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Abstract

Mixed finite element methods are designed to overcome shear locking phenomena observed in the numerical treatment of Reissner—
Mindlin plate models. Automatic adaptive mesh-refining algorithms are an important tool to improve the approximation behavior of
the finite element discretization. In this paper, a reliable and robust residual-based a posteriori error estimate is derived, which
evaluates a t-depending residual norm based on results in [D. Arnold, R. Falk, R. Winther, Math. Modell. Numer. Anal. 31 (1997)
517-557]. The localized error indicators suggest an adaptive algorithm for automatic mesh refinement. Numerical examples prove that
the new scheme is efficient. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Mixed finite element methods; Reissner-Mindlin plate; Shear locking; Reliability; A posteriori error estimates; Adaptive
algorithm

1. Introduction

Mixed finite element schemes in general require deeper mathematical analysis as an arbitrary choice of
ansatz and test spaces yields instabilities. Very recently, new finite element methods were introduced in the
mathematical literature [1,3,4,11,13] for the effective numerical treatment of the Reissner—Mindlin model of
the moderately thick plate

2
%div(ﬁndivwaw)) F(Vw— ) =0, (1.1)
div(Vw — ) + kf = 0. (1.2)

Therein, a new parameter o stabilizes the finite element discretization. In this paper, we derive a reliable
residual-based a posteriori error estimate for those and the classical conforming Reissner—Mindlin plate
models. For the exact resp. finite element solution (¢, w, y) resp. (4, ws, 7,) to (1.1) and (1.2), we derive an
upper bound for the error

[[( = p,w — Wh)HH(;(Q) +ly =y + (= = V(w— Wh))HH*I(div) L2 (1.3)
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where ¢ — 4, is the error of the rotations, w—w, is the error of the displacement and
=7, + (¥ — 9, — V(w—wy)) is the shear stress error. The upper bound requires standard techniques in
the proofs of a posteriori error estimates [17] plus an estimate of a global norm of p:= (1 — at?)
(95 — Vw,) — £2y, which is defined over an extremal global additive split p, + p, = p. The localization of
this term requires an estimate from [7] based on a deeper result due to Tartar. The resulting upper bound to
(1.3) reads c¢,n,, where the error estimate 7, is

=y - (1.4)

TeT

The point is that the positive constant ¢; neither depends on right-hand sides, exact and discrete solutions,
on a, nor on the thickness z. However, the question of the converse estimate (up to higher-order contri-
butions), called efficiency estimate [17], is affirmatively answered for a few of the terms behind (1.4) and left
open for the term p; 4+ p, = p.

It appears an interesting mathematical problem to find norms and finite element schemes in which re-
liable and efficient a posteriori error estimates exist; we refer to [8,12] for the recent progress. The purpose
of this paper is to derive robust reliable estimates for a huge class of conforming finite element discreti-
zations under minimal assumptions in A-independent norms, and to express them in locally computable
terms. Then we employ the corresponding local error indicators #; in (1.4) to control an adaptive algorithm
for automatic mesh refinement. Typical numerical examples prove the excellent performance of our new
adaptive finite element scheme.

The remaining part of the paper is organized as follows. The weak formulation and the conforming finite
element discretization of (1.1) and (1.2) as well as certain (non-standard) norms and Sobolev spaces are
recalled from the literature in Section 2. The main result and the necessary notation for (1.4) will be given in
Section 3 where we also propose our adaptive algorithm. In Section 4 we compare our error estimate with
the exact value of (1.3) given by an analytical solution and we demonstrate with further examples the
superiority of automatically generated meshes. Details of the mathematical proof in Section 5 conclude this
work.

2. Mixed formulation and finite element discretization

The weak form of the Reissner—Mindlin plate model is rewritten with bilinear forms:

a(9,w: p,v) = /Qa(ﬁ) : Ce(p) dx + /ro(ﬂ — VW) - (¢ — Vo) dx, .1
b(d,w;n) = /9(19 — Vw) - ndx, (2.2)
CWW:LMWM (2.3)

for ¥, ¢ € H| (Q)Z, v,w € H}(Q), and y,n € LZ(Q)Z. The elasticity operator C is defined by

Cr :é[rJrﬁ tr(7) 0],
where tr(t) denotes the trace of € R**?, v is the Poisson ratio, and k = 5/6 the shear correction factor
of the elastic plate. The linear Green strain ¢ is the symmetric gradient &(4) :=symDd =
(3(00;/0x; + 094 /x;)); 4, ,- Here and below f € L*(®) is an applied force which is already scaled by a
factor Ek*/(2(1 +v)), E is the Young modulus.

The critical parameter is the small thickness ¢z > 0 of the plate which enters (2.1)-(2.3) through
B:=1/(t72 — &), where « is a parameter with 0 <« < 772 to stabilize the discretization. The classical model
is included for o = 0 in the continuous problem: Find (9,w,y) € HL(Q)* x H}(Q) x L*(Q) that satisfies, for
all (9,v,1) € H (@) x H) (@) x L(Q),
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a(d,w; ¢, v) + b(e,v;7) = /Q.fvd)m (2.4)
b(9,w;n) —c(y;n) = 0. (2.5)

Here, L*(Q) and H'(Q) denote the usual Lebesgue and Sobolev spaces [5] and H_j (Q) is the sub-space of all
functions with zero boundary values and with dual space H~!(Q). The mathematical analysis in [6] shows
that, in the limit # — 0 and for o = 0, the natural space for the shear variable y = (2 — )(dJ — Vw) is
not L*(Q) but H~'(div; Q). The space H~'(div; Q) consists of all y € H~'(Q)* with divy € H~(Q). Its dual
space is

H~'(div; Q)" = Hy(rot; Q) := {n € L*(Q)* : rot € L*(Q), n-s =0 on dQ}, (2.6)

where s is the tangential vector (perpendicular to the exterior unit normal n) along the boundary and # - s
denotes the tangential trace of 5 (which is defined in a weak sense by integration by parts). The norms are
defined with

5 o, 1/2
1711wy = (17010 + Iivalliia) (2.7)

X 5 1/2
19y = (1520 + Irotnlee)) (2:8)
Note, if the plate thickness tend towards zero, the solution of (2.4) and (2.5) in H(}(Q)2 X

H} (2) x H™'(div; Q) converges to the solution of the Kirchhoff plate model. However, for a very small but
finite thickness ¢ > 0, it appears reasonable to consider #-depending norms defined by

2 2 2
||Y||H*‘ (div)ne-L2 *= ||“/HH4 (@dvio) T t2||y||L2(Q)’ (2.9)
2 - 2
s = 0nE (11 oy + el )- (2.10)

The finite element discretization of (2.1)-(2.3) considers discrete sub-spaces V, x W, x I', of H(}(Q)2 X
H}(Q) x L*(Q). Thus the discrete problem reads: Find (9y,wp,y,) € Vi X Wy, x I that satisfies, for all
(ds>vnsmy) € Vi X Wy x Ty,

(O Wi G, 08) + B(Bp 013 74) = / fond, @.11)
Q
b(ﬂ}nwh; nh) - C('))h; nh) = O (212)

The discrete spaces Vj, x W, x I';, are J -piecewise polynomials (the index s may refer to the mesh-size of 7
but we neglect further sub-indices such as in .7, oy, etc.) based on a regular triangulation 9 of Q (cf. [5]).
Given 7, 2,(7) denotes the linear space of 7 -piecewise polynomials of degree < k. Let &, (") denote the
continuous discrete functions in 2;(7) with homogeneous boundary values, i.e.,

P(T) ={9, € LX(Q):NT € T, p|; € 2(T)} and F(T):=2(T)NH,(Q), (2.13)

where 2, (w) denotes the vector space of algebraic polynomials of degree < £ regarded as mappings on the
domain o C R* if T € 7 is a triangle, 2,(T) denotes the space of polynomials of total degree < k; while
2,(T) denotes the space of polynomials of partial degree <k if 7 is a parallelogram.

In [13] it is shown that for any non-negative integer k, the discrete space

Vo X Wy X Ty = S1a( TV X S1sa(T) x Po(T) (2.14)

leads to a stable scheme. Moreover, an a priori error estimate is presented which is quasi-optimal in the
sense that there exists a positive constant ¢, (which depends on Q, k, «, and on the shape of the elements but
is independent of their sizes & and of the plate thickness 7) such that the discrete problem has a unique
solution (¢;,w;,7,) and, with the exact solution (¢, w, y), there holds
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[ — 7911“113(9) + flw— WhHH(;(Q) 117 = valler @iy
. . , (2.15)
< Cz(qslhfg/h 9 — ¢h||H(;(g) + LiIEIIfV;. [[w — UhHH[;(Q) + nirelﬁh Iy — 77h|H1(div)m-L2>-

Note, the L>-norm of the shear error has the thickness ¢ as a weight in order to result in a f-independent
constant ¢;. In case of (2.14) and a smooth continuous solution, the poor approximation of the shear yields
a convergence order O(A**!), where i denotes the maximal mesh-size in 7. Since the approximation errors
of the remaining two best-approximation errors are of higher order, a subtle choice of the parameter o and
p is expected to improve the convergence to O(4*+3/?) according to [3]. We come back to these effects in
Section 4 on numerical experiments and stress that, at least in the a posteriori error analysis, the constants o
and f shall be monitored as well as ¢ and /.

3. A posteriori error bound and adaptive algorithm

For the regular triangulation 7 of Q2 in (closed) triangles or parallelograms let %" be the (finite) set of all
nodes and let A" := " N Q2 be the set of interior nodes. We assume that the triangulation matches the
domain exactly, i.e., UZ = Q and two distinct elements 7} and 75 in 7 are either disjoint, or 7y N 75 is a
complete edge or a common vertex of both, 7} and 7, (there are no hanging nodes). The set of edges
E = conv{x,y} for two distinct x,y € A" is denoted as &. Their union Ué& is the skeleton of all element
boundaries, i.e., the set of all points in Q which belong to some edge. With each edge, we associate a unit
normal vector ny which coincides with the exterior normal if the edge E belongs to the boundary 0. For a
7 -piecewise uniformly continuous function, the square brackets [-] are defined as the jump over the edges:
if E=T,NT._isacommon edge of two distinct 7, and 7_ in  then, for x € E, the jump [G](x) is the limit
of G(x+ eng) — G(x — eng) as € — 07. (The limit exists if x ¢ # since x + eng € T, and G is uniformly
continuous on each 7..) In this way, [G] is defined on the skeleton U& \ 0Q of all inner boundaries of el-
ements. Its definition on the boundary has to be specified separately with special values g as exterior values:
[G](x) := g(x) — G|sn(x) for x € 0Q\ A",

In the following the diameter of 7T is denoted as Ay and the length of E is Ay, where % is a characteristic
(global) mesh-size. The triangulation satisfies the minimum angle condition, i.e., the angles in the triangles
or parallelograms are assumed to belong to the interval (cy, T — ¢y) for some positive constant ¢y and so are
bounded uniformly away from 0 and .

The discrete problem is supposed to generate discrete solutions (94, wy,7,) € H}(Q)* x HN(Q) x L*(Q)
which are neither expected to be uniquely determined nor to belong to a discrete space V), x W, x I';,. We
merely suppose that (9, wy,y,) is 7 -piecewise smooth (such that all the derivatives in (3.1) and related
traces and jumps on the edges exist in the classical sense and are integrable). As a minimal condition, we
suppose (9, wy,7,) satisfies (2.11) and (2.12) for all (¢, vy, 1,) € L1(T) x L1(T) x Po(T). For each
element 7 € 7, we define our error indicator u; by

. ;:/T (h2T|f — div(y, + a0, — Vw)[* + 1]y, + a(9, — Vw,) — divCe(d,)|* + |rotp,|*

ol + 2o v+ Y e / (1l + 05— V)] - el + |[Co(0)] - mel ) ds. (3.1)

Eeé, ECoT
Here, p, € Hy(rot; Q) and p, € L*(Q) is an arbitrary (global) split of the shear-residual

p1+py=p =2y — (1= a) (0 — Vwy). (32)
Let (9,w,7) € H.(Q)* x H}(Q) x L*(Q) denote the exact solution to (2.4) and (2.5). With an (k, ¢, o)-in-
dependent constant ¢;, we then have the a posteriori error estimate

2 2 .
19 = 9w = i)y 7 = 1+ 20 = 95 = V00 = i)l ls sz S r min > (3.3)

Teg
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Remark 1.

(i) The main advantage of (and motivation for) the formulation (3.1) is that (3.3) holds uniformly in ¢ and «.
(i1) Verfiirth’s inverse estimate technique [17] (with Theorem 2 below) shows that the estimate (3.3) is
sharp: up to higher order terms, the converse inequality holds (for some terms even in a more local
form).

(iii) The point is that the optimal global additive split p = p, + p, is not directly computable and it re-
mains open whether the upper bound suggested below is efficient. Indeed, factors such as %7 /¢ might be
very large and so could result in a huge overestimation.

Example 1. If p, = p we obtain (with a Poincaré inequality on 7 [14]) in (3.1) that
Jtrotpil 4 loiP 2 paP) s <2/ (1= o )90, - Do) (3.4)
T T
(D*w, denotes the 2 x 2-matrix of all second-order partial derivatives).

Example 2. If « is constant on Q and , = >y, we may choose p; = (1 — a#?)(¥, — Vw,) and obtain in (3.1)
that

[ ot loil 2Py s < (1= o) [ (rotinf +10y Vil e+ [ [P (33)
T T T

Example 3. Below we employ the estimate from Theorem 6 of Section 5 from which we obtain
[ trotpi 4 o1 + 2 paP) dx e/ [ 190~ Dy (36)
T T

Other decompositions are possible involving continuous or discrete Helmholtz decompositions. The dis-
advantage of (3.1) then is that any such decomposition is global and so a numerical realization may be
expensive.

Since it involves the smallest factor 47/t amongst all above mentioned splits which are applicable for 7 -
piecewise constant o, we employ in the numerical examples below estimator (1.4) with computable local
contributions from Example 3, namely

= / (hﬂfdiv(vhwwhth>>|2+h%|vh+awhwdivuw
T

+hT/t/T|V19h—D2wh|2>dx+ > hE/E(|[yh+oc(19h—th)]-n5\2+|[68(19h)]-n5\2>ds. (3.7)

Ecé& ECOT

Theorem 1. The error indicators (3.7) satisfy (3.3) with an (h,t, a)-independent constant ¢, that depends only
on Q and the constant cy in the minimum angle condition.

The proof of Theorem 1 will be given in Section 5. It motivates the usage of the error indicators (3.7) for
adaptive mesh-refining.

Adaptive Algorithm (A).
(a) Start with coarse mesh 7.
(b) Solve discrete problem with respect to .7 ; with N degrees of freedom.
(c) Compute 4, for all T € 7. 1
(d) Compute error bound ny := (> rcr, ’72r> and terminate or go to (e).
(e) Mark element T red iff n, > %maxpe_;k Ny
(f) Refine marked elements, update mesh 7, and go to (b).
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Fig. 1. Red—green-blue refinement of a triangle.

We employ here red—green—blue refining procedures (cf. Fig. 1). Red-refining means to bisect the sides of
one marked triangle and remesh with four congruent triangles. The neighboring, not marked elements are
split in a way, that ever one longest side is divided. For this purpose one triangle is to cut into halves (green
refining) or we have to split the triangle into three triangles (blue refining). This way we avoid hanging
nodes as well as degenerated elements.

4. Numerical experiments
4.1. Comparison with Kirchhoff solution

Since the solutions of (1.1) and (1.2) tend to the solution of the Kirchhoff equation when ¢t — 0, we first
compare our estimator with the exact value of (1.3) for the (different) solution

w(x,y) = (& — 1/4)°(* — 1/4)° with (w9 := Vw) € H}(Q) x H}(Q). (4.1)

The plate (x,y) € Q := (—1/2,41/2)* with thickness 7 = 0.001 has material parameters £ = 10.92, v = 0.3
and is loaded with / = Ek#*/(12(1 — v*))AAw. Owing to the symmetry we compute only one quarter [0, 0.5]*
with an initial mesh 7 of N = 52 degrees of freedom, cf. Fig. 2.

Numerical studies confirmed that the discrete problem (2.11) and (2.12) is asymptotically stable against
the parameters o and f§ but preasymptotic performance as well as convergence rates strongly depend on it
(cf. [18]). Summarizing our experience we prosecute here two strategies for a choice of parameters in (2.4).
First, we choose model dependent but fixed parameters « and f. Using a characteristic size of plate domain
[ :=1(Q) and plate thickness ¢, [ > ¢, we employ

tZ

, 42
1 —ar? (4.2)

1
o= and f=

Secondly, we adapt o to the finite element mesh-size with o = O(h~2) (cf. [11,18]), computing element-
wise

C

14 s

Fig. 2. Example of Section 4.1.
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1

a=a(l)=—5—
hs + ¢

(4.3)

and P as in (4.2). Both numerical rules imply 0 < o < #* and avoid spurious modes on coarse meshes. In the
examples of this paper we set / =1 in (4.2).

To measure the solution error we compute the H'-norm of the difference between the Kirchhoff and the
finite element solution for the displacement as well as for the rotation vector.

5 2 1/2
e(w,9) = (1w = willfp o + 19 = Dallipo)) - (44)

For evaluating (1.3) resp. (3.3) we add to (4.4) the normed difference of scaled shear stress vectors y — 7,
whereby the shear stress in the Kirchhoff theory is introduced by additional equilibrium conditions [16].
The norm (2.7) is not computable and so estimated owing to duality arguments and a Poincaré inequality

12(Q) (4.5)

for 7 -piecewise polynomials ¢ with elementwise vanishing integral mean. The estimate (4.5) is applicable
here because the finite element solution and, as an exception, the analytical solution is a .7 -piecewise
polynomial. Ignoring the (h-independent) constant ¢, we approximate (1.3) by

||q||H*1(Q) <allhg

e(w,9,7) i= (elw,9) + (B + )y = 1, + 20 = 94— 0w =)
) 1/2
B div(y — 7, + (0 = 9 = Vv = wi))llpg)) - (4.6)

For comparison we also calculated the natural energy error

12
eni= (€260 = 9)|* + 29 = 9 = V(o — )] " (4.7)
Fig. 3 displays the error results for uniformly refined meshes and for parameters o resp. f§ being (a) constant
(4.2) and (b) mesh-adapted (4.3). Here and below the error terms are plotted vs the number of degrees of
freedom N in a log / log-scale 1, := n; owing to N oc A2 in two dimensions, a slope —1/2 in the figures
corresponds to an experimental convergence rate 1. The estimate #, appears to be very accurate in case (a)
as well as in case (b), where the error norm of (3.3) shows a poor convergence behavior (the estimate is
accurate, the error is poor).

=Ny o=11 =Ny o= )
-©  e(w) -© ewv)

10° 5 0 - >
(a) 10 10 10 10 10 (b) 10 10 10 10

Fig. 3. Exact solution error (1.3) and error estimator (3.7) for uniform mesh refinements: (a) « = 1/¢; (b) « = 1/(h3 + ).
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The error contributions of displacement and rotations (4.4) converges quadratically (in both cases).
Hence the shear-error term dominates but is estimated well. Our explanation for the poor convergence
behavior in case (b) is that the proper mesh-depending choice of o and f is not well-balanced with our
strong norm of the physical shear-error. This is underlined by our observation that the energy error (4.7)
converges quadratically in both cases.

4.2. Numerical examples for practical error computation

In the first example an L-shaped plate (—1,1)*\ [0, 1]* is clamped along the two edges of the domain
which form the re-entering corner and is free at the remaining boundary. The (unknown) exact solution is
expected to be singular near the origin at the re-entering corner even though the load is uniformly dis-
tributed, /' = 1. The material parameters are constant as in Section 4.1.

We monitor now the error estimation with different plate thickness ¢ = 0.1,0.01, and 0.001. Again we
apply schemes (4.2) and (4.3) for the parameters o and 5. We start our finite element computation with a
coarse mesh 7 with 107 degrees of freedom (Fig. 4(a)) and refine uniformly but presumably sub-optimal.
The convergence rate of error estimator #, with (3.7) is smaller than one (Fig. 5, dashed lines). To assess

(@ (b)

Fig. 4. Finite element meshes in Example of Section 4.2: (a) initial mesh 7 ; (b) adaptive refined mesh 7.

10 T 10 T
0 "N umiomi=uLT O “N uriormT i=UtT
—o- Ny adaptiv1=0.1 o~ Ty adapiivt=0.1
1 o uniform t=0.01 - uniform =0.01
i adaptiv t=0.01 =Ty adaptiv t=0.01
12 My unifm 1=0.001 1 g Ty uniform t<0.001
& Ty adaptiv 1=0.001 M adaptiv =0.001

Fig. 5. Error estimation (3.7) for uniform and adaptive mesh refinements: (a) o = 1/ (b) o = 1/(h2 + £2).
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the quality of error estimation for a non-uniform mesh, we employed the adaptive mesh-refining Algorithm
(A) of Section 3. A typical mesh 7 ; after seven adaptive refinement steps is shown in Fig. 4 (here for:
t = 0.01 with (4.3)). The computations show the expected superiority of adaptive refinement techniques, but
also we observe a poor convergence rate of 1, if « and f are mesh-adapted.

The error in the energy norm (4.7) is monitored as well. From [9] we know, that (4.7) equals the square
root of

C —||C2e(@)]]” + 2 Vwi — | = 2((t72 = o) (Vi — D4) — 73 Vw — ) (4.8)
with the real number
C = (f;w) = |C%@)|* + ¢ ||0 — Vw]*.

An extrapolation technique yields C = 0.8366 x 107* if t = 0.1 and C = 0.787 x 107" /¢® else (cf. [9] for
details). Fig. 6 displays the convergence rates for the relative energy error ey := e,/+/C with uniform mesh
refinement (dashed lines) which is less than 1 if « is constant and 3/2 in case of mesh-adapted o. With
adaptive refining algorithms we obtain a significant reduction of error ey up to convergence rate 2 in both
cases.

Finally, we consider the rectangular steel plate of Fig. 7 loaded by two stamps of 0.1 m x 0.1 m (e.g.,
caused by fork-lift trucks) with /= 10° N/m (f vanishes outside of that region), £ = 2.1 x 10'2 N/m’,
v = 0.3, 7= 0.1 m. On the three marked sides the plate is simply supported by hard support. (Hard support

=0~ G Um0t
107H - & adaptiv t=0.1
- 8y unilo@ 1=0.01 1
-+ €& adaptiv t=0.01

V- ON

- & uniform t=0.001
5 O adaptiv t=0.001 —g- & adaptiv t=0.001

-9 —0- 8, Unitorm 1=0-1
-5 & adfaphv t=0.1
|| -4 € uniform t=0.01
10°H e adaptivt=0.01 1
6, uniform t=0.001

10° . 102 L

(a) Y 10 (b) 10 13 10

[ = = = = = e e e = e == = |
A - A I

& & 1 — L £+ E
Y o v |
\ — — = - _— e — — — — —_— — —

1m |
> 2m

< 8m >

Fig. 7. Sheet metal.
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means that not only the displacements but also the tangential component of the rotation is forced to zero.)
Owing to the symmetry we compute one half of the domain. The coarse initial mesh consists of 17 finite
elements with N = 126 degrees of freedom. Fig. 8 displays the meshes generated by the Adaptive Algorithm
(A). Since load function f'is evaluated at the Gauss points within 7, 1 is reflected correctly only for meshes
which are sufficiently fine around the load. If the mesh-size is small compared to stamp load (or at least
decreased to a comparable size) the load singularity should be of minor influence.

The error estimator #, is plotted in Fig. 9 vs the number of degrees of freedom N and compared with
uniform refinement technique. The vanishing influence of load singularity is seen here by a high error-

initial mesh

ey

. step of refinement

2. step of refinement

3. step of refinement

4. step of refinement

5. step of refinement

6. step of refinement

7. step of refinement

8. step of refinement

Fig. 8. Adaptive refined meshes.
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10 T : —— —
—A— My uniform
= My adaptive |{

107° 1

]
P4
=
107} :
[
L
=~ ~
A
10° X
10 10

Fig. 9. Error estimation (3.7) for sheet metal.

reduction in the beginning of the adaptive mesh-refining and the asymptotic convergence rate 1 for finer
meshes. Although the improvement of Algorithm (A) over a uniform mesh-refinement is possibly not well
displayed by the considered error-norm (and so by #,, we apply (4.3) only) it can be deduced from Fig. 9
that the adaptive algorithm reduces the computational effort significantly.

5. Proof of reliability

Throughout this section, we suppose (iJ,w,7) € H!(Q)* x H!(Q) x L*(Q) solves (2.4) and (2.5) and
(94, Wi, 7,) solves (2.11) and (2.12) at least for all (¢, vy, 1) € L1(T)° X L1(T) x Po(T).

For compact notation, let 4, € L>*(Q) and hs € L*(U&) be given as J - resp. &-piecewise constant
weights

hs

Set
o:=10—-10,c H(Q), w:=w—-w,cH(Q), (:=1v,—7—a(p—Vo)ecl*Q)

and define the linear functionals F : H!(Q)* — R, G : H (Q) — R, and J : L*(Q)" — R by
F(g) = / &() : Ce(g)dx — /Cwodx,
Q Q
G(v) := / (- Vodx,
o

) = —/Q<r2c+¢—v(»> pdr,
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for all
(.v.m) € X, := HL(Q)F x HI(Q) x (H™\(div; @) Ne- L2(R),

cf. (2.9) for the norm in the last factor.

Theorem 2 (Arnold et al. [2]). There exists positive constants c4 and cs which are independent of
(ta ¢7waC7F7 G7J) Sucl’l Zha[

C4H(Fa Ga‘]) X < ”(4)7(070”)(, <C5||(F,G,J) (52)

Xre

Theorem 2 yields an estimate of ||(¢,w, ()|, so that it suffices for the proof of (3.3) to prove separate
estimates for ||F||;-1q), |Gl 5-1(0)> and | -1givynrs)-

The bounds for ||F||;-1 o) and ||Gl|;-1 (o, are standard [17] and can be proved with integration by parts
and the subsequent technical result on the approximation and stability properties of the Clement ap-
proximation operator [10,17]. Let 45 denote the mesh-sizes and 4, denote the edge-sizes on Q and U& with
respect to 7.

Theorem 3 (Clément [10]). There exists a positive constant cg that depends on cy from the minimal angle-
condition and the aspect ratio of elements in J and such that, given any (¢,v) € H(}(Q)3, there exists some
(@, 0n) € ST with

_ ~1/2
||hf1((/’ = Py U — Uh)”ﬂ(sz) + llhs / (¢ — @0 — Uh)HLl(ug) + [|(D@y, VUh)HLZ(Q)
<56||(D<P,VU)||L2(Q) <Cé”(‘PaU)HHI(Qy (53)

The bounds for [|F|;-1 o) and [|Gl|;-1 (o) are shown simultaneously.
Theorem 4. We have
1/2
1, Gl < e (WASZ1Co@h), 34 + 2(0n — o)) el

+ |7 (divrCe(9n) — 7, — (O — Vwp), [ — divr (p, + (I — VWh)))HLZ(g))- (54)

Proof. Direct calculations with (2.1)—(2.3), (2.11) show for all (¢,v) € HOI(Q)3 with (¢, v,) € 5”1(3‘)3 as in
Theorem 3 that

F(@)+ G(v) = a(¢,w; ¢, v) + b(@,v;7 — 7;)
=a(¢, ;0 — @4 v —v3) +b(@ — @0 — Vi3 Y — )
= /Qf(v—vh)dx—a(dnw; iy Un) = (@ 837 — 1) (5.5)

Let div, denote the 7 -piecewise action of the divergence operator. The 7 -piecewise integration by parts
with a detailed inspection of the two contributions on each interior edge £ = 07_ N 07T, from the two
neighboring elements 7. show in (5.5) that

F(9)+G(r) = / F(0—v;)dx— / Ce(94) : D(g — @) dox— / (20— Vo)) - (0 — 9y — V(0 — 1)) dx
- / (divr Ce(y) — 7y — (s — Vp)) - (@ — py)dx — / [Ca(0)lne (0= 1) ds

- / (f = div,y (3 + 20y — V) - (0 — 03 dx+ / [ -0 — )] e (0 — ;) ds.

ué

(5.6)
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Cauchy inequalities show in (5.6) that
F(9) + G(v) < + [[h*[Ce(@)nsl 2o s (@ = 0420
7(div7Ce(dh) — v, — o(9h — vwh))HLZ(Q)”h}](QD - %)”LZ(Q)
+ [lh7 (f = divir (9 + o9 = Vwi) | )17 (0 = 01) | e
+ (12 + 29 = Vw)] - nsll 2o 15" (0 = 00) 20

and then Theorem 3 yields
(F(@) + G(©)/(csll (0, 0) |1 (y) < 1 [Ce(Wn)]nall o) + 15 04 + (s — V)]
+ |lh7 (divy Ce(9n) — v — (I — Vi) [l 20
+ a7 (f = divr (v, + o(Fn — VW)l 2(0)- O

L2(U6)

Proof of Inequality (3.3). The combination of Theorems 2 and 4 shows the assertion. [

To derive a local estimate Of [|J[ -1(giv)rv22)* = 101y (ror) 122> WE employ the following estimate based
on a deeper result in interpolation theory due to Tartar [15].

Theorem 5 (Brenner and Scott [7]). For each T € 7 and v € H'(T) we have

2 2 —
inf (|l + 2190l ) <ertlollagn (190l + A7 ol ). (5.7)

v=vp+0v]

where vy € L*(T) and v, € H}(T) is an arbitrary additive split of v. The constant c; depends on the shape but
not on the size of T and does neither depend on v nor on (t,hr).

Proof. The combination of Propositions 1, 2, 3 in [7] show that the left-hand side of (5.7) is bounded by
2V/|v|l x(oo,r) While the right-hand side of (5.7) is an upper bound of this term (cf. [7] and especially (3.20)
therein for notation and proofs). O

In case that o and vy, are constant on each element 7' in 7, we deduce an explicit upper bound of the
global norm ||/{| ;-1 giy)n.2)+ Of the residual J. Note that this upper bound is local in the sense that it consists

of a sum of local contributions.

Theorem 6. We have (D*wj, denotes the 2 x 2-matrix of all second-order partial derivatives)

1/2
(1] — <cs<2hr/r / |wh—02wh|2dx> . (58)

TeT

The constant cg depends on the shape but not on the size of the elements and does neither depend on p nor on
(t,hr).

Proof. The choice of v := p|, in Theorem 5 reveals existence of v;|, € L*(T) and v;|, € H}(T) with
2oy + 1901y < et Mol (1900, + B Nl (59)

on each element 7' € J Recall that the integral mean on 7 of p vanishes and so a Poincaré inequality gives
r) < hr/nl| Vol 2 [14]. Utilizing this in (5.9) leads to

f2||uo||L2 V0172 S erhrt™ (1 + 1/m) || Vol 2 gy - (5.10)
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The composition of v;|, for all T € 7, ie., the functions p; € L*(Q) with p,[; := v[, j = 0,1, satisfy
p = py+ p; and, owing to v; = 0 on 37 for each T € 7, p, € H} () C Hy(rot; Q). Since the additive split
p = py+ p; (with p, := p,) is possible in the norm in (2.10) we have

2 2 . 2
||P||H0(rot)+th2 <|lpy ||H0(rot:Q)2 +1 2HP0||L2(Q)~ (5.11)

Since v; vanishes on 07, T € 7, Friedrich’s inequality gives |[v1]|,2(7) < hr||Vor |- Utilizing this, (5.10),
and the definition of p; in (5.11) results in

2
2 . 2 2 c 1/2 2
||p||H(](rol)+f‘-L2 <t 2||p0||L2(Q) + E 2+ hzr)HVUl ||L2(T) < 78 ||h7/ V?/"P||L2(Q)~ (5.12)

TeT

The t-independent constant ¢g remains bounded as 4, — 0. O

Proof of Theorem 1. Combine Theorems 2, 4, and 6. O
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