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Abstract. In the last 10 years a new theory of martensitic transformations based 011 non- 
linear elasticity has been developed and intensively studied by J.M. Ball & R.D. James and 
others. Microstructures are understood in the theory as minimizing sequences for the total 
free energy, and are conveniently described using Young measures. 
For the case of the classical austenite-martensite interface, in which a pure phase of austen- 
site meets a simple laminate of martensite, the formulae of the crystallographic theory of 
martensite for the orientation of the habit plane are recovered from the energy-minimization 
picture. 
The theory leads naturally to the prediction of more complex austenite-martensite interfaces, 
in which a pure phase of austenite meets a more complicated microstructure of martensite. 
The possible interfaces are computed in case that the martensite wells corresporid to an or- 
thorombic to  nionoclinic lattice transformation. Besides the classical interfaces, with simple 
laminate of martensite, new possible interfaces are presented which correspond for a larger 
set of lattice parameters. Then, for certain parameters, it can be concluded from the theory 
that possible interfaces are planes. 

1. INTRODUCTION 

The classical austenite-martensite interface in a single crystal is a plane (the habit plane) separating 
uridistorted austenite from a simple laminate consisting of fine twins of martensite. In this paper 
we investigate theoretically the possibility that  the interface separates undistorted austenite from 
a more complicated microstructure of martensite, such as a double laminate (layers within layers 
structure). We show, for example, that for a cubic to tetragonal transformation such a nonclassical 
interface is energetically preferred for certain regions in lattice-parameter space. We also study the 
question of whether such nonclassical interfaces are planar or could be curved. 

The classical crystallographic theory of martensite [8] delivers formulae for the orientation of 
the habit plane and for the phase fractions of each variant of martensite in the simple laminate. 
For example, in a cubic to  tetragonal transformation there are 24 possible habit-plane normals, 8 
corresponding to each pair of the three tetragonal variants, and the theory reveals restrictions on the 
lattice parameters (see Fig. 2-4 below) for classical austenite-martensite interfaces to exist. 

The crystallographic theory can be deduced as a consequence of a geometrically nonlinear theory 
of martensitic transformations that has been developed in recent years ([3, 4]), in which microstruc- 
tures are identified with 'rninimizi~ig sequences' for the total free energy. This energy is given by 
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Here y(x) denotes the deformed position of the particle a t  X E R, where the reference configuration 
R represents undistorted austenite. The free-energy function cp(F, B) depends on the deformation 
gradient F and the temperature B. By frame-indifference tp(RF, B) = tp(F, B) for all F, B and for 
all rotations R, i.e. for all 3 X 3 matrices in the set SO(3) := {R : RTR = 1,det R = 1). At the 
transformation temperature B, the energy wells of cp are given by SO(3) for the austenite, and by 
S0(3)Ui for each of the N different variants of martensite, with U, = U: > 0 for each i. Thus 
tp(F,Bc) 2 0 with tp(F,Bc) = 0 precisely for those F in the set 

N 

SO(3) U U SO(~)U,. (1.2) 
t=l 

For B > BC, tp is minimized just a t  the austenite well SO(3)a(B)l, while for B < 8, the martensite 
wells minimize energy. Here a(@), @(B,) = 1, describes the thermal expansioti of the austenite. 

For a cubic to  tetragonal transformation we have N = 3 and 

U1 =diag(q2,rl l ,~l) ,  U2 = diag(71,712,771), U3 = diag(771r771,v2), (1.3) 

where the lattice parameters ql > 0, q2 > 0,711 # 772. For an orthorhotnbic to monoclirlic transforma- 
tion, on the other hand, we have N = 2 and 

U1 = diag (772, 711, Q), U2 = diag (771,772, 73), (1.4) 

with rli > 0, 711 # 772 ([4, ~4031). 
In order to  recover the crystallographic theory of rnartensite from this niodel we proceed as 

follows [3]. We consider a planar austenite-martensite interface {X - 7n = k) and try and choose the 
habit-plane normal m in such a way that there exists a tnininiizing sequence y(3) of deformations, 
i.e. a sequence such that Ie,(y(3)) -+ 0 as j + ca. We require that, for X - m < k, y(j) correspol~ds 
to  austenite, so that the values of vy(3)(x) tend to  SO(3) in an appropriate sense; it can be shown 
that without loss of generality this amounts to assutnitig that v~(J)(x)  + 1 for X - m < k, except 
possibly for a set of points X of zero volunle. For X .  nt > k we require that y(3) corresponds to  a 
simple laminate of martensite, atid we choose this to have the form that, except in a thin trarisitiori 
layer near the habit plane whose volunle tends to zero as j -+ m, vY(j) takes only two values A, B 
belonging to  two of the martensite wells, say A E S0(3)U,, B E S0(3)U3, i # j, in alternate layers of 
thicknesses X l j ,  (1 - X)/j respectively with normal n, where 0 < X < 1. For geometric compatibility 
we need that A, B are rank-one connected, i.e. 

A - B = a @ n  (1.5) 

for vectors a, n. Said differently, the laminate is twinned. It is shown in [3] tliat in order for it to be 
possible to choose A, B, X, m in this way and such tliat y(3) is a nlinimizing sequence, it is necessary 
arid sufficient that they be chosen such that the rnacroscopic deforniatioti gradient (or weak limit) 
Vy corresponding to  ~ ~ ( $ 1  be compatible. For X - m > k this macroscopic deformation gradient is 
the constant matrix AA f (1 - ;\)B, whereas for X - m < k we have Vy(x) = 1. Thus A, B, X, m need 
to be chosen such that 

1 - ( X A + ( l - X ) B ) = b @ m  (1.6) 

for some b. Analyzing this conditiotl gives rise precisely to the formulae of the crystallographic theory 
of martensite. In fact this new perspective gives more infortnation, for example that the interface is 
necessarily planar (see [3] and for other developments [6],[2]). 

2. NONCLASSICAL PLANAR INTERFACES 

In order to  discuss the possibility of tionclassical austetiite-martensite interfaces we follow the satne 
general idea, but this time allow vy(j) to  represent a general energy-minimizing microstructure of 



martensite rather than restrict atteritiorl to the case when this microstructure is a simple laminate. 
That is we require that for X - m  > k we have that Vyo)(x) tends in a suitable sense as j + co t o  the 
set K := UZ, SO(3)Ui consisting of the martensitic energy wells. (To be precise we require that the 
Young measure (~,),~n of V@) is supported in K. See [4] for details, which are not needed here.) 

We first restrict attention to the case when the martensitic microstructure is homogeneous in 
the sense that the corresponding macroscopic deformation gradient Vy(x) = F is independent of X 

with X - m > k. The set of all such matrices F is called the quasiconvexification of K and is written 
Q(K). It can be sliowri that Q(K) is the same as the set of F such that there exists a sequence 
z(j) of deformations satisfying z(j)(x) = F x  for X belonging to the boundary 30 of R and such that 
V Z ~ ) ( X )  -+ K in the sense indicated above. 

Given that we know Q(K) for a given set of ~nartensitic energy wells, we need only examine 
whether it is possible to find a rank-one corlnectiorl between SO(3) and Q(K), i.e. whether there 
exist vectors b, m such that 

Here we have without loss of generality (since RQ(K) = Q(K) for any R E SO(3)) chosen the 
matrix in the austenite well to be the identity. The vectors m will thus give possible normals for the 
nonclassical habit plane. Since Q(K) turns out to be a much bigger set than that corisistirig of all 
matrices F = AA+ (1 - X)B, where 0 5 X < 1 and A E S0(3)Ui, B E S0(3)U', i # j, A -  B = a @ n  
for sorne a, n, there are many more possibilities for nonclassical interfaces than for classical ones. In 
particular, such interfaces can exist for values of the lattice parameters that prohibit the existence 
of a classical interface. 

Unfortunately a t  present we only know how to calculate Q(K) for the case of two rnartensitic 
wells. We thus restrict attention to this case, arid let N = 2 with UI, U2 given by (1.4), so that 

In this case it is known that 

Q(K) = SO(3)F  

:= { R F  : R E S0(3) ,  F E F), 

where F consists of those F with det F > 0 such that 

0 0 713" 

where a, b > 0 and 

A characterization equivalent to this for the case when 773 = 711 is given in [4], and more directly in 
[2]; the general case can be reduced to this one via a simple linear transformation. Any F E Q(X) 
can be obtained in particular as the macroscopic deformation gradient corresponding to a double 
laminate. 

We thus need to  determine when 

for some b,m and F of the above form. This is equivalent to asking when the wells SO(3) and 
SO(3)F are rank-one connected, a question that is answered by the following lemma (used also in 
analyzirlg the existence of twins and (1.6)). 

Lemma 2.1 ([3]). Let F be a nonsingular matrix that is not a rotation. Then, the wells SO(3) and 
SO(3)F are rank-one connected if and only if the middle eigenvalue of FTF is one. In this case, 
l + b@m E SO(3)F for some b if and only if m is a non-vanishing multiple of one of the two vectors 
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Jm el f J&?i e3, where 0 I X 1  I 1 I X 3  are the three eigenvalues of P F  with corresponding 
orthonormal eigenvectors e l ,  e2, e3. 

We assume that q3 # l ;  the case q3 = 1 can be handled similarly ( see[ l ] ) .  Thus for (2.7) t o  hold 

one of the eigenvalues of [ i ]  is 1. Let the other be p. Hence, 

a + b = l + p  and p = a b - c 2 .  (2.8) 

From (2.5) p = $qz and we have to analyse the restriction (2.6). To do this (cf [2] )  introduce the 
new variables a - b and a + b = 1 + v:$. We observe that (2.6) is 

21cl I 777 + 7722 - 1 - 77Tr122 = -(l -$)( l  - v;), (2.9) 
and note that 771, v2 < 1 or 711, 772 > 1 are thus prohibited. Writing 4ab = ( a  + b)2 - ( a  - b)2 = 
( 1  + - (a  - b)2, we obtain from (2.5) that 

( 2 ~ ) ~  + ( a  - b)2 = ( 1  - rl:r]z)2. (2.10) 

The geometric interpretation of (2.9), (2.10) is depicted in Fig.1. In the ( a  - b, 2c) plane (2.10) is a 
circle with centre the origin and radius 11 - Since we require that 1 is the middle eigenvalue 
of FTF we deduce that an interface is possible provided that, in the case 773 < 1, 

and in the case 773 > 1,  

772 I 77;l I 1 or 1 5 772 I 77;' 

For the existence of a classical austenite martensite interface (2.6) is replaced by 

and from Fig.1 we see that this is possible for some a ,  b, c provided 
2 2 2 2 

77; + 77; - 1 - 771'12 I 11 - 1,1772. (2.14) 

Thus for a classical interface we require that 77:: + 2 5 2 if 771772 I 1, and + 2 2 if 771772 2 1. 
These results are displayed in Fig.2, Fig.3 below. 

Figure 1: 
Restrictions (2.9) and (2.10) 

on Parameters ( a  - b, 2c) 

Figure 2: 
Parameters (ql,q2) with (2.11) 

Allowing Interfaces in Case 773 < l 

The normals m of the possible nonclassical habit planes are deduced from Lemma 2.1. Setting 

a - b =  (1-q1q~)cosw12c= (1 -q;r]t)sinw, (2.15) 

the results are that, up to  an irrelevant constant factor, 
2 2 112 2 2 112 -2 112 

m = (11 - 7717721 C O S ( W / ~ ) ,  -11 - 7717121 W /  - 3 1 1. (2.16) 



In the case when classical interfaces exist, the normals given by (2.16), when normalized to be unit 
vectors, form 4 circular arcs on the unit sphere, whose end-points are the 8 habit planes of the 
classical theory corresponding to the variants Ul, U2. When 711, 7 1 ~  are such that only nonclassical 
interfaces exist, the possible normals form two complete circles on the unit sphere with centres on 
the e3-axis and with radii 

The existence of extra habit planes for the nonclassical interfaces could be an energetic incentive for 
their creation due to the direction of temperature gradients, even when classical interfaces exist. 

Figure 3: 
Parameters (711, 72) with (2.12) 

Allowing Interfaces in Case 1 < 713 

Figure 4: 
Parameters (71,712) Allowing 

Interfaces in Case 71 = 713 

It is interesting to consider the case v3 = 71 correspo~~dirig to two of the three tetragonal wells 
in (1.3). In this case the admissible values of ql,% for the existence of nonclassical and classical 
interfaces are obtained by combining the cases 713 > 1, 713 < 1 above, and the result is shown in 
Fig.4. Note that the region in the q1,q2 plane for which only nonclassical interfaces exist has a pair 
of cusps at  711 = 712 = 1, SO that for lattice parameters very near 1 the region corresponding to the 
existence of a classical interface is much larger. Care would thus be needed to find a material for 
which the nonclassical interfaces are preferred. It should also be noted that a nonclassical interface 
might involve greater interfacial energy between variants of martensite than for a simple laminate. 
Thus even for lattice parameters which according to the above analysis (based on a model that 
ignores interfacial energy) allow only nonclassical interfaces, the material might still choose a simple 
laminate with deformation gradients away from the energy wells in preference to'a double laminate, 
say, with gradients on the wells. Whereas double laminates are frequently observed in martensitic 
transformations, the authors are not aware of any cubic to tetragonal transformations for which a 
nonclassical interface is known to be responsible for their formation. Nonclassical interfaces have been 
observed in CuAlNi shape memory alloys [5], for which the transformation is cubic to orthorhombic. 

3. NONHOMOGENEOUS MARTENSITIC MICROSTRUCTURES 

We briefly sketch results that we have obtained for the case when the martensitic microstructure is 
inhomogeneous, so that the macroscopic deformation gradient depends on X in the region occupied by 
the martensite. This could happen, for example, if there were a self-similar pattern of microstructure 
that became finer and finer as an interface is approached. Chu & Jarnes [5] have shown us micrographs 
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in which such roughly self-similar niicrostructures of rnartensite are seen in CuAlNi alloys, both 
when the interface separates the iriarterisite from austenite, and when it separates the martensite 
from another region occupied by ~nartensite. In these rriicrographs several variants of martensite are 
involved in the self-similar region. 

The first result concerns the possible linear bouridary conditions y(x) = Fx on a plane X - m  = k 
that are corlsisterlt with a ~narterisitic niicrostructure correspondirig to the two wells K given in (2.2). 
Equivalently, passing to the weak litnit, what are the boundary conditions of the above type that  are 
consistent with a deforrnation y having Vy(x) E Q(K) for z - m > k? The answer is that F + b 8 m 
rriust belong to Q(K) for some b; that is, the riornlal rn tnust be corisistent with having an interface 
between a deforrnation with constant gradierlt F arid a homogeneous rnartensitic microstructure. The 
proof relies on a farrious theorern of Reshetnyak I?] to the effect that  nonconstant quasiregular maps 
are isolated, the fact that Q(K) is a polycorivex set, and a result proved in [4] to the effect that  any 
y with Vy(x) E Q(K) for X in a bounded doinairi is a plane strain. 

The second result starts fsotn the hypothesis that  

R=CIAUl?UCIM (3.1) 

for an operi austeriite domain RA, at1 open rnartensite dornain RM and an interface r of finite area 
separating tlierri. Suppose that there is a corresporidirig zero-energy microstructure, so that passing 
to the weak limit we have y with Vy(z) E SO(3) for X E QA and Vy(x) E Q(K) for X E RM. Then if 

# l, l? is locally a plane arid Vy is locally constarit oti either side of l?. This means that  for these 
two rr~arterisitic variants curved rioriclassical interfaces and self-similar behaviour are impossible. The 
proof uses the plane strain result fro111 (41 and an integration argument. 

Precise statements arid details of the proofs of these results, and of those in Section 2 will appear 
in [l]. 
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