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Summary. Both mixed finite element methods and boundary integral methods
are important tools in computational mechanics according to a good stress ap-
proximation. Recently, even low order mixed methods of Raviart–Thomas-type
became available for problems in elasticity. Since either methods are robust for
critical Poisson ratios, it appears natural to couple the two methods as proposed
in this paper. The symmetric coupling changes the elliptic part of the bilinear
form only. Hence the convergence analysis of mixed finite element methods is
applicable to the coupled problem as well. Specifically, we couple boundary el-
ements with a family of mixed elements analyzed by Stenberg. The locking-free
implementation is performed via Lagrange multipliers, numerical examples are
included.

Mathematics Subject Classification (1991):65N30, 65R20

1. Introduction

In the classical finite element approach, the displacements are the unknowns while
the stresses are computed afterwards in lower accuracy. In many applications,
the stresses rather than the displacements are of primary interest. In the boundary
element method (BEM), displacements and stresses in the interior of the domain
are approximated with the same order.

Regarding finite elements, the approximation of the stresses can be improved
by mixed methods. Here we consider Raviart–Thomas-type finite elements due to
Stenberg [11], which are an improvement of Arnold–Brezzi–Douglas’s PEERS
element (plane elasticity element with reduced symmetry) [1]. The unknowns are
three independent fields, namely the stress tensor, which is not a priori assumed
to be symmetric, the rotation, which acts as a Lagrange multiplier to enforce
the symmetry of the stress tensor in a weak form, and the displacement vector.
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The analysis is based on the theory of mixed methods but refined by using
mesh-dependent norms (Pitkäranta and Stenberg [9], [10]), by stability proofs on
patches of elements and by weakening of the symmetry condition.

Another advantage of these elements is the capability of modeling nearly
incompressible elasticity; more precisely, the relative error is independent of
Poisson’s ratioν: there is no locking.

In many applications, for example, if nonlinearities in a bounded domain
ΩF are present as well as homogeneous, isotropic linear elastic material in an
unbounded, e.g., exterior, domainΩB, one might combine the finite element
method (inΩF) with the boundary integral method (acting on∂ΩB but treating the
problem inΩB). The symmetric coupling with boundary elements was proposed
and analyzed by Costabel in [6] where the displacements inside the FEM domain
are sought in the Sobolev spaceH 1(ΩF); traces on the interface are inserted into
the boundary integral equations, while the equilibrium of tractions across the
interface is satisfied in a weak sense only.

In contrast, in the mixed FEM under consideration here, the stressesσ are
required to satisfyσ ∈ L2(ΩF) and divσ ∈ L2(ΩF), while the displacements are
sought inL2(ΩF) only. Hence, the discrete tractions across interelement sides are
continuous and, consequently, our coupled scheme is designed to yield continuous
tractions across the interface between FEM and BEM while continuity of the
displacements across the interelement sides and the interface is satisfied in a
weak sense.

The construction of finite element spaces with continuous interelement trac-
tions may be cumbersome and hence is enforced by using Lagrange multipliers.
Then all unknowns, except the Lagrange multipliers, are discontinuous across
the interelement sides and can be eliminated on each element before assembling
the global linear system. We extended this scheme to the coupled system.

A similar coupling is possible with other mixed finite element methods than
those considered in this paper. The weakening of the symmetry of the stress
tensor is a particular way to construct stable finite element spaces, but is by no
means necessary for the coupling.

The paper is organized as follows: A model problem (as depicted in Fig. 1)
is described in its strong form in Sect. 2 and rewritten in a weak form. We prove
existence and uniqueness of solutions and a norm estimate by using Brezzi’s
theory of mixed problems. The discretization is described in Sect. 3 where we
state convergence estimates under some hypotheses on the mixed finite element
methods. Proofs are given in Sect. 4 while in Sect. 5 Stenberg’s locking-free fam-
ily of methods is discussed. We describe the implementation by using Lagrange
multipliers in Sect. 6 and give some numerical examples in Sect. 7.

2. The coupled problem

Let Ω be a bounded polygonal (resp. polyhedral) domain inR
d, d = 2 (resp.

d = 3) with boundary∂Ω = Γu ∪ Γt with disjoint Γu andΓt , either having a
positive surface measure.
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Fig. 1. Notation

Throughout this paper, we consider the linear elasticity problem

divσ = −f in Ω
σ = Cε(u) in Ω
u = 0 onΓu

σn = 0 onΓt .

(2.1)

The displacement field is denoted byu, the related (linear Green) strain tensor
is ε(u) = 1

2( gradu + ( gradu)T). The elasticity tensorC describes the stress–
strain relationship; in the simplest case we haveσ = Cε = λ tr εI + 2µε where
λ whereµ are the Laḿe coefficients andI denotes the identity matrix. (In the
two-dimensional case, this is the constitutive equation of plane strain).

As depicted in Fig. 1, the domainΩ is partitioned intoΩ = ΩF ∪ Γ ∪ ΩB;
the outward unit normal ofΩF is denoted byn.

OnΩF a mixed finite element method based on the Hellinger–Reissner prin-
ciple is applied. This means the displacementu : ΩF → R

d and the stress
σ : ΩF → R

d×d are independent unknowns. Furthermore, the stress tensorσ
is not a priori assumed to be symmetric. Symmetry will be enforced in a weak
form by a Lagrange multiplier technique. To obtain a variational formulation, we
choose test functionsτ : ΩF → R

d×d satisfyingτn = 0 on Γt , and gain from
(2.1)b ∫

ΩF

τ : C−1σ dΩ −
∫
ΩF

τ : ε(u) dΩ = 0

so that integration by parts gives∫
ΩF

τ : C−1σ dΩ +
∫
ΩF

div τ · u dΩ +
∫
ΩF

τ : γ dΩ =
∫
Γ

τn · u ds
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where the rotationγ := 1
2( gradu − ( gradu)T) is a new variable for the skew-

symmetric part of the displacement gradient,

γ ∈ W := {η ∈ L2(ΩF)d×d : η + ηT = 0}.
The stresses and displacements are sought in

H := {τ ∈ L2(ΩF)d×d : div τ ∈ L2(ΩF)d, τn = 0 onΓt},
L := L2(ΩF)d.

H is a Hilbert space when endowed with the norm

‖τ‖div := (‖τ‖2
0,ΩF

+ ‖ div τ‖2
0,ΩF

)1/2.

In summary, the variational form of the problem inΩF reads: Given a body load
f and a displacementϕ on Γ , find (u, σ, γ) ∈ L ×H ×W satisfying∫

ΩF
τ : C−1σ dΩ +

∫
ΩF

div τ · u dΩ
+
∫
ΩF
τ : γ dΩ =

∫
Γ
τn ·ϕ ds ∀τ ∈ H∫

ΩF
divσ · v dΩ = − ∫

ΩF
f · v dΩ ∀v ∈ L∫

ΩF
σ : η dΩ = 0 ∀η ∈ W .

(2.2)

The identity (2.2)a is derived above, (2.2)b is a weak form of (2.1)a, and (2.2)c
is a weak form of the symmetry ofσ.

We assume that the body loadf ∈ L2(Ω)d vanishes onΩB for simplicity and
that the Laḿe coefficients are constant onΩB. Then, at any pointx ∈ ΩB, the
displacement field can be represented by the Betti formula

u(x) = −
∫
Γ

G(x, y) Tyu(y) dsy +
∫
Γ

(
TyG(x, y)

)T
u(y) dsy .

Here Tyu(y) = Cε(u(y)) n(y) is the traction corresponding tou at a pointy ∈
Γ , and TyG(x, y) are the columnwise tractions ofG(x, y) at y. G(x, y) is the
fundamental solution and equals

λ+3µ
4πµ(λ+2µ)

{
log 1

|x−y| I + λ+µ
λ+3µ

(x−y)(x−y)T

|x−y|2
}

if d = 2,

λ+3µ
8πµ(λ+2µ)

{
1

|x−y| I + λ+µ
λ+3µ

(x−y)(x−y)T

|x−y|3
}

if d = 3.

Letting x → Γ we obtain with the classical jump relations the boundary integral
equation

1
2u = −Vt + Ku(2.3)

with t(y) = Tyu(y) and the integral operators

(Vt)(x) =
∫
Γ

G(x, y) t(y) dsy, x ∈ Γ,

(Ku)(x) =
∫
Γ

(
TyG(x, y)

)T
u(y) dsy, x ∈ Γ .
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Applying the traction operatorTx we get another boundary integral equation

1
2t = −K ′t −Wu(2.4)

where

(K ′t)(x) =
∫
Γ

TxG(x, y) t(y) dsy, x ∈ Γ ,

(Wu)(x) = −Tx

∫
Γ

(
TyG(x, y)

)T
u(y) dsy, x ∈ Γ .

The symmetric coupling of (2.2) with the integral equations (2.3) and (2.4) is
performed as follows: Introduce a new variableϕ := u|Γ belonging to the trace
space

H 1/2 := H 1/2(Γ)d := {u|Γ : u ∈ H 1(Ω)d},
and use continuity of the tractions onΓ , i.e., t = σn. Then, (2.3) reads

ϕ = −V (σn) + (1
2I + K )ϕ

and this is inserted in the right-hand side of (2.2)a while (2.4) reads

Wϕ + (1
2I + K ′)(σn) = 0

and this is added in a weak form to (2.2). (This coupling is in a sense ‘dual’ to the
more classical approach, see e.g. [4, 6, 7], where a new variable is introduced
for σn on the interface while foru|Γ continuity is used.) The resulting weak
formulation is rewritten in a saddle point structure: Find (σ, ϕ, u, γ) ∈ H ×
H 1/2 ×L ×W such that

a(σ, ϕ; τ, ψ) + b(τ ; u, γ) = 0
b(σ; v, η) = − ∫

ΩF
f · v dΩ

(2.5)

for all (τ, ψ, v, η) ∈ H × H 1/2 ×L ×W . Here,

a(σ, ϕ; τ, ψ) :=
∫
ΩF

τ : C−1σ dΩ

+ 〈τn , V (σn)〉 − 〈τn , ( 1
2I + K )ϕ

〉
− 〈ψ , Wϕ〉 − 〈ψ , ( 1

2I + K ′)(σn)
〉

b(σ; v, η) :=
∫
ΩF

divσ · v dΩ +
∫
ΩF

σ : η dΩ.

Throughout this paper,〈ϕ , ψ〉 denotes the extension of theL2-scalar product∫
Γ
ϕ ·ψ ds to the duality inH−1/2 × H 1/2; H s := H s(Γ )d.
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Remark 2.1.It is known that the mappingsV : H−1/2 → H 1/2, K : H 1/2 →
H 1/2, K ′ : H−1/2 → H−1/2, W : H 1/2 → H−1/2 are well defined, linear and
continuous (cf., e.g., [5]).V and W are symmetric;K ′ is dual to K and W
is positive semi-definite and kerW = kerε|Γ , i.e., the kernel ofW consists of
the (linearized) rigid body motions.W is positive definite on (H 1/2/ kerε)2. For
d = 3, V is positive definite. Ford = 2, V is positive definite when restricted to
H−1/2

0 where

H s
0 := {w ∈ H s :

∫
Γ

w ds = 0} ≡ H s/Rd.

We refer to [7] for proofs in cased = 3 and mention that the proofs work verbatim
in cased = 2 (provided the radiation condition gives a sufficiently strong decay
which is guaranteed owing to the restriction onH−1/2

0 ).

Remark 2.2.We note thatσn is defined inH−1/2 via Green’s formula even if
σ ∈ H as follows. Givenv ∈ H 1/2 extend it to somev ∈ H 1(ΩF)d with
v|Γu = 0. Then, let

〈v , σn〉 :=
∫
ΩF

σ : gradv dΩ +
∫
ΩF

v · divσ dΩ.

The right-hand side is well defined and depends linearly and continuously onv
andσ. Furthermore,

‖σn‖−1/2,Γ ≤ C ‖σ‖div .(2.6)

In view of the remarks,a is a symmetric and continuous bilinear form on
(H × H 1/2)2, andb is continuous onH × (L ×W ).

Theorem 2.1. For every f ∈ L2(ΩF)d the saddle point problem(2.5)has a unique
solution satisfying

‖σ‖0,ΩF + ‖ divσ‖0,ΩF + ‖ϕ‖1/2,Γ + ‖u‖0,ΩF + ‖γ‖0,ΩF ≤ C ‖f ‖0,ΩF(2.7)

with a positive constant C which is independent of f .

Proof. We apply the theory of saddle point problems, cf., e.g., [3, Sect. II.1]. It
is sufficient to verify surjectivity ofb and the inf–sup condition ona. As it is
well known, the bilinear formb has the following surjectivity property: For all
(v, η) ∈ L ×W there is someτ ∈ H satisfying

div τ = v and asτ := 1
2(τ − τT) = η.(2.8)

Therefore, it remains to prove that, for a constantα > 0,

inf
(σ,ϕ)

sup
(τ,ψ)

a(σ, ϕ; τ, ψ)
( ‖σ‖0,ΩF + ‖ϕ‖1/2,Γ )( ‖τ‖0,ΩF + ‖ψ‖1/2,Γ )

≥ α(2.9)

where in inf(σ,ϕ) and sup(τ,ψ) the nonzero arguments run through kerB,

kerB := {τ ∈ H : div τ = 0 and asτ = 0} × H 1/2 .
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We will prove (2.9) in two steps partly arguing as in [4]: Given (σ, ϕ) ∈ kerB
let ϕ = ϕ0 + r0 whereϕ0 ∈ H 1/2/ kerε andr0 ∈ kerε, kerε the (linearized) rigid
body motions. Lettc ∈ Rd be defined by∫

Γ

(σn − tc) ds = 0.

Then, letσc := Cε(uc) whereuc ∈ H 1(ΩF)d is the solution of divσc = 0 onΩF

while σcn = tc on Γ , σcn = 0 onΓt anduc = 0 onΓu. Furthermore, letϕc ∈ Rd

satisfy 〈
V (σn − tc) + (1

2I + K )ϕ , tc
〉− 〈σn , uc〉 = 〈tc , ϕc〉 .(2.10)

(If tc = 0, everyϕc ∈ Rd solves (2.10).) Note thatϕc can be chosen such that
‖ϕc‖1/2,Γ ≤ C( ‖σ‖0,ΩF + ‖ϕ‖1/2,Γ ). Thus,

‖σ − σc‖0,ΩF + ‖ϕ− ϕc‖1/2,Γ ≤ C( ‖σ‖0,ΩF + ‖ϕ‖1/2,Γ )(2.11)

whereC > 0 is independent ofσ andϕ. Integration by parts shows∫
ΩF

σc : C−1σ dΩ = 〈σn , uc〉 .(2.12)

Then, using (2.10) andKϕc = 1
2ϕc,

a(σ, ϕ;σ − σc,−ϕ + ϕc) =
∫
ΩF

σ : C−1σ dΩ

+ 〈σn − tc , V (σn − tc)〉 + 〈ϕ , Wϕ〉 .
SinceW defines a positive definite bilinear form on (H 1/2/ kerε)2 and sinceV

is positive definite on (H−1/2
0 )2 (recall σn − tc ∈ H−1/2

0 by definition of tc) we
obtain

a(σ, ϕ;σ − σc,−ϕ + ϕc) ≥ C1( ‖σ‖2
0,ΩF

+ ‖ϕ0‖2
1/2,Γ )(2.13)

with C1 > 0 depending only onC andW.
Now we show that for every rigid body motionr0 there is a stress fieldτ0

with (τ0, 0) ∈ kerB and

a(0, r0; τ0, 0) = 〈r0 , r0〉 .(2.14)

For example, letτ0 ∈ H satisfy divτ0 = 0 in ΩF and τ0n = −r0 on Γ . Since
Kr0 = 1

2r0, we conclude (2.14).
In the second step we assume for contradiction that (2.9) is false. Hence we

may find a sequence (σj , ϕj ) in kerB with ‖σj ‖0,ΩF + ‖ϕj ‖1/2,Γ = 1 and

sup
(τ,ψ)∈kerB\{0}

a(σj , ϕj ; τ, ψ)/( ‖τ‖0,ΩF + ‖ψ‖1/2,Γ ) < 1/j(2.15)

for all j . Let ϕj = ϕ0j + rj whereϕ0j ∈ H 1/2/ kerε and rj ∈ kerε.
According to (2.11), (2.13) and (2.15) we get
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0 = lim
j→∞

( ‖σj ‖0,ΩF + ‖ϕ0j ‖1/2,Γ )

and hence, sincerj is a bounded sequence in a finite dimensional space,

(σj , ϕj ) → (0, r0) asj →∞(2.16)

for a subsequence (which is not relabeled) and a rigid body motionr0. In particu-
lar, ‖r0‖1/2,Γ = 1. Letτ0 satisfy (2.14) withr0 as in (2.16). Sincea is continuous,
(2.16) shows

0 = lim
j→∞

a(σj , ϕj ; τ0, 0)
‖τ0‖0,ΩF

=
a(0, r0; τ0, 0)
‖τ0‖0,ΩF

> 0

owing to (2.14) andr0 /= 0. This contradiction verifies (2.9); the proof is finished.
ut

3. Approximation and convergence

For the finite element method we consider a regular family of triangulationsTh of
Ω̄F. Two different triangles (resp. tetrahedrons) inTh are either disjoint or have
one common side or edge or vertex. Let the sides of finite elements inTh on
the interfaceΓ define a partitionEh of Γ and takeEh as boundary elements for
simplicity. These partitions give rise to finite-dimensional subspacesHh, H 1/2

h ,
Lh andWh which are assumed to satisfy (H1)–(H3); examples are considered
in Sect. 5.

(H1) (Conformity and approximation property) There holds

Hh × H 1/2
h ×Lh ×Wh ⊂ H × H 1/2 ×L ×W

andRd ⊂ H 1/2
h . For all (τ, ψ, v, η) ∈ H × H 1/2 ×L ×W ,

0 = lim
h→0

(
inf

τh∈Hh

‖τ − τh‖div + inf
ψh∈H 1/2

h

‖ψ − ψh‖1/2,Γ

+ inf
vh∈Lh

‖v − vh‖0,ΩF + inf
ηh∈Wh

‖η − ηh‖0,ΩF

)
.

(H2) (Equilibrium condition) For eachτh ∈ Hh, the condition

b(τh; vh, ηh) = 0 ∀(vh, ηh) ∈ Lh ×Wh

implies div τh = 0.

Remark 3.1.Note that a piecewise polynomial functionτh satisfies divτh ∈
L2(ΩF)d if and only if the tractionsτhn are continuous across interelement sides
(which is thus implied byHh ⊂ H ).
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(H3) (inf–sup condition) The bilinear form b satisfies the inf–sup condition in
some mesh-dependent norm. That is there exist a norm‖·‖H ,h on some space
H(h) ⊂ H with Hh ⊂ H(h) and

‖τh‖0,ΩF ≤ ‖τh‖H ,h ≤ C ‖τh‖div(3.1)

for all τh ∈ Hh and a norm‖(·, ·)‖h in L(h) × Wh with Lh ⊂ L(h) ⊂ L
such that a and b are uniformly continuous (i.e., with h-independent bounds),
and there is a positive constantβ such that for all(vh, ηh) ∈ Lh ×Wh

sup
τh∈H0h\{0}

b(τh; vh, ηh)
‖τh‖H ,h

≥ β ‖(vh, ηh)‖h.(3.2)

whereH0h := {τh ∈ Hh : τhn|Γ = 0}. Both C andβ are assumed to be
independent of h.

Remark 3.2.To ensure the continuity ofa, we need the estimate

‖τn‖−1/2,Γ ≤ C ‖τ‖H ,h ∀τ ∈ H(h)(3.3)

Note that (3.3) does not affect (3.2) owing toH0h.

Example 3.1. Let Th be a finite element triangulation ofΩF and letSh denote
the set of sides in the interior ofΩF and ¯Sh the set of all finite element sides. The
value of the jump ofv across an interelement side S is denoted by[v], while the
diameter of S is hS. We follow Stenberg [10, 11]: The first mesh-dependent norm

‖τ‖2
H ,h := ‖τ‖2

0,ΩF
+
∑

S∈ ¯Sh

hS

∫
S
|τn|2 ds

is defined on the ‘intermediate’ space

H(h) := {τ ∈ H : τn ∈ L2(S)d ∀S ∈ ¯Sh},

and the second

‖(v, η)‖2
h :=

∑
T∈Th

( ‖ε(v)‖2
0,T + ‖η − ω(v)‖2

0,T )

+
∑

S∈Sh

h−1
S

∫
S
|[v]|2 ds +

∑
S⊂Γu

h−1
S

∫
S
|v|2 ds

on L(h) ×Wh with ω(v) := 1
2( gradv − ( gradv)T) and

L(h) := {v ∈ L2(Ω)d : v|T ∈ H 1(T)d ∀T ∈ Th}.

On Hh, the norms‖·‖H ,h and ‖·‖0,ΩF are uniformly equivalent, i.e., for all
τh ∈ Hh

‖τh‖0,ΩF ≤ ‖τh‖H ,h ≤ C ‖τh‖0,ΩF.(3.4)
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In these norms, the bilinear forms a and b are continuous, i.e., there exists C> 0
such that for all(σ, ϕ), (τ, ψ) ∈ H(h) × H 1/2

a(σ, ϕ; τ, ψ) ≤ C( ‖σ‖H ,h + ‖ϕ‖1/2,Γ )( ‖τ‖H ,h + ‖ψ‖1/2,Γ )(3.5)

and for all (τ, v, η) ∈ H(h) ×L(h) ×W

b(τ ; v, η) ≤ C ‖τ‖H ,h ‖(v, η)‖h.(3.6)

To show continuity of a, it remains to verify(3.3). Recall

‖τn‖−1/2,Γ = sup
v∈H 1/2(Γ )d

〈τn , v〉
‖v‖1/2,Γ

.

Eachv ∈ H 1/2(Γ )d can be extended tov ∈ H 1(ΩF)d with v|Γu = 0 and ‖v‖1,ΩF ≤
C ‖v‖1/2,Γ . Integration by parts yields

〈τn , v〉 =
∫
ΩF

τ : gradv dΩ + b(τ ; v, 0).

Further, ‖(v, 0)‖h ≤ ‖v‖1,ΩF since the jumps[v] on the interelement sides vanish.
Thus, using the continuity of b in the mesh-dependent norms, we obtain

〈τn , v〉 ≤ C ‖τ‖H ,h ‖v‖1,ΩF.

This proves(3.3).

Remark 3.3.We assume throughout this paper that the solution to (2.5) satisfies
σ ∈ H(h) and u ∈ L(h) for all f ∈ L2(ΩF)d, which is a regularity condition.
In the situation of Example 3.1, the conditionu ∈ H s(ΩF)d with s > 3/2 is
sufficient.

The discretized saddle point problemconsists in finding (σh, ϕh, uh, γh) ∈
Hh× H 1/2

h ×Lh×Wh such that for all (τh, ψh, vh, ηh) ∈ Hh×H 1/2
h ×Lh×Wh

a(σh, ϕh; τh, ψh) + b(τh; uh, γh) = 0
b(σh; vh, ηh) = − ∫

ΩF
f · vh dΩ

(3.7)

Theorem 3.1. Assuming (H1)–(H3), the discrete problem(3.7) has exactly one
solution. There exists some h-independent constant C> 0 such that

‖σ − σh‖H ,h + ‖ϕ− ϕh‖1/2,Γ

≤ C
(

inf
τh∈Hh

‖σ − τh‖H ,h + inf
ψh∈H 1/2

h

‖ϕ− ψh‖1/2,Γ + inf
ηh∈Wh

‖γ − ηh‖0,ΩF

)
.

To deriveL2-estimates for the displacements, we need a regularity–approxi-
mation estimate and a mappingPh : L → Lh ×Wh.
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(H4) (Regularity–approximation property) In the mesh-dependent norms we
have the following estimate where%(h) is an h-dependent constant such that

inf
(τh,ψh,vh,ηh)∈Hh×H 1/2

h ×Lh×Wh

‖(σ − τh, ϕ− ψh, u − vh, γ − ηh)‖h

≤ %(h) ‖f ‖0,ΩF(3.8)

for all f ∈ L2(ΩF)d and(σ, ϕ, u, γ) solving(2.5) (cf. Theorem 2.1). The mesh-
dependent norm‖·‖h in (3.8) is defined by

‖(τ, ψ, v, η)‖h := ‖τ‖H ,h + ‖ψ‖1/2,Γ + ‖(v, η)‖h.(3.9)

Lemma 3.1. There is a linear mapping Ph : L → Lh ×Wh which satisfies

b(τh; v, 0) = b(τh; Ph(v))

for all τh ∈ Hh and all v ∈ L .

Modifications of this mappingPh are frequently used in the literature for a
proof of the inf–sup condition; we conversely may construct it from (H3). In
particular cases,Ph is known explicitly (see Sect. 5).

Theorem 3.2. Assuming (H1)–(H4), there exists some h-independent constant
C > 0 such that, with%(h) as in (H4),

‖Ph(u)− (uh, γh − γ)‖0,ΩF ≤ C · %(h) ·
(

inf
τh∈Hh

‖σ − τh‖H ,h

+ inf
ψh∈H 1/2

h

‖ϕ− ψh‖1/2,Γ + inf
ηh∈Wh

‖γ − ηh‖0,ΩF

)
.

Remark 3.4.To obtain an estimate for‖u − uh‖0,ΩF, let (ũ, γ̃) := Ph(u) and
observe that

‖u − uh‖0,ΩF ≤ ‖u − ũ‖0,ΩF + ‖Ph(u)− (uh, γh − γ)‖0,ΩF.(3.10)

The last term is estimated by Theorem 3.2, and, according to the specificPh, an
a priori estimate of‖u − ũ‖0,ΩF is available.

Proofs are given in Sect. 4 while examples are studied in Sect. 5.

4. Proofs

The proofs of Theorem 3.1 and 3.2 use several lemmas where

Z := {τ ∈ H : div τ = 0 andτ = τT}
Zh := {τh ∈ Hh : b(τh; vh, ηh) = 0 ∀(vh, ηh) ∈ Lh ×Wh}

kerBh := Zh × H 1/2
h .

Throughout this section,C > 0 denotes a generich-independent constant.
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Lemma 4.1. [11] For all τh ∈ Zh∫
ΩF

τh : C−1τh dΩ ≥ C ‖τh‖2
0,ΩF

.

Lemma 4.2. For all σ̄ ∈ Z there exists̄σh ∈ Zh satisfying

‖σ̄ − σ̄h‖div ≤ C inf
τh∈Hh

‖σ̄ − τh‖0,ΩF.

Proof. The result follows as in [11]; for related results we refer to [3, Proposition
II.2.5] and [2, Remark III.4.6]. We give a proof for completeness and to stress
that (H1)–(H3) are sufficient (even for different situations on the boundary). Let
σ̃ be the best approximant to ¯σ ∈ Z in Hh with respect to theL2(ΩF)-norm. By
Lemma 4.1 and (H3), the mixed finite element problem∫

ΩF

σ̄h : C−1τh dΩ + b(τh; ūh, γ̄h) = L1(τh)

b(σ̄h; vh, ηh) = L2(vh, ηh)

(with linear formsL1, L2) satisfies ellipticity and inf–sup conditions in mesh-
dependent norms so that we have a unique solution ( ¯σh, ūh, γ̄h) ∈ Hh×Lh×Wh

satisfying ∫
ΩF

(σ̄h − σ̄) : C−1τh dΩ + b(τh; ūh, γ̄h) = 0(4.1)

b(σ̄h − σ̃; vh, ηh) = 0(4.2)

for all (τh, vh, ηh) ∈ Hh ×Lh ×Wh. Note that ¯σh − σ̃ ∈ Zh according to (4.2).
Hence, Lemma 4.1 yields

C ‖σ̄h − σ̃‖2
0,ΩF

≤
∫
ΩF

(σ̄h − σ̃) : C−1(σ̄h − σ̃) dΩ

=
∫
ΩF

(σ̄ − σ̃) : C−1(σ̄h − σ̃) dΩ

owing to (4.1). Thus, by Cauchy’s inequality,

‖σ̄h − σ̃‖0,ΩF ≤ C ‖σ̄ − σ̃‖0,ΩF.

Then, the triangle inequality and (H2) finish the proof of the lemma.ut
Lemma 4.3. There is a constantα > 0 such that

inf
(σh,ϕh)

sup
(τh,ψh)

a(σh, ϕh; τh, ψh)
( ‖σh‖H ,h + ‖ϕh‖1/2,Γ )( ‖τh‖H ,h + ‖ψh‖1/2,Γ )

≥ α(4.3)

where the nonzero arguments ininf(σh,ϕh) and sup(τh,ψh) belong tokerBh.
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Proof. According to the equilibrium condition (H2) it is sufficient to consider
the norm ‖·‖0,ΩF instead of‖·‖H ,h (because, by (3.1),‖τh‖0,ΩF ≤ ‖τh‖H ,h ≤
C ‖τh‖div = C ‖τh‖0,ΩF for all τh ∈ Zh). We proceed as in the proof of Theorem
2.1. Assuming that (4.3) is false we find a sequence of meshes, discrete spaces
and discrete functions (σj , ϕj ) in kerBhj with ‖σj ‖0,ΩF + ‖ϕj ‖1/2,Γ = 1 and

sup
(τ,ψ)∈kerBhj \{0}

a(σj , ϕj ; τ, ψ)/( ‖τ‖0,ΩF + ‖ψ‖1/2,Γ ) < 1/j(4.4)

for all j . Let ϕj = ϕ0j + rj whereϕ0j ∈ H 1/2/ kerε and rj ∈ kerε.
Since (σj , ϕj ) are bounded inH×H 1/2 we may extract a weakly convergent

subsequence (not relabeled); so assume,

(σj , ϕ0j ) ⇀ (σ, ϕ0) (weakly) in H × H 1/2/ kerε

for some (σ, ϕ0) ∈ H × H 1/2/ kerε. By (H2) we have divσj = 0 and so
divσ = 0. Definetj ∈ Rd by ∫

Γ

(σj n − tj ) ds = 0.

The weak convergence of (σj ) causes strong convergence oftj in Rd so that

lim
j→∞

tj =: t̄ ∈ Rd.(4.5)

Let σ̄ ∈ Z satisfy σ̄n = t̄ on Γ . Assumet̄ /= 0 first. Then, for anytj /= 0, we
choose ¯σj ∈ Zhj as in Lemma 4.2. If̄t = 0 we choose ¯σj = 0 = σ̄. Note σ̄j → σ̄
strongly inH as j →∞ because of Lemma 4.2, (H1) and (4.5).

By Rd ⊂ H 1/2
h (cf., (H1)) we have−ϕj + cj ∈ H 1/2

h for eachcj ∈ Rd. We
definecj ∈ Rd with minimal Euclid norm inRd such that

〈cj , tj 〉 = 〈tj , V (2σj n − tj )〉(4.6)

− 〈σ̄j n , V (σj n)− ( 1
2I + K )ϕj

〉− ∫
ΩF

σ̄j : C−1σj dΩ.

Note that (σ̄j , cj ) are bounded inH × H 1/2. Using (4.6) we compute

a(σj , ϕj ;σj − σ̄j ,−ϕj + cj ) =
∫
ΩF

σj : C−1σj dΩ

+ 〈σj n − tj , V (σj n − tj )〉 + 〈ϕj , Wϕj 〉
≥ C

(
‖σj ‖2

0,ΩF
+ ‖ϕ0j ‖2

1/2,Γ

)
whereC > 0 depends onW and the constant in Lemma 4.1 only. Since (4.4)
and ‖σj − σ̄j ‖0,ΩF + ‖−ϕj + cj ‖1/2,Γ ≤ C the above estimate proves

(σj , ϕj ) → (0, r0) (strongly) inH × H 1/2,

(σ, ϕ0) = 0; r0 ∈ kerε. Thus, ‖r0‖1/2,Γ = 1.
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Let σ̂ ∈ Z satisfy σ̂n = −r0 on Γ . By Lemma 4.2 we find a discrete stress
field σ̂j ∈ Zhj which, by (H1), converges towards ˆσ in (H , ‖·‖div ). Letting
(τ, ψ) := (σ̂j , 0) ∈ kerBhj \ {0} in (4.4),

a(σj , ϕj ; σ̂j , 0)<
1
j
‖σ̂j ‖0,ΩF.

By strong convergence, forj → ∞, a(0, r0; σ̂, 0) ≤ 0. But, by construction of
σ̂ and because‖r0‖1/2,Γ = 1, a(0, r0; σ̂, 0) = 〈r0 , r0〉 > 0. This contradiction
proves the lemma. ut
Proof of Lemma 3.1.Let Z0

h denote the set of functionalsΦ onHh with Φ(τh) = 0
for all τh ∈ Zh. By (H3), the mapping{

Lh ×Wh → Z0
h

(vh, ηh) 7→ b(·; vh, ηh)

is an isomorphism [2, 3] (assumingLh × Wh be endowed with the mesh-
dependent norm). For allv ∈ L , (H2) implies b(·; v, 0)|Hh ∈ Z0

h . Hence, for
eachv ∈ L , there existsPh(v) := (vh, ηh) ∈ Lh ×Wh satisfying

b(·; vh, ηh)|Hh = b(·; v, 0)|Hh . ut

Proof of Theorem 3.1.We follow [11, Proof of Theorem 3.1] and let ( ˜σ, ϕ̃, γ̃) be
the best approximant to (σ, ϕ, γ) in Hh×H 1/2

h ×Wh. Let Hh×H 1/2
h ×Lh×Wh

be endowed with the norm (3.9). Because of (H3) and Lemma 4.3 we get the inf–
sup condition for the discrete spaces. With the theory of saddle point problems
there exists (τh, ψh, vh, ηh) in Hh × H 1/2

h ×Lh ×Wh with

‖(τh, ψh, vh, ηh)‖h ≤ C and

‖σ̃ − σh‖H ,h + ‖ϕ̃− ϕh‖1/2,Γ + ‖Ph(u)− (uh, γh − γ̃)‖h

≤ a(σ̃ − σh, ϕ̃− ϕh; τh, ψh)

+ b(τh; Ph(u)− (uh, γh − γ̃)) + b(σ̃ − σh; vh, ηh)

= a(σ̃ − σ, ϕ̃− ϕ; τh, ψh)

+ b(σ̃ − σ; vh, ηh)− b(τh; 0, γ − γ̃)

where we used the discrete equations andb(τh; Ph(u) − (u, 0)) = 0 according to
Lemma 3.1. Sincea andb are bounded (in the discrete norms)

‖σ̃ − σh‖H ,h + ‖ϕ̃− ϕh‖1/2,Γ + ‖Ph(u)− (uh, γh − γ̃)‖h

≤ C
(
‖σ̃ − σ‖H ,h + ‖ϕ̃− ϕ‖1/2,Γ + ‖γ̃ − γ‖0,ΩF

)
.

This and the triangle inequality prove

‖σ − σh‖H ,h + ‖ϕ− ϕh‖1/2,Γ + ‖Ph(u)− (uh, γh − γ)‖h(4.7)

≤ C
(

inf
τh∈Hh

‖σ − τh‖H ,h + inf
ψh∈H 1/2

h

‖ϕ− ψh‖1/2,Γ + inf
ηh∈Wh

‖γ − ηh‖0,ΩF

)
.
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The proof of Theorem 3.1 is finished.ut

Proof of Theorem 3.2.We follow [11], assume (H4) and continue in the notations
of the proof of Theorem 3.1. With Theorem 2.1 we find (Π,Ψ, z, µ) in H ×
H 1/2 ×L ×W satisfying, for all (τ, ψ, v, η) in H × H 1/2 ×L ×W ,

a(Π,Ψ ; τ, ψ) + b(τ ; z, µ) = 0

b(Π; v, η) =
∫
ΩF

(
Ph(u)− (uh, γh − γ)

)
· (v, η) dΩ.

Taking (τ, ψ, v, η) = (σ − σh, ϕ− ϕh,Ph(u)− (uh, γh − γ)) we obtain

‖Ph(u)− (uh, γh − γ)‖2
0,ΩF

= b(Π; Ph(u)− (uh, γh − γ))

= a(Π,Ψ ;σ − σh, ϕ− ϕh)

+ b(σ − σh; z, µ) + b(Π; Ph(u)− (uh, γh − γ))

= a(σ − σh, ϕ− ϕh;Π − Π̃, Ψ − Ψ̃ )

+ b(σ − σh; z − z̃, µ− µ̃) + b(Π − Π̃; Ph(u)− (uh, γh − γ))

using Galerkin equations and the definition ofPh in Lemma 3.1 for the best
approximants (̃Π, Ψ̃ , z̃, µ̃) in Hh×H 1/2

h ×Lh×Wh to (Π,Ψ, z, µ). Considering
norms and using (4.7) forσ − σh, ϕ− ϕh andPh(u)− (uh, γh − γ) we gain

‖Ph(u)− (uh, γh − γ)‖2
0,ΩF

≤ C · ‖(Π − Π̃, Ψ − Ψ̃ , z − z̃, µ− µ̃)‖h

· ( ‖σ̃ − σ‖H ,h + ‖ϕ̃− ϕ‖1/2,Γ + ‖γ̃ − γ‖0,ΩF).

By (H4), we have an a priori estimate of the form

‖(Π − Π̃, Ψ − Ψ̃ , z − z̃, µ− µ̃)‖h ≤ %(h) ‖Ph(u)− (uh, γh − γ)‖0,ΩF.

Using this in the former estimate and dividing by‖Ph(u)− (uh, γh − γ)‖0,ΩF we
conclude the claimed estimate.ut

5. A family of elements

In the sequel we describe a family of finite element spaces due to Stenberg [11].
For each tetrahedron (resp. triangle)T ∈ Th we define a bubble functionbT by

bT (x) =
d∏

i =0

λi (x) ,

whereλ0, . . . , λd are the barycentric coordinates inT. By Pk(T) we denote the
space of polynomials of degree≤ k on T. For d = 3 we define

Bl (T) := {(τij ) : (τi 1, . . . , τi 3) = curl (bTwi 1, . . . , bTwi 3),

wij ∈ Pl (T), i , j = 1, 2, 3}
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with curlz = ∇× z, whereas ford = 2, with curlz = (∂2z,−∂1z),

Bl (T) := {(τij ) : (τi 1, τi 2) = curl (bTwi ), wi ∈ Pl (T), i = 1, 2}.
First we define the finite element spaces for polynomial degreek ≥ 2,

Hh := {τh ∈ L2(ΩF)d×d : div τh ∈ L2(ΩF)d, τhn = 0 onΓt ,

τh|T ∈ Pk(T)d×d + Bk−1(T) ∀T ∈ Th},
Lh := {vh ∈ L2(ΩF)d : vh|T ∈ Pk−1(T)d ∀T ∈ Th},
Wh := {ηh ∈ L2(ΩF)d×d : ηh + ηT

h = 0,

ηh|T ∈ Pk(T)d×d ∀T ∈ Th}.
For the lowest order method we need the space of (linearized) rigid body

motions onT,

R(T) :=

{ {a + b × x : a, b ∈ R3}, d = 3,
{(a, b) + c(−x2, x1) : a, b, c ∈ R}, d = 2,

and the skew-symmetric tensors

Q(T) := {bT% : % ∈ P0(T)d×d , % + %T = 0}.
Then, the finite element spaces fork = 1 are

Hh := {τh ∈ L2(ΩF)d×d : div τh ∈ L2(ΩF)d, τhn = 0 onΓt ,

τh|T ∈ P1(T)d×d ⊕Q(T)⊕ B0(T) ∀T ∈ Th},
Lh := {vh ∈ L2(ΩF)d : vh|T ∈ R(T) ∀T ∈ Th},
Wh := {ηh ∈ L2(ΩF)d×d : ηh + ηT

h = 0,

ηh|T ∈ P1(T)d×d ∀T ∈ Th}.
For the discretized displacements in the boundary element method we take

piecewise polynomials of degreeκ ≥ 1,

H 1/2
h := {ψh ∈ C(Γ )d : ψh|S ∈ Pκ(S)d ∀S ∈ Eh}.

The degreeκ can be chosen independently ofk.
As shown in [11], the hypotheses of Theorem 3.1 are satisfied, using the

mesh-dependent norms of Example 3.1 above. Besides the well-known approx-
imation properties of piecewise polynomials inL2(Ω)d and H 1/2 we have [10,
Lemma 3.1]

inf
τh∈Hh

‖σ − τh‖H ,h ≤ Chs ‖σ‖s,ΩF

with 0≤ s ≤ k + 1 provided the exact solution is sufficiently regular. Therefore
we can expect convergence rates

‖σ − σh‖0,ΩF + ‖ϕ− ϕh‖1/2,Γ(5.1)

≤ Chs
( ‖σ‖s,ΩF + ‖ϕ‖s+1/2,Γ + ‖γ‖s,ΩF

)
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with 0≤ s ≤ min{k + 1, κ + 1/2}.
Next, we investigate the consequences of Theorem 3.2. For the higher order

methods, i.e.,k ≥ 2, we have divτh ∈ Lh for all τh ∈ Hh and thus the mapping
Ph (defined in Lemma 3.1) is theL2-projection fromL onto Lh. Also for the
lowest order method,k = 1, we have‖u − Phu‖0,ΩF ≤ Chr ‖u‖r ,ΩF with r ≤ k.
Thus, from (3.10) we get

‖u − uh‖0,ΩF ≤ Chr ‖u‖r ,ΩF + C%(h)hs
( ‖σ‖s,ΩF + ‖ϕ‖s+1/2,Γ + ‖γ‖s,ΩF

)
with r ≤ k ands as in (5.1). To comment on%(h) from (H4), let us remark that
for someq ∈ [0, 1] we have some regularity property

‖u‖q+1,ΩF + ‖u‖q+1/2,Γ + ‖σ‖q,ΩF ≤ C ‖f ‖0,ΩF.

From the approximation property

inf
(vh,ηh)∈Lh×Wh

‖(u − vh, γ − ηh)‖h ≤ Chq ‖u‖q+1,ΩF, q ≤ k − 1,

we infer %(h) = Chq if k ≥ 2 and%(h) = C if k = 1. Altogether,

‖u − uh‖0,ΩF ≤ C(u) · hmin{r ,s+q}.(5.2)

6. Implementation using Lagrange multipliers

In the implementation of Stenberg’s elements considered in Sect. 5, we a priori
assume for convenience that the tractions are not continuous across interelement
boundaries and across the FEM–BEM interface. The continuity will be enforced
by a Lagrange multiplier such that the solution of the discretized equations (3.7)
is obtained. We drop the conditions divτh ∈ L2(ΩF)d andτhn = 0 onΓt , i.e. for
k ≥ 2 we seek the stresses in

Ĥh := {τh ∈ L2(ΩF)d×d : τh|T ∈ Pk(T)d×d + Bk−1(T) ∀T ∈ Th},
whereas fork = 1

Ĥh := {τh ∈ L2(ΩF)d×d : τh|T ∈ P1(T)d×d ⊕Q(T)⊕ B0(T) ∀T ∈ Th}.
Further, we approximate the tractionsth on the interface by

H−1/2
h := {χh ∈ L2(Γ )d : χh|S ∈ Pk(S)d ∀S ∈ Eh}.

It is easily verified thatτhn = 0 on ∂T for all τh ∈ Bl (T), l ≥ 0. Thus the
Lagrange multiplier must be of polynomial degreek. So, let us introduce the
spaceMh of functionsµh defined on the union of all finite element sidesS
such that

µh|S ∈ Pk(S)d and µh|S = 0 if S ⊂ Γu.(6.1)

As a slight generalization, we assume that onΓt a tractiong is given. The final
form of our method is as follows: Find
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(σh, th, ϕh, uh, γh, λh) ∈ Ĥh × H−1/2
h × H 1/2

h ×Lh ×Wh ×Mh with

∫
ΩF

τh : C−1σh dΩ +
∫
ΩF

τh : γh dΩ

+
∑

T∈Th

{∫
T

div τh · uh dΩ −
∫
∂T
τhn · λh ds

}
= 0 ∀τh ∈ Ĥh

〈χh , λh〉 + 〈χh , Vth〉 −
〈
χh , ( 1

2I + K )ϕh
〉

= 0 ∀χh ∈ H−1/2
h

−〈ψh , Wϕh〉 −
〈
ψh , ( 1

2I + K ′)th
〉

= 0 ∀ψh ∈ H 1/2
h∑

T∈Th

∫
T

divσh · vh dΩ = −
∫
ΩF

f · vh dΩ ∀vh ∈ Lh

∫
ΩF

σh : ηh dΩ = 0 ∀ηh ∈ Wh

−
∑

T∈Th

∫
∂T
σhn · µh ds + 〈th , µh〉 = −

∫
Γt

g · µh ds ∀µh ∈ Mh.

The last equation ensures the continuity of the tractions. Sinceσh, uh andγh are
discontinuous across interelement sides, these unknowns can be eliminated on
each element before assembling the global system.

7. Numerical experiments

We investigate two model problems of two-dimensional plane strain. To be able
to compute convergence rates, we take in the first example the exact solution
for a cylindrical cavity of radius unity in an unbounded domain under uniform
tension of magnitude one inx1-direction, that is,

ur =
1 +ν
2E

[
1
r

+

(
4(1− ν)

r
− 1

r 3

)
cos 2θ

]
uθ = −1 +ν

2E

(
2− 4ν

r
+

1
r 3

)
sin 2θ

in polar coordinates (x1, x2) = (r cosθ, r sinθ). Here, Young’s modulus isE =
µ(3λ + 2µ)/(λ + µ) > 0, and Poisson’s ratio isν = λ/(2(λ + µ)), 0≤ ν < 1/2.

We apply the finite element method in the squareΩF = {(x1, x2) : 1 < x1 <
2, 0< x2 < 1}, while the boundary elements live on the boundary of the square
ΩB = {(x1, x2) : 1 < x1 < 2, −1 < x2 < 0}. (This is slightly more general than
the situation in Fig. 1.) Displacements are prescribed onΓBu = {(x1,−1) : 1 <
x1 < 2}, whereas on the rest of the boundary tractions are given. The material
parameters areE = 1 andν = 0.2.

Numerische Mathematik Electronic Edition
page 170 of Numer. Math. (1996) 75: 153–174



Symmetric coupling of BEM and mixed FEM 171

We use the lowest order method of Sect. 5 with polynomial degreesk = 1
andκ = 1. The meshes are uniform (as in Example 2, Fig. 3). Each refinement
step is performed by halving all sides and all boundary elements. In Table 1,N
denotes the number of finite elements inΩF, CR is the convergence rate andRE
is the relative error in theL2-norm, i.e.,

‖σ − σh‖0,ΩF

‖σ‖0,ΩF

for σh,
‖u − uh‖0,ΩF

‖u‖0,ΩF

for uh,
‖ϕ− ϕh‖0,Γ̃

‖ϕ‖0,Γ̃
for ϕh,

respectively, wherẽΓ := ∂ΩB \ ΓBu.

Table 1. Example 1, errors forν = 0.2

σh uh ϕh

N RE CR RE CR RE CR

8 .1184 .07130 .02043
32 .03951 1.58 .03333 1.10 .004352 2.23
128 .01153 1.78 .01651 1.01 .001049 2.05
512 .003135 1.88 .008228 1.01 .0002587 2.02
2048 .0008170 1.94 .004110 1.00 .00006447 2.00

Table 2. Example 1, errors forν = 0.4998

σh uh ϕh

N RE CR RE CR RE CR

8 .1190 .07480 .02205
32 .03969 1.58 .03714 1.01 .005533 1.99
128 .01159 1.78 .01832 1.02 .001294 2.10
512 .003144 1.88 .009122 1.01 .0003087 2.07
2048 .0008188 1.94 .004556 1.00 .00007019 2.14

Since the solution is smooth, the convergence rates depend onk andκ only.
The computed convergence rates tend to the optimal values that can be expected
from the approximation properties. Forσh andϕh the results are better than the
value 3/2 predicted by (5.1). The convergence rates foruh agree with (5.2). On
less uniform meshes, the results are similar.

Forν = 0.4998, i.e. almost incompressible material, the relative error is nearly
unchanged as seen in Table 2. This is in contrast to the poor behavior of standard
(displacement) finite element methods as confirmed by numerical experiments in
[8] where the above lowest order finite element method is compared with other
standard and mixed approaches.

Inside the BEM domain, the stresses converge with higher order as Table 3
shows for the sampling pointsP1 = (0.3,−0.2) andP2 = (0.3,−0.7). This is a
characteristic feature of boundary element methods.

In the second example, we take a solution with a singularity typically arising
at a re-entrant corner. Using again polar coordinates (r , θ), −π < θ ≤ π, we

Numerische Mathematik Electronic Edition
page 171 of Numer. Math. (1996) 75: 153–174



172 U. Brink et al.

6

-

�
�
�
�
@
@
@
@�

�
�
�
@
@
@
@
�
�
�
�
@
@
@
@�
�
�
�
�
�
��
@
@
@
@

2

1

0

−1

−2

−1 0 1 2
x1

x2

ΩF

FEM

ΩB

BEM

Γ

A

B

C

D

Singularity at (0, 0);
displacements prescribed on side AB,
elsewhere tractions given.

Fig. 2. Example 2

Fig. 3. Mesh and deformations for Example 2 (128 finite elements, 48 boundary elements)

impose the boundary conditionsσn = 0 for θ = ±ω whereω is half of the
interior angle at the corner. According to [12], for plane strain,

ur =
1

2µ
rα {−(α + 1)C1 cos((α + 1)θ) + (C3 − (α + 1))C2 cos((α− 1)θ)}

uθ =
1

2µ
rα {(α + 1)C1 sin((α + 1)θ) + (C3 + α− 1)C2 sin((α− 1)θ)}

σr = rα−1{−α(α + 1)C1 cos((α + 1)θ) + α(3− α)C2 cos((α− 1)θ)}
σθ = rα−1α(α + 1){C1 cos((α + 1)θ) + C2 cos((α− 1)θ)}
σrθ = rα−1α{(α + 1)C1 sin((α + 1)θ) + (α− 1))C2 sin((α− 1)θ)}

whereα solves
α sin 2ω + sin(2ωα) = 0.(7.1)

The constantC1 is arbitrary,C2 = −C1 cos((α + 1)ω)/ cos((α − 1)ω) and C3 =
2(λ + 2µ)/(λ + µ), λ andµ denoting the Laḿe coefficients. In our example (see

Numerische Mathematik Electronic Edition
page 172 of Numer. Math. (1996) 75: 153–174



Symmetric coupling of BEM and mixed FEM 173

0

2

4

6

8

10

-1 -0.8 -0.6 -0.4 -0.2 0

F
irs

t p
rin

ci
pa

l s
tr

es
s

x1-coordinate

2 edges on CD
4 edges on CD
8 edges on CD

16 edges on CD
exact

Fig. 4. Example 2, first principal stress on the side CD

Table 3. Example 1, stresses inside the BEM domain forν = 0.2

σh(P1) σh(P2)

N RE CR RE CR

8 .6069E–1 .4031E–1
32 .7739E–3 6.29 .3168E–2 3.67
128 .3444E–3 1.17 .1984E–3 4.00
512 .3856E–4 3.16 .4027E–4 2.30
2048 .4301E–5 3.16 .1104E–4 1.87

Fig. 2) we haveω = 3π/4. Since we are interested in the most singular part ofu,
we take the smallest positive solution of (7.1), i.e.α = 0.544483736782463929....

In the computations we chooseC1 = 1 andλ andµ corresponding toE = 100,
ν = 0.3. Further, we add a rigid body movement inx1-direction such thatu = 0
at the point (2, 0). Again we employ the lowest order method (k = 1, κ = 1) on
uniform meshes.

Since nowu ∈ H 1+α−ε(Ω) for all ε > 0, the estimates (5.1) and (5.2) predict
the convergence rateα. The numerical results forσh are in good agreement with
this value (see Table 4).

In general, if a singularity is present, the convergence rates foruh andϕh

cannot be expected to tend to a higher value than forσh. This is confirmed by
numerical experiments withC2 different from the above value; then, however,
‘artificial’ boundary conditions forσn on the wedgeθ = ±ω are applied.

Computed deformations are shown in Fig. 3. In the FEM domain, as an
approximation tou the Lagrange multipliersλh of Sect. 6 are used, with averaged
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Table 4. Errors for Example 2

σh uh ϕh

N RE CR RE CR RE CR

8 .2090 .1084 .05763
32 .1413 0.5658 .04848 1.16 .02771 1.06
128 .09684 0.5456 .02344 1.05 .01341 1.05
512 .06640 0.5449 .01155 1.02 .006496 1.05
2048 .04552 0.5447 .005725 1.01 .003149 1.04
8192 .03121 0.5446 .002845 1.01 .001527 1.04

values at the vertices of the triangles. Figure 4 shows the first principal stress
along the side CD (indicated in Fig. 2). The values clearly tend towards the exact
solution when the mesh is refined.
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