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Abstract

We consider and construct (finite and infinite) towers of Picard modular
surfaces with trivial (t.m. rational) function fields but non-trivial discrimi-
nants, geometrically known as orbital (branch) divisors, of the involved
coverings. It is convenient to regard them as special cases of Galois-
Reflection towers, which will be defined in arbitrary dimensions. We prove
that (finitely many) reflections generate the Picard modular groups defin-
ing such a tower. We use this knowledge for explicit algebraic-geometric
classifications of the Baily-Borel compactifications of tower members and
explicit description of the corresponding Picard modular groups by means
of reflections. Finally, we turn to dimension 1 considering arithmetic sub-
discs of the 2-ball and their algebraic image curves. On this way we get
an explicit tower of Shimura curves embedded in the constructed surface
tower. Via reductions mod p one gets important towers of coding theory,
whose members can be explicitly determined step by step.

Look at the globe with drawn equator and two meridians, all orthogonally
to each other. These three circles describe the norm-1 curve configuration on a
special Picard modular surface visualizing an octahedral group action. The six
intersection points are the cusp singularities of the surface. The notions will be
explained now in a general setting of arbitrary dimension.

Let V be the space Cn+1 endowed with hermitian metric < ., . > of signature
(n, 1). Explicitly we will work with the diagonal representation. For v ∈ V we
call n(v) =< v, v > the norm of v. The space of all vectors with negative
(positive) norms is denoted by V −(V +). The image PV − of V − in PV = Pn is
the hyperball denoted by Bn. The unitary group U((n, 1),C) acts transitively on
it. Now let K be an imaginary quadratic number field, OK its ring of integers.

The arithmetic subgroup ΓK = U((n, 1),OK) is called the full Picard mod-
ular group. Each subgroup Γ of finite index is a Picard modular group.

The ball quotients Γ\Bn are quasiprojective. They have a minimal alge-
braic compactification Γ̂\Bn constructed by Baily and Borel in [2]. The authors
proved that these compactifications are normal projective complex varieties.
The Picard modular groups of fixed K act also on the hermitian OK-lattice
Λ = (OK)n+1.

Let a ∈ Λ be a primitive positive vector and a⊥ its orthogonal complement
in V . It is a hermitian subspace of V of signature (n − 1, 1). The intersection
Da := Pa⊥ ∩ Bn is isomorphic to Bn−1. We call it an arithmetic subball of Bn.

Take all elements of Γ acting on Da: Γa := {γ ∈ Γ; γ(Da) = Da} This is
an arithmetic group. The image p(Da) along the quotient projection p : Bn →
Γ\Bn is an algebraic subvariety Ha of Γ\Bn of codimension 1. The algebraic
subvarieties Ha are called arithmetic hypersurfaces of the Picard modular variety
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Γ\Bn. The same notion is used for the compactifications. The norm n(Ha) of
Ha is defined as n(a).

An element σ ∈ Γ is called a Γ-reflection, iff it has an n-dimensional eigenspace
Va ⊂ V of eigenvalue 1 and a positive eigenvector a = a(σ) of other eigenvalue.
The latter can be chosen primitive in Λ. The eigenspace Va is then nothing
else but a⊥, and σ acts identically on the arithmetic subball Da = PVa ∩ Bn

of Bn. We call such Da a Γ-reflection subball of Bn. The hypersurface Ha of
the primitive eigenvector a = a(σ) of a Γ-reflection σ is called a Γ-reflection
hypersurface.

Let . . . Γi+1 ⊂ Γi ⊂ · · · ⊂ Γ1 ⊂ Γ , (1), be a (finite or infinite) normal
series of subgroups of finite index of the Picard modular group Γ. We call it a
Γ-Reflection series, if Γi is generated by Γi+1 and finitely many reflections for
each in (1) occurring pair (i + 1, i). The corresponding Galois tower of finite
Galois coverings · · · → Γi+1\Bn → Γi\Bn → · · · → Γ1\Bn , (2), with the normal
factors Γi/Γi+1 as Galois groups, is then called a Galois-Reflection tower. In
this case each normal factor is generated by a coset of Γ-reflections.

Theorem: Let Γ\Bn be simply-connected and smooth. Then Γ is generated
by finitely many Γ-reflections.

Corollary: Let Γ′ ⊂ ΓN ⊂ · · · ⊂ Γ1 , (1′), be a normal series of Picard mod-
ular subgroups of the ball lattice Γ, and Γ′\Bn → ΓN\Bn → · · · → Γ1\Bn , (2′),
the corresponding Galois tower of Picard modular varieties. If the varieties
Γi\Bn, i = 1, ..., N , are smooth and simply-connected, then (1′) is a Galois-
Reflection series with Galois-Reflection Tower (2′).

Example: Uludag constructed in [9] the first (and only until now) infi-
nite Galois-Reflection tower in dimension > 1. It consists (compactified) of
orbital projective planes P2. The successive Galois coverings P2 → P2 have
K4 = Z2 × Z2 (Klein’s Vierergruppe) as Galois groups. The first member is
the orbital P2 with Apollonius (branch divisor) configuration, see Holzapfel [4],
first appearance by Yoshida [6]. In [4] we proved that the congruence subgroup
Γ1 = Γ(1− i) is the uniformizing ball lattice, where Γ = SU((2, 1),Z[i]).

We use Galois-Reflection towers step by step for explicit descriptions of the
uniformizing ball lattices, if the orbital Picard modular surfaces are explicitly
known and vice versa. The main goal is the first algebraic-geometric classifica-
tion of the Picard modular surface of a natural congruence subgroup:

Proposition: A (singular) model of Γ(2)\B2 is the space quartic U2T 2 −
X4 − Y 4 − T 4 + 2X2Y 2 + 2X2T 2 + 2Y 2T 2 = 0 (in P3 with coordinates (u :
x : y : t)). It has P1 × P1 as smooth model. Blowing up suitable six points of
P1 × P1 we get the minimal desingularisation (Γ(2)\B2) of ̂Γ(2)\B2 (resolution
of cusp singularities).

For the proof we climb step by step through a Galois-Reflection diagram
supported by the Uludag Tower:

Γ̂(2)\B → P1 × P1

| | (T )
· · · Uludag′s Tower · · ·P2 → P2 → P2
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where each arrow corresponds to a reflection. The geometric rectangle consists
of ball quotients of the following (short) Γ-Reflection series:

Γ(2) → < Γ(2), σ, σ′ >
↓ ↓

< Γ(2), ρ > → Γ(1− i) =< Γ(2), ρ, σ, σ′ >

with explicitly known reflections ρ, σ, σ′.
First we know the second orbital P2 of the Uludag Tower, whose orbital

(branch) divisor is drawn in [9], supported on a Ceva-configuration with 7 lines,
which one can already find by Hirzebruch [2], p. 81. Its uniformizing ball lattice
is < Γ(2), ρ >. Knowing the branch divisor of the left vertical double cover we
know that ̂Γ(2)\B2 is the normalization of P2 along the function field extension
C(x, y, w)/C(x, y) with w =

√
(x4 + y4 − 2x2.y2 − 2x2 − 2y2 + 1).

This gives the quartic space equation. To get P1 × P1 as model one goes
through the right side of the rectangle. In the thesis [5] of Matsumoto one can
find the orbital P1×P1, which is easily recognized as double cover of the orbital
Apollonius plane. The normalization of a birational transform of Matsumoto’s
P1×P1 finishes the proof of the theorem. Moreover, knowing all orbital divisors,
one can see that Γ(2)\B2 is the K4-cover of orbital del Pezzo surface No. 20 in
the Hirzebruch’s table [2], p. 201, with orbital divisor supported by 10 projective
lines, p. 196 [2].

In the case n = 2 the subballs are K−linear discs, which define algebraic
curves on the ball quotient surface Γ\B2. The quotient curve C = Γ\D ⊂ Γ\B2,
the projection of the K−linear disc D, is an algebraic curve, which embedded
model on the Picard modular surface Γ\B2 is defined over Q (the proof is based
on an article of Shiga, Wolfart [7]). The particular consideration of this case is
strongly motivated by results from coding theory. It was shown by T. Zink [8]
that towers, i.e. sequences of finite covers, of Shimura curves defined over Fq2 ,
are asymptotically optimal. They correspond to sequences of codes with good
parameters.

In [3] N.Elkies defines a construction for towers (Xn → Xn−1 → · · · → X0)
of Shimura curves, which is based only on the first two curves X0, X1. In general
it is quite difficult to compute equations for X0 and X1. The aim of our work
is to find a way to obtain equations for X0 and X1, in the case where they are
Shimura curves from K− linear discs on Picard modular surfaces. For K = Q(i)
and Γ = SU((2, 1),OK)(1− i) the curves of norm 1 and 2 have been completely
described [4]. Studying systematically the curves of small norm, the next step
is to try to compute an equation for a norm 3 Shimura curve. This is possible
and we obtain a plane quadric defined by Sh : 16xy + 4xz + 4yz − 3z2 = 0. We
recognize the Shimura curve X1 of Elkis’ Tower on the quartic space model of
Γ(2)\B2. It has the plane Shimura quartic model 16x2y2+4x2z2+4y2z2−3z4 =
0, which is an elliptic curve with j-invariant 2048/3.

To obtain the globe mentioned at the beginning one has to extend a little
bit the Galois-Reflection Diagram (T).
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