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Summary. A residue based reliable and efficient error estimator is estab-
lished for finite element solutions of mixed boundary value problems in
linear, planar elasticity. The proof of the reliability of the estimator is based
on Helmholtz type decompositions of the error in the stress variable and a
duality argument for the error in the displacements. The efficiency follows
from inverse estimates. The constants in both estimates are independent of
the Lanmeé constant\, and so locking phenomena for — oo are prop-

erly indicated. The analysis justifies a new adaptive algorithm for automatic
mesh—refinement.
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1. Introduction

The fundamental problem in linear elasticity is usually modelled as follows
[Ci2, Va]: Let 2 c R? be the reference configuration of the elastic body
under consideration with boundaéy? = Ip U I'n, ID not empty and
connected]pN Iy = 0. Given avolume forc¢ : 2 — R4, adisplacement
up : I'p — R% and a tractiory : Iy — R¢, find a displacement : 2 —

R? and a stress tenser: 2 — M&x? .= {r € M4 : 7 = 71} satisfying
(1.2) —dive = f, o =CE(u)in £,

(1.2) u = up onIp, on =gonly,
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where the fourth order elasticity tengBris bounded, positive definite, and
satisfies the symmetry conditio;,; = Cjii; = Cyji = Ciyij. We write
E(v) = $(Vv + (Vv)T) for the infinitesimal strain tensor. In the following
we restrict ourselves to the model of plane strain, i.e.

(1.3) CE(u) = Mr(E(u))Id + 2uE(u),

where\ and . are the Larg constantsir(4) = Ay + ... + Agq is the

trace of the matrix4 andld is thed x d identity matrix. (Using ideas from

[AF] it is easy to see that our estimates hold also for more general tensors
C.) It is a consequence of Korn's inequality and the Lax-Milgram lemma
that problem (1.1)-(1.2) has a unique solutienu) € L?(£2; ML%d) x
WL2(0;R%) which satisfies the a priori estimaie||; 2.0 + ||o]l2.0 <

c1]|fll2:2- In addition, the error estimate for the displacement requires the
following regularity assumption

Yd)22.0 + llollize < c2(I fllzse + lup | H2(Ip) + gl H'/(Ix)).

A realistic hypothesis for (1.4) to hold (s< dist(Ip; I'n), i.e., the bound-

ary condition does not change at some boundary point. Furthermore, the
constant; is supposed to be independentaofsee Theorem 2.1 in [ADG]

and Lemma A.1in [\Vo] for the casds; = () andI, = (), respectively; the
general statement does not seem to be available in the literature).

Mixed methods are a powerful tool for the numerical solution of the system
(1.1)—(1.2). They provide at the same time an approximation of the displace-
ment and the stress tensor. A priori estimates have been established for a
wide choice of different methods which satisfy the B&karBrezzi condi-

tion. A subtle choice of the discrete spaces avoids the common phenomenon
of locking (i.e., the estimates are independent of the paramated..3)). A
difficulty in the design of stable numerical schemesis linked to the symmetry
of the stress tenser and thereford'rRAEIJS DE VEUBEKE [FdV] and fol-
lowing his ideaBBREZZI-D0OUGLAS-MARINI [BDM], ARNOLD-BREZZI-
Douagras [ABD] and STENBERG [St] weakened the symmetry condition
and reformulated the elasticity problem: Fiad 2 — R¢, o : £2 — M?x¢

andy : 2 — M%? .= {5 e M4 : p+ 5T = 0}, such that

skew
(1.5) oc=C(Vu—-7), o=0%, —dive=fin{2,
(1.6) u = up onlp, on =gonly.

In the following we will assumery = 0. In the corresponding variational
formulation one seeksr, u,v) € Xy x U x W such that

1.7 a(o,7)+b(1;u,y) =0 and b(o;v,m) = —(f,v),
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forall (7,v,m) € Xy x U x W. Here, the linear and bilinear forms and the
function spaces’;, U, VWV are defined by

a(o, 1) = / C o : rdz,
Q
boiu,) = [ ((divor) + 0 9)d,
Q

(F0) = | (s,

Y = {o € L*(2;M%™Y) . dive € L*(2;RY), on =t onI\},
Ux W = L*(2;RY) x L2(2; MY,
fort = 0 andt = g. In this approach, the symmetry of the stress tensor
o is relaxed and only imposed by means of the Lagrange multiplieet
Y ny Un, Wi, be finite dimensional spaces approximating i/, andW.
Then the corresponding discrete soluti@n, us, v,) € Xgn X Uy X Wy
is characterised by

(1.8)a(on, ) + b(Th; un,vw) =0 and b(ow;vn, M) = —(f,vn),

forall (1, v, nn) € o n X Uy, x Wi, Inthis formulation gy, satisfies only
the weak symmetry condition

(1.9) / op:ypdr =0 Yy, € Wy,
0

which does not implyr;, = o if o), — of € Wj. In two dimensions
existence, uniqueness, and a priori estimates for several choices of dis-
crete spaces have been proven in [St] which include the low GrHERS
(plane elasticity element with reduced symmetry) constructedlifayorL.D-
Brezzi-DoucLas [ABD] and a modification of th@rREZz1-DOUGLAS-
MARINI elemenBBDMj, by STENBERG (Which we will refer to aBBDMSy,
element). A posteriori estimates in the natural norms, on the other hand, do
not seem to be available in the literature (see, however, [BKNSW] for esti-
mates in mesh dependent norms and [RS] for results concerning stabilised
dual-mixed formulations).

In this paper, we propose an a posteriori error estimator for the errers

o — op ande = u — uy for the PEERS and theBDMS, method (see
Sect. 2 for details). Our analysis relies on a decomposition of symmetric
tensors in the spirit of a generalised Helmholtz decomposition. Helmholtz
decomposition was first used in [Ca,A] to prove efficiency and reliability of
error estimators for mixed finite elements. The estimator accounts for the
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residues on the triangldsand the jumps across the element bounddties
More precisely, we define (see Sect. 2 for the notation used below)

nf = hzlldive|3 + hieurl(C on + 1) [3r

+h inf IC™ on + 91 — Vopll3.0 + ISkw(on) 15,7,

vpEUR,
o _ [helJ(C on +m)t)l5p i £ C RUID,
2= hell (o = on)nll3 g if £C I\,
@L10)7° = D" ni+ > np
TET, Ee&;,

The main result of this paper states reliability and efficiency of the estimator
7n. All constants in the estimates are under the regularity assumption (1.4)
independent ok and . In particular, the common locking phenomena are
avoided.

Theorem 1.1. Let 7;, be a shape-regular triangulation a2 ¢ R? and

let (o, up,vn) be the solution of (1.8) for th€ EERS or the BDMS;
element. Assume that the regularity assumption (1.4) holds. Then there exists
a constantcs, which depends only of?, u, and the polynomial degree of

the elements, such that

2.0+ [|IC2(0 — op) |20 < 3.

[ = unlz;2 + v =l

Theorem 1.2. Assume in addition thatirl(C~ 1oy, +n)r is @ polynomial
forall T € T, and(o —o)n g forall E C I'n. Then there exists a constant
c4, which depends only of2, i1, and the polynomial degree of the elements,
such that

n < el = wnllze + 1C7 (@ = on) +7 = e
+ llo = onllzie + [Ih7divellze)-

Remarksl. Itfollows from (1.7) thaC~!o+~ = Vu. Therefore thetermsin
the estimator are natural residuaistl(C oy, 4+, ) andJ ((C~ Loy, +v1,)t)

are zero ifC~ 'y, 4+, is a gradient. The distance of this term to gradients
is also measured by the expressiof|C~ 1oy, + v, — Vg ||

2. The terminf,, ey, ||C 1oy, + v, — V|| can be replaced by its upper
bound||C~ 1o}, 4 v, — Vuy,|| which still satisfies the efficiency estimate of
Theorem 1.2.

3.Since—dive = f+div oy, is a known quantity, we can replag€—/2(o
—op,)|l2;:2 by the (weighted) norm

lo = onllmaivs) = IC72(0 = on)ll2s2 + [[divie — o)l
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onthelefthand sidein Theorem 1.1, but we lose the facton the estimator
above in front of the ternjdiv e||2,7.

4. The regularity assumption (1.4) is not needed for the estim§@of/ 2 (o
—op)||2;2 in Theorem 1.1, but in the duality argument in the estimation of
[u—up||2;2- Hence, if we suppresisi—uy || .2 () then Theorem 1.1 remains
true even ifdist(/p; I'n) = 0.

5. According to the triangle inequality and the preceding remarks, the error

lu — upllzs0 + |7 = Wllze + IC72(0 — on)|2:0

and the error indicaton are equivalentin the sense that their quotient is
bounded from below and above independently of the material parareter
and the mesh—size. In particular, the estimates are robust with respect to
A — oo for (nearly) incompressible materials.
6. The estimator justifies an adaptive finite element scheme which refines
a given grid only in regions where the error is relatively large. A standard
algorithm for efficient mesh-design is as follows: For each nigghwith
a Galerkin solution(py,, , us, ) and local error estimatorg(T") =: nr +
> pcor e, We refineT” € T, (e.g., by halving its largest side) if (for
example)
/

S n(T")/2 < n(T).
Then, further refinements to avoid hanging nodes lead to a newigsh
from which we start again.
7. The estimates are stated for the elements of practical importance only.
The arguments used in the proofs rely only on the following properties (with
LY the piecewise constant functions @nand£1 the continuous piecewise
affine ones)

£8 C Uy, £8 N H (div; 9)2 C Yo p, and E% C Wy,

To obtain estimates for the displacements, we further require a commuta-
tion property for some (Fortin—) interpolation operatqr(of (2.1)—(2.4)
below). We refer to [Ca] for a discussion in the general framework (for
Laplace’s equation).

2. Preliminaries

We assume tha® is a bounded domain iR? with polygonal boundary.
Let 7;, be a regular triangulation @® in the sense of [Cil], which satisfies
the minimum angle condition, i.e., there exists a constant 0 such that
cs'h < |T| < csh%. Here,|T| is the area and is the diameter of
T € T,. The set of all element sides 1, is denoted by, andh g is the
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length of the edgé&’ € &;,. We assume in addition thal; is a finite union of
connected componeni$, i = 0, ..., M, and thatl' , andl\ have positive
distance. Thus we havg, = &, U &p U En Where&y, is the set of all
interior element sides arfth and&y is the collection of all edges contained
in I'h and Iy, respectively. We writ€? = £, U Ey. It is useful to define
a functionh on 2 by h 7 = hr and a functiom, on the union of all
element sides big|p = hp. We writeu € WP (T,) andv € W™P(&)

if wpy € WmP(T) forall T € T andvp € WP(E) forall E € &,.
For eachE < &, we fix a normalng to E such thatng coincides with
the exterior normal t@{2 if £ C 0f2. This allows us to define a mapping
J: WY2(T,) — L2(&,) by

J)ig = () 1g — (- )1E
if E=T%NT~ andng is the exterior normal t&'+ on E and
J()ig = (vr)E

if £ = T N os. Finally we define ford € Wh2(02), u = (u1,us) €
Wh2(£2;R?), ando € WhH2(£2; M?*?)
Curl® = (@72, - 1),

)

U9 —U
Curlu = 1.2 11 , curlu = ug 1 — uy 2,
U222 —U2 |

curlo — 012,1 — 011,2 dive — o11,1 + 0122
0221 — 0212 )’ 0211 + 0222

We use the standard notation for the Lebesgue spate@) with norm

| - |Ip:2 @and the Sobolev spac&8™?((2) with norm|| - ||, p. @and semi-
norm| - |, p:2. The closure off2°(£2), the space of infinitely often differ-
entiable functions with compact support, with respedittg,, ,,.» is denoted

by WP (£2).

The definition of the finite element spaces involves the bubble function
br = M A2 Agonatrianglel’ € 75, where); are the barycentric coordinates
of T. ThePEERS is based on the following function spaces

Up = {vy, €U : vy € Po(T;R)VT € Tp},
Wh = {an € WN COULMER) : yr € PUT:MEZ)VT € Tal,
2y, = {oy, € L*(02; M**?)
divey, € U, o € RTo(T) ® Bo(T) VT € Tr},
Zin={on € Xy : opn=tonly},
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wheret is the orthogonal projection dfin L?(E) onto Py(E;R?) for all
edgesE C I. Here,RTy is the RaviaArT-THOMAS space of lowest
degree, and

RTo(T) = {0 € LA(T;M**?): o =7 +a®@x, 7 € M**? a € R?},
Bo(T) = {0 € L*(T;M**?) : ¢ = a ® Curlby, a € R?},
BDM,(£2) = {0}, € L*(2;M**?) : divoy, € U, opr € Pi(T;M?*?)}.
The higher order method3DMS;, are defined fok > 2 by
U = {von, €U : vy € Pra(T;R?)VT € To},
Wh={1m €W : yr € Pr(T;MEZIVT € T},
2y, = {op, € L*(02;M?**?) .
dive €U, opr € Pr(T;M>?) @ By,_1(T)},
Zt,h = {O’h e Xy opn = fOﬂFN},

wheret is the orthogonal projection dfin L?(E) ontoP,(E;R?), and
By 1(T) = {0 € L*(T;M**?) : ¢ = Curl(brw),w € P_1(T;R?)}.

Using the interpolation operators iRy andBD My, (see [BF], Sect. I11.3.3)
we can construct an interpolation operafd; : WH2(§2; M2*2) — X,
such that for allr € W12(02; M2*2)

(2.2) / div(IlpT — 7)vpde =0 Yo, € Uy, and
Q
(2.2) | IIpT — 7|27 < cehr|T|12:7-

The projectionl;, is defined in such a way that

(23) / (HhT — T)thhd.’r =0 VYo, €Uy, and
0
(2.4) ™m=0only = Iyrn=0o0nIx\.

If P? denotes the orthogonal projectionfid onto £ C Uy, L), the space
of piecewise constant functions, we have the estimate

H’U — P;?UHQ;T < C7hT|U|1’2;T Vv e Wl’Q(T) VT € 771

Finally we use Gd8ment's interpolation operator [CR};, : Wh2(2) — £1
onto the space of continuous, piecewise linear functions, which satisfies the
interpolation estimates

[v = Ruvllz;r < cshrl[v]l12wr,

1/2
lv = Ryvllae < cohpt (0]t 2105
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wherewyr = U{T" € T, : TNT' # 0} andwg = U{T €T, : ECT}.
Notice thatR;, satisfies

(25) v=c¢onl; = Rpv=c onlj.

The number of triangles itar is uniformly bounded by some constang,

which depends only on the shape of the triangles. Throughout the paper we
write Sym (o) andSkw (o) for the symmetric and the skew-symmetric part

of a matrixc and use little Greek letters for matrices, little Latin letters of
vectors and capital Greek letters for scalars. We use the syrihpknd

curly, if we apply the corresponding differential operators on each triangle
to a function that is globally not smooth.

3. A Helmholtz decompostion for symmetric tensor fields

The following two results on the Helmholtz decomposition are essential for
the subsequent proofs. We add a sketch of their proofs for the convenience
of the reader.

Lemma 3.1. Assume thatl is a symmetric, positive definite tensor of fourth
order. Letp € L?(£2; M?*2). Then there exisigc W2(£2; R?) withq = 0
onIp andf € Wh2(2;R?) with f = ¢; € R? on T3, ¢g = 0, such that

p = Vq+ A~ 'Curlf.

Proof. The classical proof for the existence of a Helmholtz decomposition
for vector fieldsu € L?(£2;R?) can be modified to yield the existence of
@, ¥ € L*(2) suchthatr = 0onlp,® = c; onl; andu = V¥ + Curl &.

To do so, consider

1
I(p) = /Q <2AVp :Vp—Ap: Vp) dx.

It follows from the direct method in the calculus of variations that there
exists a unique € W2(£2; R?) with ¢ = 0 on I'p such that

I(q) = min{I(p): p € WH(;R?), p=0o0nIp}
andgq satisfies the Euler—Lagrange equation
/ (AVq — Ap)Vodz =0  forall p € WH2(2;R?)
Q
with ¢ =0o0onIp.

Itfollows thatr = AVq— Apis adivergence free vectorfield and by Green's
formula

/ (mn, ¢>d3:/(div7rgz$+7rv¢)d:v Vo € WH2(02;R?).
o 2
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In view of the Euler-Lagrange equations we conclude
/ (mn,¢)ds =0 forallg € WH2(2;R?) with ¢ =0onIp.
o9

With ¢ = 1 in a neighourhood of one component of the Neumann boundary
and¢ = 0 in a neighbourhood of all the other components as well as on a
neighbourhood of the Dirichlet boundary, we infer thathas mean value

zero on all connected components of the Neumann boundaryp/th we
deduce the same property on the Dirichlet boundary and thus there exists an
f € Wh2(§2;R?) such thatr = Curlf (see [GR], Chapter |, Theorem 3.1).
Sincern = Curlfn = V ft, wheret is a tangential vector, this concludes
the proof. O

Furthermore, we also need a symmetric variant and define

X ={veWh?(;R*: v=0o0nIp},

Xy ={Pc W>*():

/ Pdx =0, Curld = ¢; on T}, ¢; € R?, ¢y = 0}.
Q
Lemma 3.2. Leto € L?(£2; MZ%?). Then there exists € X, and® € X,
such that
o = CE(v) + Curl Curl @.

Proof. In view of Korn’s inequality there exists, by the direct method of the
calculus of variations, a unique minimiseE X of

I(v) = / 1CIE(U) :E(v)dx —/ o : E(v)dz.
02 Q
In particular,v satisfies the corresponding Euler—Lagrange equations
/ CE(v) : Vwdzx = / o:Vwdr Vwe X;.
Q 2

Let 7 = 0 — CE(v) € L*(£2;MZ2:2). The classical Helmholtz decom-

position applied to the rows of yields the existence of € X; and
h € WH2(£2;R?), h = ¢; on I; with ¢y = 0 such that

7 =Vq+ Curlh

(we refer to Lemma 3.1 for details). If we ugeas a test function in the
Euler Lagrange equations we deduce in view of the orthogonalifzgaind
Curlhin L?

0= / (CE(v) — o) : Vqdz :/ |Vq]2dx+/ Curlh : Vgdz
9] 2 N
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and thereforgg = 0 and+ = Curl h. From the symmetry of we deduce
—hi1 = ha o, i.e.,divh = 0. Sinceh is constant on the connected compo-
nents ofl which are by assumption closed Lipschitz curves, we conclude
that the mean value dfi, n) vanishes onl’; for i = 0,..., M. Green’s
formula then implies that the mean value vanishes alsé@mnd hence
there exists a stream functidne W22(£2) with Curl® = h. Subtracting

from @ a suitable constant if necessary we obtain the assertion of the lemma.
O

4. An estimate for the trace of a tensor field

The following technical results are needed in the estimates below. The first
estimate is a modification of well-established estimates of the trace of a ten-
sor field by its divergence and the deviatoric part (see, e.g., [BF, Proposition
3.1in Sect. IV.3)).

Lemma 4.1. Let X, be a closed subspace éf(div; £2) which does not
contain the constant tensdrl. Then there exists a constant; (which
depends only o)y) such that

ler 7l < en (1T l0 + divrllze) VT € So.
Proof. Assume the contrary. Then there exists a sequénges X satis-
fying
ltr7illose =1, (177120 + |div 7j]lz0 — 0.

Thus we may choose a subsequence (again denotgd sych that; — 7
in L2(02; M9*9d) anddivr; — divT in L2(2;R?). Clearlyr € Xy with
7P = 0 and therefore- = o - Id with o € L?(£2). On the other hand we
havediv T = Va = 0 and hencex is constant. Sincil ¢ X, we conclude
7 = 0. It follows from the weak convergence of the sequencat

)
¢j == [ trrjdez —0
ToRl)e

and thusy; = 7; — % - Id (d being the dimension) satisfies by assumption

(41) HtI'O'J‘HQ;Q =1.

lim
J]—00
We now adapt the arguments from [BF], p. 199, to obtain a contradiction.
Since the integral mean of o; is zero we can solve the equatidiv w; =

—tro; for somew; € Wy*(£2; R%) which satisfies the a priori estimate

|lwjll1,2:0 < crzlltrojll2,0 < cralltr 7]l2,0 = ci2.
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Using the above identities, we calculate

tro;|3.0 = —/ trojdivw;jde = —/ gj: ijda:+/ a}) : Vw,dz
’ 19 10, 0
< (ldiv ojllz.e + llo} ll20) w120 = 0
asj — oo. This contradicts (4.1) and proves the lemmael
Moreover, we will use the following estimate.

Lemma 4.2. Assume thatt ¢ W?22($2) satisfiesCurl® = 0 on I'y if
In # 0or fQ tr CurlCurl® = 0 if I'y = 0. Then there exists a constant
c12 Which depends only of? and /'y such that

|AD||9.0 < c12]|(Curl Curl )P 2.0
Furthermore,
||Curl Curléﬁﬂg;g < ¢13]|Curl Curl@H?c_l;Q,
where the constant;; depends only o, I'y and .

Proof. Assume first thaf'y # (). Let I'; be a maximal line segment con-
tained inI'y # ), and define

Yo = {UGH(diV;Q): /

onds = O}.
Iy

Clearly Xy is a weakly closed subspace Hf(div; {2) andld ¢ X,. From
div Curl Curl® = 0 and

Curl Curl ®nds =0
Io

we haveCurl Curl® € Xy. If I'y = 0, let Xy := {0 € H(div;2):
[, trodz = 0} and, by assumptiorGurl Curl® € Xy. Hence, the first
inequality follows from Lemma 4.1. From this,

/ |Curl Curl &|%dx
2

1
:/ |Ad5]2dx+/ |(Curl Curl @)P|?dx
2Ja Q

2
< 2;1(% + 1)/ C~!'Curl Curl @ : Curl Curl &dz. O
2
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5. Proof of the upper bound

We begin with the estimate for the errot= o — o}, in the stress variable.
Lemma 3.2 implies the existenceofE X; and® € X, such that

(5.1) e = CE(v) + Curl Curl @ + ¢,

where¢ = Skw(o},) is the skew-symmetric part of,. Since

(5.2) / E(v) : Curl Curl @dx = / Vo : Curl Curl @dx
2 9

:/ (v, (VCurl ¢)t)dx = 0,
oY)

E(v) andCurl Curl @ are orthogonal i (£2; M2*2). Therefore, we obtain
the decomposition

(5'3)“6“(%—1;2;0 = ||Cju"[‘:l Curl(p”(%_l;Z;Q + ||]E(U)||%,2,Q + H¢||(2C—1;2;Q7

where we used fod = C and A = C~! the notation
”7’“?420 = / AT : 7dz.
o 7]

For C as in (1.3) we have witly, = 1//2p andcis = max{1/\/2y,
d/\ AN+ 2u}

ITllze < culltllcze, 7120 < asliTllze:

In particular these constants are independerit fafr A\ — oo. In the next
lemmas we estimate the three terms on the right hand side of (5.3). All
constants are independent dfand » and depend only om, {2 and the
shape of the triangles.

Lemma 5.1. There exists a constanis such that we have
|Curl Curl @5, < exo{ Iy curly (€ an + )30
IR I o+ ) g Y
Proof: We deduce from (5.1), (5.2) ariéi 'o = E(u)
|| Curl Curl@”%,lg;g = /Q Curl Curl @ : Cledx

= —/ Curl Curl @ : (Cflah + yp)dx.
(9}
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Letb = Curl® € W2(£2;R?) and defingy, := Ryb € L1. Sinced € X,
we deducé = Curl® = ¢; on I; and thereforé Curlb)n = 0 on I'y. In
view of (2.5), Curlb, € RTy is an admissible test tensor in the discrete
equation (1.8) and we obtain
(5.4) / Curlby, : (C Yoy, + yp)dz = 0.

0
Therefore, by an integration by parts on each triangle,

|Curl Curl 6|21, = — / Curl(Curl @ — by) : (C oy + yp)der
1< Q
= / (Curl @ — by, curl(C oy, + ) da
2

+ / (Curl @ — by, J((C oy, +yp)t))ds
En

< Y ||Curl @ — bylyp|lcurl(C op + ) |2

TeT
+ Y lICule = billas|lT(C o + 1)) 2z
Eeg
2 -1 2 1/2
< esy/eno|Curl @] z0( Y i lewl(C on + ) [3r)

T€Th

1 9 1/2

V20l Curl @l 0 ( D helI(C o+ mt)Ee)
Eeg)

If I'v # (we conclude with Lemma 4.2 sin€airl @ = 0only.Otherwise
we deduce from (1.8) withy, := Id € 3, andy;, = 0 that [, tr opdz =
0. Thus we obtain from (5.1)

Jo tr CurlCurl® dx = [, tr(e — CE(v))dx = [, tr CE(u — v)dx

= (2A +2p) [, div(u — v)de = (2X + 2p) [y, n(u —v)ds =0
sinceu, v € W,"*(£2; R?). In view of Poincag’s inequality and Lemma 4.2
we obtain

[Curl @||1 9,0 < c17||VCurl @||2,0 < cr7e13||Curl Curl @||¢ -1, .
The assertion of the lemma follows withg = v/2¢17¢13 max{cg+/c10,
\@Cg}. d
Lemma 5.2. There exists a constanis such that we have

IE() 12220 + 181|215 < elsllhrdivell3.p + 1Skw(on) 3.0

1/2
+hg *enl3 ry -
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Proof. Itfollows from (5.1) and (5.2) since € H (div; {2) andz+Skw (o)
is symmetric by an integration by parts that

B0 = | E): (e + Skw(on)da
= / Vo :edz +/ Vv : Skw(op)dx
19 [0
= —/ (v,dive)dx —|—/ (v,en)ds +/ Vv : Skw(oyp,)dx.
0 o9 Q
The definition of the continuous and the discrete problem implies
/ (dive,vp)de =0 VYo, €Uy
Q
and therefore, whetyg is the constant in Korn'’s inequality,

/(v,divs)da: = / (v — Plv,dive)dx
9] 9]

< |[hrdivelselhz' (v — Pv) 20

< crvligel|hrdive| 2o

< crep||E(v) ||zl hrdivel|z; .
We use the trace inequality| 2,z < CgohlE/Q(h%lHUHQ;T + [[Vvl2,7) tO
estimate the boundary integral. By definitionXsf 5,

/ (v,en)ds = / (v — PPv,en)ds < Z v — PPl
I'v I'v

EEgh,N

E2llen|l2.E

1/2
< (er + Deaolvh 2l *enllan
and the proof of the lemma follows withg = \/5014019(07 +1). O

Throughout the rest of the section we use the notatjon= C~'o}, + 3,

p := C~lo+~ = Vu.Since Lemma5.1 and Lemma 5.2 provide an estimate
for ||o — op|c-1.0, it suffices to bound|p — pp, |2, in order to obtain an
estimate for|y — v |2:0-

Lemma 5.3. There exists a constans; such that we have

o= pullcsa < ear (Ilhreurhupn]B.o + l|hrdivel o

1/2 1/2 1/2
(65)  +lISkw(on) B+ 1h T (ont) Bgo + 1h % enlle )
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Proof. In view of Lemma 3.1 there exist € W2(2;R?), f = ¢; on I3,
co = 0 andg € WhH2(£2;R?), ¢ = 0 on I'p such that

(5.6) p—pn=C~tCurl f + Vg,
/ Clp—pn):(p—pp)de = / C~'Curl f : Curl fdz
Q Q

+/ CVgq : Vqdz.
Q
The first term on the right hand side can be estimated by
/ CCurl f : Curl fda = / (p— pp) : Curl fdx
2 0
= —/ prCurl fdz.
¢

Let R, f € L} be the Cément interpolation off. SinceCurl Ry, f is an
admissible test tensor we deduce in view of (5.4) with an integration by
parts

—/ pp : Curl fdx = —/ pn : Curl(f — Ry, f)dx
Q Q
— [ fewlpn. s ~ Bafde — [ (Tpnt). 1 - Ruf)ds
Q

En

< > llewlppllzzllf = Bufllze + D 117 (ont) s | f — RS sk

TETh EGSS

1/2
< csv/enl fllize( D2 hhlleurt palllr)

TeT,

1/2
+ V2l f iz ( Y hell Tl

Eeg)

1/2
< nlVilzo( 3 Bllcud puldr + 3 hellJ(ont) s
TeTh EeE)

With c2a = v/2c17 max{cs+/C10, vV2¢o}. Since ||V fl2.o = [|Curl f||2.2
we deduce

[Curl flle-1 2,0

1/2
<en( D BlewlpnlBr+ Y hellJent)lEe)
TeTh Ee&)p
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Taking the symmetric part in (5.1) and (5.6) we get
Sym(e) = CE(v) 4+ Curl Curl &,
SymC(p — pp) = Sym(e) = CE(g) + Sym(Curl f),
hence
CE(v — q) = Sym(Curl f) — Curl Curl @.

Thus we may estimate

)lE20

|E(v
/ CE(v—1¢q) : E(v — q)dx = /Q Sym(Curl f) : E(v — q)dx

- /Q Curl f : E(v — g)de < ||Curl flle1.0E(v — )llcae

and hencdE(v — q)|c;2 < [|Curl f||c-1,,. By Korn's inequality we have
IVallc;o = /Q CSym(Vg) : Sym(Vg)dx
+/ CSkw(Vq) : Skw(Vq)dx
2

< ()20 + 20 /Q Va2 < (14 21c)[E@) 2.0

and therefore we obtain by the triangle inequality, the estimates above, and
Lemma 5.2

lp = prllE.e = IVallZo + ICurl fIE-1p
< (1 + 2pcto) |E(9) I + I Curl £l2-1,0
< 2(1 + 2ucto) (I[E(q — v)lIE,e + [E()[E.0) + [Curl f12-10
< (2(1 + 2pcty) + 1)||Curl fl[Z-1,0 + 2(1 + 241l [E(v) 2,00

< ety +3)( Y Whlleurl 3 + Y el T (o))
TeTh Ee&y

+2(2pcty + 1)cis
1/2
- (Ihrdivellf.q + ISkw(on)B.q + I1h *=nll r, )-
The assertion of the lemma follows with; = max{c3,(4uciy + 3),
2(2ucty + 1) H2. O

The next step in the proof of Theorem 1.1 is an estimate for the displacement
errore = u — uy. The proof requires a duality argument and relies on the
regularity assumption (1.4).
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Lemma 5.4. If the regularity assumption (1.4) holds, then there exists a
constantcys such that

lellzo < cas(Inrdivelg + 1hrSkw(on) [3q
+ inf hr(C o+ o = Vo) + Y 2enl )
Proof. Let z € W?22(£2) be the solution of the problem
divCE(z) =e in {2, z=0onIp, and CE(z)n=0o0nIY,

and letr := CE(z). By assumption (1.4)}z||2,.2.0 + [|7||1,2:2 < c1]le]|2:0-
Consequently, by (2.1), (1.8), (2.5) and an integration by parts

||e||%;9 = / (u — up,divr)de = —/ Vu:1dr — / (up, div ITpT)dx
Q Q Q
= / (Vop, — Vu) : rdz + / (CYop 4+ v, — Vup) : Hyrdz
2 (9}
+/ Vo : (T — 7)dz.
(0]

The last term on the right hand side vanishes according to (2.3). By the
definition of r and (2.2) we deduce

el = [ (Fon=Va) o
+ /Q((C_lo’h + v, — V)« (I — 7)dx
+ /Q(Clah + v, — V) : Tdx
= /Q(C_lah + v, — Vo) : (I — 7)dx

+ / (C oy + 9 — Vu) : CE(2)dx
Q

< col|h7(C op 4+ yn — Vou)|l2:0|T

1,2;02

+ / (C oy + 4 — Vu) : CE(2)dz.
Q
The second term on the right hand side can be rewritten as

/ (C Yo + 9, —E(u)) : CE(2)dz = —/ (0 —op) : E(z)dx.
N n



204 C. Carstensen, G. Dolzmann
Writing E(z) = Vz — Skw(Vz) we obtain by an integration by parts
/ (Clop + v, — E(u)) : CE(2)dx
9]
_ / (div(o — o), 2)dz — / (o — o), 2)ds
0 I'v
+ / (Skw(op,) : Skw(Vz))d.
¢

The orthogonal projectioﬁ’,?z of z onto LY is well defined and we deduce

/(dive, z)dx = / (dive, z — P)z)dx
0

(]
, 1
< ||hrdiv €H2;QH]T(Z — PP2) |20
T
< cr||hrdivell2,elzl12,0 < crerl|hrdivell2.ollell2;.0-

The boundary term can be estimated as in Lemma 5.2 and we obtain
[ en2)de < cxem(er + 1)lellaallig el
Iy

In order to bound the last term we defifie= R, Skw(Vz) € W), and infer
with (1.9)

/ Skw(op) : Skw(Vz)dr = / Skw (o) : (Skw(Vz) —&)dx
2 2

1
< HhTSkW(Uh)Hz;QHE(SkW(VZ) —&n)ll20
< csca||hySkw(op)2.2llell2.0-

The estimates above imply

HeHQ;Q < cgcy UiI€l£ ||(C710h 4+ vn — Vg, ‘2;9 + C7Cl”h7’diV€H2;Q
h h
+ csca||hrSkw(on)||2;02 + c2o(er + 1)|en|o;ny -
This proves the lemma wittys = 2 max{c;cg, c1¢7, 120, cgce}. O

RemarkFor the higher order method&>MS;, we have the improved esti-
mate

lellzio < cas (IR3divella.o + | hrSkw(on) a0

. _ 1/2
+ inf [[hr(Crop + 91 — Vor) 2.0 + ||hg/ EnH2§FN)
’UhEZ/{h
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since we may use the interpolation o, instead of the orthogonal pro-
jection ontoL).
Proof of Theorem 1.1Recall from (5.3) that

ez, = Curl Curl B2 1.5, + [[E(0)[B2,00 + 101510,
In view of Lemma 5.1 and 5.2 we obtain
2 2 2.2 2 2
H€H<cfl;2;9 < 2max{cyg, cig}n” =1 caun”

Moreover, by the triangle inequality and Lemma 5.3

1 1
v = \3;9 = EH’Y - ’YhH((%;_Q < ;(HP - Ph||<2c;9 + o — Uh||<2c—1;n)

< 2(c3; + c34)n* =t 50

The theorem follows with Lemma 5.4 and f@y = co3 + co4 + c95. O

6. Proof of the lower bound

The lower bounds in Theorem 1.2 rely on two main ingredients: a local-
ization technique introduced in [V] and classical inverse estimates in finite
element spaces. We briefly summarize the relevant results (see [V] for more
details). There exists an extension operdtorC’(E) — C%(T), T € T,

E € &, which extends polynomials of degréeon F to polynomials of
same degree ofi and satisfie$Lp) p = p g for all p € Py(E). Finally we

let yr = (maxy by) by and we denote by the uniquely determined
piecewise quadratic function are; which satisfiesupp g C wg, ¥ >0
andmaxpg YE = 1.

Lemma 6.1. ([V],Lemma 4.1) Let: € N. Then there exist constantss,
..., c28, Which depend only ohand the shape of the triangles such that we
have forallT' € 7, E € &, with E C T and allu € P(T), v € Pi(E)

1/2
6.1) lorullor < llullar < essllvn!*ullar,
1/2
(6.2) lYEvl2r < [Jvl2;e < 027WE/ vl2;E,
_ 1/2 1/2 1/2
©3)  cphiollae < ¢ Lollar < cashil*|[v]lo:e-

Lemma 6.2. ([Cil], Lemma3.2.6) Assumethat Py (7)and0 < ¢ < m.
Then there exists a constany, which depends only on the shape of the
triangles,k, £ andm such that

(6.4) [0 m,2:7 < cagh ™ v]oer
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In Lemma 6.3 and 6.4 we give bounds on the different contributions in the

error estimator in (1.10). Recall thap, = C'op, + v, p=C lo+v =
Vu.

Lemma 6.3. There exists a constani, such that for alll’ € 7,
hr|leurl(C oy, + 43 [l2r < Cso(H(C_l(U — o)+ — ’Yh||2;T)'

Proof. It follows from (6.1) and an integration by parts that

llleurl ppl 3 < 1oy curl py 37 = — /T Gr{curl(p — pp), curl pp)dz

= /T(p — pn) : Curl(¢reurl pp)dz

‘ Curl(churl Ph) H 2:T-

<Ilp = pnll2r
From (6.4) and (6.1) we infer
|Curl(yrcurl pp) |27 < CQQh:FleﬂTcurl prll2r < CQQh;churl phll2:7-
This proves the lemma witkyg = c3gco9. O

Lemma 6.4. There exists a constamg; such that the following estimate
holds for allE € &

h 21 T(C  on + )0 2 < e31]|C (o — ) + 7 — 1]

2wg-

Proof. Letv, = J((C~toy, + v4)t). We obtain from (6.2)

17((C o + 7))

1/2
2 < il Lonl3s = /E | Lun 2ds.

An integration by parts in each triangle ©f; yields

/ <curlph,1/1ELvh>dx+/ pn : Curl(v g Loy)dx
wp

WE

— / (J(pnt), YELuy)ds,
E

and so

0= / ({curl p,vpLvp) + p : Curl(vpLoy,))dx.
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Therefore we obtain
1/2

R
= - / (curl(p — pp), Y Lop)de — / (p— pn) : Curl(Yp Loy )dx

WE

Uh H%,E

= / (curl pp, g Lvy)dx —/ (p = pn) : Curl(yp Loy )dx

wWE

< lleurl ppll2wp [V £ Lonll2iwp + 10 = phll2wp [ Curl($eLop) |2, -

Let c32 be a constant such thagp/hT < C32h;31/2 for all T € 7;, with
E cC T. Clearly,c3o depends only on the shape of the triangle§;inWe
conclude with Lemma 6.2 and 6.3

1/2
hE/ lvnll2.e < coghpllcurl pp|2.w, + c20c2se32|lp — phll2:wp

< cagesa(eso + ¢20)[[C o — o) + 7 — Yall2ws-
This implies the result witleg; = 627632(030 + 029). g

Lemma 6.5. There exists a constants such that the following estimate
holds for allE € &, n

1/2 .
hy2 (o = an)nllae < ess(lhdiv(o — on)||2ws + |0 — onll2ws)-

Proof. Letv;, = (0 — op)n. Then
/ (div(o — op), Y g Luy)dz
T
= —/(U —on) : V(gLup)ds +/ (0 = on)n[*¢rds
T E
and thus

/ |(o — ah)n|21/JEds
E

< ||div(o — op)

lo.;r|VELop o + |lo — onll2r ||V (Ve Loy)|

Hence we obtain from (6.2) and Lemma 6.2 thiat — ah)an;E is bounded
from above by

2;T-

. _ 1/2
Bs{caslldiv(o — on)l|ar + caocashy o — onllza Yhg vnllz:e
and we conclude
1/2 .
hl2 (o — an)nllas < esa(hr||divio — o)|lor + llo — onll2r),

where css3 = 056628632 max{cag, 1}. This implies the assertion of the
lemma. O
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Lemma 6.6. There exists a constani, such that we have
hr||[C o+ — Vg2 < 034(HU — up|l20 + hrllp — thz;T)-

Proof. It follows from (6.1) and an integration by parts that
i llpn — Vupl3.r < / Yr(pn — Vug) : (pr — Vup)dz
T
= - /T¢T(P —pn) t (pn — Vup)dz

+ / vr(p — Vuy) : (pn — Vup)dz
T

IN

(Ilo = prllarllon — Vunllair

+ llu = wnllasr i (e (on — V) 27 )

IN

(Ilo = prllasr + ca0n7 1w = wnllazr ) o = Veunlla;r.
This proves the lemmas, = c3q max{1,co0}. O

Proof of Theorem 1.2The proof is an immediate consequence of Lemmas
6.3-6.6. O
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