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Summary. A residue based reliable and efficient error estimator is estab-
lished for finite element solutions of mixed boundary value problems in
linear, planar elasticity. The proof of the reliability of the estimator is based
on Helmholtz type decompositions of the error in the stress variable and a
duality argument for the error in the displacements. The efficiency follows
from inverse estimates. The constants in both estimates are independent of
the Laḿe constantλ, and so locking phenomena forλ → ∞ are prop-
erly indicated. The analysis justifies a new adaptive algorithm for automatic
mesh–refinement.
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1. Introduction

The fundamental problem in linear elasticity is usually modelled as follows
[Ci2, Va]: Let Ω ⊂ R

d be the reference configuration of the elastic body
under consideration with boundary∂Ω = ΓD ∪ ΓN, ΓD not empty and
connected,ΓD∩ΓN = ∅. Given a volume forcef : Ω → R

d, a displacement
uD : ΓD → R

d and a tractiong : ΓN → R
d, find a displacementu : Ω →

R
d and a stress tensorσ : Ω → M

d×d
sym := {τ ∈ M

d×d : τ = τT} satisfying

−div σ = f, σ = CE(u) in Ω,(1.1)

u = uD onΓD, σn = g onΓN,(1.2)
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where the fourth order elasticity tensorC is bounded, positive definite, and
satisfies the symmetry conditionsCijkl = Cjikl = Cijlk = Cklij . We write
E(v) = 1

2(∇v+ (∇v)T) for the infinitesimal strain tensor. In the following
we restrict ourselves to the model of plane strain, i.e.

CE(u) = λtr(E(u))Id + 2µE(u),(1.3)

whereλ andµ are the Laḿe constants,tr(A) = A11 + . . . + Add is the
trace of the matrixA andId is thed× d identity matrix. (Using ideas from
[AF] it is easy to see that our estimates hold also for more general tensors
C.) It is a consequence of Korn’s inequality and the Lax-Milgram lemma
that problem (1.1)–(1.2) has a unique solution(σ, u) ∈ L2(Ω; Md×d

sym) ×
W 1,2(Ω; Rd) which satisfies the a priori estimate‖u‖1,2;Ω + ‖σ‖2;Ω ≤
c1‖f‖2;Ω. In addition, the error estimate for the displacement requires the

following regularity assumption

‖u‖2,2;Ω + ‖σ‖1,2;Ω ≤ c2(‖f‖2;Ω + ‖uD‖H3/2(ΓD) + ‖g‖H1/2(ΓN)).(1.4)

A realistic hypothesis for (1.4) to hold is0 < dist(ΓD;ΓN), i.e., the bound-
ary condition does not change at some boundary point. Furthermore, the
constantc2 is supposed to be independent ofλ (see Theorem 2.1 in [ADG]
and Lemma A.1 in [Vo] for the casesΓN = ∅ andΓD = ∅, respectively; the
general statement does not seem to be available in the literature).
Mixed methods are a powerful tool for the numerical solution of the system
(1.1)–(1.2). They provide at the same time an approximation of the displace-
ment and the stress tensor. A priori estimates have been established for a
wide choice of different methods which satisfy the Babuška-Brezzi condi-
tion. A subtle choice of the discrete spaces avoids the common phenomenon
of locking (i.e., the estimates are independent of the parameterλ in (1.3)). A
difficulty in the design of stable numerical schemes is linked to the symmetry
of the stress tensorσ and thereforeFraeijs de Veubeke [FdV] and fol-
lowing his ideasBrezzi-Douglas-Marini [BDM], Arnold-Brezzi-
Douglas [ABD] and Stenberg [St] weakened the symmetry condition
and reformulated the elasticity problem: Findu : Ω → R

d, σ : Ω → M
d×d

andγ : Ω → M
d×d
skew := {η ∈ M

d×d : η + ηT = 0}, such that

σ = C(∇u− γ), σ = σT, −div σ = f in Ω,(1.5)

u = uD onΓD, σn = g onΓN.(1.6)

In the following we will assumeuD = 0. In the corresponding variational
formulation one seeks(σ, u, γ) ∈ Σg × U × W such that

a(σ, τ) + b(τ ;u, γ) = 0 and b(σ; v, η) = −(f, v),(1.7)
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for all (τ, v, η) ∈ Σ0 × U × W. Here, the linear and bilinear forms and the
function spacesΣt, U , W are defined by

a(σ, τ) =
∫

Ω
C

−1σ : τdx,

b(σ;u, γ) =
∫

Ω
(〈div σ, u〉 + σ : γ)dx,

(f, v) =
∫

Ω
〈f, v〉dx,

Σt = {σ ∈ L2(Ω; Md×d) : div σ ∈ L2(Ω; Rd), σn = t onΓN},
U × W = L2(Ω; Rd) × L2(Ω; Md×d

skew),

for t = 0 andt = g. In this approach, the symmetry of the stress tensor
σ is relaxed and only imposed by means of the Lagrange multiplierγ. Let
Σt,h, Uh, Wh be finite dimensional spaces approximatingΣt, U , andW.
Then the corresponding discrete solution(σh, uh, γh) ∈ Σg,h × Uh × Wh

is characterised by

a(σh, τh) + b(τh;uh, γh) = 0 and b(σh; vh, ηh) = −(f, vh),(1.8)

for all (τh, vh, ηh) ∈ Σ0,h ×Uh ×Wh. In this formulation,σh satisfies only
the weak symmetry condition

∫
Ω
σh : γhdx = 0 ∀γh ∈ Wh,(1.9)

which does not implyσh = σT
h if σh − σT

h 6∈ Wh. In two dimensions
existence, uniqueness, and a priori estimates for several choices of dis-
crete spaces have been proven in [St] which include the low orderPEERS
(plane elasticity element with reduced symmetry) constructed byArnold-
Brezzi-Douglas [ABD] and a modification of theBrezzi-Douglas-
Marini elementBDMk byStenberg (which we will refer to asBDMSk

element). A posteriori estimates in the natural norms, on the other hand, do
not seem to be available in the literature (see, however, [BKNSW] for esti-
mates in mesh dependent norms and [RS] for results concerning stabilised
dual–mixed formulations).
In this paper, we propose an a posteriori error estimator for the errorsε =
σ − σh and e = u − uh for the PEERS and theBDMSk method (see
Sect. 2 for details). Our analysis relies on a decomposition of symmetric
tensors in the spirit of a generalised Helmholtz decomposition. Helmholtz
decomposition was first used in [Ca,A] to prove efficiency and reliability of
error estimators for mixed finite elements. The estimator accounts for the
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residues on the trianglesT and the jumps across the element boundariesE.
More precisely, we define (see Sect. 2 for the notation used below)

η2
T = h2

T ‖div ε‖2
2;T + h2

T ‖curl(C−1σh + γh)‖2
2;T

+h2
T inf

vh∈Uh

‖C
−1σh + γh − ∇vh‖2

2;T + ‖Skw(σh)‖2
2;T ,

η2
E =

{
hE‖J((C−1σh + γh)t)‖2

2;E if E ⊂ Ω ∪ ΓD,

hE‖(σ − σh)n‖2
2;E if E ⊂ ΓN,

η2 =
∑

T∈Th

η2
T +

∑
E∈Eh

η2
E .(1.10)

The main result of this paper states reliability and efficiency of the estimator
η. All constants in the estimates are under the regularity assumption (1.4)
independent ofh andλ. In particular, the common locking phenomena are
avoided.

Theorem 1.1. Let Th be a shape-regular triangulation ofΩ ⊂ R
2 and

let (σh, uh, γh) be the solution of (1.8) for thePEERS or the BDMSk

element. Assume that the regularity assumption (1.4) holds. Then there exists
a constantc3, which depends only onΩ, µ, and the polynomial degree of
the elements, such that

‖u− uh‖2;Ω + ‖γ − γh‖2;Ω + ‖C
−1/2(σ − σh)‖2;Ω ≤ c3η.

Theorem 1.2. Assume in addition thatcurl(C−1σh+γh)|T is a polynomial
for all T ∈ Th and(σ−σh)n|E for all E ⊂ ΓN. Then there exists a constant
c4, which depends only onΩ, µ, and the polynomial degree of the elements,
such that

η ≤ c4

(
‖u− uh‖2;Ω + ‖C

−1(σ − σh) + γ − γh‖2;Ω

+ ‖σ − σh‖2;Ω + ‖hT div ε‖2;Ω

)
.

Remarks.1. It follows from (1.7) thatC−1σ+γ = ∇u. Therefore the terms in
the estimator are natural residuals:curl(C−1σh+γh) andJ((C−1σh+γh)t)
are zero ifC−1σh + γh is a gradient. The distance of this term to gradients
is also measured by the expressioninf ‖C

−1σh + γh − ∇vh‖.
2. The terminfvh∈Uh

‖C
−1σh + γh − ∇vh‖ can be replaced by its upper

bound‖C
−1σh + γh − ∇uh‖ which still satisfies the efficiency estimate of

Theorem 1.2.
3. Since−div ε = f+div σh is a known quantity, we can replace‖C

−1/2(σ
−σh)‖2;Ω by the (weighted) norm

‖σ − σh‖H(div;Ω) = ‖C
−1/2(σ − σh)‖2;Ω + ‖div(σ − σh)‖2;Ω
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on the left hand side in Theorem 1.1, but we lose the factorhT in the estimator
above in front of the term‖div ε‖2;T .
4. The regularity assumption (1.4) is not needed for the estimate of‖C

−1/2(σ
−σh)‖2;Ω in Theorem 1.1, but in the duality argument in the estimation of
‖u−uh‖2;Ω. Hence, if we suppress‖u−uh‖L2(Ω) then Theorem 1.1 remains
true even ifdist(ΓD;ΓN) = 0.
5. According to the triangle inequality and the preceding remarks, the error

‖u− uh‖2;Ω + ‖γ − γh‖2;Ω + ‖C
−1/2(σ − σh)‖2;Ω

and the error indicatorη areequivalentin the sense that their quotient is
bounded from below and above independently of the material parameterλ
and the mesh–sizeh. In particular, the estimates are robust with respect to
λ → ∞ for (nearly) incompressible materials.
6. The estimator justifies an adaptive finite element scheme which refines
a given grid only in regions where the error is relatively large. A standard
algorithm for efficient mesh-design is as follows: For each meshThL

with
a Galerkin solution(phL

, uhL
) and local error estimatorsη(T ) =: ηT +∑

E⊆∂T ηE , we refineT ∈ ThL
(e.g., by halving its largest side) if (for

example)
max

T ′∈ThL

η(T ′)/2 ≤ η(T ).

Then, further refinements to avoid hanging nodes lead to a new meshThL+1

from which we start again.
7. The estimates are stated for the elements of practical importance only.
The arguments used in the proofs rely only on the following properties (with
L0

0 the piecewise constant functions onΩ andL1
1 the continuous piecewise

affine ones)

L0
0 ⊂ Uh, L0

0 ∩H(div;Ω)2 ⊆ Σ0,h, and L1
1 ⊆ Wh.

To obtain estimates for the displacements, we further require a commuta-
tion property for some (Fortin–) interpolation operatorπh (of (2.1)—(2.4)
below). We refer to [Ca] for a discussion in the general framework (for
Laplace’s equation).

2. Preliminaries

We assume thatΩ is a bounded domain inR2 with polygonal boundary.
Let Th be a regular triangulation ofΩ in the sense of [Ci1], which satisfies
the minimum angle condition, i.e., there exists a constantc5 > 0 such that
c−1
5 h2

T ≤ |T | ≤ c5h
2
T . Here, |T | is the area andhT is the diameter of

T ∈ Th. The set of all element sides inTh is denoted byEh andhE is the
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length of the edgeE ∈ Eh. We assume in addition thatΓN is a finite union of
connected componentsΓi, i = 0, . . . ,M , and thatΓD andΓN have positive
distance. Thus we haveEh = EΩ ∪ ED ∪ EN whereEΩ is the set of all
interior element sides andED andEN is the collection of all edges contained
in ΓD andΓN, respectively. We writeE0

h = EΩ ∪ EN. It is useful to define
a functionhT onΩ by hT |T = hT and a functionhE on the union of all
element sides byhE |E = hE . We writeu ∈ Wm,p(Th) andv ∈ Wm,p(Eh)
if u|T ∈ Wm,p(T ) for all T ∈ Th andv|E ∈ Wm,p(E) for all E ∈ Eh.
For eachE ∈ Eh we fix a normalnE to E such thatnE coincides with
the exterior normal to∂Ω if E ⊂ ∂Ω. This allows us to define a mapping
J : W 1,2(Th) → L2(Eh) by

J(v)|E = (v|T+)|E − (v|T −)|E

if E = T̄+ ∩ T̄− andnE is the exterior normal toT+ onE and

J(v)|E = (v|T )|E

if E = T̄ ∩ ∂Ω. Finally we define forΦ ∈ W 1,2(Ω), u = (u1, u2) ∈
W 1,2(Ω; R2), andσ ∈ W 1,2(Ω; M2×2)

CurlΦ = (Φ,2, −Φ,1),

Curlu =
(
u1,2 −u1,1
u2,2 −u2,1

)
, curlu = u2,1 − u1,2,

curlσ =
(
σ12,1 − σ11,2
σ22,1 − σ21,2

)
, div σ =

(
σ11,1 + σ12,2
σ21,1 + σ22,2

)
.

We use the standard notation for the Lebesgue spacesLp(Ω) with norm
‖ · ‖p;Ω and the Sobolev spacesWm,p(Ω) with norm‖ · ‖m,p;Ω and semi-
norm| · |m,p;Ω. The closure ofC∞

c (Ω), the space of infinitely often differ-
entiable functions with compact support, with respect to‖·‖m,p;Ω is denoted
byWm,p

0 (Ω).
The definition of the finite element spaces involves the bubble function
bT = λ1λ2λ3 on a triangleT ∈ Th, whereλi are the barycentric coordinates
of T . ThePEERS is based on the following function spaces

Uh = {vh ∈ U : vh|T ∈ P0(T ; R2) ∀T ∈ Th},
Wh = {γh ∈ W ∩ C0(Ω; M2×2

skew) : γh|T ∈ P1(T ; M2×2
skew) ∀T ∈ Th},

Σh = {σh ∈ L2(Ω; M2×2) :
div σh ∈ U , σh|T ∈ RT0(T ) ⊕ B0(T ) ∀T ∈ Th},

Σt,h = {σh ∈ Σh : σhn = t̃ onΓN},
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wheret̃ is the orthogonal projection oft in L2(E) ontoP0(E; R2) for all
edgesE ⊂ ΓN. Here,RT0 is the Raviart-Thomas space of lowest
degree, and

RT0(T ) = {σ ∈ L2(T ; M2×2) : σ = τ + a⊗ x, τ ∈ M
2×2, a ∈ R

2},
B0(T ) = {σ ∈ L2(T ; M2×2) : σ = a⊗ Curl bT , a ∈ R

2},
BDMk(Ω) = {σh ∈ L2(Ω; M2×2) : div σh ∈ U , σh|T ∈ Pk(T ; M2×2)}.
The higher order methodsBDMSk are defined fork ≥ 2 by

Uh = {vh ∈ U : vh|T ∈ Pk−1(T ; R2) ∀T ∈ Th},
Wh = {γh ∈ W : γh|T ∈ Pk(T ; M2×2

skew) ∀T ∈ Th},
Σh = {σh ∈ L2(Ω; M2×2) :

div σ ∈ U , σh|T ∈ Pk(T ; M2×2) ⊕Bk−1(T )},
Σt,h = {σh ∈ Σh : σhn = t̃ onΓN},

wheret̃ is the orthogonal projection oft in L2(E) ontoPk(E; R2), and

Bk−1(T ) = {σ ∈ L2(T ; M2×2) : σ = Curl(bTw), w ∈ Pk−1(T ; R2)}.
Using the interpolation operators forRT0 andBDMk (see [BF], Sect. III.3.3)
we can construct an interpolation operatorΠh : W 1,2(Ω; M2×2) → Σh

such that for allτ ∈ W 1,2(Ω; M2×2)∫
Ω

div(Πhτ − τ)vhdx = 0 ∀ vh ∈ Uh, and(2.1)

‖Πhτ − τ‖2;T ≤ c6hT |τ |1,2;T .(2.2)

The projectionΠh is defined in such a way that∫
Ω

(Πhτ − τ)∇hvhdx = 0 ∀ vh ∈ Uh, and(2.3)

τn = 0 onΓN ⇒ Πhτn = 0 onΓN.(2.4)

If P 0
h denotes the orthogonal projection inL2 ontoL0

0 ⊂ Uh, L0
0, the space

of piecewise constant functions, we have the estimate

‖v − P 0
hv‖2;T ≤ c7hT |v|1,2;T ∀ v ∈ W 1,2(T ) ∀T ∈ Th.

Finally we use Cĺement’s interpolation operator [Cl]Rh : W 1,2(Ω) → L1
1

onto the space of continuous, piecewise linear functions, which satisfies the
interpolation estimates

‖v −Rhv‖2;T ≤ c8hT ‖v‖1,2;ωT ,

‖v −Rhv‖2;E ≤ c9h
1/2
E ‖v‖1,2;ωE ,



194 C. Carstensen, G. Dolzmann

whereωT = ∪{T ′ ∈ Th : T̄ ∩ T̄ ′ 6= ∅} andωE = ∪{T ∈ Th : E ⊂ T̄}.
Notice thatRh satisfies

v = ci onΓi ⇒ Rhv = ci onΓi.(2.5)

The number of triangles inωT is uniformly bounded by some constantc10,
which depends only on the shape of the triangles. Throughout the paper we
write Sym(σ) andSkw(σ) for the symmetric and the skew-symmetric part
of a matrixσ and use little Greek letters for matrices, little Latin letters of
vectors and capital Greek letters for scalars. We use the symbols∇h and
curlh if we apply the corresponding differential operators on each triangle
to a function that is globally not smooth.

3. A Helmholtz decompostion for symmetric tensor fields

The following two results on the Helmholtz decomposition are essential for
the subsequent proofs. We add a sketch of their proofs for the convenience
of the reader.

Lemma 3.1. Assume thatA is a symmetric, positive definite tensor of fourth
order. Letρ ∈ L2(Ω; M2×2). Then there existsq ∈ W 1,2(Ω; R2) withq = 0
onΓD andf ∈ W 1,2(Ω; R2) with f = ci ∈ R

2 onΓi, c0 = 0, such that

ρ = ∇q +A−1Curlf.

Proof. The classical proof for the existence of a Helmholtz decomposition
for vector fieldsu ∈ L2(Ω; R2) can be modified to yield the existence of
Φ, Ψ ∈ L2(Ω) such thatΨ = 0 onΓD,Φ = ci onΓi andu = ∇Ψ+CurlΦ.
To do so, consider

I(p) =
∫

Ω

(
1
2
A∇p : ∇p−Aρ : ∇p

)
dx.

It follows from the direct method in the calculus of variations that there
exists a uniqueq ∈ W 1,2(Ω; R2) with q = 0 onΓD such that

I(q) = min{I(p) : p ∈ W 1,2(Ω; R2), p = 0 onΓD}
andq satisfies the Euler–Lagrange equation∫

Ω
(A∇q −Aρ)∇φdx = 0 for all φ ∈ W 1,2(Ω; R2)

with φ = 0 onΓD.

It follows thatπ = A∇q−Aρ is a divergence free vectorfield and by Green’s
formula∫

∂Ω
〈πn, φ〉ds =

∫
Ω

(divπφ+ π∇φ)dx ∀φ ∈ W 1,2(Ω; R2).
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In view of the Euler-Lagrange equations we conclude∫
∂Ω

〈πn, φ〉ds = 0 for all φ ∈ W 1,2(Ω; R2) with φ = 0 onΓD.

With φ ≡ 1 in a neighourhood of one component of the Neumann boundary
andφ ≡ 0 in a neighbourhood of all the other components as well as on a
neighbourhood of the Dirichlet boundary, we infer thatπn has mean value
zero on all connected components of the Neumann boundary. Withφ ≡ 1 we
deduce the same property on the Dirichlet boundary and thus there exists an
f ∈ W 1,2(Ω; R2) such thatπ = Curlf (see [GR], Chapter I, Theorem 3.1).
Sinceπn = Curlfn = ∇ft, wheret is a tangential vector, this concludes
the proof. ut
Furthermore, we also need a symmetric variant and define

X1 = {v ∈ W 1,2(Ω; R2) : v = 0 onΓD},
X2 = {Φ ∈ W 2,2(Ω) :∫

Ω
Φdx = 0, CurlΦ = ci onΓi, ci ∈ R

2, c0 = 0}.

Lemma 3.2. Letσ ∈ L2(Ω; M2×2
sym). Then there existsv ∈ X1 andΦ ∈ X2

such that

σ = CE(v) + Curl CurlΦ.

Proof. In view of Korn’s inequality there exists, by the direct method of the
calculus of variations, a unique minimiserv ∈ X1 of

I(v) =
∫

Ω

1
2

CE(v) : E(v)dx−
∫

Ω
σ : E(v)dx.

In particular,v satisfies the corresponding Euler–Lagrange equations∫
Ω

CE(v) : ∇w dx =
∫

Ω
σ : ∇w dx ∀w ∈ X1.

Let τ = σ − CE(v) ∈ L2(Ω; M2×2
sym). The classical Helmholtz decom-

position applied to the rows ofτ yields the existence ofq ∈ X1 and
h ∈ W 1,2(Ω; R2), h = ci onΓi with c0 = 0 such that

τ = ∇q + Curlh

(we refer to Lemma 3.1 for details). If we useq as a test function in the
Euler Lagrange equations we deduce in view of the orthogonality of∇q and
Curlh in L2

0 =
∫

Ω
(CE(v) − σ) : ∇q dx =

∫
Ω

|∇q|2dx+
∫

Ω
Curlh : ∇q dx
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and thereforeq ≡ 0 andτ = Curlh. From the symmetry ofτ we deduce
−h1,1 = h2,2, i.e.,div h = 0. Sinceh is constant on the connected compo-
nents ofΓN which are by assumption closed Lipschitz curves, we conclude
that the mean value of〈h, n〉 vanishes onΓi for i = 0, . . . ,M . Green’s
formula then implies that the mean value vanishes also onΓD and hence
there exists a stream functionΦ ∈ W 2,2(Ω) with CurlΦ = h. Subtracting
fromΦ a suitable constant if necessary we obtain the assertion of the lemma.
ut

4. An estimate for the trace of a tensor field

The following technical results are needed in the estimates below. The first
estimate is a modification of well-established estimates of the trace of a ten-
sor field by its divergence and the deviatoric part (see, e.g., [BF, Proposition
3.1 in Sect. IV.3]).

Lemma 4.1. Let Σ0 be a closed subspace ofH(div;Ω) which does not
contain the constant tensorId. Then there exists a constantc11 (which
depends only onΣ0) such that

‖tr τ‖2;Ω ≤ c11

(
‖τD‖2;Ω + ‖div τ‖2;Ω

)
∀τ ∈ Σ0.

Proof. Assume the contrary. Then there exists a sequence(τj) ∈ Σ0 satis-
fying

‖tr τj‖2;Ω = 1, ‖τD
j ‖2;Ω + ‖div τj‖2;Ω → 0.

Thus we may choose a subsequence (again denoted byτj) such thatτj ⇀ τ
in L2(Ω; Md×d) anddiv τj ⇀ div τ in L2(Ω; Rd). Clearlyτ ∈ Σ0 with
τD = 0 and thereforeτ = α · Id with α ∈ L2(Ω). On the other hand we
havediv τ = ∇α = 0 and henceα is constant. SinceId 6∈ Σ0 we conclude
τ = 0. It follows from the weak convergence of the sequenceτj that

cj =
1

|Ω|
∫

Ω
tr τjdx → 0

and thusσj = τj − cj

d · Id (d being the dimension) satisfies by assumption

lim
j→∞

‖trσj‖2;Ω = 1.(4.1)

We now adapt the arguments from [BF], p. 199, to obtain a contradiction.
Since the integral mean oftrσj is zero we can solve the equationdivwj =
−trσj for somewj ∈ W 1,2

0 (Ω; Rd) which satisfies the a priori estimate

‖wj‖1,2;Ω ≤ c12‖trσj‖2;Ω ≤ c12‖tr τj‖2;Ω = c12.
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Using the above identities, we calculate

‖trσj‖2
2;Ω = −

∫
Ω

trσjdivwjdx = −
∫

Ω
σj : ∇wjdx+

∫
Ω
σD

j : ∇wjdx

≤ (‖div σj‖2;Ω + ‖σD
j ‖2;Ω)‖wj‖1,2;Ω → 0

asj → ∞. This contradicts (4.1) and proves the lemma.ut
Moreover, we will use the following estimate.

Lemma 4.2. Assume thatΦ ∈ W 2,2(Ω) satisfiesCurlΦ = 0 on ΓN if
ΓN 6= ∅ or

∫
Ω tr CurlCurlΦ = 0 if ΓN = ∅. Then there exists a constant

c12 which depends only onΩ andΓN such that

‖∆Φ‖2;Ω ≤ c12‖(Curl CurlΦ)D‖2;Ω.

Furthermore,

‖Curl CurlΦ‖2
2;Ω ≤ c13‖Curl CurlΦ‖2

C−1;Ω,

where the constantc13 depends only onΩ, ΓN andµ.

Proof. Assume first thatΓN 6= ∅. Let Γ0 be a maximal line segment con-
tained inΓN 6= ∅, and define

Σ0 =
{
σ ∈ H(div;Ω) :

∫
Γ0

σnds = 0
}
.

ClearlyΣ0 is a weakly closed subspace ofH(div;Ω) andId 6∈ Σ0. From
div Curl CurlΦ = 0 and∫

Γ0

Curl CurlΦnds = 0

we haveCurl CurlΦ ∈ Σ0. If ΓN = 0, let Σ0 := {σ ∈ H(div;Ω):∫
Ω trσ dx = 0} and, by assumption,Curl CurlΦ ∈ Σ0. Hence, the first

inequality follows from Lemma 4.1. From this,
∫

Ω
|Curl CurlΦ|2dx

=
1
2

∫
Ω

|∆Φ|2dx+
∫

Ω
|(Curl CurlΦ)D|2dx

≤ 2µ(
c212
2

+ 1)
∫

Ω
C

−1Curl CurlΦ : Curl CurlΦdx. ut
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5. Proof of the upper bound

We begin with the estimate for the errorε := σ − σh in the stress variable.
Lemma 3.2 implies the existence ofv ∈ X1 andΦ ∈ X2 such that

ε = CE(v) + Curl CurlΦ+ φ,(5.1)

whereφ = Skw(σh) is the skew-symmetric part ofσh. Since
∫

Ω
E(v) : Curl CurlΦdx =

∫
Ω

∇v : Curl CurlΦdx(5.2)

=
∫

∂Ω
〈v, (∇Curlφ)t〉dx = 0,

E(v) andCurl CurlΦ are orthogonal inL2(Ω; M2×2). Therefore, we obtain
the decomposition

‖ε‖2
C−1;2;Ω = ‖Curl CurlΦ‖2

C−1;2;Ω + ‖E(v)‖2
C;2;Ω + ‖φ‖2

C−1;2;Ω,(5.3)

where we used forA = C andA = C
−1 the notation

‖τ‖2
A;2;Ω =

∫
Ω
Aτ : τdx.

For C as in (1.3) we have withc14 = 1/
√

2µ and c15 = max{1/
√

2µ,
d/

√
dλ+ 2µ}

‖τ‖2;Ω ≤ c14‖τ‖C;2;Ω, ‖τ‖C−1;2;Ω ≤ c15‖τ‖2;Ω.

In particular these constants are independent ofλ for λ → ∞. In the next
lemmas we estimate the three terms on the right hand side of (5.3). All
constants are independent ofλ andh and depend only onµ, Ω and the
shape of the triangles.

Lemma 5.1. There exists a constantc16 such that we have

‖Curl CurlΦ‖C−1;2;Ω ≤ c16

{
‖hT curlh(C−1σh + γh)‖2

2;Ω

+ ‖h1/2
E J((C−1σh + γh)t)‖2

2;E0
h

}1/2
.

Proof: We deduce from (5.1), (5.2) andC−1σ = E(u)

‖Curl CurlΦ‖2
C−1;2;Ω =

∫
Ω

Curl CurlΦ : C
−1εdx

= −
∫

Ω
Curl CurlΦ : (C−1σh + γh)dx.
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Let b = CurlΦ ∈ W 1,2(Ω; R2) and definebh := Rhb ∈ L1
1. SinceΦ ∈ X2

we deduceb = CurlΦ = ci onΓi and therefore(Curl b)n = 0 onΓN. In
view of (2.5),Curl bh ∈ RT0 is an admissible test tensor in the discrete
equation (1.8) and we obtain∫

Ω
Curl bh : (C−1σh + γh)dx = 0.(5.4)

Therefore, by an integration by parts on each triangle,

‖Curl CurlΦ‖2
C−1;2;Ω = −

∫
Ω

Curl(CurlΦ− bh) : (C−1σh + γh)dx

=
∫

Ω
〈CurlΦ− bh, curl(C−1σh + γh)〉dx

+
∫

Eh

〈CurlΦ− bh, J((C−1σh + γh)t)〉ds

≤
∑

T∈Th

‖CurlΦ− bh‖2;T ‖curl(C−1σh + γh)‖2;T

+
∑

E∈E0
h

‖CurlΦ− bh‖2;E‖J((C−1σh + γh)t)‖2;E

≤ c8
√
c10‖CurlΦ‖1,2;Ω

( ∑
T∈Th

h2
T ‖curl(C−1σh + γh)‖2

2;T

)1/2

+
√

2c9‖CurlΦ‖1,2;Ω

( ∑
E∈E0

h

hE‖J((C−1σh + γh)t)‖2
2;E

)1/2
.

If ΓN 6= ∅ we conclude with Lemma 4.2 sinceCurl Φ = 0 onΓN . Otherwise
we deduce from (1.8) withτh := Id ∈ ∑

0,h andγh = 0 that
∫
Ω trσhdx =

0. Thus we obtain from (5.1)∫
Ω tr CurlCurlΦdx =

∫
Ω tr(ε− CE(v))dx =

∫
Ω tr CE(u− v)dx

= (2λ+ 2µ)
∫
Ω div(u− v)dx = (2λ+ 2µ)

∫
∂Ω n(u− v)ds = 0

sinceu, v ∈ W 1,2
0 (Ω; R2). In view of Poincaŕe’s inequality and Lemma 4.2

we obtain

‖CurlΦ‖1,2;Ω ≤ c17‖∇CurlΦ‖2;Ω ≤ c17c13‖Curl CurlΦ‖C−1;Ω.

The assertion of the lemma follows withc16 =
√

2c17c13 max{c8√c10,√
2c9}. ut

Lemma 5.2. There exists a constantc18 such that we have

‖E(v)‖2
C;2;Ω + ‖φ‖2

C−1;2;Ω ≤ c218‖hT div ε‖2
2;Ω + ‖Skw(σh)‖2

2;Ω

+‖h1/2
E εn‖2

2;ΓN
.
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Proof. It follows from (5.1) and (5.2) sinceε ∈ H(div;Ω) andε+Skw(σh)
is symmetric by an integration by parts that

‖E(v)‖2
C;2;Ω =

∫
Ω

E(v) : (ε+ Skw(σh))dx

=
∫

Ω
∇v : εdx+

∫
Ω

∇v : Skw(σh)dx

= −
∫

Ω
〈v,div ε〉dx+

∫
∂Ω

〈v, εn〉ds+
∫

Ω
∇v : Skw(σh)dx.

The definition of the continuous and the discrete problem implies
∫

Ω
〈div ε, vh〉dx = 0 ∀ vh ∈ Uh

and therefore, whenc19 is the constant in Korn’s inequality,
∫

Ω
〈v,div ε〉dx =

∫
Ω

〈v − P 0
hv,div ε〉dx

≤ ‖hT div ε‖2;Ω‖h−1
T (v − P 0

hv)‖2;Ω

≤ c7|v|1,2;Ω‖hT div ε‖2;Ω

≤ c7c19‖E(v)‖2;Ω‖hT div ε‖2;Ω.

We use the trace inequality‖v‖2;E ≤ c20h
1/2
E (h−1

T ‖v‖2;T + ‖∇v‖2;T ) to
estimate the boundary integral. By definition ofΣg,h

∫
ΓN

〈v, εn〉ds =
∫

ΓN

〈v − P 0
hv, εn〉ds ≤

∑
E∈Eh,N

‖v − P 0
hv‖E,2‖εn‖2;E

≤ (c7 + 1)c20|v|1,2;Ω‖h1/2
E εn‖2;ΓN

and the proof of the lemma follows withc18 =
√

3c14c19(c7 + 1). ut
Throughout the rest of the section we use the notationρh := C

−1σh + γh,
ρ := C

−1σ+γ = ∇u. Since Lemma 5.1 and Lemma 5.2 provide an estimate
for ‖σ − σh‖C−1;2;Ω it suffices to bound‖ρ− ρh‖2;Ω in order to obtain an
estimate for‖γ − γh‖2;Ω.

Lemma 5.3. There exists a constantc21 such that we have

||ρ− ρh||C;Ω ≤ c21

(
||hT curlhρh||22;Ω + ||hT div ε||22;Ω

+||Skw(σh)||22;Ω + ||h1/2
E J(ρht)||22;E0

h
+ ||h1/2

E εn||22;EN

)1/2
.(5.5)
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Proof. In view of Lemma 3.1 there existf ∈ W 1,2(Ω; R2), f = ci onΓi,
c0 = 0 andq ∈ W 1,2(Ω; R2), q = 0 onΓD such that

ρ− ρh = C
−1Curl f + ∇q,(5.6) ∫

Ω
C(ρ− ρh) : (ρ− ρh)dx =

∫
Ω

C
−1Curl f : Curl fdx

+
∫

Ω
C∇q : ∇qdx.

The first term on the right hand side can be estimated by
∫

Ω
C

−1Curl f : Curl fdx =
∫

Ω
(ρ− ρh) : Curl fdx

= −
∫

Ω
ρhCurl fdx.

Let Rhf ∈ L1
1 be the Cĺement interpolation off . SinceCurlRhf is an

admissible test tensor we deduce in view of (5.4) with an integration by
parts

−
∫

Ω
ρh : Curl fdx = −

∫
Ω
ρh : Curl(f −Rhf)dx

=
∫

Ω
〈curl ρh, f −Rhf〉dx−

∫
Eh

〈J(ρht), f −Rhf〉ds

≤
∑

T∈Th

‖curl ρh‖2;T ‖f −Rhf‖2;T +
∑

E∈E0
h

‖J(ρht)‖2;E‖f −Rhf‖2;E

≤ c8
√
c10‖f‖1,2;Ω

( ∑
T∈Th

h2
T ‖curl ρh‖2

2;T

)1/2

+
√

2c9‖f‖1,2;Ω

( ∑
E∈E0

h

hE‖J(ρht)‖2
2;E

)1/2

≤ c22‖∇f‖2;Ω

( ∑
T∈Th

h2
T ‖curl ρh‖2

2;T +
∑

E∈E0
h

hE‖J(ρht)‖2
2;E

)1/2

with c22 =
√

2c17 max{c8√c10,
√

2c9}. Since‖∇f‖2;Ω = ‖Curl f‖2;Ω
we deduce

‖Curl f‖C−1,2;Ω

≤ c22

( ∑
T∈Th

h2
T ‖curl ρh‖2

2;T +
∑

E∈E0
h

hE‖J(ρht)‖2
2;E

)1/2
.
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Taking the symmetric part in (5.1) and (5.6) we get

Sym(ε) = CE(v) + Curl CurlΦ,
SymC(ρ− ρh) = Sym(ε) = CE(q) + Sym(Curl f),

hence

CE(v − q) = Sym(Curl f) − Curl CurlΦ.

Thus we may estimate

‖E(v − q)‖2
C;2;Ω

=
∫

Ω
CE(v − q) : E(v − q)dx =

∫
Ω

Sym(Curl f) : E(v − q)dx

=
∫

Ω
Curl f : E(v − q)dx ≤ ‖Curl f‖C−1;Ω‖E(v − q)‖C;2;Ω,

and hence‖E(v− q)‖C;Ω ≤ ‖Curl f‖C−1;Ω. By Korn’s inequality we have

‖∇q‖C;Ω =
∫

Ω
CSym(∇q) : Sym(∇q)dx

+
∫

Ω
CSkw(∇q) : Skw(∇q)dx

≤ ‖E(q)‖2
C;Ω + 2µ

∫
Ω

|∇q|2dx ≤ (1 + 2µc219)‖E(q)‖2
C;Ω

and therefore we obtain by the triangle inequality, the estimates above, and
Lemma 5.2

‖ρ− ρh‖2
C;Ω = ‖∇q‖2

C;Ω + ‖Curl f‖2
C−1;Ω

≤ (1 + 2µc219)‖E(q)‖2
C;Ω + ‖Curl f‖2

C−1;Ω

≤ 2(1 + 2µc219)(‖E(q − v)‖2
C;Ω + ‖E(v)‖2

C;Ω) + ‖Curl f‖2
C−1;Ω

≤ (2(1 + 2µc219) + 1)‖Curl f‖2
C−1;Ω + 2(1 + 2µc219)‖E(v)‖2

C;Ω

≤ c222(4µc
2
19 + 3)

( ∑
T∈Th

h2
T ‖curl ρh‖2

2;T +
∑

E∈Eh

hE‖J(ρht)‖2
2;E

)

+ 2(2µc219 + 1)c218

·
(
‖hT div ε‖2

2;Ω + ‖Skw(σh)‖2
2;Ω + ‖h1/2

E εn‖2
2;ΓN

)
.

The assertion of the lemma follows withc21 = max{c222(4µc219 + 3),
2(2µc219 + 1)c218}1/2. ut
The next step in the proof of Theorem 1.1 is an estimate for the displacement
errore = u − uh. The proof requires a duality argument and relies on the
regularity assumption (1.4).
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Lemma 5.4. If the regularity assumption (1.4) holds, then there exists a
constantc23 such that

‖e‖2;Ω ≤ c23

(
‖hT div ε‖2

2;Ω + ‖hT Skw(σh)‖2
2;Ω

+ inf
vh∈Uh

‖hT (C−1σh + γh − ∇vh)‖2
2;Ω + ‖h1/2

E εn‖2
2;ΓN

)1/2
.

Proof. Let z ∈ W 2,2(Ω) be the solution of the problem

div CE(z) = e in Ω, z = 0 onΓD, and CE(z)n = 0 onΓN,

and letτ := CE(z). By assumption (1.4),‖z‖2,2;Ω + ‖τ‖1,2;Ω ≤ c1‖e‖2;Ω.
Consequently, by (2.1), (1.8), (2.5) and an integration by parts

‖e‖2
2;Ω =

∫
Ω

〈u− uh,div τ〉dx = −
∫

Ω
∇u : τdx−

∫
Ω

〈uh,divΠhτ〉dx

=
∫

Ω
(∇vh − ∇u) : τdx+

∫
Ω

(C−1σh + γh − ∇vh) : Πhτdx

+
∫

Ω
∇vh : (Πhτ − τ)dx.

The last term on the right hand side vanishes according to (2.3). By the
definition ofτ and (2.2) we deduce

‖e‖2
2;Ω =

∫
Ω

(∇vh − ∇u) : τdx

+
∫

Ω
(C−1σh + γh − ∇vh) : (Πhτ − τ)dx

+
∫

Ω
(C−1σh + γh − ∇vh) : τdx

=
∫

Ω
(C−1σh + γh − ∇vh) : (Πhτ − τ)dx

+
∫

Ω
(C−1σh + γh − ∇u) : CE(z)dx

≤ c6‖hT (C−1σh + γh − ∇vh)‖2;Ω|τ |1,2;Ω

+
∫

Ω
(C−1σh + γh − ∇u) : CE(z)dx.

The second term on the right hand side can be rewritten as
∫

Ω
(C−1σh + γh − E(u)) : CE(z)dx = −

∫
Ω

(σ − σh) : E(z)dx.
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Writing E(z) = ∇z − Skw(∇z) we obtain by an integration by parts
∫

Ω
(C−1σh + γh − E(u)) : CE(z)dx

=
∫

Ω
〈div(σ − σh), z〉dx−

∫
ΓN

〈(σ − σh)n, z〉ds

+
∫

Ω
(Skw(σh) : Skw(∇z))dx.

The orthogonal projectionP 0
hz of z ontoL0

0 is well defined and we deduce
∫

Ω
〈div ε, z〉dx =

∫
Ω

〈div ε, z − P 0
hz〉dx

≤ ‖hT div ε‖2;Ω‖ 1
hT

(z − P 0
hz)‖2;Ω

≤ c7‖hT div ε‖2;Ω|z|1,2;Ω ≤ c7c1‖hT div ε‖2;Ω‖e‖2;Ω.

The boundary term can be estimated as in Lemma 5.2 and we obtain∫
Γh

〈εn, z〉dx ≤ c1c20(c7 + 1)‖e‖2;Ω‖h1/2
E εn‖2;ΓN .

In order to bound the last term we defineξh = RhSkw(∇z) ∈ Wh and infer
with (1.9)∫

Ω
Skw(σh) : Skw(∇z)dx =

∫
Ω

Skw(σh) : (Skw(∇z) − ξh)dx

≤ ‖hT Skw(σh)‖2;Ω‖ 1
hT

(Skw(∇z) − ξh)‖2;Ω

≤ c8c2‖hT Skw(σh)‖2;Ω‖e‖2;Ω.

The estimates above imply

‖e‖2;Ω ≤ c6c1 inf
vh∈Uh

‖C
−1σh + γh − ∇vh‖2;Ω + c7c1‖hT div ε‖2;Ω

+ c8c2‖hT Skw(σh)‖2;Ω + c20(c7 + 1)‖εn‖2;ΓN .

This proves the lemma withc23 = 2 max{c1c6, c1c7, c1c20, c8c2}. ut
Remark.For the higher order methodsBDMSk we have the improved esti-
mate

‖e‖2;Ω ≤ c23

(
‖h2

T div ε‖2;Ω + ‖hT Skw(σh)‖2;Ω

+ inf
vh∈Uh

‖hT (C−1σh + γh − ∇vh)‖2;Ω + ‖h1/2
E εn‖2;ΓN

)
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since we may use the interpolation ontoL1
1, instead of the orthogonal pro-

jection ontoL0
0.

Proof of Theorem 1.1:Recall from (5.3) that

‖ε‖2
C−1;2;Ω = ‖Curl CurlΦ‖2

C−1;2;Ω + ‖E(v)‖2
C;2;Ω + ‖φ‖2

C−1;2;Ω.

In view of Lemma 5.1 and 5.2 we obtain

‖ε‖2
C−1;2;Ω ≤ 2 max{c216, c

2
18}η2 =: c224η

2.

Moreover, by the triangle inequality and Lemma 5.3

‖γ − γh‖2
2;Ω =

1
2µ

‖γ − γh‖2
C;Ω ≤ 1

µ
(‖ρ− ρh‖2

C;Ω + ‖σ − σh‖2
C−1;Ω)

≤ 2(c221 + c224)η
2 =: c225η

2.

The theorem follows with Lemma 5.4 and forc3 = c23 + c24 + c25. ut

6. Proof of the lower bound

The lower bounds in Theorem 1.2 rely on two main ingredients: a local-
ization technique introduced in [V] and classical inverse estimates in finite
element spaces. We briefly summarize the relevant results (see [V] for more
details). There exists an extension operatorL : C0(E) → C0(T ), T ∈ Th,
E ∈ Eh, which extends polynomials of degreek onE to polynomials of
same degree onT and satisfies(Lp)|E = p|E for all p ∈ Pk(E). Finally we
let ψT = (maxT bT )−1bT and we denote byψE the uniquely determined
piecewise quadratic function onωE which satisfiessuppψE ⊂ ωE ,ψE ≥ 0
andmaxE ψE = 1.

Lemma 6.1. ([V],Lemma 4.1) Letk ∈ N. Then there exist constantsc26,
. . . , c28, which depend only onk and the shape of the triangles such that we
have for allT ∈ Th, E ∈ Eh withE ⊂ T̄ and allu ∈ Pk(T ), v ∈ Pk(E)

‖ψTu‖2;T ≤ ‖u‖2;T ≤ c26‖ψ1/2
T u‖2;T ,(6.1)

‖ψEv‖2;T ≤ ‖v‖2;E ≤ c27‖ψ1/2
E v‖2;E ,(6.2)

c−1
26 h

1/2
E ‖v‖2;E ≤ ‖ψ1/2

E Lv‖2;T ≤ c28h
1/2
E ‖v‖2;E .(6.3)

Lemma 6.2. ([Ci1], Lemma 3.2.6) Assume thatv ∈ Pk(T ) and0 ≤ ` ≤ m.
Then there exists a constantc29, which depends only on the shape of the
triangles,k, ` andm such that

|v|m,2;T ≤ c29h
`−m
T |v|2;`;T .(6.4)
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In Lemma 6.3 and 6.4 we give bounds on the different contributions in the
error estimatorη in (1.10). Recall thatρh = C

−1σh +γh, ρ = C
−1σ+γ =

∇u.

Lemma 6.3. There exists a constantc30 such that for allT ∈ Th

hT ‖curl(C−1σh + γh)‖2;T ≤ c30

(
‖C

−1(σ − σh) + γ − γh‖2;T

)
.

Proof. It follows from (6.1) and an integration by parts that

c−2
26 ‖curl ρh‖2

2;T ≤ ‖ψ1/2
T curl ρh‖2

2;T = −
∫

T
ψT 〈curl(ρ− ρh), curl ρh〉dx

=
∫

T
(ρ− ρh) : Curl(ψT curl ρh)dx

≤ ‖ρ− ρh‖2;T ‖Curl(ψT curl ρh)‖2;T .

From (6.4) and (6.1) we infer

‖Curl(ψT curl ρh)‖2;T ≤ c29h
−1
T ‖ψT curl ρh‖2;T ≤ c29h

−1
T ‖curl ρh‖2;T .

This proves the lemma withc30 = c226c29. ut

Lemma 6.4. There exists a constantc31 such that the following estimate
holds for allE ∈ E0

h

h
1/2
E ‖J((C−1σh + γh)t)‖2;E ≤ c31‖C

−1(σ − σh) + γ − γh‖2;ωE .

Proof. Let vh = J((C−1σh + γh)t). We obtain from (6.2)

‖J((C−1σh + γh)t)‖2
2;E ≤ c227‖ψ1/2

E Lvh‖2
2;E = c227

∫
E
ψE |Lvh|2ds.

An integration by parts in each triangle ofωE yields

∫
ωE

〈curl ρh, ψELvh〉dx+
∫

ωE

ρh : Curl(ψELvh)dx

=
∫

E
〈J(ρht), ψELvh〉ds,

and so

0 =
∫

ωE

(〈curl ρ, ψELvh〉 + ρ : Curl(ψELvh))dx.
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Therefore we obtain

‖ψ1/2
E vh‖2

2;E

= −
∫

ωE

〈curl(ρ− ρh), ψELvh〉dx−
∫

ωE

(ρ− ρh) : Curl(ψELvh)dx

=
∫

ωE

〈curl ρh, ψELvh〉dx−
∫

ωE

(ρ− ρh) : Curl(ψELvh)dx

≤ ‖curl ρh‖2;ωE‖ψELvh‖2;ωE + ‖ρ− ρh‖2;ωE‖Curl(ψELvh)‖2;ωE .

Let c32 be a constant such thath1/2
E /hT ≤ c32h

−1/2
E for all T ∈ Th with

E ⊂ T̄ . Clearly,c32 depends only on the shape of the triangles inTh. We
conclude with Lemma 6.2 and 6.3

h
1/2
E ‖vh‖2;E ≤ c28hE‖curl ρh‖2;ωE + c29c28c32‖ρ− ρh‖2;ωE

≤ c28c32(c30 + c29)‖C
−1(σ − σh) + γ − γh‖2;ωE .

This implies the result withc31 = c27c32(c30 + c29). ut
Lemma 6.5. There exists a constantc33 such that the following estimate
holds for allE ∈ Eh,N

h
1/2
E ‖(σ − σh)n‖2;E ≤ c33(‖hT div(σ − σh)‖2;ωE + ‖σ − σh‖2;ωE ).

Proof. Let vh = (σ − σh)n. Then∫
T
〈div(σ − σh), ψELvh〉dx

= −
∫

T
(σ − σh) : ∇(ψELvh)dx+

∫
E

|(σ − σh)n|2ψEds

and thus∫
E

|(σ − σh)n|2ψEds

≤ ‖div(σ − σh)‖2;T ‖ψELvh‖2;T + ‖σ − σh‖2;T ‖∇(ψELvh)‖2;T .

Hence we obtain from (6.2) and Lemma 6.2 that‖(σ−σh)n‖2
2;E is bounded

from above by

c226{c28‖div(σ − σh)‖2;T + c29c28h
−1
T ‖σ − σh‖2;T }h1/2

E ‖vh‖2;E

and we conclude

h
1/2
E ‖(σ − σh)n‖2;E ≤ c33(hT ‖div(σ − σh)‖2;T + ‖σ − σh‖2;T ),

where c33 = c226c28c32 max{c29, 1}. This implies the assertion of the
lemma. ut
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Lemma 6.6. There exists a constantc34 such that we have

hT ‖C
−1σh + γh − ∇uh‖2;T ≤ c34

(
‖u− uh‖2;T + hT ‖ρ− ρh‖2;T

)
.

Proof. It follows from (6.1) and an integration by parts that

c−2
26 ‖ρh − ∇uh‖2

2;T ≤
∫

T
ψT (ρh − ∇uh) : (ρh − ∇uh)dx

= −
∫

T
ψT (ρ− ρh) : (ρh − ∇uh)dx

+
∫

T
ψT (ρ− ∇uh) : (ρh − ∇uh)dx

≤
(
‖ρ− ρh‖2;T ‖ρh − ∇uh‖2;T

+ ‖u− uh‖2;T ‖div(ψT (ρh − ∇uh))‖2;T

)

≤
(
‖ρ− ρh‖2;T + c29h

−1
T ‖u− uh‖2;T

)
‖ρh − ∇uh‖2;T .

This proves the lemmac34 = c226 max{1, c29}. ut
Proof of Theorem 1.2:The proof is an immediate consequence of Lemmas
6.3 - 6.6. ut
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