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Abstract

We explore theoretically the possibility of austenite–martensite transformations more complicated than those envisaged by the
crystallographic theory, and make corresponding experimental predictions. The use of the Hadamard jump condition in this
context is justified, and leads also to results on non-attainment of minimum energy. © 1999 Elsevier Science S.A. All rights
reserved.
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1. Introduction

The crystallographic theory of martensite [1] assumes
that the martensitic microstructure in contact with the
austenite is a simple laminate. We relax this require-
ment so as to allow more general martensitic mi-
crostructures. In particular, we give necessary and
sufficient conditions on lattice parameters for the exis-
tence in single crystals of planar non-classical austen-
ite–martensite interfaces separating a pure phase of
austenite from a homogeneous martensitic microstruc-
ture, that is one whose macroscopic deformation gradi-
ent, or weak limit, namely the deformation gradient
observed on a length-scale sufficiently large for the
underlying microstructure not to be seen, is constant.

The classical Hadamard jump condition states that
there exists a continuous deformation having constant
gradients A, B on opposite sides of a planar interface
with normal m if and only if:

A−B=a�m (1.1)

for some vector a. To study non-classical interfaces we
need to know if we can use this condition when the
deformation on the martensite side of the interface is
more complex, such as a layers-within-layers structure

(perhaps involving several variants), or even a non-ho-
mogeneous structure with fractal refinement as the in-
terface is approached (see Fig. 1). (Fractal structures
have been observed in quartz [2] and CuAlNi [3].) As a
by-product, our analysis of this issue leads to state-
ments on non-attainment of minimum energy and the
formation of microstructure.

We use the non-linear elasticity approach to marten-
sitic transformations developed in [4], [5], in which
microstructures are identified with ‘minimizing se-
quences’ for the total free energy:

Iu(y)=
&

V
8(9y(x), u)dx, (1.2)

where interfacial energy contributions are ignored.
Here, y(x) denotes the deformed position of the particle
at x�V, where the reference configuration V represents
undistorted austenite. The free energy function 8(F, u)
depends on the deformation gradient F and the temper-
ature u. By frame-indifference, 8(R F, u)=8(F, u) for
all F, u and for all rotations R, i.e. for all 3×3 matrices
in the set SO(3):={R : RTR=1, det R=1}. Adding a
suitable function of u we may assume that minF 8(F,
u)=0. At the transformation temperature uc the energy
wells of 8 are given by SO(3) for the austenite, and by
SO(3)Ui for each of the N different variants of marten-
site, with Ui=Ui

T\0 for each i. Thus 8(F,uc)]0
with 8(F,uc)=0 precisely for those F in the set
SO(3)@@ i=1

N SO(3)Ui. For u\uc, 8 is minimized just
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at the austenite well SO(3)a(u)1, while for uBuc the
martensite wells minimize energy. Here a(u), a(uc)=1,
describes the thermal expansion of the austenite; the Ui

also depend on temperature.
Following [7], p. 402 ff we consider various transfor-

mations. For an orthorhombic to monoclinic transfor-
mation we have N=2 and in a suitable basis:

U1=diag(h1, h2, h3), U2=diag(h2, h1, h3), (1.3)

with lattice parameters hi\0, h1"h2 For a cubic to
tetragonal transformation we have N=3 and:

U1=diag(h2, h1, h1), U2=diag(h1, h2, h1),

U3=diag(h1, h1, h2), (1.4)

where the lattice parameters h1\0, h2\0, h1"h2. For
cubic to orthorhombic transformations N=6, and
there are two different types. The first corresponds to
the change of point group P(432)�P(222), where P(432)

denotes the group of rotations of a cube into itself and
P(222) the orthorhombic subgroup with axes consisting

of three face normals, with U1=diag (h1, h2, h3) and
U2, . . . , U6 obtained by permuting the distinct hi\0.
However, we do not know of examples in which this
type of transformation occurs in the absence of stress.
The other type, observed in materials such as AgCd
and CuAlNi, corresponds to the change of point group
P(432)�P(222)%, where P(222)% is an orthorhombic sub-
group of P(432) with axes consisting of two face diago-
nals and one face normal. In this case:

U1=
1
2

h1(e1+e2)� (e1+e2)+
1
2

h2(e1−e2)� (e1−e2)

+h3 e3�e3, (1.5)

where (e1, e2, e3) is an orthonormal basis of unit vectors
in the cubic directions, and U2, . . . , U6 are obtained by
permuting and changing the sign of the ei.

2. Microscopic and macroscopic deformation gradients

Given a set K of energy wells, an important related
set is the quasiconvexification Q(K) of K, that is the
set of macroscopic deformation gradients correspond-
ing to microstructures with gradients in K. One of
several equivalent precise definitions is that Q(K) is the
set of matrices F for which there exists a sequence z ( j )

of deformations satisfying z ( j )(x)=F x for x belonging
to the boundary (V of V, and such that �z ( j )(x) is
bounded independently of x and j with �z ( j )�K in
the sense of measure (i.e. the volume of the set of points
x with�z ( j )(x) lying outside any prescribed neighbour-
hood of K tends to zero as j��). Another equivalent
definition is given after Eq. (4.2) below.

It is known how to compute Q(K) when K consists
of just two martensitic energy wells. Consider the or-
thorhombic to monoclinic case, with U1, U2 given by
Eq. (1.3), and set:

K=SO(3)U1@SO(3)U2. (2.1)

We make use of the following characterization of
Q(K) and of the corresponding macroscopic
deformations.

Theorem 2.1. [5–7] For K given by Eq. (2.1), Q(K)
consists of those A�M3×3 with det A\0 such that
ATA=diag (a, b, h3

2)+c(e1�e2+e2�e1), where a\
0, b\0, a+b92c5h1

2+h2
2, and a b−c2=h1

2 h2
2.

Furthermore, any invertible y with D y(x)�Q(K) a.e. is
a plane strain, i.e. y(x)=Q(z1(x), z2(x), h3 x3+m) with
Q�SO(3), and (z1/(x3=(z2/(x3=0.

Here and below we use the standard abbreviation a.e.
for ‘almost everywhere’, meaning except possibly on a
set of zero volume.

Fig. 1. Non-classical austenite–martensite interfaces in which the
martensite has (a) a layers-within-layers structure with constant de-
formation gradient in each sublayer, (b) a speculative fractal struc-
ture.
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3. Non-attainment of minimum energy and the
formation of microstructure

Consider the orthorhombic to monoclinic case and
let (V have a flat piece G with unit normal m. More
precisely, we may suppose that G passes through the
origin and is a subset of the plane P={x�R3 : x · m=
0}, and that for some r\0, VSBr={x�R3 : x · mB
0}SBr and G³PSBr, where Br={x�R3 : �x �Br}.
Assume linear boundary conditions on G, i.e. y(x)=
A x for all x�G for some matrix A. Then we have the
following version of the Hadamard jump condition.

Theorem 3.1. Suppose that an invertible y : V�R3 sa-
tisfies �y(x)�Q(K) for a.e. x�V and linear boundary
conditions y �G=A x. Then there exists a�R3 such that
A+a�m�Q(K). If m · e3"0 then, in addition,
�y(x) is constant a.e. for �x � sufficiently small.

The proof is given in [8] and is an easy consequence
of the plane strain assertion of Theorem 2.1 provided
m · e3"0. However, the case m · e3=0 requires a deep
mathematical result [9] on quasi-regular mappings.

Theorem 3.1 implies that if uBuc and m · e3"0 the
minimum of the total energy Iu subject to the boundary
condition y �G=A x is not in general attained, so that
minimizing sequences necessarily develop microstruc-
ture. To see this we need only choose A such that
A+b�m�Q(K) for some b, but A+a�mQK for
any a. Then it can be shown that the infimum of Iu

subject to the boundary conditions is zero, so that
applying the theorem to a minimizer we deduce that
�y(x)=A+a�m for �x � sufficiently small, and hence
A+a�m�K, a contradiction.

Using the same techniques it is also shown in [8] that
for u=uc, provided h3"1, boundaries between austen-
ite and martensite, if not so highly irregular that they
have positive volume, are necessarily locally planar,
with the macroscopic deformation gradient locally con-
stant on each side.

If linear boundary conditions are specified on the
entire boundary we obtain the following nonattainment
result [8] where V is an arbitrary bounded domain with
sufficiently regular boundary.

Theorem 3.2. If A�Q(K)¯K then
infy�(V=Ax 	Vc(D y)dx is not attained.

Proof. Suppose A�Q(K) and that y is a minimizer.
Then D y(x)�K a.e. in V. Since y �(V is linear, a known
invertibility theorem ensures that y is invertible. Hence,
by Theorem 2.1, y is a plane strain. Since y is linear on
the entire boundary of the three-dimensional region V,
it follows that y is affine, and hence that D y=A a.e. in
Q. Hence A�K, which contradicts A�Q(K)¯K.

Theorem 3.2 states that for A�Q(K)¯K, minimizing
sequences for Iu generate microstructure, solving a
question in [5]. Note that by Theorem 7.3 in [5], the
result also applies to cubic to tetragonal transforma-
tions if A belongs to the quasiconvex hull of any pair of
tetragonal wells. In two dimensions the corresponding
result is false (see [10] and unpublished work of the
same authors).

4. Non-classical austenite–martensite interfaces

We let u=uc and consider the case of planar non-
classical austenite–martensite interfaces separating a
region of undistorted austenite (corresponding without
loss of generality to �y=1) from a homogeneous
microstructure of martensite. Thus we seek vectors b,
m�R3 with �m �=1, such that:

1+b�m�Q(K), (4.1)

where K=@ i=1
N SO(3)Ui. To obtain some necessary

conditions we need some terminology. A function 8=
8(F) is polyconvex if it can be expressed in the form
8(G)=h(G, cof G, det G) for some convex h, where
cof G=det G · G−T denotes the matrix of cofactors of
G. The polyconvexification P(K) of K is defined as the
set of F such that:

8(F)5max
G�K

8(G) (4.2)

for every polyconvex function 8. (An alternative defini-
tion of Q(K) is that Eq. (4.2) holds for all quasiconvex
functions.) We always have that Q(K)¦P(K). If det
F\0, recall that the singular values of F are the square
roots of the eigenvalues of the symmetric, positive
definite matrix FTF. We write these counting multiplic-
ities as 0Bsmin(F)5smid(F)5smax(F) We suppose
that the singular values of each of the Ui are the same
and given by 0Bhmin5hmid5hmax. Since det F=
smin(F)smid(F)smax(F) the determinants of the Ui are all
equal to d :=hmin hmid hmax.

Let F=1+b�m�P(K). Applying Eq. (4.2) with
8(G)=9det G we deduce that det F=d. We now use
the following lemma, which isolates the key mathemati-
cal point of the crystallographic theory [1].

Lemma 4.1. [4,11] Let F be a non-singular matrix that is
not a rotation. Then, the wells SO(3) and SO(3)F are
rank-one connected if and only if the middle eigenvalue
of FTF is 1. In this case, 1+b�m�SO(3)F for some b
if and only if m is a non-vanishing multiple of one of
the two vectors 
1−l1 e19
l3−1e3, where 05
l1515l3 are the three eigenvalues of FTF with corre-
sponding orthonormal eigenvectors e1, e2, e3.

Hence, since det F=d :
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smid(F)=1 and smin(F)smax(F)=d. (4.3)

Next use the function 8(G)=smax(G). Since
smax(G)=max�x�=1�G x �, 8 is convex and hence polycon-
vex. Thus from Eq. (4.2):

smax(F)5max
G�K

smax(G)=hmax. (4.4)

Finally use the function 8(G)=smax(cof G), which is
a convex function of cof G and hence also polyconvex.
By Eq. (4.2) we therefore have also that:

det F smin(F)−1=smax(cof F)5max
G�K

smax(cof G)

=dhmin
−1,

which since det F=d implies that:

hmin5smin(F). (4.5)

The inequalities in Eqs. (4.4) and (4.5) and the first
identity in Eq. (4.3) yield:

hmin5smin(F)515smax(F)5hmax. (4.6)

Straightforward considerations show that Eqs. (4.3)
and (4.6) imply that:

hmin5hmid
−15hmax (4.7)

as necessary conditions for 1+b�m�P(K) for some b,
m.

4.1. Orthorhombic to monoclinic transformations

In this case Theorem 2.1 gives Q(K) explicitly and we
can use Lemma 4.1 to derive necessary and sufficient
conditions for the existence of b, m satisfying Eq. (4.1).
These are that if h351 then:

h2
−15h151 or 15h2

−15h1, (4.8)

and if h3]1 then:

h25h1
−151 or 15h25h1

−1. (4.9)

For the existence of a classical austenite–martensite
interface (Eq. (4.1)) is replaced by 1+b�m=lA+
(1−l)B for 0BlB1 and A, B�K, and we recover the
classical results of the crystallographic theory that this is
possible for some b, m if and only if:

h1
2+h2

252 if h1 h251,

h1
−2+h2

−252 if h1 h2]1. (4.10)

The details of these calculations, together with a char-
acterization of the non-classical habit-plane normals, are
given in [12] for the case h3"1 and in [8] for the general
case. The results are displayed in Fig. 2(a) and (b).

4.2. Cubic to tetragonal transformations

Let K= i=1
3 SO(3)Ui, where the Ui are given by Eq.

(1.4). Then by Eq. (4.7) for a non-classical planar inter-
face between austenite and homogeneous martensite we

have the necessary conditions:

h15h1
−15h2 if h15h2,

h25h1
−15h1 if h1]h2. (4.11)

But these conditions correspond exactly to the neces-
sary and sufficient conditions (Eqs. (4.8) and (4.9)) with
h3=h1. These latter conditions are shown in Fig. 2(c),
together with the regions in (h1, h2)-space corresponding
to classical austenite–martensite interfaces. We have
thus proved:

Theorem 4.2. The following conditions are equivalent: (i)
1+b�m�Q(K) for some b,m ; (ii) 1+b�m�P(K)
for some b, m ; (iii) h1, h2 satisfy Eq. (4.11).

4.3. Cubic to orthorhombic transformations

In this case we let K= i=1
6 SO(3)Ui with the Ui

given by one of the two possibilities in the introduction.
For a non-classical planar interface between austenite
and homogeneous martensite we have the necessary con-
ditions (Eq. (4.7)). If hmin515h−1

mid5hmax then we can
choose (h̄1, h̄2, h̄3)= (hmax, hmid, hmin), while if hmin5
h−1

mid515hmax we can choose (h̄1, h̄2, h̄3)= (hmin, hmid,
hmax) so that the conditions in Eq. (4.8) or Eq. (4.9) hold
for the h̄i. This implies that 1+
b�m�Q(SO(3)Ui@SO(3)Uj) for some b, m and some i,
j. In fact, supposing for example that hmid]1, we can
take Ui=diag (hmin, hmid, hmax), Uj=diag (hmid, hmin,
hmax), in the basis (e1, e2, e3). In the case P(432)�P(222)%

we make the extra assumption that either
h3=hmax, hmid]1 or h3=hmins, hmid51. We can
then apply the same argument using the basis� 1


2
(e1+e2),

1


2
(e1−e2), e3

�
. Under these hypotheses

we have thus proved:

Theorem 4.3. The following conditions are equivalent: (i)
1+b�m�Q(K) for some b,m ; (ii) 1+b�m�P(K)
for some b, m ; (iii) h1, h2, h3 satisfy Eq. (4.7).

Theorems 4.2, 4.3 are striking in that in neither case
are characterizations of Q(K), P(K) known. In particu-
lar, it is not known whether Q(K)=P(K). They assert
that if the lattice parameters allow a non-classical planar
interface between austenite and homogeneous marten-
site, they allow one involving just two martensitic vari-
ants. Of course they could simultaneously allow such
interfaces involving more than two variants, and this can
be expected to increase the set of possible habit-plane
normals. Non-classical interfaces in CuAlNi involving
four variants in a double laminate have in fact been ob-
served by Chu and James [3]; at the microscopic level the
non-classical interface has a zig-zag structure formed by
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Fig. 2. Lattice parameters allowing classical and non-classical austenite–martensite interfaces. (a) Orthorhombic to monoclinic in case h351. (b)
Orthorhombic to monoclinic in case h3]1. (c) Cubic to tetragonal, where the martensite microstructure is assumed to be homgeneous.

wedge microstructures of the type analyzed by Bhat-
tacharya [13].

An earlier attempt to understand non-classical
austenite–martensite interfaces is the ‘double-shear’
theory of Acton and Bevis [14] and Ross and Crocker
[15]. While it is not straightforward to make a precise
comparison with [14,15], it should be noted that our
theory allows for martensitic microstructures more
complicated than double laminates, and takes proper
account of geometric compatibility.

4.4. Experimental predictions

The experimental predictions of our theory are
cleanest in the case of orthorhombic to monoclinic

transformations. If the hi satisfy Eq. (4.8) or Eq. (4.9)
but not Eq. (4.10) (see Fig. 2(a) and (b)) then austenite
is predicted to transform to martensite by planar and
locally homogeneous non-classical austenite–martensite
interfaces. For hi not satisfying Eq. (4.8) or Eq. (4.9) we
would expect no zero-energy path from austenite to
martensite, though it remains a theoretical possibility
that such a path could exist with a wild geometrical
structure of the austenite and martensite regions. For
cubic to tetragonal transformations, if h1, h2 satisfy Eq.
(4.11) but not Eq. (4.10) then a zero-energy path be-
tween austenite and martensite is predicted, and the
transformation cannot take place via a classical austen-
ite–martensite interface. Note that the region in the (h1,
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h2) – plane for which only non-classical interfaces exist
has a pair of cusps at h1=h2=1, so that for lattice
parameters very near 1 the region corresponding to the
existence of a classical interface is much larger. While a
transformation via a non-classical planar interface be-
tween austenite and homogeneous martensite is consis-
tent with the theory, other possibilities are not
excluded. If h1, h2 satisfy neither Eq. (4.11) nor Eq.
(4.10) zero-energy configurations in which smooth or
even planar interfaces separate austenite from non-ho-
mogeneous martensite are not excluded. The predic-
tions for cubic to orthorhombic transformations are
similar. A zero-energy path between austenite and
martensite is guaranteed under our hypotheses when
Eq. (4.7) holds which could involve a non-classical
planar interface between austenite and homogeneous
martensite, but the existence of such a zero-energy path
is not excluded even if Eq. (4.7) does not hold. Unfor-
tunately we do not know of (and would be very inter-
ested in) any experimental work that involves materials
with lattice parameters in the non-classical regions de-
scribed above.

5. Towards a new crystallographic theory of martensite

A satisfying theory of the austenite–martensite tran-
sition should not make a priori geometrical assump-
tions about shapes of the austenite and martensite
regions. Of course such a theory should be dynamic,
but one can still ask for a geometrically unprejudiced
static theory. The results described here, while being
fairly close to such a theory for orthorhombic to mono-
clinic transformations, stop well short for transforma-
tions involving more than two martensitic variants. A
completely geometrically unprejudiced, but very partial,
result can be obtained using the theory of Young
measure disjoint sets in [16]. It says that for any of the
three changes of symmetry considered here, if the lattice
parameters hi are all sufficiently close to some constant
h̄"1 then there is no zero-energy microstructure in-

volving both austenite and martensite (for the precise
statement see [16]). The techniques of the same theory
enables one [17] to prove that, for any lattice parame-
ters, if V is convex then the existence of any zero-energy
microstructure involving both austenite and martensite
implies the existence of such a microstructure in which
the volume fraction of martensite can take any given
value between 0 and 1.
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