) by an L-value duplica-
tion (Orb 1) of the system (Prop 1) of diophantine equations in the
same style as the double equation (Orb 2). For this purpose one has
to study Feustel’s paper [F 79].
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