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Summary. Both mixed finite element methods and boundary integral methods
are important tools in computational mechanics according to a good stress ap-
proximation. Recently, even low order mixed methods of Raviart—-Thomas-type
became available for problems in elasticity. Since either methods are robust for
critical Poisson ratios, it appears natural to couple the two methods as proposed
in this paper. The symmetric coupling changes the elliptic part of the bilinear
form only. Hence the convergence analysis of mixed finite element methods is
applicable to the coupled problem as well. Specifically, we couple boundary el-
ements with a family of mixed elements analyzed by Stenberg. The locking-free
implementation is performed via Lagrange multipliers, numerical examples are
included.

Mathematics Subject Classification (1998pN30, 65R20

1. Introduction

In the classical finite element approach, the displacements are the unknowns while
the stresses are computed afterwards in lower accuracy. In many applications,
the stresses rather than the displacements are of primary interest. In the boundary
element method (BEM), displacements and stresses in the interior of the domain
are approximated with the same order.

Regarding finite elements, the approximation of the stresses can be improved
by mixed methods. Here we consider Raviart-Thomas-type finite elements due to
Stenberg [11], which are an improvement of Arnold—Brezzi—Douglas’'s PEERS
element (plane elasticity element with reduced symmetry) [1]. The unknowns are
three independent fields, namely the stress tensor, which is not a priori assumed
to be symmetric, the rotation, which acts as a Lagrange multiplier to enforce
the symmetry of the stress tensor in a weak form, and the displacement vector.
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154 U. Brink et al.

The analysis is based on the theory of mixed methods but refined by using
mesh-dependent norms (Ritlanta and Stenberg [9], [10]), by stability proofs on
patches of elements and by weakening of the symmetry condition.

Another advantage of these elements is the capability of modeling nearly
incompressible elasticity; more precisely, the relative error is independent of
Poisson’s ratia: there is no locking.

In many applications, for example, if nonlinearities in a bounded domain
2 are present as well as homogeneous, isotropic linear elastic material in an
unbounded, e.g., exterior, domaidg, one might combine the finite element
method (inf2¢) with the boundary integral method (acting @fg but treating the
problem inf2g). The symmetric coupling with boundary elements was proposed
and analyzed by Costabel in [6] where the displacements inside the FEM domain
are sought in the Sobolev spadé(f2:); traces on the interface are inserted into
the boundary integral equations, while the equilibrium of tractions across the
interface is satisfied in a weak sense only.

In contrast, in the mixed FEM under consideration here, the stressee
required to satisfyr € L2(2¢) and dive € L?(£2¢), while the displacements are
sought inL2(£2¢) only. Hence, the discrete tractions across interelement sides are
continuous and, consequently, our coupled scheme is designed to yield continuous
tractions across the interface between FEM and BEM while continuity of the
displacements across the interelement sides and the interface is satisfied in a
weak sense.

The construction of finite element spaces with continuous interelement trac-
tions may be cumbersome and hence is enforced by using Lagrange multipliers.
Then all unknowns, except the Lagrange multipliers, are discontinuous across
the interelement sides and can be eliminated on each element before assembling
the global linear system. We extended this scheme to the coupled system.

A similar coupling is possible with other mixed finite element methods than
those considered in this paper. The weakening of the symmetry of the stress
tensor is a particular way to construct stable finite element spaces, but is by no
means necessary for the coupling.

The paper is organized as follows: A model problem (as depicted in Fig. 1)
is described in its strong form in Sect. 2 and rewritten in a weak form. We prove
existence and uniqueness of solutions and a norm estimate by using Brezzi's
theory of mixed problems. The discretization is described in Sect. 3 where we
state convergence estimates under some hypotheses on the mixed finite element
methods. Proofs are given in Sect. 4 while in Sect. 5 Stenberg’s locking-free fam-
ily of methods is discussed. We describe the implementation by using Lagrange
multipliers in Sect. 6 and give some numerical examples in Sect. 7.

2. The coupled problem

Let 2 be a bounded polygonal (resp. polyhedral) domairkth d = 2 (resp.
d = 3) with boundaryds? = I, U I with disjoint I, and I, either having a
positive surface measure.
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Fig. 1. Notation

Throughout this paper, we consider the linear elasticity problem

dive = —f in 2

o = Ce(u) ing

(2.1) u = 0 onlIly
on = 0 onl;.

The displacement field is denoted by the related (linear Green) strain tensor
is e(u) = é(gradu + (gradu)™). The elasticity tensof= describes the stress—
strain relationship; in the simplest case we have Ce = Atrel + 2ue where
A wherey, are the Larg coefficients and denotes the identity matrix. (In the
two-dimensional case, this is the constitutive equation of plane strain).

As depicted in Fig. 1, the domaif? is partitioned intof2 = 2 U I" U (2g;
the outward unit normal of: is denoted byn.

On 2 a mixed finite element method based on the Hellinger—Reissner prin-
ciple is applied. This means the displacement 2 — RY and the stress
ok — RI% are independent unknowns. Furthermore, the stress tensor
is not a priori assumed to be symmetric. Symmetry will be enforced in a weak
form by a Lagrange multiplier technique. To obtain a variational formulation, we
choose test functions : 2 — R%*9 satisfyingrn = 0 on I3, and gain from

(2.1),
/TZC_ladQ—/ 7:e(u)dR2=0
O 02

so that integration by parts gives
/ T:C lod+ diVT-udQ+/ T:'de:/Tn-uds
2 2 2 r
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where the rotationy := ;(gradu — (gradu)") is a new variable for the skew-
symmetric part of the displacement gradient,
ye W ={ne ]2 n+n’ =0}

The stresses and displacements are sought in

6 = {re 2299 divr € L2(20)Y, 7n=0o0onI;},
L= LA(0p)N.

F is a Hilbert space when endowed with the norm

I7llaiv = ClIT18. + I divr]I§ o)"2

In summary, the variational form of the problem(ix reads: Given a body load
f and a displacement on I, find (U, o,v) € £ x .92 x 7/ satisfying

Jo,7:Crod2+ [, divr-ud®

22) +[o.Tivd2 = [pTn-pds  Vre.H
' [ divo-vdR = — [, f.vdR Wwe s
Jo,oind2 =0 ne W

The identity (2.2) is derived above, (2.3)is a weak form of (2.1), and (2.2)
is a weak form of the symmetry of.

We assume that the body lo&d:= L%(2)? vanishes or2g for simplicity and
that the Lang coefficients are constant dias. Then, at any poink € (2g, the
displacement field can be represented by the Betti formula

u() = - /F G(x.y) Tyu(y)ds, + /F (T,60.)) T u(y)ds,

Here Tyu(y) = Ce(u(y)) n(y) is the traction corresponding o at a pointy €
I', and TyG(x,y) are the columnwise tractions @(x,y) aty. G(x,y) is the
fundamental solution and equals

A+ 1 M =)= e g =
amiity {log 1y + X G it d =2,

At 1 At (x=y)(x—y)" P
871'#()\52“,) {\X—y|| + )\_'_:;L x—y]|3 } ifd=3.

Lettingx — I" we obtain with the classical jump relations the boundary integral
equation
(2.3) Ju=-Vt+Ku

with t(y) = Tyu(y) and the integral operators

(VE)(x) /F GX.Y)ty)ds. xel,

(Ku)(x) /F (T,G(x,y)) u(y)ds,, xer.
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Symmetric coupling of BEM and mixed FEM 157

Applying the traction operatof, we get another boundary integral equation

(2.4) 1t=—K't —Wu
where
(K'D)X) = / TGyt ds, xeT,
I
WUY(x) = —Ty /F (T,G(x,y)) u(y)ds,, xer.

The symmetric coupling of (2.2) with the integral equations (2.3) and (2.4) is
performed as follows: Introduce a new varialde= u| belonging to the trace
space

HY2:= HY2() = {u|p 1 u e HY(2)'},
and use continuity of the tractions dn i.e.,t = on. Then, (2.3) reads
==V (on)+ (31 +K)p
and this is inserted in the right-hand side of (2.@hile (2.4) reads
We+ (31 +K')(on) =0

and this is added in a weak form to (2.2). (This coupling is in a sense ‘dual’ to the
more classical approach, see e.g. [4, 6, 7], where a new variable is introduced
for on on the interface while fou|, continuity is used.) The resulting weak
formulation is rewritten in a saddle point structure: Find¢,u,v) € .72 x

HY2 x % x 77" such that

0
— [, frvd

a(o, p;7,9) +b(T;u,7)

(2:5) b(o v, 1)

for all (r,4¢,v,n) € .9 x HY2 x £ x 7/”. Here,

a(o, i, ¢) = / 7. Clodn
O
+({tn, V(on)) — <Tn, (él +K)<p>
- <w7 W(p> - <'(/17 (;l + K/)(Jn)>
b(o;v,n) = diVa-de+/ o:ndfl.
o o

Throughout this paper{y, v) denotes the extension of the&-scalar product
[ ® -1 ds to the duality inH ~1/2 x HY/2; HS := HS(I")°.
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Remark 2.1.It is known that the mapping¥ : H %2 — HY2 K : HY2 —
HY2 K’ :H-Y2 5 H-12 W : HY2 — H~1/2 are well defined, linear and
continuous (cf., e.g., [5])V and W are symmetricK’ is dual toK and W

is positive semi-definite and k&' = kere|r, i.e., the kernel oW consists of
the (linearized) rigid body motion&V is positive definite onH */2/ kere)?. For

d =3,V is positive definite. Fod = 2,V is positive definite when restricted to
Ho_l/2 where

Hg i={w e H®: / wds=0} = HS/RY.
Ir
We refer to [7] for proofs in casg = 3 and mention that the proofs work verbatim

in cased = 2 (provided the radiation condition gives a sufficiently strong decay
which is guaranteed owing to the restriction Idg_l/ 2).

Remark 2.2.We note thatrn is defined inH ~%/2 via Green’s formula even if
o € .7 as follows. Givenv € HY? extend it to somev € H(£2¢)? with
v|p, = 0. Then, let

(v, on) ::/ o gradvd(2+/ v-diveds2.
o 2

The right-hand side is well defined and depends linearly and continuously on
ando. Furthermore,
(2.6) llon(|—1/2,r < C ||o|ldiv -

In view of the remarksa is a symmetric and continuous bilinear form on
(I x HY/2)2, andb is continuous on x (£ x 7).

Theorem 2.1. For every f € L2(£2¢)® the saddle point probleif2.5) has a unique
solution satisfying

2.7) llollo,or + [Idivalloe: + llollizr + ulloe + 702 < C I flo,c
with a positive constant C which is independent of f.

Proof. We apply the theory of saddle point problems, cf., e.g., [3, Sect.Il.1]. It
is sufficient to verify surjectivity ofo and the inf—sup condition oa. As it is
well known, the bilinear fornb has the following surjectivity property: For all
(v,n) € £ x 7/ there is some € .FZ satisfying

(2.8) divr=v and ag:=3(r—7")=n.
Therefore, it remains to prove that, for a constant O,

(2.9) inf sup a(o, o;7,7) -
@2 o) lollo.e + llelaz ) lo.g: + ¥l12r)

where in inf, ) and sug, ) the nonzero arguments run through Ber

kerB:={r €. : dvr=0and as =0} x HY/2,
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Symmetric coupling of BEM and mixed FEM 159

We will prove (2.9) in two steps partly arguing as in [4]: Given §) € kerB
let ¢ = po+ro wherepg € H l/2/ kere andrq € kere, kere the (linearized) rigid
body motions. Let. € RY be defined by

/F(an —t;)ds=0.

Then, leto. := Ce(uc) whereue € H1(£2:)9 is the solution of diwe = 0 on £2¢
while och =t on I, ocn = 0 on I andu. = 0 on I,. Furthermore, lety. € R
satisfy

(2.10) (V(on —t) + (31 +K)p, te) — (on, ue) = (tc, @c) -

(If t. = 0, everyy. € R? solves (2.10).) Note thap. can be chosen such that
I@clljz.r < Clllollo.e + l[#ll/2.r)- Thus,

(211)  fo—od

0.2+ le — ¢clliyzr < C(llollo,e + ll¢llay2r)

whereC > 0 is independent of and. Integration by parts shows
(2.12) / oc:Clod2 = (on, u).

Q2
Then, using (2.10) anH ¢¢ = 3¢,

a(o, 0,0 —0c,—p+y) = /a:@*ladﬁ
(93
+<O—n7tC7V(Unftc)>+<<p7ww>'

SinceW defines a positive definite bilinear form oH t/2/ kere)? and sincev
is positive definite on Pﬂo_l/z)2 (recallon —t. € Ho_l/2 by definition oft.) we
obtain

(2.13) a(o, ;0 — oc, —p +¢c) = Ca(llo 1§ o + ll0ll3)2.1)

with C; > 0 depending only orC andW.
Now we show that for every rigid body motiary there is a stress field,
with (7o, 0) € kerB and

(2.14) a(O, l'o; 70, 0) = <I’07 I'0> .

For example, lety € .77 satisfy divg = 0 in £2r andon = —rg on I'. Since
Kro = 3ro, we conclude (2.14).

In the second step we assume for contradiction that (2.9) is false. Hence we
may find a sequencer, ;) in kerB with ||oj(lo,2: + [l¢jll1/2,r =1 and

(2.15) sup a(oj, ¢ 7 )/ (ITlloee + [[¥ll1/2,r) < 1/]
(r,)ekerB\ {0}

for all j. Let ¢j = pq +1j wherepg € HY2/kere andr; € kere.
According to (2.11), (2.13) and (2.15) we get
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0= lim (lloyllo.cc + lieoill1/2.r)
and hence, sincg is a bounded sequence in a finite dimensional space,
(2.16) (07,%1) — (0,10) asj — oo

for a subsequence (which is not relabeled) and a rigid body maogidn particu-
lar, ||[roll1/2,r = 1. Letro satisfy (2.14) withrg as in (2.16). Sinca is continuous,
(2.16) shows

0= lim a(oj, ¢j; 70,0) _ a(0,ro;70,0) -0

j—oo  ||70llo, 02 lI7oll0, 2

owing to (2.14) and, # 0. This contradiction verifies (2.9); the proof is finished.
O

3. Approximation and convergence

For the finite element method we consider a regular family of triangulatigros
2. Two different triangles (resp. tetrahedrons)Jf are either disjoint or have
one common side or edge or vertex. Let the sides of finite elements ion

the interfacel” define a partition;, of I" and take#, as boundary elements for

simplicity. These partitions give rise to finite-dimensional subspazgs th/z,

“n and Z4, which are assumed to satisfy (H1)—(H3); examples are considered
in Sect. 5.

(H1) (Conformity and approximation property) There holds
Tl x HY2 X Lo x T € T8 xHY2x L x 7~
andR? c H% Forall (r,¢,v,n) € 7 x HY2 x & x 7",
0 = fim ( inf |r—mlgy+ inf = vnlyzr
Yn€H,

h—0 \ me.7%, N
o)

(H2) (Equilibrium condition) For eachy, € .74, the condition

+ inf — + inf -
inf [[v — vnllo, ¢ ot . 117 — 1n

b(Th;vh,mh) =0 V(vn,1mh) € Sh X P4
implies divm, = 0.

Remark 3.1.Note that a piecewise polynomial functioy satisfies divy, €
L2(£2)¢ if and only if the tractionsyn are continuous across interelement sides
(which is thus implied by7#, C .77).
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(H3) (inf-sup condition) The bilinear form b satisfies the inf—-sup condition in
some mesh-dependent norm. That is there exist a rjo}fBy , on some space
Ty C F6 with T, C T,y and

3.1) [mllo.cr < lIml

az.n < C |Imlldiv

for all m € .74, and a norm||(-, -)||n IN Zny X Pk with £ C Ly C L
such that a and b are uniformly continuous (i.e., with h-independent bounds),
and there is a positive constafitsuch that for all(vy, nn) € 4h x Z4

b(h; vn, 7h)
EA

3.2 sup

> B 1[(vh, 70)ln-
mem{oy |l

where. 7o := {m € .74 : mn|r = 0}. Both C andg are assumed to be
independent of h.

Remark 3.2.To ensure the continuity o, we need the estimate

(3.3) I7nll—1/2,r < C |7

wh VT €. Fpn)
Note that (3.3) does not affect (3.2) owing.f&,.

Example 3.1. Let.7; be a finite element triangulation ¢P- and let.%4 denote

the set of sides in the interior 8 and.%; the set of all finite element sides. The
value of the jump of across an interelement side S is denoteddjywhile the
diameter of S is & We follow Stenberg [10, 11]: The first mesh-dependent norm

2 — 2 2
2, = o+ Y hs / 02 ds
sc.H S

7

is defined on the ‘intermediate’ space
Ty ={r €T elXS)" VSe.%},
and the second

Il = 3 ()

S,T + ||ln - W(U)H%,T)

TeHA
3 nst [ pfds+ 3 hst [ jods
e 4 S ScTy S

on Ly x 7y with w(v) = 3(gradv — (gradv)’) and
Ly = {v e LX) st e HYT)! VT € .5},

On .74, the norms||-| 5 n and ||-||o,o are uniformly equivalent, i.e., for all
Th € 741
(3.4) Imllo.2e < llmllown < Cllmllo.g-
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In these norms, the bilinear forms a and b are continuous, i.e., there exist9C
such that for all(o, ¢), (1,1) € .Fpy x H/2

(3.5 alo,¢i7,¢) < C(|lo|

gen ¥ lelly2r)ITllozn + [1¥l/2,r)
and for all (1,v,n) € Fny x Lny x #~
(3.6) b(r;v,m) < C ||7|

g0 [, m)ln-
To show continuity of a, it remains to verif$.3). Recall
™, v
Irnl—1/2,r = sup (n, v
veHY2(I)d HU||1/2,1"
Eachv € HY2(I")4 can be extended toc H*(2F)? withv|, = 0and ||v||1 o <
C ||v|l1/2,r- Integration by parts yields
(tn, v) =/ 7 : gradvdf? +b(r; v, 0).
O
Further, ||(v,0)|ln < ||v]l1,0- Since the jumppy] on the interelement sides vanish.
Thus, using the continuity of b in the mesh-dependent norms, we obtain

(rn, v) <C|7|

F.h ||U||1,Qp-
This provedq3.3).

Remark 3.3.We assume throughout this paper that the solution to (2.5) satisfies
o € Fn andu € L) for all f € L%(26)9, which is a regularity condition.

In the situation of Example 3.1, the conditienc HS(2)® with s > 3/2 is
sufficient.

The discretized saddle point probleconsists in finding &n, ¢n, Un, 1) €
Tbnx HY? x Lo x T such that for all fy, vn, vn, 1n) € T x Hi/ 25 Lo x T

a(on, on; mh, ¥h) + b(mhiun,m) = 0

@7) b(ch; vn, 7n) — Jo frond®2

Theorem 3.1. Assuming (H1)—(H3), the discrete probldt7) has exactly one
solution. There exists some h-independent constat @such that

lo—onllsen+ lle —enllyzr

< c( inf o — |

™hE.Tth

own+ inf — + inf — )
¢ h A le = ¥nllr/zr it . 7 = mnllo,

To derivelL2-estimates for the displacements, we need a regularity—approxi-
mation estimate and a mappiRy : %4 — %n x Z4.

Numerische Mathematik Electronic Edition
page 162 of Numer. Math. (1996) 75: 153-174



Symmetric coupling of BEM and mixed FEM 163

(H4) (Regularity—approximation property) In the mesh-dependent norms we
have the following estimate whegéh) is an h-dependent constant such that

inf (6 — ™, © — n,u—vn,y — mn)ln
("’hywh7vh»77h)6-7ﬂh><th/2>< I/
(3.8) < o) [Ifflo.c

forall f € L2(2r) and (o, ¢, u, v) solving(2.5) (cf. Theorem 2.1). The mesh-
dependent nornj|- || in (3.8) is defined by

(3.9) 1m0, 0,0 = AI7llomn + [¥llayz,r + (1, ) ln-
Lemma 3.1. There is a linear mappingP: £ — %, x Z4 which satisfies
b(m; v,0) =b(m; Pn(v))
forall m, € .94, and allv € 4.

Modifications of this mappind?, are frequently used in the literature for a
proof of the inf-sup condition; we conversely may construct it from (H3). In
particular casesRy, is known explicitly (see Sect.5).

Theorem 3.2. Assuming (H1)—(H4), there exists some h-independent constant
C > 0 such that, witho(h) as in (H4),

IPH(W) = (Un, 30 = M. < C - o) (

llo *Th|.~7ﬂ,h

inf
ThE . Tbh

+ inf _ +inf |y — )
. e = Unllizr ot . 17 — mnllo, 2

1/2
Hy,

Remark 3.4.To obtain an estimate fofju — unljo ., let (@,7) := Pn(u) and
observe that

(3.10) [[lu — up

0.2 < |lu—

0,2 T [IPn(u) — (Un, v — 7)|lo, -

The last term is estimated by Theorem 3.2, and, according to the spggifin
a priori estimate of||u — {Jjo o, is available.

Proofs are given in Sect. 4 while examples are studied in Sect. 5.

4. Proofs

The proofs of Theorem 3.1 and 3.2 use several lemmas where

Z = {re:divr=0andr=1"}
Zn = {mh € T :b(mhivn,mn) =0 Y(vn,mn) € Lh X T4}
kerB, = Zj x th/2 .

Throughout this sectiorC > 0 denotes a generit-independent constant.
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Lemma 4.1. [11] For all 1, € Zy,
L1 2
/ T C TthZCHTh”O,Qp
Q2

Lemma 4.2. For all o € Z there existsy, € Z, satisfying

o —onllav <C rhlen;ﬂh llo = mhllo,g-
Proof. The result follows as in [11]; for related results we refer to [3, Proposition
[1.2.5] and [2, Remark I1.4.6]. We give a proof for completeness and to stress
that (H1)—(H3) are sufficient (even for different situations on the boundary). Let
& be the best approximant to€ Z in .7, with respect to the.?(2r)-norm. By
Lemma 4.1 and (H3), the mixed finite element problem

L1(m)

/ & C A2 + b(my; G, 1)
Q2

b(on; vh, 7n)

LZ(Uh7 77h)

(with linear formsLg,L,) satisfies ellipticity and inf-sup conditions in mesh-
dependent norms so that we have a unique solutigrnug, 7) € -7%h X %n x 4,
satisfying

(4.1) (oh — ) : C ' 2 + b(7h; Un, h)
02

(4.2) b(on — &; v, 7n)

0

0

for all (h, vh, nh) € Fbh X SLh X 4. Note thato, — & € Zy, according to (4.2).
Hence, Lemma 4.1 yields

IN

C llon — 51130 /Q (Gh — &) : CYHon — 5)dn
F

(c—56):C Yo —5)d
QF

owing to (4.1). Thus, by Cauchy’s inequality,
lon = Gllo,ar < Cllo = Gllo,0-
Then, the triangle inequality and (H2) finish the proof of the lemma

Lemma 4.3. There is a constant > 0 such that

. a ; ,
(4.3) inf sup (h; ;T ¥n) -
@nen) oy (lonllozn + Nlenllayzr)(Imlloen + [¢nllyzr)

where the nonzero argumentsinf,, ) andsug,, ,,, belong tokerB,.
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Proof. According to the equilibrium condition (H2) it is sufficient to consider

the norm||-||o, 2 instead of ||-|| sz n (because, by (3.1)|mll0,2: < [|mhllszn <

C ||mlldiv = C ||mllo,e2 for all m € Z,). We proceed as in the proof of Theorem

2.1. Assuming that (4.3) is false we find a sequence of meshes, discrete spaces
and discrete functionss(, ¢;) in kerBy with [|oj[lo,o: + [/¢j|l1/2,r =1 and

(4.4) sup a(oy, ¢ 7 0)/(7llo,2e + [|¥ll1/2,r) < 1/
(rap)ekerBy \ {0}

for all j. Let ¢j = o + 1 wherepg € HY/2/kere andr; € kere.
Since ¢, ¢;) are bounded itZ xH 1/2 we may extract a weakly convergent
subsequence (not relabeled); so assume,

(07, 90) — (0,0) (weakly) in.7% x HY?/kere
for some ¢, o) € 7% x HY?/kere. By (H2) we have div; = 0 and so
divo = 0. Definet; € Y by

/(an —t)ds=0.
r
The weak convergence ofj() causes strong convergencetofn RY so that

(4.5) lim § =t e R

J—o0

Let o € Z satisfyon =t on I Ass_umet_aﬁ 0 first. Then, for any; # 0, we
chooseo;j € Zy, as in Lemma 4.2. It = 0 we chooserj =0 =o. Noteoj — o

strongly in.7% asj — oo because of Lemma 4.2, (H1) and (4.5).

By R? C th/2 (cf., (H1)) we have—y; +¢ € th/2 for eachg € R, We

defineq; € R with minimal Euclid norm inR? such that
(4.6) (. t) = (t,V(20n 1))
—(ain, V(ojn) - (3! +K)<Pi>_/ 0j : C oy d2.
QF
Note that §j, ;) are bounded in7Z x H /2 Using (4.6) we compute
a0}, ¢ 0y — 03, — ) +CJ'):/Q ¢ 070 de
.
+{ojn — 1, V(ojn — ) + (¢, Wegy)
> C(lloyl e+ ol er)

whereC > 0 depends oW and the constant in Lemma 4.1 only. Since (4.4)
and [|oj — oj o, + ||[=%j *+Gill1/2,r < C the above estimate proves

(07, ¢;) — (0,r0) (strongly) in.7% x HY/2,

(0, p0) = 0; 1o € kere. Thus, [[rol|1/2.r = 1.
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Let 6 € Z satisfyon = —rg on I'. By Lemma 4.2 we find a discrete stress
field 6; € Z, which, by (H1), converges towards in (77, || qiv). Letting
(7,1) = (5j,0) € kerBy, \ {0} in (4.4),

. 1.
a(017¢j;0j70)<j 155 [lo, c2¢-

By strong convergence, fgr — oo, a(0,rg; 5,0) < 0. But, by construction of
o and because|ro||1/2,r = 1, a(0,r0;5,0) = (ro, ro) > 0. This contradiction
proves the lemma. O

Proof of Lemma 3.1Let Zr? denote the set of functiona#son.7#;, with &(m,) =0
for all m, € Z,. By (H3), the mapping

{ S X W — Z,?
(Uhanh) = b(';UhJ]h)
is an isomorphism [2, 3] (assuming, x 7% be endowed with the mesh-

dependent norm). For all € 4, (H2) impliesb(-;v,0)|54, € Z°. Hence, for
eachv € £, there exist®y(v) := (vh, nh) € Sh x X4 satisfying

b('§Uha77h) Ty = b(|v70)|7//h a

Proof of Theorem 3.1We follow [11, Proof of Theorem 3.1] and let (p, 7) be

the best approximant ter(p, ) in .74, x th/2 X W, Let . F4, x th/z X Soh X Wy

be endowed with the norm (3.9). Because of (H3) and Lemma 4.3 we get the inf—
sup condition for the discrete spaces. With the theory of saddle point problems
there exists £, vn, vn, 7n) in -7, x HY? x % x 7 with

l(Th, ¥, vn,mn)[In < € and
6 —onllozn+ (¢ = enlliyz,r + [[Pau) = (Un, v — )n
< a(é — onh, $ — ¥n; Th, ¥n)
+D(mh; Pr(u) — (Un,Yh — 7)) +b(G — on; vh, 1n)
= a6 —o0,8— %™, ¥n)
+b(6 — o;vh,mn) — b(m; 0,7 — F)
where we used the discrete equations bwl; P, (u) — (u, 0)) = 0 according to
Lemma 3.1. Since andb are bounded (in the discrete norms)
6 —onllozn+ 18 — enllaz,r + [IPa(u) = (Un, 90 — Nlln
< c(lg-o

ot 18 = el + 15 = Yo, ).
This and the triangle inequality prove

4.7) |lo — onl

o0+ |l = enlliyzo,r + [[Ph(u) = (Un, Yh — )|l

< C( inf |lo — mh|logn+ Inf _ + inf _ )
< e [ hHJ/,h IneH? ll z/Jh||1/2,p LS H’y nhHO,QF
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The proof of Theorem 3.1 is finished. O

Proof of Theorem 3.2Me follow [11], assume (H4) and continue in the notations
of the proof of Theorem 3.1. With Theorem 2.1 we find, @, z, i) in .F2 x
HY2 x % x 77" satisfying, for all ¢,,v,n) in .77 x HY2 x £ x 7/,

a(ll, ¥, 7,) +b(r; z, 1)
b(II;v,n)

0
[ (P = hon =) - e

Taking (r, 1, v,m) = (0 — oh,  — pn, Ph(U) — (Un, 7 — 7)) we obtain
IPa(U) = (Un, Yh — NG, = OUT; Pr(u) = (Un, vh — 7))
= a(ll,¥;0 —on, o — ¢n)
+b(0 — on;Z, 1) + b(IT; Pr(u) — (Un, Yh — 7))
= a(a—ah,go—gph;ﬂ—ﬁ,LP—y:/)
+b(o — on; 2 — 2, ju — fi) + b(IT — IT; Pa(u) — (Un, 1 — 7))
using Galerkin equations and the definition Bf in Lemma 3.1 for the best
approximants i, 7, Z, fi) in .7, x H/? x % x 7/ to (I, ¥, z, 41). Considering
norms and using (4.7) for — oy,  — n @andPp(U) — (Un, v — ) We gain
IPa) = (U, = Nllaee < C- 10T = IL,W =2~ 2, 11— i)

gn*t 16 —llyzr+ 17— 7llo.e)-

~(llg =0l
By (H4), we have an a priori estimate of the form
(T —11,% — &,z = 2,1 — B)||n < o(h) [Ph(u) = (Un, 7 — ) o,0-

Using this in the former estimate and dividing B (u) — (Un, vh — V) |lo,2- We
conclude the claimed estimate.O

5. A family of elements

In the sequel we describe a family of finite element spaces due to Stenberg [11].
For each tetrahedron (resp. triangle)x .74 we define a bubble functiobr by

d
br(x) =[N0,

i=0

where g, ..., A\q are the barycentric coordinates Tn By P¢(T) we denote the
space of polynomials of degreek on T. Ford = 3 we define

B(T) = {(n):(n1,...,73) = curl(orwis, ..., brws),
Wij € P|(T)7 IvJ :17273}
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with curlz =V x z, whereas fod = 2, with curlz = (0,z, —012),
Bi(T) == {(mj) : (i1, 7i2) = curl (orwi), wi € P(T), i =1,2}.

First we define the finite element spaces for polynomial defyree?,

Tl = {m e L2(02:)%Y : divm, € L2(028), mn =0 on I3,

it € P(T)*9 +B_o(T) VT €.F},
S = {vn € L220)% wnlt € Pe_o(T)E VT € %D,
W= {m e LA i+ = 0,

Mt € P(T)*4 VT e .4},

For the lowest order method we need the space of (linearized) rigid body
motions onT,

{a+bxx:abeR%,
{(av b) + C(*Xz,X]_) - a, bv ce ]R},

d=3
d=2

R(T) = {
and the skew-symmetric tensors
Q(T) :={bro: 0 € Po(T)**¢, o+ 0" =0}.

Then, the finite element spaces for 1 are

Fbn = {m e L2(Qp)*9: divmy, € LA(02:), mn =0 on 1,
it € PyT)*? @ Q(T) @ Bo(T) VT € .4},

S = {on € L22)% up|r € R(T) VT €. %1,

W= {m e L) i+ =0,

mhlt € PY(T)¥ VT e A}

For the discretized displacements in the boundary element method we take
piecewise polynomials of degree> 1,

HY/? = {ihn € C(I)? : Pnls € Po(S)? VS € &}

The degree: can be chosen independently laf

As shown in [11], the hypotheses of Theorem 3.1 are satisfied, using the
mesh-dependent norms of Example 3.1 above. Besides the well-known approx-
imation properties of piecewise polynomialslif(£2)® and H*/? we have [10,
Lemma 3.1]

inf — llorn < Ch®
L9 llo = mllsen < Ch®lofls o

ThE.

with 0 < s < k +1 provided the exact solution is sufficiently regular. Therefore
we can expect convergence rates

(5.1) llo —onllo.r + ll — ¢nlli/zr
< Ch° (llolls.ae * lellssyzr + I7ls.20)
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with 0 <s <min{k + 1,k + 1/2}.

Next, we investigate the consequences of Theorem 3.2. For the higher order
methods, i.ek > 2, we have divy, € 4, for all m, € .74, and thus the mapping
P, (defined in Lemma 3.1) is the?-projection from.% onto %;,. Also for the
lowest order methodk = 1, we have||u — Pruljo,o < Ch" ||ul|; o With 1 <k.
Thus, from (3.10) we get

lu = unflo.e. < Ch' [|ullr 0 + Co(h)h® ([lolls,.or + llllserso,r + I7lls.0)

with r <k ands as in (5.1). To comment op(h) from (H4), let us remark that
for someq € [0, 1] we have some regularity property

[Ullg+a,2e + [[Ullgra/zr * llollg.er < C lIf flo.e:-
From the approximation property

inf U—vh,y— < Ch|ju ) <k-1,
o U=y —mn)lln < ChT[lullges e, G <

we infer p(h) = Ch? if k > 2 andg(h) = C if k = 1. Altogether,

(5.2) U — Unllo.0r < C(u) - hMin{rs+a},

6. Implementation using Lagrange multipliers

In the implementation of Stenberg’s elements considered in Sect.5, we a priori
assume for convenience that the tractions are not continuous across interelement
boundaries and across the FEM-BEM interface. The continuity will be enforced
by a Lagrange multiplier such that the solution of the discretized equations (3.7)
is obtained. We drop the conditions diyv e L?(2¢)® andmn =0 on Iy, i.e. for

k > 2 we seek the stresses in

T = {m € LAY mlr € P(T)¥ +B_y(T) VT € ),
whereas fok = 1
T = {m € LZ(QF)dXd DThiT € Pl(T)dXd S Q(T) & Bo(T) VT € .74}
Further, we approximate the tractiotyson the interface by
Ho %= {xn € LAI)® : xnls € Pu(S)? VS € %}

It is easily verified thaty,n = 0 on 0T for all 7, € B{(T), | > 0. Thus the
Lagrange multiplier must be of polynomial degrke So, let us introduce the
space. 74, of functions i, defined on the union of all finite element sid8s
such that
(6.1) tnls € P(S)?  and punls=0if S C I.

As a slight generalization, we assume thatigra tractiong is given. The final
form of our method is as follows: Find
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(oh, th, ¢n, Un, Yh, An) € 70%1 X thl/2 X th/z X Sh X I x Ay Wwith

/ Th : C_lahd9+/ Th 1 yp d 2
2 o

+Z{/Tdivn1-uhd(2— aTrhn-)\hds}:O VThe.%;h

TeR

(Xh, An) + (Xns Vi) = (xn, (B +K)gn) =0 Vxp € Hy /2
— (n, Wen) — (dn, G +K)) =0 Vo € HY2
> [ divon-ond2=— [ fovnd2  Von € %y
Ter’T §2

/ O’hinthZO Vnhe%{
QF

—Z/ O’hn~,UJhdS+<th,uh>:—/g-p,hdS Yun € M.
Tes”oT I

The last equation ensures the continuity of the tractions. Sipce, and~y, are
discontinuous across interelement sides, these unknowns can be eliminated on
each element before assembling the global system.

7. Numerical experiments

We investigate two model problems of two-dimensional plane strain. To be able
to compute convergence rates, we take in the first example the exact solution
for a cylindrical cavity of radius unity in an unbounded domain under uniform
tension of magnitude one ixy-direction, that is,

u = 1+v {1+(4(1u)1)cosﬂ}

2E |r r rs3
1+v /2-4 1 .
= _ +
Uy oF ( . r3> sin2

in polar coordinatesxg, x,) = (r cosd, r sind). Here, Young's modulus i€ =
w(BX+2u) /(A + ) > 0, and Poisson’s ratio is = A\/(2(A + ), 0 < v < 1/2.

We apply the finite element method in the squée= {(X;,%2) : 1 < X1 <
2, 0 < %z < 1}, while the boundary elements live on the boundary of the square
25 ={(x1,%) : 1 <x; < 2, =1 < xp < 0}. (This is slightly more general than
the situation in Fig. 1.) Displacements are prescribed gn= {(x;, —1) : 1 <
X1 < 2}, whereas on the rest of the boundary tractions are given. The material
parameters are = 1 andv = 0.2.
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We use the lowest order method of Sect.5 with polynomial degkeesl
andx = 1. The meshes are uniform (as in Example 2, Fig. 3). Each refinement
step is performed by halving all sides and all boundary elements. In Table 1,

denotes the number of finite elements(ip, CR is the convergence rate aRE
is the relative error in th&2-norm, i.e.,

— u-—u — ¢nllo. £
llo Uh||o,npfor0h, I h||o,nFforuh7 ¢ = ¢nllo.

for ¢n
llollo, 2 [Ullo, e lello, 7

b

respectively, wherd” := 082 \ Iy.

Table 1. Example 1, errors for = 0.2

Oh Un ®h

N RE CR RE CR RE CR
8 1184 .07130 .02043

32 .03951 1.58 .03333 1.10 .004352 2.23
128 .01153 1.78 .01651 1.01 .001049 2.05

512 .003135 1.88 .008228 1.01 .0002587 2.02
2048 .0008170 1.94 .004110 1.00 .00006447 2.00

Table 2. Example 1, errors for = 0.4998

Oh Un ®h
N RE CR RE CR RE CR
8 .1190 .07480 .02205
32 .03969 1.58 .03714 1.01 .005533 1.99
128 .01159 1.78 .01832 1.02 .001294 2.10

512 .003144 1.88 .009122 1.01 .0003087 2.07
2048 .0008188 1.94 .004556 1.00 .00007019 2.14

Since the solution is smooth, the convergence rates depekdnd « only.

The computed convergence rates tend to the optimal values that can be expected
from the approximation properties. Fey and ¢y the results are better than the
value 32 predicted by (5.1). The convergence ratesupagree with (5.2). On

less uniform meshes, the results are similar.

Forv = 0.4998, i.e. almost incompressible material, the relative error is nearly
unchanged as seen in Table 2. This is in contrast to the poor behavior of standard
(displacement) finite element methods as confirmed by numerical experiments in
[8] where the above lowest order finite element method is compared with other
standard and mixed approaches.

Inside the BEM domain, the stresses converge with higher order as Table 3
shows for the sampling poin3; = (0.3, -0.2) andP, = (0.3, —0.7). This is a
characteristic feature of boundary element methods.

In the second example, we take a solution with a singularity typically arising
at a re-entrant corner. Using again polar coordinate8)( —n < 6 < m, we
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R
2
1 c
0 B
-1
Singularity at (00);
displacements prescribed on side AB,
elsewhere tractions given.
-2 A
.
X
-1 0 1 2

Fig. 2. Example 2

Fig. 3. Mesh and deformations for Example 2 (128 finite elements, 48 boundary elements)

impose the boundary conditionsn = 0 for § = +w wherew is half of the
interior angle at the corner. According to [12], for plane strain,

wo= (o + Cicos(+ 19) + (G~ (o + D)Cacos(l ~ 1)

U = ztra {(a+ 1)Cysin(( + 1)9) + (C3 + @ — 1)Cy sin(( — 1)0) }

or = r* Y _a(a+1)Cpcos(p + 1)) + (3 — a)Cycos(@ — 1))}
o9 = 1 la(a+1){Cicos(@+ 1))+ Cycos(p — 1)0)}
org = r* laf(a+1)Cisin((a+ 1)) + (o — 1))Cosin((@ — 1))}
wherea solves
(7.1) asin 2v + sin(2va) = 0.

The constantC; is arbitrary,C, = —C; cos( + 1)w)/ cos(r — 1)w) andCs =
2(\ +2u) /(A + ), A and i denoting the Lara coefficients. In our example (see
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10 T T T T
2edgesonCD ---
4 edgesonCD ----
8 | 8 edgesonCD ----- -
16 edgeson CD
exact —

First principal stress

0 | | | |

-1 -0.8 -0.6 -0.4 -0.2 0
x1-coordinate
Fig. 4. Example 2, first principal stress on the side CD

Table 3. Example 1, stresses inside the BEM domain#or 0.2
an(P1) an(P2)
N RE CR RE CR
8 .6069E-1 4031E-1
32 JJ739E-3 6.29 .3168E-2 3.67
128 3444E-3 117 .1984E-3 4.00

512 .3856E—-4 3.16 .4027E-4 2.30
2048 .4301E-5 3.16 .1104E-4 1.87

Fig. 2) we havev = 3r/4. Since we are interested in the most singular patt, of
we take the smallest positive solution of (7.1), ae= 0.544483736782463929.

In the computations we choo€g = 1 andX andy corresponding t& = 100,
v = 0.3. Further, we add a rigid body movementxpidirection such thati = 0
at the point (20). Again we employ the lowest order methdd=< 1, x = 1) on
uniform meshes.

Since nowu € H*=¢() for all ¢ > 0, the estimates (5.1) and (5.2) predict
the convergence rate. The numerical results far, are in good agreement with
this value (see Table 4).

In general, if a singularity is present, the convergence ratesifand ¢y,
cannot be expected to tend to a higher value tharsforThis is confirmed by
numerical experiments witke, different from the above value; then, however,
‘artificial’ boundary conditions fown on the wedge) = +w are applied.

Computed deformations are shown in Fig. 3. In the FEM domain, as an
approximation tau the Lagrange multipliera,, of Sect. 6 are used, with averaged
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Table 4. Errors for Example 2

oh Un ®h
N RE CR RE CR RE CR
8 .2090 .1084 .05763
32 .1413 0.5658 .04848 1.16 .02771 1.06

128 .09684 0.5456 .02344 1.05 .01341 1.05
512 .06640 0.5449 .01155 1.02 .006496 1.05
2048 .04552 0.5447 .005725 1.01 .003149 1.04
8192 .03121 0.5446 .002845 1.01 .001527 1.04

values at the vertices of the triangles. Figure 4 shows the first principal stress
along the side CD (indicated in Fig. 2). The values clearly tend towards the exact
solution when the mesh is refined.
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