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(Vol. 29, n° 7, 1995, p. 779 a 817)

ADAPTIVE COUPLING OF BOUNDARY ELEMENTS AND FINITE
ELEMENTS (*)

by Carsten CARSTENSEN (1) and Ernst P. STEPHAN (2)

Communicated by F. BREZz1

Abstract. — In this note we present an h-adaptive procedure for the symmetric coupling of
boundary element and finite elements methods for two-dimensional linear and nonlinear interface
problems. An a posteriori error estimate is derived which guarantees a given bound of the error
in the energy norm (up to a multiplicative constant). Following the approach of Eriksson &
Johnson this leads to a residual based adaptive procedure within the Galerkin discretization.
Numerical examples confirm that our procedure gives good meshes leading to efficient numerical
procedures.

Subject Classifications : AMS(MOS) 65 N 35, 65 R 20, 65 D 07, 45 L 10.

Key words : adaptive finite element methods, adaptive boundary element methods, a posteriori
estimates, symmetric coupling.

Résumé. — Dans cette note, nous présentons un procédé adaptatif pour coupler des méthodes
d’éléments finis et d’éléments frontiére pour des problémes d’interface linéaires ou non linéaires.
Une estimation d’erreur a posteriori est obtenue. Des exemples numériques confirment que ce
procédé donne de bons maillages, menant a des méthodes numériques efficaces.

1. INTRODUCTION

Since the first mathematical justifications of the « mariage a la mode » in the
later seventies by Brezzi, Johnson, Nedelec, Bielak, MacCamy and others
further progress in the analysis of the coupling of finite and boundary elements
concerns Lipschitz boundaries, systems of equations, and nonlinear problems
(approximated by finite elements) cf. e.g. {7, 10, 11, 17, 18, 19, 29] and the
literature quoted therein.

(*) Manuscript received May 25, 1994. The work is partly supported by DFG research group
at the University of Hannover.

(') Fachbreich Mathematik, Technische Hochschule Darmstadt, 64289 Darmstadt, Germany.

(®) Institut fiir Angewandte Mathematik, UNT Hannover, Welfengarten 1, D-30167 Hannover,
FRG.
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780 Carsten CARSTENSEN, Ernst P. STEPHAN

In order to get a good convergence behavior not only asymptotically but
also when we are dealing just with a few degrees of freedom, we need a good
triangulation in particular when singularities appear. If the nature and the
position of a singularity are known a priori, the mesh refinement can reflect
on this. Otherwise one requires the information we may achieve from an
analysis of the discrete solution and the given data. Whereas the main topics
in the adaptive feedback steering of mesh refinements, usually based on the
residuals, are mathematically understood for the finite element methods (we
refer only to the pioneering works [1,13] and to [20, 28] for nonlinear
problems), comparably little is known for the boundary element method (cf.
e.g. [4, 23, 24, 30, 31)).

In this paper an adaptive h-version of the Galerkin discretization for the
symmetric coupling of the finite element method and the boundary element
method is presented for linear and nonlinear interface problems. It is based on
an a posteriori error estimate which gives a computable error estimate up to
a multiplicative constant. Then, following the approach of Eriksson and
Johnson elaborated for the finite element method we present an adaptive
feedback algorithm for the mesh refinement of the coupling procedure.

The paper is organized as follows. For convenience of the reader we treat
the interface problem and its rewritten form, problem (P), in § 2. Here, we
are able to neglect the technical assumption of a Dirichlet boundary stated in
the literature [11, 18]. Then, its discretization, the problem ( P, ), is considered
in § 3 where we conclude quasi-optimal convergence for the displacements in
the H' -norm approximated by (continuous, piecewise linear) finite elements
in the domain € and for the tractions in the H~ % -norm approximated by
(discontinuous piecewise constant) boundary elements on the interface
I-these norms may be considered as natural (« energy ») norms. Then, in § 4,
we state the precise assumptions and then prove an a posteriori error estimate.
In § 5 we present and discuss the adaptive algorithm which is illustrated
numerically in § 6.

We use the following notations. H'(2) denotes the usual Sobolev spaces
[21] with the trace spaces H'~ 2(r) (s € R) for a bounded Lipschitz domain
Q with boundary 7. || - [l g, and | - |4, denote the norm and semi-norm
in Hk(ca) for @ < 2 and an integer k.

2. THE INTERFACE PROBLEM

This section presents the interface problem and rewrites it with boundary
integral operators as an equivalent problem (P) which will be treated nu-
merically in the sequel.
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COUPLING OF BOUNDARY AND FINITE ELEMENTS 781

Let 2 ¢ R® be a bounded Lipschitz domain in the plane with boundary
I'. The possibly nonlinear partial differential equation considered in €2, the
interior part of the problem, is described by the operator A defined by

A L9 RY) 5 LY Q;RY),

() [2)) el (2))
w((2)-4+eal (2) =

The coefficients a; = a; € L™(£2) may or may not depend on the argument

£
(al > e LX Q, R?) and may vary in £ provided that A is uniformly bounded
2

and monotone, i.e. there exists positive constants «, and «, with
o, |6 - £|2 <
< (68 a, (x,0)0,+ a,,(x,6),—a,(x, &) & —a,(x,¢)e,
< (e- .
ay(x,0)0,+a,,(x,6)0,—a,(x,e) &, —a,(x,¢)¢,
2
< - |6—¢|
for all §, ¢ € R and for a.e. x € Q.

Example 1: As a typical example consider A=p -1 where I is the
two-dimensional unit matrix. In the linear case p € L™( ) is a scalar function
with p, < p(x) < p, for almost every x € £ and some global constants
Ppp>0:

(Ae) (x)=p(x)-¢e¢ forae. xe Q.

In particular p = 1 leads to the Laplacian equation, cf. (1). In the nonlinear

case we consider p as a function of the argument 7 := |¢| and may take e.g.
_ 1 . .
p(t)y=2+ T3 which gives

(Ae) (x)=p(|e|)-¢ forae. xe Q

and 2 < p(le]) = 3.

For a given right hand side f € Lz( ), we consider the (possibly nonlinear)
partial differential equation

(1) —div(Agradu)=f in Q.

vol. 29, n°® 7, 1995



782 Carsten CARSTENSEN, Ernst P. STEPHAN

In the complement Q°:= R*\Q we consider

2) —Av=0 in Q°

with the radiation condition

3) v(x):i%log |x] +o(1) as |x]| = oo,

where b € R is a constant (depending on v ). Both probiems are coupled on
the interface I'= 2 M Q° where we allow prescribed jumps, i.e. given
uge H>(I') and t,e€ H "*(I') we demand

av
@) =0+ u, (Agradu)-n:a—n+to onrl

where n = (n;, n,) is the unit outward normal to I pointing from £ into

Q°. We remark that (A grad u) - n| and IQ—‘F are defined in H 1/2( ) via

v
ad
Green’s formula {9, Lemma 3.1]. "

Then, the interface problem (IP) of this note reads as follows where any
derivative has to be interpreted in the distributional sense.

DEFINITION 1:  (Problem  (IP))  Given  (fiugt,) e L(Q)x
H(IyxH "(I') find (u,v) e H(Q)xH, (Q) satisfying (1)-(4).

Remark 1 : It should be emphasized that in related works (e.g. [10, 11, 18,
19]) the constant displacements (or rigid body motions in elasticity) in the
interface problem are prevented by an additional Dirichlet boundary inside of
the interior domain. It is shown in this paper that this technical restriction is
not necessary. Indeed, the radiation condition of the exterior problem yields
positive definiteness of corresponding boundary integral operators (see
Lemma 4 below) which, together with the semi-definiteness of the partial
differential operators in the interior problem, avoid the constant displacements.

In order to give an equivalent formulation of problem (IP) we incorporate
some boundary integral operators. Let H °(I') be the dual of
HY(I)(0<s<1) (I is closed) where the duality {,) between these
spaces extends the scalar product in L2(1" ).
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Given v € HY*(I') and pe H Y201 we define for ze I’

(V) (z) = ——};J'qu(C)loglz—ﬂdsc
(Kv) (2) = —-};frv@)ai,%log e = | ds,
(K'9) (2) = —%frwc)%log |z - ¢ ds,
(W) (2) = %a—?a‘fr"(()a—i;l"g |z ] ds,.

This defines linear and bounded boundary integral operators when mapping
between the following Sobolev-spaces [8]

V- HS_UZ(I") N HHUZ(F)
K:HYY(I) > H*Y)
K :H ™" - ()
W Hx+1/2(1-v) N Hx—1/2(F)

where (since we allowed I" to be a Lipschitz boundary) s € [— 1/2, 1/2].
Moreover, the single layer potential V is symmetric, the double layer potential
K has the dual X’ and the hyper singular operator W is symmetric. V and W
are strongly elliptic in the sense that they satisfy a Gérding inequality (in the
above spaces with s =0) [8]. Additionally, we have definiteness, where

HY(I):={ve H(I'):{1,0)=0}=H(I")/R

with its dual H,’(I'), 0<s< 1.
LEMMA 1: [16, 22, 25, 26] Provided the capacity of I is less than 1

V.H "I > H™(I)

is linear, bounded, symmetric and positive definite. (]

Remark 2 : For a definition of cap (I'), the capacity of I', we refer to [25]
and only mention here that, e.g., if Q lies in a ball with radius less than 1, then
cap ('Y< 1. Thus, cap (I') <1 can always be achieved by scaling {16,
25, 26}.

vol. 29, n° 7, 1995



784 Carsten CARSTENSEN, Ernst P. STEPHAN

The relation between the single layer potential and the hypersingular

integral operator is given by W= — 2 V—— where —5 denotes the derivative
with respect to the arc-length (at least in t}g]e distributional sense).

LEMMA 2: ([22]) (Wv, w) = <V—a—v sz>fc'r anyv,we H™(I). 0
From Lemmas 1 and 2 we get directly the following known result.

LEMMA 3 : Provided the capacity of I is less than 1

W H "I — H"™(I)
is linear, bounded, symmetric and positive semi-definite. O
We are now in the position to reformulate the interface problem (IP).

DEFINITION 2:  (Problem  (P))  Given  (f uyt,) € L*(Q)x
HY(ryxH "I find (u,¢)e H(2)xH Y (I') satisfying

5) f(Agradu)~grad;7d.Q+%(Wu|r+(K’—1)¢,17|r}=
o)
=fgf.nd9+<to+%Wuo,n]r> (ne H'(2))

6 (W, Vo+ (1=K u|y={(w,(1-K)u,) (we H "(I)).

The problems (IP) and (P) are equivalent ; compare also [10, 11, 18, 19] for
related results. The proof is given here for convenient reading.

THEOREM 1 : The problems (IP) and (P) are equivalent in the following
sense. If (u,v)e H'(Q) xH‘OC(QC) is a solution of (IP) then
(u, ) e H(Q)x H™ 2(ry solves (P) with ¢ = —‘ . If, conversely,
(u, ¢) is a solution of problem (P) then (u, v% solves (IP) with
v e H. (Q°) defined by

loc

N v(z) = J.(P(C) log |z-{| ds,

_LnJ.r(u—uo)(C)~5aﬁgloglz_(:ldsc (ze Q).

M? AN Modélisation mathématique et Analyse numérique
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Proof : Assume that (u, v) solves (IP). Then, from [9, Lemma 3.5], there

holds the representation formula (7) with ¢ = g—z - Letting z — I" and by
using the jump conditions, one obtains that the Cauchy data (v] s S—ZL)

satisfy

v, v, —-KV
®) H a_u‘ == 6_v| H=y k)
onlr onlr

compare [9, Theorem 3.11] (note that a = 0 here, cf. (3)). Using (4) in the
first component of (8) gives (6). Multiplying of (1) with a test function

n € H'(R), integration over 2, using Green’s formula, and incorporating (4)
we get

av
f (A grad u) - grad 5 dQ = Lf. nd2+ (&), +1,1]).
Q
From the second component in (8) we have
’ v av
|WUIF+ (K - 1) E’l_ll‘z_z %Ir
The last two identities (with ¢ = I%II) and (4) yield (5).

Conversely, let (u, ¢ ) solve (P) and define v by (7). Then, according to [9],
v satisfies (2), (3) and hence (8), and the jump relations yield

v| _
o (e
onlr

The first component of (9) together with (6) yields u|,.=v|,+ u, From
the second identity in (9) we then have

kD)

6n|r=_%{w(u|r_ uy) + (K’ -1) V¢} .

Using this in (5) gives, by Green’s formula again,
' = cnl.— 198 _
J.g (div(Agradu) +f)ndQ = <(A gradu) - n|, lanlr tos ’7|r>
for all # € H'(Q). Choosing 7 € H(l)(Q), the completion of C5(£2) in the

H' -norm, we conclude the weak form of (1). Hence using (1) we get (4). O

vol. 29, n® 7, 1995



786 Carsten CARSTENSEN, Ernst P. STEPHAN
Remark 3 : We note that
(10) W1=0 and Kl=-1

with 1 being the constant function with the value one. The identities (10)

1
follow from H((l) ) = (0 ) (cf. [9, Lemma 3.5]).

Define the continuous mapping B : (H'(2)xH "(r))> > R and the
linear form L: H'(Q)xH "2(I') > R by

(G)C))-]
B , = (A gradu) - grad v dQ
¢ 14 Q

+ 3 (Wu| -+ (K= 1) ¢, 0] )

+%(W,V¢+(1-K)u|r)

v 1
L( ):sz.vd9+i-(y/,(1—l()uo)
"4 Pe)

+ < t0+—21-Wu0,v|,.>

for any (u, ¢), (v, w)e H'(R2)xH "*(I).

COROLLARY 1: Problem (P) is equivalent to (u,¢p)e H Q) x
H™ "*(I) with

u
11 B , (- =L,
av ((;))
ie. for any (v,w)e H(Q)xH 20y there holds
u v v
B , =L .
(G)C)-) :
Proof : Note that B((;),(O )) =L<6) is equivalent to (5) and
u 0 0. .
B((¢ ), ( ' )) =L( . ) is equivalent to (6). O

We need the following result (cf. [3] for related properties in three dimen-
sional elasticity).

M? AN Modélisation mathématique et Analyse numérique
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LEMMA 4 : The operator S = W+(1—K')V_1(1—K):
H(I) —» H () is linear, bounded, symmetric and positive definite.

Proof : Due to the above mentioned properties of W, K, V, K’, the operator
S is linear, bounded, symmetric, positive semidefinite and a Fredholm operator
of index zero. Thus, it suffices to prove that the kernel ker S is trivial in order
to conclude that S is positive definite. Let u € ker S, then 0 = (Su, u). On the
other hand (Su,u) = (Wu,u) = 0, so that (Wu,u)=0. By Lemmal, u
is constant. Therefore 0=(V '(1-K)u,(1-K)u). By Lemmal,
v 'is positive definite so that (1 — K) u = 0. Using (10), this implies that
the constant « is equal to zero. Thus, ker S = {0}. 0

In the case that A is a linear mapping, the following result proves that the
bilinear form B satisfies the Babuska-Brezzi condition.

THEOREM 2: There exists a constant [>0 such that for all
(u,9), (v, w) e H(Q)xH "(I') we have
<

(12 ﬂ“(ZZL) <;:2>,mmxmmW)
<o((5)G20)-(C)-G25))

H' (Q)xH ()

with

2n:=¢+V 'A=-K)u|n26:= y+V '(1-K)v|,e H (D).

Proof : Some calculations show
{((5)Go0) () (20))-
/) \n-6 w) \n-6))
=f ((Agradu) — (Agradv)) - grad (u—v) dQ
Q

+H(W(u =), u—v) +2(S(u~0),u~0v)

+%<V(¢—W),¢-w>-

vol. 29, n® 7, 1995



788 Carsten CARSTENSEN, Ernst P. STEPHAN

Due to Lemmas 1, 3 and 4 and since A is uniformly monotone we have that
the right hand side is bounded below by

2 < 2 ) 2
aollgrad (u- v)”[}(Q) + 4 ll ](u - v)lr”ym(r) +'Z o —wly 120y
where ¢,, ¢, > 0 result from the positive definiteness of V and S. Note that

Wul?® = || grad ull 72 oy + lu| iy (we H'(Q))

defines a norm Il - Il which is equivalent to the standard norm in H'( Q). Thus
there exists a constant ¢; >0 with llull = c;flu|l ;1 o). Altogether we have
proved that

{((5)G5))-4C)G2) =

= ¢y

2

-y
c c
c, = min {Zz,ci - min {a,zl}}>0.

On the other hand, by definition of 7, §, we have

HY (Q)xH ()

with

1
=Sl - ey S E( @ —wly "2(r)+c5(1 +¢4) ||u-—U||Hm(1-))

-y
where ¢, > 0 and ¢4 > 0 are the bounds of V~ . Hm( I'y—->H 1/2(1") and

K:H"*(I') = H"Y(I'), respectively, and ¢, =max{l,c(1+c)}.
Combining the last two estimates we obtain (12) with

s ¢
H' (2)xH™ (I

c
B = —2€~min{l, 1/c,}. O
In case that A is linear, Theorems 1 and 2 and the Lax-Milgram lemma gives

existence and uniqueness of solutions of the interface problem (IP) as well as
of the rewritten problem (P).

COROLLARY 2 : The problem (IP) as well as the problem (P) have unique
solutions.

M? AN Modélisation mathématique et Analyse numérique
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Proof : Note that (6) is equivalent to

(13) p=-V '"(1-K)(u|~uy)

which may be used to eliminate ¢ in (5). This leads to the problem to find
ue H'(Q) with

(14) A(u)(n) -

L (A grad u) - grad 7 dQ + % (Su| 2 7] )

L(n) (ne H(2)).

Here, L’is some bounded linear functional. The operator A’ on the left hand
side maps H '(£2) into its dual, is continuous, bounded, uniformly monotone
(cf. the arguments of the proof of Theorem 2). From the main theorem on
monotone operators [32] we obtain that A”is bijective. This yields the exist-
ence of u satisfying (14). Letting ¢ as in (13) we have that (u, ¢ ) solves
Problem (P). Uniqueness of the solution may be concluded from the converse
calculation and the bijectivity of A’ or, alternatively, from Theorem 2. O

3. THE DISCRETE PROBLEM ( P, )

In this section we treat the discretization of problem (P) in the form (11).
Let (H, xH, 2:hel)bea family of finite dimensional subspaces of

H (Q)xH Y2(I). Then, the coupling of finite elements and boundary
elements consists in the following Galerkin procedure.

DEFINITION 3 : (Problem (P,)) For he I find (u, ¢,) € H,x H, '*
such that

o(5) (0))-:()

for all (v, w,)e H, xH, "

In order to prove a discret Babuska-Brezzi condition if A is linear, we need
some notations and a discrete analog of Lemma 4.

ASSUMPTION 1: For any he I let H,xH,?cH'(Q)xH "*(I)

where 1  (0,1) with Oe I. 1 ¢ H, 12 for any h € I where 1 denotes the
constant function with value 1.

vol. 29, n° 7, 1995



790 Carsten CARSTENSEN, Ernst P. STEPHAN

Leti,: H - H' (2) and ]h uz o« H ”2(1’) denote the canonical injec-
tions with thelr duals zh. H' (.Q) - Hh and]h. H"™(I) > (H, 1/2) being
projections. Let y : Hl( Q) - H”Z( I") denote the trace operator, yu = u/| . for
all ue H'(R), with the dual y*.

Then, define

(16) V, = j, Vi, K,=j,Kyi,, W,:= i,y Wyi,, K,:=1i,y K j,

and, since V, is positive definite as well,

a7 S, =W, +(1,-K;)V,'(1,-K,):H, > H,
with 1, := jn i, and its dual 1.

LEMMA 5: There exist constants c¢,>0 and hy>0 such that for any
h e I with h<h, we have

2
, (S, uy, u,) = ¢y | “h‘r”H'”(r) forallu, e H, .

Proof : The proof is quite analog to that of [3, Lemma 8] so that we give
only a sketch. Assume that the conclusion is false. Then one can construct a
sequence of functions (u, ),_, 55  in H'(Q) with

1
u, € Hy, | “h,.'r”H"’(r) =1 <Sh,. Uy, “h,.> s n (n=1,2,3,..)

and li_r)n h,=0. Due to the Banach-Alaoglu theorem we may assume that

(u, | F)n=1.2 3, converges towards some w € H'*(I') weakly in H"*(T") (a
subsequence at least).

Then, by definition of S,, we firstly conclude that (Wu, |, u, | ) tends
towards zero so that (by weak convexity of (W-,-)) (Ww,w)=0, ie.
w|,- is constant by Lemma 1. A decomposition of w,|r=v,+w, with
v,e H '/Z(F )and w, e R shows additionally that (v, ),_, , 5 _tends towards
zero strongly in H (F ) so that we have also strong convergence of
(4, |/ )n=1,2,3, . towards the constant w € R in H'"(I).

On the other hand we have 0 = Jim (Vz,, z,)

with z,= V,(p,) € Hy "> < H (I,

@, : ]h v, € (H, l/2) Y= u, —Ku, € H”z(I’).

Thus, 0= lim lz,ll g~ 2y whence 0= lim (2 [PPPTI

Because of (uh | /a1 23 . =W we get (yn)n_l 23, = 2w strongly in
H'(I') (by (10) and w € R). Hence,

2w(1,1)= lim (1,,) = lim (j, 1,3,) = lim (1,¢,)=0,

M? AN Modélisation mathématique et Analyse numérique
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i.e. w= 0. This contradicts [|w|| i ) = nli_r)nm e, | ANl gong y = 1. O

THEOREM 3 : There exist constants B, >0 and hy,> 0 such that for any
h € I with h<hy, we have that for any (u,, ¢,), (v,,v,) e H,xH, 172

(o 16
¢h -, 7’/;,—5;, HYQ)xH™ Y(I)
u, u,—v, v, u,— v,
< B s - B s
<(¢h> (”h_5h>> ((V’h> <’7h’5h>)

2n, = ¢h+Vi_l](1h_Kh)uh’25h:= '/’h+Vlzl(lh_Kh)uhe H;m'

HY R)xH () ‘

5|

with

Proof : The proof is quite analog to that of Theorem 2 dealing with the
discrete operators (16) and (17). All calculations in the proof of Theorem 2 can
be repeated with obvious modifications. Due to Lemma 5 the constants are
independent of & as well so that ﬁo does not depend on & < h,, h, chosen in
Lemma 5. Hence we may omit the details. 0

COROLLARY 3 : There exist constants c, > 0 and hy > O such that for any
h € I with h < hy the problem (P,) has a unique solution (u,, ¢,) and, if
(u, ¢ ) denotes the solution of (P), there holds

IG6=5)
¢_¢h

HY (Q2)xH ()

. u—"v,
c,y - inf
0 vy, ¢ — V¥,
-1
e HyxH, ~
Yn

Proof : The existence and uniqueness of the discrete solutions follows as in
the proof of Corollary 2. Let (U,, ®,) e H" xH, "2 be the orthogonal
projections onto H" % H, 2 of the solution (u,¢) of Problem (P) in
H'(Q)xH "(I'). From Theorem3 we conclude with appropriate
(n,,9,) € H' < H, '* that

oo |(a5) G
(. _ : _
Pu= O H'(2)xH™ "(r) = O HY(Q)xH™ "(I)

<o((ar) (u=a)-o((5) (i)

vol. 29, n® 7, 1995
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Using the Galerkin conditions and the Lipschitz continuity of B, with related
constant L (which follows since A is Lipschitz continuous), we get that the
right hand side is bounded by

”( ;h }hﬁ > \ T H ( ih1 ; )
NH (Q)xH ( )
prOVCS

. . U,—u,
Dividing the hole estimate by S
Mh = O HY(Q)xH '*(I)

(=) (o75)
¢h_¢h ¢h_¢

From this, the triangle inequality yields the assertion. O

HYQ)YxH ()

<L. .
HY(Q)YxH () ﬂo HY (2)xH ()

Remark 4: If 1€ H, then ¢ —¢, € H; (). For a proof consider
o-5((3-5.) (0))
B p—-¢,/°\0/)

4. A POSTERIORI ERROR ESTIMATE

In this section we state the assumptions and the result of an a posteriori
error estimate, proved in the foliowing section, which is the base of our
adaptive feedback procedure. For simplicity, we restrict ourselves to linear
triangles as finite elements in H, and piecewise constants H, "

ASSUMPTION 2 : Let 2 be a two-dimensional domain with polygonal bound-
ary I' on which we consider a family & = (J,:h e I) of decomposition
T, ={4,,...4y} of 2 in closed triangles 4,,.., 4y such that

N

Q= Y 4, and two different triangles are disjoint or have a side in common
is
or have a vertex in common. Let & , denote the sides, i.e.

&, ={0T, N 3T+ i = jwith 9T, N 0T, is a common side} ,
8T} being the boundary of T,. Let
4,={E:Ee &, withE c I'}
be the set of « boundary sides » and let
Fr=F\G,
be the set of « interior sides ».
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We assume that all the angels of some A € T, € J are = O for some fixed
© > 0 which does not depend on 4 or 7.
Then, define

H,:={n,e C(R):n,|,€ P, foranyde J,}

H, 12 .- {n,e L™(I'):m,|z€ P, foranyEe ¥%,}

where P; denotes the polynomials with degree < j.

For fixed I, let h be the piecewise constant function defined such that the
constants h|, and h|; equal the element sizes diam (A) of 4€ J, and
diam (E) of E€ &,.

We assume that the coefficients a; of A are piecewise smooth such that
A(gradv,) e CI(A) for any A€ ¥, € J and any trial function v, € H,.
Finally, let fe L*(2), uy€ H(I'), and tye LX(T').

Let n be the exterior normal on I” and on any element boundary 94, let n
have a fixed orientation so that [ (A grad u,,) - n]| € L*(E) denotes the jump
of the discrete tractions (A grad u,) - n over the side E € & 2. Define

it

R}: ng diam (4)? -J.A |f+ div (A grad uh)|2d.Q
4¢3,

=
N
it

= > diam(E)-f | [(Agradu,) - n]|*ds
E

Ee &)

e
Il

VR (1- (Agradu,) - n+5Wiuy—w,) ) -5 (K'=1) ¢, )|

L*(I)

=
Il

4" E diam (E)'"* - H%{(l _K)(”o_“h|r)_v¢h}'|

E<s, L(E)

Under the above assumptions and notations there holds the following a

posteriori estimate where (u,¢) and (u,, ¢,) solve problem (P) and
(P,), respectively.

THEOREM 4 : There exists some constant ¢ > 0 such that for any h € I with
h<hy (hy from Lemma5) we have

( u—u, )
¢ - ¢h

Note that R,, ..., R, can be computed (at least numerically) as far as the
solution (u,, ¢,) of problem (P,) is known.

Sc-(R,+R,+R,;+R,).

H'(Q)x’H' 20y
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The proof of Theorem 4 is divided into several lemmas. Throughout this

section we adopt the notations and assumptions of Theorem 4 and let

e=u—-u, &=¢-¢, 0= %(£+V_1(1—K)e|r).

We start with a simple inequality and estimate the appearing terms in the rest
of this section.

LEMMA 6 : We have

e e
#[(7) 1)
£ HN(Q)xH "(I) o

where, for any (e, d,) e H,xH, ",

sT+T,+T;+T,
HYNQ)xH ()

T, = L (f+div(Agradu,))(e—e,) d2

4e F,

~
Il

y=— > L[(Agraduh)-n](e—eh)lEds

Ee &)

T, = (- (Agradu,)  n+3 W~ u,| ) — 5 (K'= 1) ¢, (e —¢,)| /)

T, = 5(6 =8, (1= K)(ug— | 1) = V9,).

Proof : Due to the arguments of the proof of Theorem 2 we have

O0] FURTES (09 I
<o((;)(5))-((5)(5)
-(525) () G22)
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COUPLING OF BOUNDARY AND FINITE ELEMENTS 795

using (15) and (11). By definition of B and L, the last expression is equal to

.[ (fle—e,)—Agradu, grad (e —¢,)) d2
Q

#(to+3 Wy — | ,) =5 (K'=1) ¢, (e~ ¢,)] )

+3(6-68, 1=Ky~ 1, ) - V9, .

Using Green’s formula on any element 4 € J, we obtain

—J. A grad u, grad (e — e, ) dQ2
Q

=> J div (A gradu,)(e—e,) dQ

4€ 9,

h

-3 L[(A gradu,) -n](e—e,)|pds

Ee &)

—((Agradu,) -n,(e—e)|)-

Combining the last two identities proves the lemma. O

We note that under the Assumption 2 the results of [6] apply here and give
the following lemmas where ¢ > 0 is a generic constant and depends only on
9 but not on h, 4, N, u, etc.

LEMMA 7: There exists a family of interpolation operators
I,: H'(Q) > H,:hel) and a constant ¢ >0 such that the following
holds. For any Ae J,€ J and integers k, q with 0 <k < q <2 and
with N:= u{d'e I,: 44 % D}, the union of all neighbor elements of
A4, and for all u e H'(N),

[ = gy < € - diam (7Y Ju ey, -

Proof : The proof follows from the analysis in [6]; compare e.g. [6,
page 82, line 13] in different notations.

Remark 5 : The operator I, is obtained in [6] locally as follows. For any knot
x; let N; = ui{4: x € de J,} be the support of some trial function (or
« hat functlon ») #; in H), related to x;. Let ¢; be the value of the
L (N )-projection of u|N, ue H' (), atx Then, I u is the sum of all such
€My
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Remark 6 : Due to the angle condition in Assumption 2 we have that the
number of neighbor elements is bounder, i.e.

card{A'e T,: 4/ N4d= O} <6n/0.

Moreover, the quotient of the size of two neighboring elements is bounded, i.e.
there exists ¢ = 1 (depending only on J ) with

/e < diam (4)/diam (4) < cif AN A= ¢, 4,4 T, e T.
In particular, if E is one side of Ade J, e T,
1/c - diam (4) < diam (E) < ¢ - diam (4).

LEMMA 8: Choosing e, := I, e we have T, < c - |e|y o, " R
Proof :

T, < Ey If+div (A gradu,) |l 24 - e —e,ll 24
4e T,

< cdzg diam (4) - ||f + div (A grad u,) | 24y - €],y 0
€ Jy

using Lemma 7 (k =0, g =1) with N, denoting the union of all neighbors
of 4. Using Cauchy’s inequality and Remark 6, this gives

T,sc- R - V6r/O- ||y p
which proves the lemma. 3

We recall the following weighted trace inequality which can be proved
using the trace inequality and equivalence of norms on the reference triangle
and then by transformation on the elements.

LEMMA 9 ([6, Lemma 4)) : There exists a constant ¢ > O such that for any
E, E is one side of 4 € J,€ J, and any u e H'(A4) there holds

diam (4) lull %25y < ¢ - (NullGz ) + diam (4)* - [u|3 ) - a

LEMMA 10: Choosing e, = I,e we have T, < c- |e|y o) - R,
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Proof : Combining Lemma 9 (with e — I, e replacing u) and Lemma 7
(with e replacing u, k=0, g=1 and k=1=¢g) we obtain for any
E e Vﬁ,E;A, 4e J,e T,

le =1, el 72z < c(1/diam (4) le — Le |l 7= 4,
+diam (4) |e = I e[ 51 4)
2 1 2
< 2¢" diam (4) |e|py,,

with N, denoting the union of all neighbors of 4. Therefore,

T, s 2 A grad u,) n] "1}(5) ’ ||€—1he"Lz(E)
Ee &)

< V2c¢ ) Vdiam (E) || [(A grad u,) n]ll 2z - |€lmin, -

Ee &
Using Cauchy’s inequality and Remark 6 again, this gives

T,<cV12n/® -R,-

[eIH‘(Q)

which proves the lemma. a
LEMMA 11: Choosing e, := I, e we have T; < c- |e|y gy - Ry
Proof: Note that t,€e LX), W( Uy — Uyl ) € L*(I') since

ug—u,|,€ H(I), (K'-1)¢,e LX(I') since ¢,e L*(I'), and

(Agradu,) n| e L*(I') since grad u, is piecewise constant a; is piecewise

smooth. Thus, we may repeat the arguments of the proof of Lemma 10 in
connection with %,. This proves the lemma. O

LEMMA 12: For w:= (1 -K)(uy—u,|;)—Vep, we have

Il pecry < c- 2 IVh v LXE)
Ee %,
Proof : Note that y € H(l,( I') has the property that (y,#,) =0 for any
piecewise constant function #, € H, ""*. Then, the assertion follows from [4,
Proposition 1] so that we only give a brief sketch of the proof here.

Let I}, ..., Iy denote the boundary elements of the considered triangulation,
N
= Y I“] Since J w ds = 0 we have at least one zero y; of the continuous
7= T

i
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798 Carsten CARSTENSEN, Ernst P. STEPHAN

function y in the interior of I, j=1, ..., N. Let l/~/j e H'(I') be equal to

w on the part of I between Y; and Y;+1 and equal to 0 on the remaining part
of I'. Here we set y, = y,. Then the triangle inequality gives

N-1
(18) ” l//” H'™(I) s 2 ” Wj”y”l([‘) .

j=0

Since supp y; < I'; v I, | and by interpolation [2] we obtain

12 172

(19) H l/-'/j || H'Y(TI) = " l;/j " HY) H l//j "1 (1)
12 12

< Wwlacrnor,y Wliror, -

Since y has at least one zero y; in I"j, the main theorem of calculus shows

”l//”Lz(r,-uI‘,—H) =C- (h +h+|)

i) ®

Here, h; >0 is the length of the boundary element I, and we note that

h, /th, 1 /h < ¢ due to the angle condition (cf. Remark 6). Using this

leads to

“V/nyl(rjur’.ﬂ) s Cﬂ W,HLZ(I“,UI}H)

and (19) gives

” V/j”H”Z(r) sc-

je1) "

According to (18), this proves the assertion. O

Proof of Theorem 4 : Use Lemmas 8, 10, 11 and 12 to estimate T}, T,
T, and T, (with 6,=0) in Lemma6, respectively. Then, division by

;)

5. ADAPTIVE FEEDBACK PROCEDURE

proves the theorem. O

HY (Q)YxH "(I)

For a given triangulation I, = {4,, ..., 4,} of 2 and the related partition
{Fl, ey FM} = gh of the boundary I' we can consider one element
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4, e 7, and compute its contributions a;, b, to the right hand side of the a
posteriori error estimate in Theorem 4

ajz — diam (4)2 ) f |f+ div (A grad u,)|* dQ
4.

J

+ z diam(E)-fEI[(Agraduh)-n]lzds

Ee ¥, Ecad

+ diam (I' N 6Aj) . Hto— (Agradu,) - n+%W(u0—uh!r)

~Lk-nyg,|’

LT~ ady)

by = diam (1) - [£{(1 - K)(uy—u,|,) - Vo, }|

LX)’

The computational details a for a;, b, re given in the next section. If we neglect
the constant ¢ > 0 in Theorem 4, the error in the energy norm is bounded by

(20

This a posteriori error estimate is almost useless for absolute error control
unless the constant ¢ > 0 (or an upper bound at least) is known. But it can
be used to compare the contributions to the local error.

Note that the different nature of the coefficients @; and b, is, in general,
caused by two different discretizations : a; is related to a finite element, b, is
related to a boundary element. Because of a simple storage organization and
a simple computation of the stiffness matrices, it is convenient to use only one
mesh, i.e. to take the boundary element discretization induced by the finite
element triangulation. Therefore, we consider this case in the sequel. For any
element 4, let

¢ = a;+ 2 b,

k=1.I,c4;

where the sum may be zero or consists of one or two summands.

The meshes in our numerical examples are steered by the following
algorithm where 0 < 0 < 1 is a global parameter.
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Algorithm (A) Given some coarse e.g. uniform mesh refine it successively
by halving some of the elements due to the following rule. For any triangu-
lation define a,, ..., ay as above and divide some element I by halving the
largest side if

¢,z 0 max c,.
J k=1,.,N

In a subsequent step all hanging nodes are avoided by further refinment in
order to obtain a regular mesh.

Remark 7 : (i) Note that in Algorithm (A) 0 =0 gives a uniform trian-
gulation and with increasing 0 the number of refined elements in the present
step decreases.

(ii) By observing (20) we have some error control which, in some sense,
yields a reliable algorithm. In particular, the relative improvement of (20) may
be used as a reasonable termination criterion.

(iii) If in some step of Algorithm (A), (20) does not become smaller then
we may add some uniform refinement steps (6 =0). It can be proved that
in this case (20) decreases and tends towards zero. If we allow this modifi-
cation we get convergence of the adaptive algorithm.

6. NUMERICAL EXPERIMENTS

We consider four numerical examples for the solution of linear and non-
linear interface problems related to Example 1, i.e. A=p- L
First, we describe the numerical implementation of the Algorithm (A).

6.1. Implementation of the Galerkin procedure

We treat the case p(t)=1 and p(t)=2+ } i—z yielding a linear and

nonlinear operator A = p - I, respectively, as explained in Example 1. In the
sequel we explain the computation of the form in (15) where it is sufficient to
describe the approximation of

o((3)(0n) = ()

used in the numerical examples. Here 7,7, € H ,', are « hat functions » and
W, € H, "2 are constant on one boundary element I, I', and vanish on

the remaining part of I” partitioned by I'}, ..., I',,.
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Note that the displacements are piecewise linear such that grad u, is
piecewise constant. Thus, for any triangle 4 € J,, the weight p is constant on
A. Therefore,

f p - (grady; - gradz, ) dQ =area (4) - p - (gradz; - grad )|,
4

can be determined explicitly. The integrals

I(x) = J; log |x —y| ds, and Ji(x):= fr b%—log |x — y] ds,
& I3 ¥y

can be calculated analytically [15]. By using the functions /, and J,, the outer
integration of (Vy,, v,,) and ((K'— 1) w,, #,| ), respectively, is performed
by a 32 point Gaussian quadrature rule on any boundary element. Since the
derivative of nj| ~ with respect to the arc-length is piecewise constant, the
stiffness matrix W, of the hypersingular integral operator can be computed
using the entries of the stiffness matrix of the single layer potential due to
Lemma 2.

In order to approximate the right hand side for given functions

fe LX), Uy € H”Z(I“), and t, € H 2(r) we compute J. f-n dQ via a
a4

quadrature rule with order 19 and 73 knots on any triangle 4 as presented in
[12].

The integrals (y,, (1 —K) u,) =f J(x) - uy(x)ds, f ty - M ds and
r

r
(Wuy, r7].|r) = '[ uo( Vi) ds are computed using a 32 point Gaussian quadra-
r

ture formula on any boundary element and the values of J,, u,, £, uf) and
(Vn;). Since #;is piecewise constant, the values of (an'.) are may be
calculated with 1.

Altogether the above descriptions determine the (approximate) computation
of the mappings B and L when applied to discrete functions. In the linear case
(p=1 is a constant weight and A =17) this yields a linear system of
equations which is solved directly via Gaussian elimination. In the nonlinear
case we get a nonlinear system of equations which is solved via a Newton-
Raphson method until the termination error is of the magnitude of the machine
precession. Then, the second derivatives of the interior problem are calculated
as above ; we refer e.g. to [S] for more details.

6.2. Calculation of norms and residuals

In the examples below the error of the displacements u and hence their

gradient grad ¥ and normal derivative ¢ =%}% (cf. Theorem 1) are known
explicitly.
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Hence the LZ(Q) norm of u—u, and grad (u — u,) can be calculated via
the 73 knot quadrature rule [12] on any triangle. This yields an approximation
of the error u — u, in the HI(Q)—norm.

The H~ "?(I')-norm is equivalent to the « energy norm »

Twly=V{Vy, y)

which is used in the sequel. For x e I"j and v = ¢ — ¢, we compute

M
1) (Vw)(x)=—%;fr w(y)log |x—y| ds,

by numerical quadrature rules. For j % k we apply a 32 point Gaussian
quadrature formula. For j = k we divide and transform the integral such that
the « singular point » x lies at the end of the unit interval. Then, we apply a
8 point Gaussian quadrature rule with logarithmic weights {27]. This explains
the approximation of the « energy norm» of ¢ — ¢, we use.

The calculation of the integrals for the residuals R, ..., R, over the finite
element 4 and the boundary element I is performed as follows : the integral

L |f + div (p grad u,)|* d

is approximated via the above mentioned 73 knot quadrature rule [12]. Here,
f(x) is given explicitly and p grad u, is constant on 4 (even in the nonlinear
case), whence the term div (p grad u, ) is neglected. The jumps on the interior
element boundaries in R, are piecewise constant and their L? -norm is deter-
mined explicitly. The L*( I i )-norm of

t= (Agradu,) - n+3 Wy — ] ) =5 (K'=1) ¢,

is approximated by a 32 point Gaussian quadrature formula. Here, #,(x) is
known, (A grad u, ) - n is constant on I', and determined explicitly, while the
term ((K’—1) ¢,)(x) is computed by using the integrals J, (x) above.

With v, = U, the remaining term W(uy —u,| )
(x)=- (a% V(uy—v, )’)(x) is computed with replacing 56-5 by a

symmetric difference quotient with stepsize 10~ >. This requires the compu-
tation of V(u,—v,) (y). Here, Vv,(y) can be treated by using the integrals
1, (y) as above while Vug(y) is calculated as in (21) where u, is differentiated
analytically.

For any x € I, we compute the first and third summand of

'//(X) = (“0— uhlr)(x) - (K(uo_uhlr))(x) - (V¢h)()))
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explicitly and by using I,(y), respectively. The term ( Ky j| ){(x) is calculated
analytically giving (Ku,|)(x) while the integral (Ku,|,)(x) is approxi-
mated by a 32 point Gaussian quadrature rule on any boundary element. Then,
Wil L2,y 1s approximated by a 32 point Gaussian quadrature rule on I,
where the value '(x;) is determined for any Gaussian knot x; as follows. For
1 <i <32, the values of w(x;_,), w(x;) and w(x,,,) are interpolated by
a second order polynomial p, and its derivative p/(x,) replaces y'(x;). For
i=1 we take w(x,;), w(x,) and w(x;) and for i =32 w(x;,), w(x; ) and
w(xy,) to determine p, and p.,.

6.3. Numerical example on the L-shape

The domain under consideration €2 is the L-shape region with vertices
0,0, (1,0), (1,1}, (-1,1), (-1,-1), (0,—1). The numerical
calculations are carried out as explained in the previous subsections for known
displacement ficlds

22) u=r2/3-sin(%oz) and u:lilog((x+%)2+(y~%)2)

in polar and Cartesian coordinates ( r, a) and (x, y) respectively. Even if the
right hand side is smooth, the solution has a typical corner singularity such that
the convergence rate of the A-verion with a uniform mesh leads not to the
optimal convergence rate.

In the first example we take a linear problem with the constant weight
p=1 and f=0. The jumps of u, and ¢, are given by (4). Using these data
[ uy t, the Algorithm (A) generates meshes as shown in figure 1 for
0=04. As it is expected for a reasonable improvement, the meshes
automatically refine towards the origin where we have the singularity of the
solation. In view of the well-known improvement of the Galerkin procedure
by using e.g. graded meshes if corner singularitics appear, this is quite
reasonable.

In Table 1 we have the numerical results for the uniform mesh (6 =0) and
for the meshes generated by Algorithm (A) for theta = 6 = 0.2, 0.4, 0.6, 0.8
and 1.0. Here, we show only the number of degrees of freedom N for the finite
element method (chosen by the algorithm ; a new row corresponds to a new
refinement step in the adaptive algorithm), and the corresponding relative error
of the displacements e, in the H '(2)-norm.

In order to illustrate the estimate of Theorem 3 let y,, be the error in energy
norm divided by (20). Hence, by Theorem 3, y, is bounded which can be
observed from Table 1. Moreover, y, is bounded below which indicates
efficiency of the estimate and hence of the adaptive scheme.

From Table 1 we compare the degrees of freedom needed to make the
relative error smaller than 0.05 : the values for =0, 0.2, 0.4, 0.6 and 0.8
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Figure 1. — Adapted meshes for the linear transmission problem.
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Figure 1 (suite).
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Figure 1 (suite).
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Table 1. — Numerical results for the linear transmission problem.

Uniform mesh

N

eN IN

8 0.20434 .152
11 0.18587 .173
21 0.14485 .164
33 0.12564 .185
65 0.09563 .149
113 0.08027 .159
225 0.06230 .148

(A) for 6 = 0.2

N eN IN
8 0.20434 .152
11 0.18587 .173
19 0.14621 .163
27 0.12844 .182
41 0.10297 .155
52 0.09020 .166
66 0.07554 .162
75 0.06900 .172
102 0.05947 .174
134 0.05128 .176
156 0.04646 .175
201 0.04004 .177
235 0.03604 .177

(A) for 6 =0.4
N eN YN
8 0.20434 .152
11 0.18587 .173
15 0.17074 .176
21 0.14520 .182
26 0.12197 .188
31 0.11007 .201
40 0.09420 .168
48 0.08544 .177
55 0.07824 .180
71 0.06837 .182
80 0.06260 .184
101 0.05633 .187
134 0.04959 .187
157 0.04510 .184
201 0.03904 .183
226 0.03656 .184
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(A) for 6 = 0.6
N eN TN
8 0.20434 .152
10 0.20467 .173
13 0.17286 .176
17 0.14848 .185
21 0.13954 .193
26 0.11594 .196
33 0.10579 .209
38 0.09402 .214
50 0.08328 .181
55 0.07744 .181
69 0.06742 .183
78 0.06448 .185
97 0.05639 .189
108 0.05448 .189
149 0.04533 .189
164 0.04367 .185
211 0.03783 .184
239 0.03562 .185
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Table 1 (suite).

(A) for6 =10

N en TN
8 0.20434 .152 45 0.08681 .221
(A) for 6 =0.8 9 0.20451 .162 46 0.08391 .202
N en TN 10 0.20467 .173 47 0.08322 .192
8 0.20434 .152 11 0.19777 173 48 0.08305 .186
10 0.20467 .173 12 0.19035 .178 49 0.08207 .188
12 0.19035 .178 15 0.16267 .181 50 0.08108 .190
17 0.14848 .185 17 0.14848 .185 51 0.08065 .191
19 0.14027 .192 18 0.14462 .187 52 0.08018 .192
24 0.11730 .195 19 0.14027 .192 53 0.07867 .193
28 0.11187 .202 22 0.12391 .191 54 0.07712 .195
37 0.09378 .209 24 0.11730 .195 55 0.07650 .179
40 0.09206 .218 25 0.11651 .195 58 0.07467 .178
51 0.08049 .175 26 0.11459 .197 59 0.07467 .181
57 0.07650 .184 27 0.11246 .201 60 0.07467 .183
62 0.07401 .184 28 0.11187 .202 62 0.07401 .184
80 0.06404 .187 31 0.10368 .201 63 0.07324 .184
87 0.06071 .186 33 0.10067 .204 64 0.07298 .185
108 0.05430 .189 34 0.09884 .202 65 0.07267 .183
133 0.04934 .186 35 0.09698 .201 66 0.07187 .183
166 0.04366 .187 36 0.09545 .205 67 0.07161 .184
199 0.03927 .188 37 0.09378 .209 68 0.07129 .182
238 0.03589 .185 38 0.09285 .211 69 0.07110 .182
39 0.09181 .213 70 0.07088 .183
40 0.09206 .218 71 0.07055 .184
43 0.08820 .219 72 - 0.06855 .184
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are > 255, 156, 134, 149 and 133. This shows that, in this example, the adapted
meshes are better than a uniform triangulation. In order to determine the most
efficient procedure we have to take into account the number of meshes created
for this improvement. The number of corresponding required meshes (and
hence the number of Galerkin equations to be solved) are > 7, 11, 13, 15 and
16. Since the values are more or less comparable, it is not clear which of the
parameter leads to the most efficient procedure (the answer depends on the
precise implementation and the machine we use). Conversely, we conclude
that Algorithm (A) is robust concerning the parameter 6.

From Table 1 we may compute experimental convergence rates. For the
uniform mesh we get experimentally a convergence of the form O(h*) with
a mesh size h= O(N~ '?) and a = 2/3 as expected. In order to compress
the data but compare the convergence rates, we present our numerical ex-
amples below in the form of figures where an entry corresponds to a symbol
(like A, V, ¢ etc.) depending on the parameter theta = 0. The entries
belonging to the same parameter are connected by a straight line. The
x-coordinate of a symbol is log (N) where N is the number of degrees of
freedom while the y-coordinate of the symbol is log (e, ). However, the
numbers shown on the axis are ey and N.

In figure 2 we show the results for the first example where we have in the
left picture the error for the displacement in relation to the number of

Relatwe €nor in Enerpy Notm
Relaiive Error in Entrgy Nomm

Number of Unknowns

a theta=00

camano
.» °
o
"
o
)

Figure 2. — Numerical results for the linear transmission problem (L-shape).
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810 Carsten CARSTENSEN, Ernst P. STEPHAN

unknowns in the finite element discretization while the right picture shows the
error for the tractions ¢ — ¢, in relation to the number of unknowns in the
boundary element discretization. The slope corresponds to the experimental
convergence rates and we see an improvement of the convergence rates from
2/3 to the optimal value 1 for the displacements and an average optimal value
1.5 for the tractions.

In the second part of this example we treat the nonlinear problem where

p(t)=2+ i }F 7 We consider the same displacement fields as in (22) and

obtain

—~ 53
f=—z4—7(—:r%r—_u§y‘sin(%“)

in polar coordinates (r, a). The jumps of u, and ¢, are again given by (4).
Using these data f, u,, t, the Algorithm (A) generates meshes which refine
towards the singularity as well. The related numerical output is shown in
figure 3 which is quite similar to figure 2. Hence, we may conclude the same
properties as above,

6.4. Numerical example on the Z-shape

The domain under consideration £ is the Z-shape region with vertices (0, 0),
1,0, (1,1, (-1,1), (=1,-1), (1,-1). The numerical calculations

E E
H 3
8 P
§ <
2 2
< H
& &
T — v
- v o .
Number of tinknowns Number of Unkrowns

theta = 0.0 a theta=0.0

theta = 0.2 o theta=0.2

theta= 0.4 o theta=0.4

theta =0.6 c thela=06
theta = 0.8 « theta= 08
theta=1.0 v theta= 1.0

Figure 3. — Numerical results for the nonlinear transmission problem (L-shape).
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Figure 4.— Adapted meshes for the nonlinear transmission problem.
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Figure 4 (suite).
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Figure 4 (suite).
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are carried out as explained in the previous subsections for known displace-
ment fields

@ uer in($a) mo e=hin((d)(-1))

in polar and Cartesian coordinates (r, a) and (x, y ) respectively. The solution
has a typical corner singularity such that the convergence rate of the h-version
with a uniform mesh leads not to the optimal convergence rate.

We consider the nonlinear problem where p(z) =2+ -l—%_—t with the
displacement fields (23) and obtain

- 1377
- By e (3e)

in polar coordinates (7, @). The jumps of u, and ¢, are then given by (4).
Using these data f, u,, t, the Algorithm (A) generates meshes which refines
towards the singularity as well. In figure 4 we show the meshes created by
Algorithm (A) for 6=04.

The convergence rates can be seen in figure 5 which is analog to the figures
of the previous examples. As in the previous examples we get an improvement
of the convergence rates.

Retatve Enrorin Energy Norm
Retatve Ecror I Energy Nom
1

2
£

T
" "
Numoer of Unknowns . et of Ureoowny

4 theta = 0.0 a theta=00
v theta=90.2 v theta=0.2
o theta =04 o theta=04

o theta =06 o theta=06
s theta=0.8 a theta=08
v theta=10 v theta=10

Figure 5. — Numerical results for the nonlinear transmission problem (Z-shape).
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We also considered the linear problem (p =1) for this example. The
convergence behavior was similar as in the presented nonlinear case, hence we
omit the details.

6.5. Conclusion

From the numerical experiments reported in the previous subsections, we
claim that adaptive methods are important tools for an efficient numerical
solution of transmission or interface problems via a coupling of finite elements
and boundary elements. The asymptotic convergence rates are quite improved
as well as the quality of the Galerkin solutions corresponding to only a few
degrees of freedom. This underlines the efficiency of the adaptive algorithm
as well as significance and sharpness of the a posteriori error estimate.

Acknowledgment. The authors would like to thank S. Funken for calcu-
lating the numerical examples and the DFG Forschergruppe at the University
of Hannover for support.
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