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Calculating the energy-norm FEM-error for Reissner—Mindlin
plates without known reference solution

C. Carstensen, K. Weinberg

Abstract The validation of (recently introduced con-
forming) finite element technologies for the numerical
treatment of Reissner-Mindlin plate models requires
comparisons with the unknown exact solution. Since
mathematical results are often provided for the error in
energy norms only it is not sufficient to compare a typical
displacement or moment at one point of the domain. In-
stead of computing a reference solution on a very fine
mesh (and then providing a lot of data for the public) we
propose the storage of one (problem depending) constant
C which then allows an error representation which merely
involves known quantities. Based on this approach we
could verify convergence rates which were theoretically
predicted and give experimental evidence that new adap-
tive automatic mesh-refining algorithms yield superior
approximations. Given any reasonable guess of C (com-
putable from known quantities), our error representation
yields an approximation for the unknown error. This es-
tablishes a method for a posteriori error control to be
employed as a termination criterion.

1

Introduction

Mixed finite element schemes in general require deeper
mathematical analysis as an arbitrary choice of ansatz and
test spaces yields instabilities. Very recently, new finite
element methods where introduced in the mathematical
literature [1, 2, 3, 6, 8] for the effective numerical treat-
ment of the Reissner-Mindlin model of the moderately
thick plate

A
tzdiv<ﬁﬂdiv19 +§8(19)> +u(Vw—=19)=0, (1.1)

udiv(iVw —9)+ f=0 . (1.2)
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The numerical verification of the theoretically predicted
convergence rates for those schemes is either missing or
problematic: The relation to the Kirchhoff plate model is
employed in [6], but restricted to very thin plates where
(1.1)-(1.2) is not designed for. The influence of the im-
portant parameter o (cf. below) is studied in [2] only by
comparing one typical displacement (whose convergence
properties were not covered by the theory). The superi-
ority of adaptive mesh-refining algorithms could not be
shown experimentally in [10] because of the lack of a
typical singular example with known reference solution.

The design of a benchmark with known exact solution
to (1.1)-(1.2) is difficult: prescribing a general vertical
displacement w and rotations ¢ = (1, 1,) of the plate
normal does not necessarily satisfy (1.1) (while we could
choose f to satisfy (1.2)). Even more problematic is a
typical choice of (w,v) which reflects the finite element’s
performance in practise.

Our work was motivated by a strange pre-asymptotic
performance of recent finite elements in [10] which rather
suggested errors in our code than the predicted linear
convergence. Here, we establish an error representation
for the energy norm (|| - || denotes the norm in the Le-
besgue space L?(Q))

& = €2 = Ip) P +172 || 9 = I — V(w—wi) |’
(1.3)

The constant C could be computed from f and the unknown
w. In practise we may use a finite element calculation on a
very fine mesh to provide this constant C and then may use
the second identity in (1.3) to calculate ej. Notice that we
need to calculate C only once and thereafter everybody
could use our error representation to calculate e, on a
different mesh with different conforming finite elements.

Given an approximation Cj to C, obtained, e.g., by ex-
trapolation techniques from computed moderately fine
meshes, we can use (1.3) to calculate

= C + computable terms (wp, Up) .

n; := Cp, + computable terms (wy, Jy) (1.4)

as an approximation to e, which may serve as an a pos-
teriori termination criterion. Numerical evidence for the
efficiency of the error estimator #, is provided.

The rest of the paper is organised as follows: Detailed
notations, weak and discrete formulations are provided in
Sect. 2. Our theoretical main result is stated and proven in
Sect. 3. The first example of Sect. 4 compares our results
with an analytical solution for the Kirchhoff equation on a
square plate while the second of Sect. 5 illustrates the
practical application of the strategy proposed. As a result



we can establish theoretical predicted convergence rates
and superiority of the adaptive algorithm from [5] over a
uniform refinement by numerical experiments.

2

Weak formulation and finite element discretisation

The strong formulation (1.1)-(1.2) with the identity matrix
II, the two-dimensional linear Green strain tensor

¢(¥) = sym(V9) is recast with a scaled external load

g = f/(ukt*) and elasticity tensor T,

Ce = A/(12uk)l tr e + ¢/(6k), with constant material co-
efficients (i, /4, shear correction factor k and constant plate
thickness ¢. In its weak formulation the problem reads:
Find (w,9) € Hy(Q) x HI(Q) such that, for all

(v, ) € HY(Q) x HY(Q)?,

(e(9); Ce(@)) +t 2 (Vw—0; Vv — @) = (g;w) .

(2.1)

The Sobolev space H}(Q) contains all functions with a
square-integrable gradient and homogeneous boundary
conditions and (;-) denotes the L?(Q)-scalar product:
(g;w) = [qw - gdx.

Because of the shear locking phenomena the finite ele-
ment discretisation of (2.1) is not trivial. To rewrite (2.1)
as a saddle point problem we follow Arnold and Brezzi [1]
and introduce a shear variable

p = (7
0<a=oalx)<t?.

—a)(Vw — ¢) for a parameter o with
(2.2)

In this paper, the function o« = o(x) is a possibly discon-
tinuous function which may vary with x € Q and may be
different on different elements. We suppose that
0 < o < t? is bounded away from ¢~? such that

(t72 — )" is essentially bounded. With bilinear forms

a(w,9;v,9) := (e(V); Ce(@)) + ((Vw = 0); Vv — 9)
(2.3)

b(Wv 19; 77) = (VW - 19; ’7) ’ (24)

c(ysn) = (/1 = at®)y;m) (2.5)

the continuous problem reads: Find

(w,9,7) € HY(Q) x H}(Q)* x L*(Q)* such that
a(w,9;v,0) +b(v,0:7) = (&) , (2:6)

b(w, ;1) — c(y;n) = 0

for all (v, @,n) € HY(Q) x HY(Q)* x L}(Q)*.

The conforming discretisation is described by replacing
the continuous spaces HJ(Q) x H}(Q)* x Lz( )? by sub-
spaces Ay X Hy x L, C H‘(Q) x HL(Q)* x L2(Q)?
which are based on a mesh 7 J (we neglect the subindex h
for 31mp11c1ty).

Suppose 7 to be a regular triangulation in the sense of
Ciarlet [7], i.e. 7 is a finite partition of Q into closed
triangles T7, Tz, .., Ty. Let 24(7) be the linear space of
7 -piecewise polynomlals of degree <k,

P(T)={uecl’(Q):VNTeT ulpc2(T)},

and let %;(7) be the space of 7 -piecewise cubic bubble
functions,

(2.8)

B3(T):={uecCQ):VT € T ,ul; € P;
andu =0ondT} . (2.9)

Then, after Arnold and Brezzi [1], the following finite el-
ement scheme with 7 -piecewise quadratic polynomials
for the transverse displacement, .7 -piecewise affines plus
bubble modes for the rotation components, and .7 -
piecewise constants for the shear variable components,

Hoy X Hy x &L,

= (22(7) N Hy(Q)(21(7) © #3(7)) N Hy (Q))°

x Po(T) (2.10)

yields a stable discrete problem which reads: Find
(W, O, yn) € Hw x Hy x &L, such that
a(Wh, Oni Vi, @) + b(vi, @13 74) = (& vh)
b(wh, Ons ) — (i) = 0
for all (v, @y, ny) € Hyw X Hy X L.

3

Error representation

The error representatlon (1.3) is established below where
(w,9) € H)(Q) x HL(Q)? denotes the exact solution to

(1.1)-(1.2) and (wp,Vy) € H,, x Hy solves (2.11)-(2.12).

Then, the right-hand side of (3.1) specifies what is called
“computable terms (wy,J;)” in the introduction.

Theorem 1. With the real number
C:=(g;w) =| C2%) ||> + 72 || 9 — Vw || we have
| €260 — 9p) |2+ 2|9 — 9 — V(w—wy) |2
=C— || €e(0h) | = 7 || Vwn — 00 |I?
+2((t72 = o) (VW — 9n) — 93 Vw — O)
(3.1)

Remark 1. The theorem holds for mixed boundary con-
dmons as well with the only modification that, then,

=|| €2e(9) |* + t72 || ¥ — Vw || equals the total ex-
terlor energy of the exact solution (which inludes (g;w)
and other energy contributions on the boundary). The
theorem holds for other conforming finite element
schemes, for all inhomogeneous parameters o(x), and ar-
bitrary meshes as well with the same (t-depending) con-
stant C.

Proof. Abbreivate the discretisation errors e, := w — wy,
and ey := ¥ — Yy and calculate

| €' e(eg) P+ || Vew—eg |I°
= (e(ey); Ce(¥+ ) — 2(e(ey); Ce(Vy))
+t%(eg — Vey; 9 + 10, — Vw — Vwy)
— 2t_2(qu — Ve, — Vwy)
=|| € 2e(0) > +£77 || 9 — Vw |
+ || € 2e(0h) [P +£72 || 95 — Vwy |
—2(&(9); Ce(Vp)) — 2t 2(9 — Vw; 9y — Vwy,) .
(3.2)
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The weak form (2.7) implies (2.2) and the difference of
(2.6) and (2.11) yields

(e(ey); Ce(In)) = = (v — v + 2(Vew — eg); Vwp — ) .
(3.3)
Then, direct calculations show that (3.2) equals C plus
— [ € 2e(0n) |7~ || 90 — Vwn |
+2((2 = o) (Vwp — 1) — yp; Vwp, — 9y)

The representation of C as the exterior work follows with
v=w and ¢ = ¢ in (2.6)-(2.7). O

(3.4)

Based on the identity (3.1), we proposed the following
procedures on the computation of ey resp. #y,.

(i) For a sequence (7 k) of uniformly refined meshes
compute the discrete displacement (wj,) and calculate
Ch, := (g; wn,). Compute C by extrapolation of the se-
quence (Cp, ). (Alternatively, compute C from an analytical
solution or with a numerical reference solution on a very
fine mesh.) Step (i) has to be performed once for an ex-
ample and is determined by €, g and .

(ii) For any (known) discrete solution (wy, ¥,) from any
conforming finite element scheme on any mesh, compute

C— || € 2e(0h) |I> =72 || Vwp — O ||?
+2((7% = o) (VWi — D) — i Vwn — Up)

which then is (an approximation up to computer precision
and errors in C to) e}.

Subsequent tests can take C from the literature and
merely implement step (ii).

(iii) Steps (i)-(ii) can be linked to compute 5, for a
posteriori error control in actual computations on at
minimal three consecutive meshes, e.g., within an adaptive
mesh-refining algorithm: For each sequence of three con-
secutive successively refined meshes 71,7 ,,.7 3 compute
the corresponding discrete solutions (wy,¥1,7,),
(w2,72,7,), (ws,13,7;) and the parameters ¢; := (g; wy),
¢ := (g;wy), c3 := (g; w3). With Aitken-A?-extrapolation
method [9] consider Cj, :==¢; — (¢c; — Cl)z/(C3 —20+a)
(or Cy provided by any other extrapolation scheme) as an
improved approximation to C = (w;g). Given C; and
(Wh, Uy) := (w3, 93) employ (1.4) to compute 1, as a
known approximation to the (unknown) energy error e;, of
(Wha 7-9]1)-

4

Example for comparison with Kirchhoff solution

Since the solutions of (1.1)-(1.2) tend (in a very weak
topology) to the solutions of Kirchhoff’s equations when

(3.5)

t — 0, we compare our computation of C with the exact
value (g; w) for the (different) solution w defined, for
(x,y) € Q= (—1/2,41/2)%, by

wix,y) = (x—1/2)(x +1/2)’(y = 1/2)°(y + 1/2)*

(4.1)

and with f = 2 /12(1 + 2u)AAw, p = 4.2, . =3.6 and a
thickness of ¢t = 0.001. Given (4.1) we obtained
(g;w) = 2.3323615 - 107? as an approximation to the
unknown C in (1.3) for the original Egs. (1.1)-(1.2).
Using symmetry we calculated only one quarter [0,0.5]°
of the domain Q. The first mesh 77, consisted of 4 squares
each divided into 2 triangles with N = 52 degrees of
freedom. Table 1 displays the results from uniform mesh
refinements and o = 100 where the errors e, were com-
puted with (1.3) for C = 2.3324 - 107'° in every refinement
step k, e, =: ex. The last two columns of Table 1 show the
two error terms computed analytically with w from (4.1).
As the last column has to be multiplied by % = 10° and
added to the second last, the digits of the last column agree
very nicely with e computed as proposed in this paper.
In this example, the reference solution provided an
accurate approximation for the constant C. To illustrate
the quality of the Aitken-A*-method [9], we computed the
entries in the third column of Table 1 called (cy, ..., cs) by
ck := (g; wk) where wy is (part of) the discrete solution on
the mesh 7 ;. The transformation

(ck-1 — ck-2)’
Ck — 2Ck—1 + Ck—2

provided the numbers (Cs, ..., Cs) displayed in the third
column in Table 1. One important experimental observa-
tion of this note is that the extrapolated quantities are
apparently very accurate approximations to the exact
value C and this yields a very good a posteriori error es-
timation by #, computed as described in (iii) of the pre-
vious section.

Given that ¢i,..., cx are known (with k > 3) we re-
placed Cj, in (1.4) by the extrapolated value (4.2) to
compute #;, =: 1, shown in the sixth column of Table 1.

To study convergence rates of the finite element scheme
(2.10) for different values of o, the relative error
ey := e,/\/C is computed as before and plotted in Fig. 1.
Here and below the error ey is plotted versus the number
of degrees of freedom N in a log/log-scale; whence a slope
—1/2 in the figures below corresponds to an experimental
convergence rate 1 owing to N oc h~% in two dimensions.
For comparisons, triangles with slops 1 and 3/2 are shown
in the figure as well.

Cr = Ck—py — (4.2)

Table 1. Numerical results in the Example of Sect. 4 for uniform mesh-refinements and o = 100

k N e x 10710 e X 107 Cex 107 pex 107 ||C2¢(ey)||* x 10716 lles — Ve, ||* x 10716
1 52 1.6489 42.506 150.34 1806.3

2 216 2.1773 14.318 39.966 204.88

3 880 2.2979 4.4645 2.3336 4.4646 9.7138 19.899

4 3552 2.3242 1.6968 2.3315 1.6965 2.3925 2.8712

5 14272 2.3304 0.77933 2.3323 0.77930 0.59327 0.60501

6 57216 2.3319 0.38257 2.3324 0.38259 0.14765 0.14641
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We observe in Fig. 1 that « influences the relative error
dramatically. The results for « = 1 yield the theoretically
predicted convergence rate 1, while the convergence for
o = 100 and o = 10* partially are improved. We remark
that the slopes for o = 100 are nearly 3/2 for the first four
meshes and 1 for the last two. Theoretical investigations
suggest an improved rate of 3/2 if « = O(h) [2].

The experimental convergence rate for o = 10* is ap-
proximately 2 while in the pre-asymptotic range (e.g., the
first entry) we even observe a non-monotone (whence
non-systematic) error behaviour. Improved convergence
results for smaller o« were theoretically predicted in [6].

To assess the quality of the a posteriori error estimator
N> as described in (ii) of Sect. 4, the relative error esti-
mators 1y := 1 /+/Cx are plotted in Fig. 1 (for
k =3,...,6). The entries for e, and #; lay on top of each
other which is numerical evidence for a high accuracy of
the proposed error estimation.

5

Numerical example for practical error computation
Consider the L-shaped plate (—1,1)*\[0,1]* of thickness
t = 0.01. The (unknown) exact solution is expected to be

singular near the origin at the re-entering corner even
though the load is uniformly distributed and the material
parameters are constant (with the values from Sect. 4). We
start our finite element computation with a coarse mesh
shown in Fig. 2 and refine uniformly but presumably sub-
optimally.

Table 2 displays the sequence of obtained and extrap-
olated values for the constants ¢, and Ci. The energy error
ex of the finite element approximation on the mesh 77
were obtained with (1.3) and the extrapolated value
Cs = 4.0609 x 10~°.

Table 2. Numerical results in the Example of Sect. 5 for uniform
mesh-refinements and o = 100

5

k N X107 e x107°  Cex107° g x10”
1 87 12131 28.329

2 339 2.8887 24.008

3 1347  3.7112 18.240 4.5042 18.371

4 5379 4.0039 14.547 4.1657 14.595

5 21507  4.0516 9.6811 4.0609 9.6993
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Table 3. Numerical results in the Example of Sect. 5 for adapted
mesh-refinements and o = 100

k N a X107 e x10°  Cex107° g x107°
1 87 1.2131 28.336

2 339 2.8887 24.015

3 591 3.5288 19.710 3.9245 19.676

4 885 3.7617 17.133 3.8949 17.084

5 1347 3.8268 13.158 3.8520 13.078

6 2131 3.8898 8.7279 5.8278 9.6874
7 2453 3.8294 7.4950 3.8590 7.3591

8 2691 3.7933 7.0633 3.7397 6.8322
9 3041 3.7755 6.9174 3.7580 6.6949

The last two columns display the error #, calculated with
ck as explained in (iii) of Sect. 3. The convergence of the
extrapolated values Cj is very fast and the resulting error
estimation is very good: ;. is a very good estimate of ey.

To assess the quality of the extrapolation for a non-
uniform mesh, we employed an adaptive mesh-refining
algorithm from [5]. The initial mesh .7y and the mesh 7
after 9 refinement are shown in Fig. 2. The numerical
values are provided in Table 3 and obtained as corre-
sponding values in Table 2.

A comparison of the extrapolated values C shows as
reasonable convergence but not necessarily to the same
values. As the uniform meshes may inherit asymptotic
error expansions form symmetry of meshes, we regard the
uniform calculation (which involves much finer meshes)
as the more accurate approximation (although we have no
proof for that) and computed ey in Table 3 with the same
value C = 4.0609 x 10~ as in Table 2.

We observe again an accurate estimation of the energy

error ex by 7, (the values for e, obtained with a slightly

adaptive refinement in the Example of
Sect. 5

different value such as 3.7580 x 10~° were almost the
same).

To assess the improvement of adaptive mesh-refine-
ments over a sequence of uniform meshes, Fig. 3 displays
ey = ex/V/C and iy := 1;/\/Cx versus the degrees of
freedom N. The adaptive refining algorithms leads to a fast
reduction of the error compared to the uniform refine-
ments. This is the first numerical evidence that adaptive
algorithms are superior for the Reissner-Mindlin plate and
so indeed use-full tools.
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