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Summary. In this note a new companion matrix is presented which can be 
interpreted as a product of Werner's companion matrices [13-]. Gerschgorin's 
theorem yields an inclusion of the roots of a polynomial which is best in the sense of 
[4-] and generalizes a result of L. Eisner [5]. This inclusion is better than the one 
due to W. B6rsch-Supan in Eli. 
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1 Introduction 

Throughout this note a matrix B ~ C" • is called a companion matrix of a monic 
polynomial f iffthe characteristic polynomial XB of B is equal to ( - 1)" f .  The most 
common example is the well-known Frobenius companion matrix of f -of ten 
simply called companion matrix- which has various applications in numerical 
analysis. For instance, Gerschgorin's theorem can be used to bound the roots o f f ;  
see e.g. [11]. The main disadvantage of these bounds is that the centre of these 
Gerschgorin discs cannot be chosen arbitrarily. This is possible to a certain extent 
using Werner's companion matrix [13]. As in the case of the Frobenius's compan- 
ion matrix the problem remains that the superdiagonal elements cannot vanish so 
that the Gerschgorin discs cannot get arbitrarily small without a suitable similarity 
transformation. L. Elsner considered another companion matrix in [5] which 
becomes a diagonal matrix if the roots of f are chosen as diagonal elements. By 
continuity, the use of good approximations to the roots for the diagonal elements 
leads to small Gerschgorin discs and error estimates are easily obtained. But this 
works only if the roots are distinct. 

In Sect. 3 of this note a new companion matrix is presented which generalizes 
both the companion matrices from [5-] and [13]. With its flexibility multiple roots 
can be approximated while the superdiagonal elements may vanish if distinct roots 
are approximated. 

* Dedicated to Professor E. Stein on the occasion of his 60th birthday. 
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In Sect. 4 an algorithm is formulated which computes the new companion 
matrix of a given polynomial f using only particular lower order divided differ- 
ences of f .  

Before applying Gerschgorin's theorem to a companion matrix B one may 
transform B into T -XB T with a regular matrix T. In the simplest case T is 
a diagonal matrix. Of  course the diagonal matrix T should be chosen such that the 
Gerschgorin discs become as small as possible. The optimal entries of T can be 
characterised as an eigenvector of a certain eigenvalue problem; see [4, 9, and 10] 
and the literature given there. 

In Sect. 5 this optimal transformation matrix T is given explicitly and 
Gerschgorin's theorem yields an inclusion for the roots of f The proof is 
rather elementary because one has only to compute T - 1 B T  and add some 
absolute values of non-diagonal elements. The inclusion generalizes a result from 
L. Elsner [5]. 

In Sect. 6 a particular case of the inclusion is compared with a well-known error 
estimate due to W. BSrsch-Supan which is proved analytically in [1]. It is shown 
that the new inclusion is slightly better in both flexibility and quality. This is 
illustrated by two examples at the end of this note. 

Of course Gerschgorin's theorem is not the only way to get inclusions for the 
eigenvalues of a matrix B; see [11, 6, and 7] for instance. But in this way very sharp 
estimates are obtained by using "best Gerschgorin discs". 

2 Notation 

Let IN or ]N o denote the set of the positive or the non-negative integers, respectively. 
I ,  denotes the n-dimensional unit matrix in ~"• For ~1 . . . .  , ~ , ~ E ,  let 
diag(cq . . . . .  ~,) or b id iag(~ . . . . .  ~,) be the matrix in rE" • having the diagonal 
elements 0 h . . . . .  ~, and the (n - 1) superdiagonal elements 0 . . . . .  0 or 1 , . . . ,  1, 
respectively, so that all the other entries vanish. Similarly, diag(A1 . . . . .  Am)E 
~E "• is referred to as the blockdiagonal matrix having the m-matrices 

m 
A1 ~ tE kl • k,, . . . .  A,, etE km• km as diagonal blocks, n := Y',i= 1 ki. 

IP, denotes the set of all polynomials in ~E of degree less than or equal to n, while 
IP m~ is the subset of all monic (i.e., the leading coefficient is 1) polynomials of 
degree n. By Ix1 . . . . .  Xk] f  we denote the divided difference of f :  ~ E ~ E ,  
f assumed sufficiently differentiable, with respect to the knots x~ . . . .  t, Xk e C. Let 
H(  . . . . . . . .  k) ~" F~n~ be the polynomial defined by II  t . . . . . . . .  k~(x) := IJ i= a (x - x~), 
x ~ C .  

m 
Let melN,  kx . . . .  k,,e]N, n :=~i=lk~ .  For fixed ~I . . . .  ~k,, . . . .  

~ . . . .  ~k , , e~  and ali ie {1 . . . . .  m} define the polynomials / / , , / - / ,~  as 

H , : =  f iH(~r  . . . . .  ~,), H~r f i  H(~: . . . . .  ~ , ) ,  
v=l v = l  

v # i  

which coincides with the definition above taking 

:= (~I , .  � 9  ~ " )  and ~ := (~1 . . . . .  ~i~] ~, ~i ~- 1 . . . . .  ~ ' ) -  
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3 A new companion matrix 

We start with some useful lemmas.  The p r o o f  of the first l emma  can be found  in [8].  

Lemma 3.1. Let  A ~ ~ • ~ and a, b ~ t13 ~. L e t  x ~ t~ be no eigenvalue o f  A. Then 

(1) de t (A - ab T -  x l , )  = (1 - bT(A - x I , ) - l a ) ' d e t ( A  - Xln) �9 

The simple p roo f  of  the next  l emma will be omit ted.  

L e m m a  3.2. Let  ~1 . . . . .  ~ 1 1 2  and x~lI2\{cq . . . . .  cq}. Then 

I O i f  i > j  

x -1 -- 1) i+j (2) b id iag(e l  - x . . . . .  c~ , -  )i,j . . . . .  if i < j  

~ ( ~ - x )  

Theorem 3.3. For all i e { 1 , . . . ,  m}, let ai = (al 1 . . . . .  a/") v, bl = (bi 1 . . . . .  blk')T e ~  k', 
and set 

A := d iag(b id iag(~l  . . . . .  @ )  . . . . .  bidiag (c~ . . . .  , c~")) e II; ~ • 

~ : =  ( a l  . . . . .  a ~ ) ~  s e ", b:=(bl . . . . .  b ~ ) ~ e  �9 n . 

T h e n  

(3) ( -  1)"Za_.bT = 

17, + ~ E a f b :  H I #  . . . . .  ~:-,,~.~% . . . .  ~911~: .  
i = 1  l < v < l l < k i  

Proof. Since (3) is an identi ty between po lynomia l s  it suffices to p rove  it for 
x e r  . . . .  , e~ ' ,  . . . .  e~ . . . . .  C~mkm}. Then,  by L e m m a s  3.1 and  3.2, 

( - 1) ~ ZA -ab*(X) 

= 1 - bit b idiag(e ,  ~ - x . . . . .  @ - x)  -~ a, H (x - el)  
i = 1  i = l  j = l  

= 1 a,~ H ( x -  ~/ ) .  
i = l  j = l  

K = V  

This implies (3). [ ]  

, m}  Theorem 3.3 reduces Corol lary  3.4. l f  ai = (0 . . . . .  O, 1) T ~ ~ k '  f o r  all i ~ {1, . 
to 

(4) ( -  l )  n ZA-~ = n, + Z E b: n~,,~, ,~:-') rI~. 
i = l  l<v<<_k i 

Remark  3.5. Remarks  on  par t icu lar  cases. 

1. T h e o r e m  3.3 was presented for the first t ime in [2]  with the par t icular  case 
tee . . . .  = e~' for all i ~ { 1 , . . .  ,m}.  
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2. For  m = 1, n = kl and 0 = c~ . . . . .  ~ the matr ix  A - ab T in Corol lary  
3.4 is well-known as Frobenius 's  compan ion  matrix. In the case of arbi t rary 
~ . . . . .  a . e C  the matr ix  is presented by W. Werner  in [13]. 

3. For  m = n, kl . . . . .  k. = 1 and al . . . . .  an = 1 the matr ix  A - ab T in 
Corol lary  3.4 can be found in [12, 5, 9, 14, 2]. 

4. In [12] another  companion  matr ix  is presented, which is also a particular 
case of Theorem 3.3; for a p roof  see [3]. 

5. Theorem 3.3 can be generalized to a product  rule for compan ion  matrices; 
see [3]. 

4 Computation of the companion matrix 

Given  a matr ix  A and a vector a as in Theorem 3.3 and a monic  polynomial  f of 
degree n, the following algori thm computes  a vector  b such that  A -  ab T is 
a compan ion  matrix of f .  

Algorithm 4.1 

Input: a / a n d  [cq 1 . . . . .  a J ] f  for all i s  {1 . . . .  , m} and j s  {1 . . . .  kl}. 

"/ = 1 , . . . , m  

- j =  1 . . . . .  k i 

j -1  f ki 
[c~], a i ] f -  ~ b k V a ~ . . . .  i j ~ i [ ~ L . .  

k = l  Lr=k 
b[ :=  k, 

, ~ / ]  (n(: , : , , ,  ., ~,)H~,~) } 

n, , : (~ [ )  y,  ~/'rti~,r+, ' 
~ = j  

Output: b[ for  all i s { 1  . . . . .  m} a n d j s { 1  . . . . .  k~}. 

Theorem 4.2. I f  f s iP m~162 and if none of the denominators in Algorithm 4.1 vanish 
then A - ab T is a companion matrix o f f .  

Proof  Let g := ( - 1)nZa_,b., where b is defined by the output  of Algor i thm 4.1. 
The condit ion on the denominators  implies for all i, j s  {1 . . . . .  m} 

(5) i , j  ~ {~1 . . . . .  ~ , }  ~ {~) . . . . .  ~),} = ~ 

g , f e  pmonir leads to r := f - -  g s ~)n-1. Therefore and because of (5), r = 0 if and 
only if for all i s { 1 , . . . , m }  a n d j e { 1  . . . . .  kl} [~i 1 . . . . .  ~i]  r = 0 (in both  cases 
r has n zeros ~1 . . . . .  ~ ,  . . . . .  0~ . . . . .  ~ ) .  

F o r  i s  {1 . . . . .  m} and j s  {1 . . . . .  ki} Theorem 3.3 shows 

[ ~1  . . . . .  ~ [ ] g  = ~ a~b.~ [ ~ i  1 . . . . .  ~[] (II(~, .,~:-',~+', . . . .  a,~,)n=:) 
1 _-< v~_ t t<k i  

j k~ 

= Y~ Y~ arb~[~,  ~ . . . . .  ~/] (n (~ , - ,  , ~ : , ) n ~ ) ,  
V = I  g = V  
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by Leibniz's rule for divided differences. On the other hand a simple calculation 
with the rule in Algorithm 4.1 shows that the last expression is equal to 
[ar . . . .  , # ]  f [] 

Remark 4.3 

1. In general the condition on the denominators in Algorithm 4.1 cannot be 
dropped�9 Indeed, if some denominator vanishes then there exists a monic poly- 
nomial f which has no companion matrix A - ab ~ for any b~C".  

Proof  Let i~{1 . . . . .  m},j~{1 . . . . .  k~} such that 

k~ 

(6) 0 = H~(a{) ~ a,~//(=/,+,,...~,~,)(a~). 
# = j  

For any b e C", by (3), 

( -  1)" 'Za_.b,(ai  ) = 
l<v<ki  

v<-~<-ki 

Clearly, the indices in the first or second sum can be restricted to 1 < v < ] or 
j < / l  < kl, respectively. Therefore (6) implies that the second sum vanishes. Thus 
~(A-,b~(a]) = 0, SO we cannot get a companion matrix for any f not having the 
root al. [] 

2. In the particular case of Corollary 3.4 Algorithm 4.1 reduces to 

- / = 1  . . . . .  m 

b j = 1 . . . . .  ki s-1 

[a] . . . . .  a [ ] f - -  ~ b~ [a~ . . . . .  aS] l l ~  
/ : ~  k = l  . 

n~r(al) 

Hence the only restriction is (5). 
3. In Algorithm 4.1 several divided differences of polynomials with known 

zeros a~ . . . . .  a~', . . . .  a~ . . . . .  a~" are needed�9 These can be easily computed 
using the well-known general Horner Algorithm�9 

5 Inclusion of zeros of  polynomials 

In this section we will apply Gerschgorin's theorem to the companion matrix of 
Sect. 3. 

Let f E F n  re~ be a polynomial and a ~ , . .  k, 1 km �9 , a l , . . . , a , , , � 9  napp rox -  
imations of the n zeros of f They have to be indexed so that (5) is fulfilled�9 Our  aim 
is to give simultaneous error estimates for approximations with the same lower 
index�9 Therefore we should index the n approximations so that the members of 
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{~a . . . .  , ap'} are close to each other while the members  of  any two different sets 
{ ~  . . . . .  @ }  and {e) . . . . .  ~]~} (i # j )  are quite different. We assume m > 2. 

Next  we compute  the divided differences [eiI . . . . .  ~[] f for all i s  {1 . . . . .  m} 
a n d j s  {1 . . . . .  k~}. Then we can compute  a companion  matr ix  A - ab T o f f  using 
Algor i thm 4.1. This  yields a representat ion (3) of  f. 

For  simplification and because of its efficiency we only consider the part icular  
case of Corol lary 3.4 and the representat ion (4) of  f ;  see [3] for the general case. 

For  the next theorem we need some further abbreviat ions.  Let I ~ { 1 . . . . .  m} 
and i c : =  { 1 , . . . ,  m}]I be fixed and non-empty  and let ( e l i ;  be the centre of  in- 
and exclusion-circles. Define 

d : =  max m a x { I @  - (I . . . .  Ic~/k'-I - ~1, I ~ ' -  ~ - b /k ' l -  Ib~'[} 
i e l  

d : =  m i n m i n { l @  - (I . . . .  I ~  j -1  - (I, I ~  J -  ( -  b~JI + Ib~JI} 
j e l  c 

If _d < d we consider the function h" ] d, d [  --, IR, defined for r s ] d, d[  by 

k, tb~l 
(7) h(r):= ~ ~ k,-1 

i ~ i k = X [ r _ l @ _ ( _ b ~ , l + l b ~ , l ]  ~ [ r - l c ~ r - ( l ]  
u=k 

kj Ib~l 
+2Y  k -i 

j e I C k = l  [ 1 0 ~ ;  j - -  ~ - -  b~Jl + Ib~Jl - r] 1-I [ lay - ( I -  r]  
#=k 

Theorem 5.1. Let  f be a polynomial equal to (4). I f  there exists are]d_, d[ with 
h(r) <__ 1, then in the closed disc with center ~ and radius r lie at least ~ i~ ,  ki zeros 
while outside the open disc with center ~ and radius r tie at least ~,jr zeros o f f .  

Proof Without  loss of generality we can assume ~ = 0 and I = {1 . . . . .  p} with 
p s { 1 . . . . .  n - 1 .  Define 

1 
k,-1 , if i<=p 

[r - I~ '  - b~'l + Ib~'l] ]~ [ r  - Ic~l] 
(8) ;,J := 1 '~=J 

k , - 1  , if i > p  

[1~ '  - b~'l + l b ~ ' l -  r ]  1--[ [ l o~ l -  r ]  
tc=j 

for any i s  {1 . . . . .  m} and i s { 1  . . . . .  k~}. Since _d < r < d these coefficients are 
positive so that 

r : =  diag(7~, k, 1 . . . .  ~1 . . . . .  ~ , , , , . . . ,  ~,~o,) 

is regular. We app ly  the well-known Gerschgor in  theorem (see, for example,  [7])  
on T -  1 (A - ab T) T. 

For  any  i s  {1 . . . . .  m} and j s  {1 . . . . .  k i -  1} the centre of the Gerschgor in  
disc belonging to an index ( i , j )  is a[ and the radius  is equal  to 

vi +x { r -  lail , i f i < p  

7~ la{l - r , i f i > p  
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The center of the Gerschgorin disc subordinated to an index (i, k~) is a~' - b/" 
and by (7) the radius is equal to 

1( m kj ) - - 1  h(r) 
j E  kY',l= Ibkl7 k - - l b k ' l -  

Using h(r) < 1 the last radius is less or equal r - le k' - b~'l or  I@ - b~'l - r if 
i __< p or i > p, respectively. 

Thus any Gerschgorin disc belonging to an index (i , j)  lies in the closed disc 
with center ( = 0 and radius r while any other Gerschgorin disc lies outside this 
open disc. Therefore Gerschgorin 's  theorem proves the assertion. [] 

Remark 5.2 
1. Let A - ab T be the companion matrix o f f  from Corollary 3.4. I fA - ab T is 

irreducible then h, defined in (7), is a smooth strict convex function with 
lim~_d+oh(r) = ~  = lim~-d-oh(r). If min h i ] d ,  d [ ]  < 1, then there are exactly 
two roots of h(r) = 1, denoted by r and f; d < r < ~ < 

Then Theorem 5.1 states that there are exactly ~ k~ zeros of f in the closed 
disc with center ( and radius r while the other zeros of f lie outside the open 
disc with centre ( and radius ~. 

2. If h(r) < 1 then upper or lower bounds for r or  ~, respectively, can be 
computed as the roots of  h(r) = 1 using the regular falsi for instance, because the 
convexity of  h yields monotonous  convergence. 

In general, the computat ion of (b/) using complex arithmetic is more expensive 
than an easy application of the regular falsi in real arithmetic. Therefore a short 
iteration of the regular falsi for h could be efficient in view of the reduction of the 
inclusion discs. Also, this is correct if we want exact inclusions and use a suitable 
arithmetic where round-off  errors should be taken into consideration. 

3. The error estimate of Theorem 5.1 is best in the sense of minimal 
Gerschgorin discs [4]. To  see this use the notat ion of the proof  of Theorem 5.1 
for rE {r_, ~:} and define H e I R  "• by 

p 

f - I(A - abr)v,,[ if v = p > ~ k~ 
Hv,. := ,, = 1 

[](A -- abV)~,,[ otherwise ' 

Ep:= diag( - Ik . . . . . .  --Ikp, Ik . . . . . . . .  Ikm) E ~"• . 

Then by easy calculations using h(r) -- 1 as in the proof  of Theorem 5.1 

( u  - r E p ) ( ~ 1  ~ . . . . .  ~1 ~' ,  . . . .  ~ 1  . . . . .  ~m)~ = 0 ~ . .  

Therefore _r and f are eigenvalues of  Ep- 1H with a positive eigenvector. Satz 4 from 
[4] states that any choice of a diagonal matrix T will produce a weaker estimate. 

4. Theorem 5.1 generalizes a result of L. Elsner for the particular case m -- n 
and 1 = kl . . . .  = k,, in l-5]. 

5. A direct application of Gerschgorin 's  theorem to T - I ( A  - ab T) T ( T de- 
fined in the proof  of Theorem 5.1) will give slightly better inclusion regions. Other 
inclusion theorems like Bauer's Theorem on the ovales of Cassini (see, for example 
I-7]) can also be used to estimate the eigenvalues of T - ~ (A - ab T) T. 
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6. Obviously, to obtain good estimates we need good approximations. There- 
fore Theorem 5.1 is especially suitable for a posteriori error estimates which are 
often inevitable: for instance, if we compute the zeros of a given polynomial f using 
deflations particularly in the presence of cluster of zeros. 

7. Before we can apply any locally convergent complex interval arithmetic to 
find the roots of f we need initial discs (or rectangles etc.) containing the zeros of f .  
Again, this inclusions may be achieved using the inclusions proposed in Theorem 
5.1. Because of the great computational costs of most interval methods it could be 
efficient to obtain and reduce the initial discs using Theorem 5.1 in spite of 
additional expenditure. 

6 A particular case 

In this section we will compare the inclusion of Theorem 5.1 with a well-known 
analytic result due to W. B6rsch-Supan in 1-1]. 

We use the notation of the last section, only considering the case 

I = { 1 }  and ~i:=~i 1 . . . . .  c~' for al l i~{1 . . . . .  m}.  

To avoid uninteresting and trivial particular cases let us assume that for all 
i e { 1 , . . . ,  m}b~ ~ 0; otherwise A -  ab x will be reducible (the vector a is still 
chosen as in Corollary 3.4). 

Let ( = ~1, let R > 0 be the (unique) positive root of 

kl Ibll 
(9) 1 = ~ Rk,_j+ 1 

j = l  
and define 

S :~ Z 
i = 2  j = l  [0~1 - -  O~ilki-J +1'  

d : = R m a x {  i~kj__ctj[ j ~ { 2 , . . . , m } } .  

The following 1emma states that the separating condition in Satz 2 in 1-1] 
implies the separation condition of Theorem 5.1. 

Lemma 6.1 I f  
x/~ + x//-d < 1 , 

then, for 

{ R : = R "  1 +  
- 1 -- s -- d + x/[1 - s - d] 2 - -  4ds 

/~:= R" 1 +  
1 -- s -  d -  x/[1 - s -  d]2 _ 4ds 

0 = d < R < / ~ < t t  and h(R_) < 1, h(R) < 1. 

Proof. Define x, ~ > 0 by R(1 + x) = R and R(1 + ~) =/~. Then 

1 - s - d  s 
-~ + ~ = d and x~ = 
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and for any x e [ ~  ~] 

d 

s 
O > ( t c - - _ x ) ( t c - ~ ) = K  2 -  ( 1 - s - d ) + ~ .  

Multiplying the last inequality with d/~: > 0 leads to 

x + l  
(10) d(1 + x) + s -  

x 
Since 0 < s and 0 < x, 

The definition of d implies 

< 1  

d(1 + ~ c ) <  1. 

R 
< d  

min{[~l -- ~j[lJ~ {2 . . . . .  m}} = ' 
so that 

(11) R(1 + x) < min{]al - a j [ l je{2  . . . . .  m}} __< d .  

Therefore, 0 = d < R < R < R < d. 
For x e [_k, ~] we consider 

kl 
(12) h(R(1 + ~c)) < ~ Ib~J(R(1 + ~c)) j - k ' - '  

j = l  

+ Z 
i = 2  j = l  [ 1 ~ 1  - ~i l  - ( g ( 1  + ~ ) ) ] ~ , + 1 - ~  �9 

By (9) the first sum is not greater than (1 + K) - 1, while each member in the second 
sum can be estimated using Bernoulli's inequality. Indeed, for all ie  {2 . . . . .  m}, 

R(1 + ~c) 
j e { 1 , . . . ,  ki}, (11) implies - -  < 1 so that 

g(1 + x) 
[ ]~1  - -  0~i[ - -  ( R ( t  + /~))]ki+ i - j  ~ ['[~1 - -  O~i[] k i + l - j  1 --  ( k  i + 1 - j ) ]~i i~-o- - .~[  / . 

Therefore, by the definitions of s and d the second sum in (12) is bounded by 
s/(1 - d(1 + K)) which is not greater than x/(1 + x) because of (10). 

Altogether, 
1 x 

h(R(1 + x ) ) <  + - - -  1 
= l + t c  l + x  

for xe[_x, ~3. [] 

Remark 6.2. 
1. Lemma 6.1 and Theorem 5.1 give a new elementary and quite different proof 

of Satz 2 in [1]. Moreover, if h(R) < 1 the estimate _R can easily be improved. For 
instance, by the strict convexity of h, 

1 - h (R_)  
R ' : = R - ( R - R )  

- h ( R )  - h ( R )  

fulfills h(R' )  < 1 and is a better bound than R. 
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2. The case h(_R) = 1 while x/s  + ,,/-d < 1 is only possible in the quite uninter- 
esting situation 

k l  = k2  . . . . .  km = 1 a n d  
R 

[ cq - cq  - bP'l + Ib~'l = I ~ , - c q l =  3 

for all ie{2 . . . . .  m}. 
For a proof one can discuss the equality in each estimate in the proof of 

Lemma 6.1. For example, the first member in the first sum of (12) does not vanish, 
so (1 + x) = (1 + x)k, implies kl = 1. The equality in Bernoulli's inequality leads 
to kl = k2 . . . . .  k,,, while the other assertions arise from the equality in the 
triangle inequality. 

We conclude this note with two examples. We will compare the best estimate 
R* =: R(I + x*) of Theorem 5.1 defined as the lower zero ofh - 1 and the estimate 
_R =: R(1 + _x) from Satz 2 in [1] defined in Lemma 6.1. 

The first example represents the situation in which each multiple root of f is 
very well approximated by a multiple knot  ~ with the correct multiplicity kl. 
Indeed, this general context yields asymptotically the choice of the coefficients. 

Example  6.3. Let A 1 . . . . .  Am > 0 and 

[b]l : ( j  k, - 1 ) A~'-J+ 1 

for all i t  {1 . . . . .  m} and j e  {1 . . . . .  kl}. Let f be defined by (4). We assume that 
A1 . . . . .  Am are sufficiently small so that x//s + x /~  < 1. 

Since h ( R * )  = 1, 

z~ 1 )kl 
1 =  R(1 +m*)  + 1 -- 1 + s * ,  

where s* denotes the second sum in (7) which is bounded as in the proof of 
Lemma 6.1, 

S 
s * < - -  

- l + x * '  

On the other hand the definition of R yields 

Hence 

to* = k~/~_ 1 
kQ/2-- S* -- 1 

. 

Since x > s > s*(1 + x*), 

B <  
K 

k ~ _  k~//2 _ s* 

s * ( 1  + ( 4/2 - 
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Table 1 

0.0 + 5.1i 0.0 + 5.0i 
0.2 + 4.3i 0.1 + 4.3i 
2.1 + 2.3i 2.0 + 2.3i 
4.7 + 3,8i 4.7 + 3.9i 
6.7 + 6.7i 6.7 + 6.6i 
9.1 + 6.6i 9.0 + 6.6i 

fl A 

1 1 
1 1 
1 1 
1 2 
1 '1 
1 1 

ki 

A 

1 
1 
1 
3 
1 
I 

A 

1 
1 
1 
4 
1 
1 

Table 2 

Bounds for fl  

R? 

0.1411975601 
0.1530164828 
0.1161687711 
0.1145788178 
0.1179523269 
0.1100754760 

[ I ]  

0.151 
0.166 
0.117 
0.115 
0.119 
0.110 

i kl 

1 1 
2 1 
3 1 
4 2 
5 1 
6 1 

Bounds ~ r ~  

R? 

0.1459495725 
0.1579425322 
0.1189119669 
0.2731549505 
0.1246988916 
0.1137394577 

[ I ]  

0.158 
0.173 
0.120 
0.276 
0.126 
0.144 

Bounds for f3 

R* 

0.1508867988 
0.1630868591 
0.1219205791 
0.4356022139 
0.1317086293 
0.1174985422 

[ i ]  

0.165 
0.181 
0.124 
0.44 
0.135 
0.119 

i ki 

1 1 
2 1 
3 1 
4 4 
5 1 
6 1 

Bounds for f4 

R,* 

0.1560229298 
0.1684670831 
0.1252226462 
0.6010582943 
0.1390076249 
0.1213583066 

The  last  b o u n d  tends to 

(13) 
2k~(k~/5- 1)' 

if the  errors (A 1 . . . . .  Am) tends  to (0 . . . . .  0). 
T h e  fol lowing table  shows the values  of  the b o u n d  (13) for different k~. 

[ i ]  

0.175 
0.191 
0.128 
0.62 
0.145 
0.124 

kl  1 2 3 4 5 10 oo 
(13) 1 0.85355 0.80789 0.78565 0.77250 0.74664 0.72135 

Th i s  example  shows tha t  the es t imates  in  T h e o r e m  5.1 are  sl ightly better,  bu t  
no t  a sympto t i ca l ly  equa l  to those of  Satz 2 in  [1] if kl  > 1. However ,  for kl = 1 one 
shou ld  take ( = cq - b~; t hen  it is easily p roved  tha t  the b o u n d  in T h e o r e m  5.1 is 
m u c h  better  t h a n  tha t  of  Satz 1 in [1].  
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Example 6.4. Numer ica l  Example  from [1]. Let  k = 1, 2, 3, 4 and  fk,~5+kmonic with 
the zeros (1 . . . .  , (6 and let the approx ima t ions  ~1 . . . . .  0~ 6 with the mult ipl ici t ies 
kl  . . . . .  k 6 be given by Table  1. The po lynomia ls  differ only in the mult ipl ici ty  of 
the fourth root .  

The approx ima t ions  ~i . . . . .  (z 6 are used in Theorem 5.1 with the mult ipl ici t ies 
of the zeros. The  best  bounds  R*  for the app rox ima t ion  ~i are computed  and listed 
in Table  2. These est imates are slightly bet ter  than  those of [1, Table  2]. 

The  examples  show that  the inclusion regions of Theorem 5.1 are slightly 
smal ler  than those of Satz 2 in [1]. On  the other  hand  the computa t iona l  work  may  
be slightly more  labor ious  because the computa t ion  of the zero of h - 1 may  be 
more  expensive than the compu ta t ion  of R. 
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