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The Neville-Aitken formula for rational interpolants
with prescribed poles
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Using a polynomial description of rational interpolation with prescribed poles a simple
purely algebraic proof of a Neville—Aitken recurrence formula for rational interpolants with
prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde
determinant explicitly in terms of the nodes and poles involved.
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1. Preliminaries and notations

Let m, n be non-negative integers and let (a,) = (ay, a;, a,, ...) and (b;) =
(by, b,, ...) be given sequences of (not necessarily distinct) complex numbers
that are disjoint:

{ag, a4, ay, ...} N {by, by, ...} =0. (1)

Given a complex function f which is sufficiently often differentiable at the
multiple points a; the rational interpolant r,, , of f of degree m, n with prescribed
poles b,,...,b, and nodes a,,...,a, counting multiplicities in both cases is the
rational function

rm.n =pm,n/Bn’ (2)
where p,, , is a polynomial of degree m at most and

Bn(z) = (Z_bl) BEEE (z—bn)
such that

f= T (3)

has zeros a,,..., a,, counting multiplicities.
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Observe that r,, , is uniquely determined by these properties. Depending on
data function f, r,, , has no other poles than b,,..., b, or » counting multiplici-
ties, where the multiplicity of o is min{0, deg p,, , — n} with deg p denoting the
exact degree of a polynomial p.

A Neville-Aitken type procedure for computing r,, , recursively is given in
[1]. It is based upon the general Neville-Aitken algorithm [2].

In this note we will give a short direct proof of the rational Neville—Aitken
recurrence relation starting from an alternative purely algebraic definition of
r

m.n*

Define
A,,,(z)==(z—a0)--~(z—am). (4)

THEOREM 1

Let ¢ be any polynomial interpolating f at the nodes a,,...,a,, counting
multiplicities. If p,, , is the polynomial of degree m at most left when ¢ - B,, is
divided by 4,,, i.e.

d)'BnEpm.n (mOd Am)’ degpm.ngm’ (5)
then

rm,n =p"l,ll/Bﬂ' (6)
Proof

The proof is a slight modification of Walsh’s classical existence and unicity
proof for the rational interpolant with prescribed poles [6]. Clearly, r,, ,, is of the
form required. Next we use that the polynomials A4, and B, are relatively
prime. By construction, there exists a polynomial Q such that

pm'n . —_ .
(d)— B ) B,=A4, Q.

n

Therefore, r,, ,=p, /B, agrees with ¢ and consequently also with f at
ag,...,a, counting multiplicities. O

2. An algebraic proof of the Neville-Aitken recurrence formula for rational
interpolants with prescribed poles
In [1] a Neville—Aitken algorithm computing
(rijliti<m+n,i<m)

recursively is derived from the general Neville—Aitken algorithm [2] via explicit
representations of Cauchy—Vandermonde determinants. In this section we give
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a simple direct proof of the rational Neville—Aitken recurrence formula which is
purely algebraic.

Subsequently, knowing its weight factors, one can easily derive the explicit
formula of the Cauchy—Vandermonde determinant. This seems to be simpler
than running the opposite direction.

We suppose the data function f to be fixed. Corresponding to a polynomial A
let f, be the Hermite interpolation polynomial of f, where the nodes are the
zeros of A counting multiplicities.

If g is another polynomial such that & and g are relatively prime by p[h; q],
we denote the remainder of the polynomial division of g - f, by hA:

plh; gl =q-f, (mod h) and degp[h; q] <degh. (7
Finally, according to theorem 1,
rlh; q] =plh; ql/a (8)

is the unique rational function of degree m, n, m :=deg h — 1, n :=deg q, with
prescribed poles the zeros of g that interpolates f at the zeros of 4 counting
multiplicities.

THEOREM 2
Let 4, hy, h,, hs, q, q;, 9,, g5 be monic complex polynomials and let a; # a,,
B be complex numbers. Let p,==plh;; q;) and r,==p,/q; for i=1, 2, 3.
(a) Suppose that h(z)=(z —a,)-h(z)for i=1,2and hy(z) =(z —a Nz —a,)
-h(z) with hy(B) #0 and that g,=q for i=1, 2 and g5(z) =(z —B)q(2).
Then,

r(z)(z—ay)(B—a;)—ryz)(z—a)(B—a3) . 9)
(a; —a)(z—B)
(b) Suppose that A(z) =(z —a;)-h(z) for i=1,2and hy(z) =(z —a Xz — a;)
h(z) and that q,=gqg for i =1, 2, 3. Then,
ro(z)(z—a;) —r(z)(z —a,)

(a,—a))

ry(z) =

(10)

ry(z) =

Proof
(a) Let ¢ =f, . Since ¢q;=p; (mod h;) we also have

$q;=p; (mod(z —a;)-h) fori=1,2.
On the other hand, by definition
¢q;= dpq=p; (mod(z—a;) h) fori=1,2.
This implies
ps=¢-(z—B)gq=(z—B) p; (mod(z —a;)-h) fori=1,2.
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Thus, there exist polynomials F;, F, with
py(z) =(z —a))h(z)F(z) + (2= B)p(z) fori=1,2. (11)

Since by the assumptions in (a) deg p; <degh+ 1 and deg p; <deg h (i=1, 2),
it follows that both F,(z) =:F, and F,(z) =:F, are constants. Consequently,

_ p3(B) F.— p3(B)
l (B—a)h(B)’ ? (B—ay)h(B)
Observe that F, = F, = 0 iff p,(B) = 0. In this case according to (11), py(z) =(z
—B)p/(z) for i =1, 2. As a consequence, r;=r, =r, and (9) holds. Otherwise
-«
F,= B LF,.
B—a,
Multiplication of (11) for i=1 by (z —a,)-F, and for i=2 by (z ~a,)-F|,
respectively, and subtraction yield

ps(z)[

zZ—Q

()~ ()|

(- B)| pA(2) g (B =) ~pa(2)z )|

from which (9) is easily derived.
(b) Also under the assumptions of (b) as in the proof of (a)

p3=p; (mod(z —a;)h) fori=1,2
follows. Accordingly, there exist constants F,, F, with
py(z)=(z—@a;) h(z) - F,+p;, fori=1,2. (12)

Consequently, F, = F, is the leading coefficient of p,. A similar reasoning and
calculation as used in part (a) applied to (12) results in (10). O

Remarks

(i) Letting B — = in (9) gives a second proof of (10).

(ii) Theorem 2 is identical with [1, theorem 9] although the notations are
different. In (1] from this theorem an algorithm is derived computing the values
r,{z) for i+j<m+n, i<m with O(I?) arithmetical operations where [ =
max{m + 1, n}.

3. Computation of Cauchy-Vandermonde determinants

The rational interpolant (2) belongs to a particular Cauchy-Vandermonde
space spanned by the functions basic for the partial fraction decomposition of

rm,n *
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More generally, Cauchy—-Vandermonde systems are constructed as follows.
Let #=(b,, b,, b,, ...) be a fixed sequence of points of the extended complex
plane C which will serve as “prescribed poles”. Notice that repetition of points
is allowed. By v,(x) we denote the multiplicity of x in &,_,=(by,...,b,_y).
With # we associate a system %= (u,, u,, ...) of basic rational functions
defined by

vi(by) : —
FALSL if b, =,

— 1
“il2) oo+ b eC, (13)
(z—=b,)™*™

which will be called the Cauchy—Vandermonde system generated by #. To %,
corresponds the basis %, = (u,,...,u,) of the k-dimensional Cauchy—Vander-
monde space span %,.

COROLLARY 1
% is an extended complete Chebyshev system on C\{b,, b,, ...}.

Proof

Any element from span %, is a rational function with prescribed poles
by,...,b,, that means it is of the form (6). Thus, by theorem 1 any Hermite
interpolation problem with span %, and nodes from C\{b,, b,, ...} has a
unique solution. O

Let &/=(a,, a,, ...) be a fixed sequence of complex numbers which will
serve as interpolation points or nodes taking into account multiplicities. By u,(x)
we denote the multiplicity of x in &7, _, =(a,,...,a,_,). Notice that

ot () = kﬁ alay)!

measures in some sense repetition of nodes in 7.
From corollary 1 it follows that any Cauchy-Vandermonde determinant

Upyeoos Uy,
a,...,a,

Vi, o, |:=V‘

= det(D“"(“")uj(a,-))

is different from zero provided &7, N &, = 0.

How to compute V |%,,; &, | explicitly in terms of the poles and nodes
involved? We will do this starting from theorem 2 and using a little “general
interpolation theory”. To simplify notations we adopt the convention that finite
products of extended complex numbers B; have to be understood according to

H*Bj = H,ﬁj*’
JjE

jelt
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where
. 1 if B;=0o0r B, =0,
B =\p, iff p,ec\ (o).

Moreover, to get a simple sign factor we assume that both systems &7, and &,
are consistently ordered according to

Ja/m=(al,...,am)=(al,...,al, az,...,ap,...,ap)CC,

m; mp
B =(b,....b )= (31,...,/3,, 32,...,Bq,...,34) T,
NS e
43 1zq
with @, ay,...,a,, By, By,...,B, pairwise distinct and m,+ -+ +m,=m,
ny+ - tn,=m.
THEOREM 3
When %, is generated by %,, according to (13) and when &7, and #,, are
consistently ordered then
m * m %
I1 (ak—aj)' I1 (bk—bj)
i s
VI, &, | =mult(,) —— L : (14)
m m
IT (a—=b) 11 (bi—a)
k,j=1 k,j=
k=j k>j

Proof
Let f be a fixed complex function which is defined and suffiently often
differentiable at the multiple points of &7,. Suppose r, € %,,_, and r, € %

m-1

are the rational interpolants of f with respect to &7, _, =(a,,...,a,,_,) and
&, _, =(a,,...,a,), respectively. Let r € %,, interpolate f at &, and set

h(z)=(z-ay) (z=a,_1),
hi(z)=(z-a,) h(z),
hy(z) =(z—-a,) h(z),
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From theorem 2 with a; =a,, a,=a,, and B=5,, in case (a) and B =b, = = in
case (b) we deduce that always

r=ri-v,try v

=rity; (ra—n) (15)
where
(z—ay) (a,—b,)"
) @ ma) (b
and
Y1 +v,=1

On the other hand, by Newton’s interpolation formula [3]
r=rit[ag,..a,]f iU,

where [a,,...,a,]f is the leading coefficient of r (that before u,,) and

Uypyeons U u

Y m—19 %m

a,,...,a z

o ¥m-1»

Upy.oonld

' ¥ m—1

al,...,am_l

rm—lum(z) =V

is a Newton remainder. By comparison with (15)
71(r2_r1)=[al""’am]f'rm—lum‘ (16)
We claim that

(Z_al)(am—bm)*_ (z—ay) " (z—a,_;) )

) T G ey by (b o

where
- - * L., . — *

G e S ey

is a constant factor depending on f.
In fact,

r,—r,=n/q,

with p a polynomial of degree m — 2 depending on f with zeros a,,...,a,,_,.

This proves (17). It remains to compute ¢. To show (18) consider the partial
fraction decomposition of

(z—a) - (z—a,_))
(Z _bl)* T (Z —bm—l)*(z —bm)*
Here it is easily seen that
d. = (bm—al)* T (bm_—am—l)’l<
" (bm_bl)*'“(bm_bm—l)* .

= f: d, ulz).

p=1




140 C. Carstensen, G. Miihlbach / Rational interpolants

Comparing the leading coefficient (that before u,,) in (16) and (17) yields
(am - bm)*
la,...,a,|f=c ————d,,,.

am _al

As a consequence we get (18).
Then, according to (16), (17) and (18)

rm—lum(z)=i' (z_al)“.(z_am——l)

dm (z_bl)*.”(z-—bm—l)*(z_bm)*.
Therefore, as a function of z

(by —by)* -~ (b, ~ by _y)*
(b—a)* (b, —a,_,)"
. (z—a) - (z2—a,_)
(z=by)* - (z2=b,_y)* (2= b,)"
is a rational function which is known explicitly.

Since
d Holay,)
(2
dz

the derivative can be computed by Leibniz’ rule. Observing

e
dz (Z_bl)*”'(Z_bm—l)*(z_bm)*

U, U u

¥ —1""m

a, --,a z

r“Ym—-1

Upy Uy

Vv
ap, "4,

Uy U u

¥ m—1° Ym

a,...,a a

»“Ym—-1-»

Up,oooh Ul u

y¥m—1s %*m

ayy...,a z

s m—-1»

|4

’
m z=a,

m—1% o
1:! (am_aj)
= (@)
1—[ (am_b/)
j=1
and putting all things together, yields the formula
m—1% m—1%
(bm_bj) ]._[ (am—aj)
V“n sy Uy _Vul’ s Um—1 (a,) ji=1 i=1
Ays.oosdpy Apyenes Qg Homl G et m ¥
(bm—ai)]._[ (am_bj)
j=1 j=1
(19)
Since
Uyl _ py(a)!
- (a;—b,)*

an induction argument proves (14). O
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Remarks
(i) We note that (14) can also be proved more directly as follows: A moment’s
reflection shows

(z-a) (- )
(z=b) - (z=b,)*’

with a constant e. Hence, using the notations of the proof of theorem 3, by
comparing coefficients of u,, on both sides

V‘ul,...,um_1
S S
Since d,, is computed above, the constant e in (20) is known and gives a
representation for the left hand side of (20) from which (19) follows as above.

(ii) More general Cauchy—Vandermonde determinants and alternative repre-
sentations thereof are determined in [4].

(iii) For the particular case of multiple poles but simple knots the Cauchy-
Vandermonde determinant has been computed in [5].

Upseoos Uy Uy |
Ayyeees @1y Z

14 (20)

=e-d,.
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