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Summary. Computable a posteriori error bounds for a large class of non-
conforming finite element methods are provided for a model Poisson-prob-
lem in two and three space dimensions. Besides a refined residual-based
a posteriori error estimate, an averaging estimator is established and an
L?-estimate is included. The a posteriori error estimates are reliable and
efficient; the proof of reliability relies on a Helmholtz decomposition.
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1 Introduction

Nonconforming finite element methods play an important practical role in
partial differential equations when conforming methods seem too expensive
or unstable within low order mixed methods. In this paper, we establish
tools for error control and adaptive mesh-refinement for a simple model
problem for nonconforming elements, i.e., we prove sharp a posteriori error
bounds for a class of nonconforming finite element methods for the Poisson
problem with mixed boundary conditions: Givgne L?(£2), g € L*(I'y),

up € HY?(I'p), findu € H'(£2) which satisfies

(1.1) div (AVu)+ f=0 in £2,
(1.2) (AVu) -n=g only,
(13) U =1Uup onlp.
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Here, 12 is a bounded Lipschitz domain iR?, d = 2, 3, with boundary
I" which is split into a closed Dirichlet boundalyy, C I" with positive
surface measure and the remaining Neumann bourddary= "'\ I'p. The
coefficients form a pointwise symmetric uniformly positive defitfitex d)-

matrix A € L>°(§2;R9%d) so there exish < u < M < oo such that for all

sym
y € R% and almost all: € (2 there holds
(1.4) plyl® <y Alx)y < Myl

In this paper we focus on a posteriori error estimates which allow error
control for a computed approximatidi to the unknowmu in terms of

U. We generalise the residual based estimates of [C1,DDPV] to the case of
three space dimensions in Sect. 3 and prove that edge contributions dominate
provided the given data functions are smooth, namely

IVr(u=O)lFey < e | D helll(AVFU) - ng]l7a s
EcEnUEN

+ > bl (VrOEegp | +hod,
EecEqpUED

where higher order terms h.o.t. depend on given data. The sums are over
edges in a triangulation of? and h}ﬂ/Z[(AVTU) - ng| (respectively

h}E/Q[%E(VTU)]) are weighted jumps of the normal (respectively tangen-
tial) components of the elementwise gradient.afWe suppose that the
T -piecewise divergencéiv - AV;U exists as ar.>-function and that the
jumps[AV U] - ng are well defined. The reliable error estimate is efficient
in the sense that its converse estimate holds up to different higher order
terms and a different multiplicative constant.
In Sect. 4 we investigate error estimates based on averaging techniques as
in [BC, CB] and prove their reliability, i.e., estimates of the form

IVr(u =Dl S ez _min V70 —anllza(q) +hot
The minimisation is over a space of smoother functions (f¥iafy). Note
that any choice of; € S(7,g,up), possibly calculated fronv;U in a
post-processing step, yields reliable error control. Our proofs of the reliabil-
ity estimates also show the connection to the residual based error estimates.
The efficiency of averaging estimates will be proved up to higher order
terms depending on the smoothness of the exact solution. In Sect. 5 we
briefly establish ari.?-a posteriori estimate fdfu — U|| L2(02)-
Our reliability arguments employ a Helmholtz decomposition as in [A,C1,
DDPV]. Related adaptive mesh-refining algorithms can be found in [EEHJ,
V2, HW, W].
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2 Notation and preliminaries

The nonconforming finite elements are described by a regular triangulation
T of £2in the sense of Ciarlet [Ci] which is a finite partition @finto closed
polyhedral domains, namely into triangles or parallelogrands= 2, and

in tetrahedra or parallelepipedsii= 3, respectively, such that two distinct

T andT” in T are either disjoint, of' N 7" is a complete face, a complete
edge, or acommon node of béfhand7”. By NV we denote the set of nodes

in 7 and byK := N\ I'p the subset of free nodes. Wifhlet £ denote the

set of all faces (or edges), and we assume fhat £ either belongs td'p

or ENI'p has vanishing surface measure, so there is no change of boundary
conditions within one fac& C I'. We define a partition of into £, £p,
and&y consisting of inner faces, those @iy and'y, respectively. Byir
andh we denote the diameter of an elem&ht 7 and an edgd” € £

and introduce functionss andhg on {2 andué, respectively, which satisfy
hy|r = hy andhg|p = hg;

wp:=UTeT:ECOT}

denotes the neighbourhood bf
We assume that the conforming lowest order method described by

P (T) if Tis atriangle or thetrahedron,
Q1(T) if T is a parallelogram or parallelepiped,

(2.1) P(T):= {

isincluded in our schemé’; (T') andQ (T') denote the set of those algebraic
polynomials of total and partial degree 1, respectively. The Lebesgue
and Sobolev spaces®(£2), H'(£2), H(div , £2) etc. are defined as usual
(e.g., asin [H,LM,GRY]), with corresponding norms || z2(o), || - [ z1(2)»

|- | aiv ,2) €tC., we set },(2) = {v € H'(£2) : v|r, = 0}. The class

of nonconforming finite elements under consideration is defined by a finite
dimensional spacg C H(T), HY(T) = H*(Urer int T), which satisfies
(2.2) Sp C S C HXT),

where

Sp = {Uh S C(Q) v, =00onIpandvT € T, Uh|T S Pl(T)}
Then, the discrete solutidii € H?(T) satisfies, for alV € S,
(2.3) / ViV - AV7U dz = / fVda +/ gV ds.
0 0 I'v
HereVyU (x) denotesVU |r for z € T in T, which may be different from

the distributional gradienVU € D’({2). Similarly, div + denotes theT -
elementwise action of the divergence operator. The conditions imposed on
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U are Dirichlet conditions/,(U — up) ds = 0 for all E € £p and weak
continuity conditions/,[U] ds = 0 for all E € £g; [U] denotes the jump
of U acrosskE.

Remark 2.1Via integration by parts we infer from (1.1)—(1.3) and (2.3) for
vp € Sp, that

(2.4) / Vo, - AVyU dx = / Voy, - AVudz.
0 Q
This leads to the Galerkin orthogonality, i.e., forall€ Sp we have
(2.5) / Vo - A(Vu — VyU) dx = 0.
¢

Example 2.1The Crouzeix-Raviart elements are described lag follows.
S consists of all elementwise affine functiorisvhich are continuous in all
midpointszg of facesk € £, andV(zg) = 0if E € £p. Moreover, the
approximate solutiofy of (2.3) is defined analogously except thatz) =
[z upds/|E| of afaceE € £p with length or aredF)|.

Example 2.2For parallelograms we refer to the rotated bilinear element by
Rannacher and Turek [RT] whichimtincluded in our analysis as then, in
generalSp Z S.

Example 2.3ltis stressed thal, is a conforming test function space which

is included in the nonconforming finite element spaces for triangles or tetra-
hedra. For parallelograms or parallelepipeds, (2.2) means that the polyno-
mial degrees are at least of second order to include the conforhiinpite
elements as suggested in [KS].

We considekl = 2, 3 simultaneously and lét := 1if d = 2 andk := 3 if
d = 3. TheCurl of a functiony € H'(£2)* is defined by

Curlyy == QVy ifd=2 and Curly:=V xe¢ ifd=3,

where is such thatQ(ay,az) = (—asg,ay) for any (ay,as) € R? and
v x w denotes the usual vector product of two vectars € R?. Given a
unit normaln z we define the tangential component of a vectar R? with
respect tovg by

_ Jv-@Qngifd=2,
(2.6) s (V) = {v x ng ifd=3.

Note that we have, fat = 2,3, ¢ € H'(T),v € H'(T)*, by anintegration
by parts

> /E<z> curlzp-ndSZ/Tw.curmdx: > /Eu;.%,a(w)ds.

Ecor Ecor
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Let Iy, ..., I, denote the connectivity components I6f The subsequent
characterisation of divergence free vector fields is a refined version of The-
orem 3.5 in [GR] for Lipschitz boundaries.

Theorem 2.1 A functionv € L?(£2)? satisfies

dive =0 and/ v-nds=0 forallj=0,...,p
Iy

if and only if there exists a stream functigne H'(£2)* such thatv =
Curl ¢. Moreover, in this casé can be chosen such that

Vol 22y < esllvllnz (o)

with a constants > 0 that only depends of?.

Proof. In this proof and at similar occasions, abbreviates an inequality
< up to a constanthr, he)-independent factor. Alsd) - ||, x abbreviates
|- oy @nd] - [l2 = - 2.0

We refer to [GR] for the proof of the if-and-only-if part of the theorem and
focus on the estimatéVo||s < ||v]|2 for d = 3 (the estimate is obvious for
d = 2 since thenjjv||2 = || Curl ¢||2 = ||QV ¢|l2 = ||V ¢||2). The function

¢ is constructed as follows. Lé? be a large ball containing and letd be
the solution to

A0=0inB\ 2, 90/0n=v-n only, j=0,..,p,
90/0n =0 ondB.

The compatibility conditionfpj v-nds = 0,5 = 0,...,p, ensures the
existence of a solution which is unique up to an additive constant on each
connectivity component dB\ £2. We choose this constantine H'(B\ §2)

such that has vanishing integral mean on each component. Then we extend
v toR3 by

t=v inR, 9=V inB\2, =0 inR*\B.

The functions € H(div ; R3) satisfiesliv © = 0 and has compact support.

To estimate$|17||§1,(diV B3y = 15113 gs = lloll3 + HVGH;B\@ we perform an

integration by parts and us&) = 0 in B\ 2 andV6 - n = 0 ondB. This
leads to

2,B\2

Nk / (V6 - n)0 ds
2(B\)

= 0-n)fds <|VE- - anllé -
/E?(Rfi\!z)(v n)fds < ||V -nlly 1/2(6(R3\Q))" HHI/Z(a(RS\Q))
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The existence of a bounded extension oper&tbfB \ 2) — H'(R3\ 2)
and a Poinca inequality show

||9HH1/2(6(R3\§))

= weHill(lugi%\ﬁ) lwll gy S N0l sy S 1VOllg gy
w\pzé

Since the norms 0¥6 - n andv - n in H~'/2(I") are equivalent (though de-
fined from different sides df), the continuity of the mapping (div ; 2) —
H=Y2(I), v+ v - n, yields

INCE ”HH71/2(3(R3\§)) Slvenllg-ziy S lola@y ) = [vlle-

The last three estimates shiW 6|, 5\ < [|v[|2 which implies||o[y gs <
||v||2. The functiono satisfies the conditions of Theorem 3.4 in [GR] on the
smooth domairB, namely

divo=0 inBand v-nds=0.
B

Hence, there exisig € H'(£2)3 with Curl ¢ = © anddiv ¢ = 0 in B. By
Theorem 3.5 in [GR]¢ can be chosen such that

¢-n=0 ondB

and solves-A¢ = Curlv in B andd¢/0ds = v -n = 0 on dB. We then
have

IVelI3 5 < lI8ll2,5]l Curlél2,5 < V]2l Vel2,5- :

Lemma 2.1 Assume thafl’p, C Iy. Then, there exist € H'(£2) and
B € HY(2)F such that

(2.7 AVrU = AVa — Curl §.
The functionsy and 8 can be chosen such that
(2.8) alr, =up onlp and Curlf-n=0 only.

Proof. Choosen € H(2) such that|,, = up and, for allv € H,(2),
we have

(2.9) /Q A(Va —V7U) - Vudzx = 0.
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Then, A(Va — V7 U) is divergence-free, and by (2.9) we have, for all
v E HE(Q),
A(Va—-V7U) -nvds =0,
I'n

whichimpliesA(Va—V7U)-n =0onl}U...Ul},. Moreover, we deduce
from integration by parts

/A(V(X—VTU)-ndS—/ A(Va—V7U)-nds = 0.
Iy a12

According to Theorem 2.1 we can fintl ¢ H'(£2)* such thatA(Va —
V7U) = Curl . O

The following approximation operator is one key ingredient for the reliability
proofs. For each € K the setf2, is a (possibly enlarged) patch (i.e., union
of neighbouring elements) of diametkr which satisfiesh, < cqhr if

T C 2, with an (h1, he)-independent constang > 0. We refer to [C2,
CB] for definitions and proofs.

Theorem 2.2 ([C2,CB])There exists a linear mapping : H,(2) — Sp
which satisfies

IV Tellrz) + I1h (0 = To) 20
(2.10) + 10z (0 = T r2we) < 5 IVl L2

for all ¢ € H}(£2). Moreover, for allf € L?(£2), we have
(2.11)

1/2
2 2
o= 790 < oIVl (L0 min IS = £l

The(hr, he)-independent constants, ¢s > 0 depend on the shape of the
elements only. O

Definition 2.1 For E € £ andTy, Ty € T suchthatE = T1 NT5 letng
be the unit vector perpendicular i pointing from7; to 75 and define

[AVTU . TLE] = (AVU|T2 — AVU|T1) ‘Nng.

For E € &y andT € T with E ¢ 0T and the outer unit normah to
EnTlylet
[AVTU - ng| =g — AVU|r - n.

We assumethat, € H(I'p)NC(I'p) andup|r € H*(E)forall E € &p
and denote by, p the nodal€p-piecewise bilinear interpolant afp on
I'p which satisfiesy, p(z) = up(z) forall z e NN Ip.
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Definition 2.2 For E € Ep with E =T, N1y, Ty, Ty € T, define

Ve (V7U)] =7, (VU|1,) — v (VU|7,) and
[U] = (U|T2 — U|T1)|E onkE,

where~;,, is defined in(2.6) throughn g which points fromil; to 75. For
E e &pandT e T with E C 9T we set

Ve (V7U)] := Oup/0s — 11, (VU|r) and
[U] :==up — Ulg,

Here,0up/0s denotes the surface gradientgf alongE and~; , is defined
in (2.6)via the outer unit normaky = non E N I'p.

3 A residual-based reliable a posteriori error estimate

Theerroru—U € H'(T) of the approximate solutiali will be measuredin
the discretef *-semi-norm|| V- (u — U)|lr2(2) by employing a Helmholtz

decomposition ofAV+U € L?(£2)%. The proof of reliability in Theorem
3.1 will follow the proof of efficiency in Theorem 3.2.

Theorem3.1Letu € H'(2) andU € H?(T) satisfy(1.1)1.3) and
(2.3), respectively. Suppogé, C Iy and that [, [U]ds = 0 forall E €
En UEp. Then, there exists aihr, he)-independent constant > 0 such
that

IV (u = U)l720) < @ <Z b min |1 + div7AVrU = fillz2 o,
zeK ?

+ Y hll(AVFU) - ngll 3
EcEqUEN

b helln (PO e + K208 /05212 1)
EecEqpUEp

Remark 3.1The term thatincludesy, is of higher order for the lowest order
schemes.

Remark 3.2If div 7AV7U = 0 and f € H'(£2) we can choosg, as
the integral mean of over (2, to verify mins cg || f + div 7AV;U —
Fallr20.) < erh: ||V £ 2o,y Which leads to a higher order term.

The reliability estimate of Theorem 3.1 is sharp according to the converse,
efficiency, inequality.
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Theorem 3.2 Letu € H'(2) andU € H?(T) satisfy(1.1)1.3) and
(2.3), respectively. Then, there exists(@s-, h¢ )-independent constang >
Osuchthat,foralll’ € Tand7r :={T" €T :T'NT € Eq} U{T},

Wl f +div AVU oy + D hel[AVEU - ng]l7 g

EecEnUEN,
Ecor
+ Y kel (VrU e
EetlnUép,
Ecor
< - 2 ’ 2/ i — /2 ,
_cs(T;T(uvu VUl + b it I = fo i)

3/2 3/2
+Hh‘6/ 8§UD/882H%2(8T0[*D) + ||hg/ aSQ/OSH%?(aTmFN))‘

Proof. Estimates regarding the volume terms and the jumps of the normal
components oV7U can be proved as in the conforming situation [V1,V2].
Concerning the jumps of the tangential derivativedoalongE € &g,

we letbg be the bubble function o vanishing ondwg and normed by
max,,, bp = 1. Using the extension operaté}: C(E) — C(wg) of [V1]

we find

(3.1) 0= Curl(bp P ([, (V7U)])) - Vuda.
WE
Integrating by parts, we obtain (using equivalencg-df, g ande};/Q o
on [y, (S)]|z and applyingP to each component df; . (V7U)])
10 (VPO 2 S 168 s (VO3 5
= [ Curl(beP([, (VTU)]) - VrU de
WE

= [ CatlbpP (s (V7U))) - V(U — ) da

WE

(32) < | Curl(bpP (s (VU)o IV (4 = U) |20
An inverse estimateby| < 1, and the properties d? show
I Curl(bp P ([ (VTU) 2w S BE' 105P (1 (VTU)) 20
< hip e (V7U)

2,E
so that
(3.3) WY e (V72 S IV (1 = U) |-

For E € £p andwg = T we insertduy, p/Jds, perform an integration by
parts onT, utilise an interpolation estimate [BS], and argue as above to
verify the equivalent of (3.3). O
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The remaining part of this section is devoted to the proof of Theorem 3.1
which is split with Lemma 2.1 into several terms and corresponding esti-
mates. As animmediate consequence (which uses the fadttf?af (u—a)

is L2-orthogonal taCurl 3) of Lemma 2.1 we have

| 4297 (u = U)lIZ2(q) = 142V (1 — @) [
+)|A1/2 CurlﬂH%%Q)

:/ Vr(u—U) - AV(u — ) dz
2

(3.4) +/Q Vr(u—U) - Curl gdzx.

Lemma 3.1 There exists anfhr, he)-independent constamt > 0 such
that

/ Vr(u—U)-AV(u — a)dx

< ¢ (Z h m1n IIf + divAVU — fz||L2
zeK

1/2
+ > hEH[<AvTU>-nE]|r%2(E>) IV (= )llz2o)
EcEnUEN

Proof. Letw := u — a € H},(£2). Galerkin's orthogonality (2.5) and an
elementwise integration by parts yield

/VT(U—U)-Adex:/VT(U—U)-AV(w—jw)da:

_Z/ (f 4 div AVU)(w — Jw) dz

TeT

+ > /AVTU ngl(w — Jw) dx

EcEqUEN

1/2
< (X m2min|f + divrAVIU — B o.) IVl
zeK

9 1/2
S hellavrU nglids) vl
EcEnUEN

A (discrete) Cauchy inequality proves the assertion. O
Lemma 3.2 There existsB € C(£2)* such thatB|y € Py (T)* for all
T € T and, for each¥ € €&,

18 = Bllzz(s) < crohyf” ||V6||sz and
(3.5) IVB|[12(0 < c1l[VBI 2o
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with (hr, he)-independent constantsy, c11 > 0.

Proof. Apply the operatot7 of Theorem 2.2 (with'’p, = () to each com-
ponent of. a

The non-conformity error in (3.4) will be estimated twice. A first result for
the estimation of the second term in (3.4) involves an auxiliary funation
This is the straightforward generalisation of the two-dimensional result [C1,
DDPV].

Lemma 3.3 Supposg,,[U] ds = 0 forall E € £,UEp and thatT consists
of triangles or tetrahedra only. Then, there exists(ag, h¢)-independent
constant;, > 0 such that, for al € H'(£2) which satisfy = up onI'p
and [p(v—U)ds = 0forall E € &y,

/ Vr(u—U) - Curl Bdz < C12< > el (Vo = U172
2 Ee&g

+ > helles (VPO 72
EcEp

1/2
+ 3 bl (Vro = D)Ea) - 142V (= U)lp2(o)-
EcEn

Proof. With B from Lemma 3.2, we have, sin€&irl B € H(div ; £2) and
Curl B|r is constant, thgCurl B-ng| = 0 across all interior edges. Using
[plv=U]Curl B-ngds = 0for E € Egand [, (v—U) Curl B-ng ds = 0
for E € EnUED, weinfer [, V- (v—U)-Curl B dx = 0.UsingCurl §-n =

0 onIy, we also have,, V(v — u) - Curl 3 dz = 0. Employing these two
observations and Lemma 3.2 we find

/VT(u—U)-Curlﬂdw—/VT(U—U)'Curl/Bda;
2 n

= / Vr(v—=U)-Curl(f — B)dz
Q

-y /E 1 (Vr(0 — U))](8 — B) ds

Ec&qn

- /E g (Vr(v — U))(8 — B) ds

EecENUED

S (2 hellbes(Vro = ODBs+ Y hellbus(Fro)i .
Ec&g Ecép

1/2
+ > hels(r = U)IBg) VBl
Ee&n
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The estimatd V3|2 < [|[AVF(U — )|z < ||AY2Vr(u—U)||2 concludes
the proof. a

Remark 3.3In two space dimensiong; is constant on each component
of I'y (since0 = Curl 3 - n = 94/t is the tangential derivative cﬁ).
Then, ||y, (V7 (v — U))]llz2(z) can be replaced by[ye, (VrU)]| 2

for £ € £p and||yi, (V7 (v —U))l|2() can be neglected far € En [Cl
DDPV].

We do not discuss the construction of a good functioim Lemma 3.3.
Instead, we focus on a second estimation which avoildst whose proof
is rather more complicated.

Lemma 3.4 Assume thaf,,[U] ds = 0 for all E € £, U Ep. Then, there
exists anhr, he)-independent positive constang such that

/ Vir(u—U) - Curl dz
2

1/2
<en( D hele (Ve + Ih *03un /051, )
EecEnUED

x|| Curl B[ 20

Proof. Recalling thatf,, Curl 5 - Vv dz = 0 for v € H,(£2), we have for
Vp € Hl(Q),

/ Vr(vp = U) - Curl B dz
(3.6) < [[V(u—wvhn — )2l Curl Bll2 + [ V7 (vh — U)ll2|| Curl 5]2.
Let (¢. : z € N) be the nodal basis of the lowest order finite element

space assomated B, i.e,p. € C(2), p.lr € Pi(T) forall T € T,
.(x) =0forz € N\ {z}, andy.(z) = 1. Setw, := int(supp ¢.) and,
forz e NNIp,leth, := diam(w,). For eache € A define

S(z,up) :={v; € C(wz) : vz|w, € S|u, andv, = upponIp Now,}.
We then have, for, € S,
S = {Z ©0.v, :Vz e N,v, € S(z,up)} € HY(),

zeN
that
inf  IV—v—vlf= nf (IVul}s |ng?03up /0% |3 1,
vEHL (£2) weH(£2

w|FD =up— uh D
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(cf. [BC] for details in three dimensions) and, by an elementwise inverse
estimate,

3.7) min ||V (v, = U)lle S min [|h7 (vp = U) 2.
UhES ’UhES

(The constant in (3.7) depends on the polynomial degrees of functions in
S.) The minimiserw;, = >, w.p. € S of the right-hand side in (3.7)
obeys the orthogonal relation

(3.8) / h7_—2(wh —U)pv,dz =0
2

forall z € Nandv, € S(z,up). Using (3.8) and noting that, . _ - ¢. =1
we have, for, € S(z,up),

1R (wy, — U)|13 = Z/ (wp, — U)pz(w, — U) dz

zeN
_Z/hT wy — U)a(v: — U) da
zeN
3.9  S|hrt(wp —U)|2 Zh 2||pY/2 (v, U)||g7wz)1/2.
2eN

SimilartoS(z,up) we set, forE € Eo UEp, Tp:={T € T : E C 0T}
and

S(E,UD) = {UE € C(WE) VT € TE,UE|T € S’T and
VE = Uh,D onl'p ﬂE}.

For a fixedz € N we consider the semi-norms on a finite dimensional
subspace of *(&,), @, = Upcz.wE,

._ . 1,12
= min -
VIl = min Bl =)o,
2 = E h72 min V —vgll3 .
, E vpeS(Bup) H EHZ,wE

EcEnUED,ECW,

We claim||[V|||1> < I|V]l2,2- Indeed, if|||V]]|2,- = 0 we have for each
E e Enuép with E C w, thatV = vy on the open seby for some
vp € S(F,up). The set of all suchvg is a cover ofw, and there is a
sequenceyy, ..., £y, of inner edges such thatg, N wg,,, # 0, so we
deduceV € S(z,up) and thus||V||]; . = 0. A compactness and a scaling
argument (in the sense of equivalence of semi-norms) show

(3.10) 1Mz S onSs. .
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Combining (3.7)-(3.10) we find

min || V7 (on — O)I5 S Y NUNT. S DU
vh€S ze zel
(3.11) S Z hy>  min ||U - UEH%wE-
EcEnUED ve€S(Eup) 7

Since||[U]||2,r = 0 means thal is continuous acrosg if £ € £ it
impliesU|., € S(E,up). If Ulg = uyp for £ € Ep we also have
Ulw, € S(E,up). A scaling and a compactness argument thus show, for
al Ee &£p U &,

20|z, if £ €&,

(3.12) min U—-vEl2ws S _
upy IV~ VB ll2e W2 \U — uppllap if E € Ep.

vp€S(Eup

An interpolation estimate [BS] o € &p shows||U — uppll2.e S
1[Ull2,e + h%||0%up/0s?||2,k. Since[,,[U] ds = 0 an edgewise Poincar
inequality y|elds||[ Hl2.e S hEH[%E(VTU)]HQ,E. Hence,

' h_l U_ w V U
ppemtn U= vslawes S W2 e (VU] o,

+h22)|0%up /05 |2,y -

Using this in (3.11) and the resulting estimate in (3.6) we eventually verify
the assertion of the lemma. 0
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Proof of Theorem 3.1The combination of Lemma 3.1 and 3.4, (3.4), and
the definitions

0 = Z h? ]rcné% If 4+ div 7 AVFU — f2]3.0.
zEK 8
+ > helll(AVrU) - ngll3 e
EecEpUEN
mo= Y. helle(VrO)llbe
EcEnUED

+|hg*0Rup /05> 3.1,y vields

142V (u = U)|3
/ Vr(u—U)-AV(u — a)dx
I7;

AN

V7 (u = U)|3

—|—/QV7-(U— U)-Curl Bdz
S mlV(u—a)llz +nz| Curl Bl
< 4+ m) IV (u— )3 + || Curl g[3)"/2
S i +m)' 1AV (u— o) |3
+[| ATV Curl B5)1/
= (i +m3) ' 2IIAY2 V7 (u = U)|
S 0 +03)2IVr (u = U)l2. 0

Remark 3.4An alternative proof of Theorem 3.1 under more restrictive
conditions ifd = 3 follows with Lemma 3.3.

4 Reliable averaging a posteriori error estimates

In this section we prove modifications of Lemma 3.1 and 3.4 and then derive
a posteriori error estimates based on averaging techniques for lowest order
nonconforming finite elements, i.e., for the Crouzeix-Raviart element. For
higher order methods we refer to the ideas of [BC].

We suppose that to each nodes A" N 'y at mostd distinct outer unit
normals can be associated. Moreovey|if € H'(E) for all E € £y and

if for each nodez € ' N I'y where the outer unit normal is continuous

g is continuous then

S(T.g) = {qn, € C(2)*: YT € T, qu|r € P1(T)* and
Ve e NNT'N,VE € En,2 € E, Aqy - n|g(2) = g|p(2)}
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is non-void and well-defined. By the assumptionsugnwe may define

S(T, uD) = {Uh S C(ﬁ) NT €T, Uh’T S Pl(T) and
Vze NN Ip,vp(z) =up(2)}.
Theorem4.1Letu € H'(2) andU € H?(T) satisfy(1.1)1.3) and

(2.3), respectively, and suppos$e, C Ipanddiv 7AVy-U = 0. Then, there
exists anhr, he)-independent positive constant, such that

_ 2 < : 177 2
197 = Dl < ens(| min 17 0 = on)liEaqo)

+  min HVTU—qhH%m

qn ES(T

g *0Fun /05 3,y + 10 *0eg /D5l 1y
£ min I = £lfa0,)-

ze

Remark 4.1The terms including p andg are of higher order for the lowest
order schemes.

Remark 4.2If f € H'(£2) we can choosg, as the integral mean gfover
2, toverifyming, eg || f — f2llr2(0.) < crhz ||V ]| 2(0.) which leads to a
higher order term.

Remark 4.3The above assumptions dily and g appear restrictive but
can be weakened: I8'(7T,g) = {qn € C(2) : VT € T,qulr €
Pi(T)* andVE € En, [,(Agy - n — g)ds = 0} andg|p € H'(E) for
all £ € &y then the estimate of Theorem 4.1 reads

. -1 2
V7= Oy < exs(, min 107 (U = on)liEage)
g *08up /05 121y

2
+q€f§1}(ﬂ (IV7U = anll2(0)

+\|h3/28g(g — Agy, - n)/55||%2(r,v))
+ 3 h2min |f = flfa,)

ze

Two efficiency estimates are presented in the next theorem. In the first, the
multiplicative constant id while higher order terms depend on regularity

of the exact solution. In the second, higher order terms are given with the
smoothness of the data while the multiplicative constagnts unknown.
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Theorem 4.2 Letu € H'(2) andU € H?(T) satisfy(1.1)1.3) and
(2.3), respectively. Then, there holds

i h ' (U —
vhég}%{%uD)H T( Uh)Hm(Q)

- VU — < ||h(u—-U
+ min IVTU = anllz2@) < hy (uw = U)ll12(0)

+|Vr(u—U + i ht (u —
V7 (u )”L2(Q) vhegégqu)H T(u Uh)”L?(Q)

+ min ||Vu—qullr2(0)-
i I IL2(2)

Moreover, there exists a constant > 0 such that

min )Hh7_’1(U_Uh)HL2(_Q)

v €S(T,up
+ i VU — < Vu - VU
qhég%%g)ﬂ T QhHL2(Q)_016(H U T HL2(Q)
h2 inf o 2 1/2
+(TZ TfTelgl(T)Hf frlite(r))
eTr

W *0Bun /052|121y + 11 209/ O5 |2y ).

Proof. The first estimate follows from two applications of the triangle in-
equality. Using that global averaging is equivalent to local averaging [CB]
and that local averaging is equivalent to weighted jumpgl/ the second
estimate follows with Theorem 3.2. O

The proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.1 Assume thadiv fAVU = 0. Then, there exists attr, he)-
independent positive constant such that

/ Vr(u—U)-AV(u — «) dx
9]

. 2 3/2 2
<er(, min IVPU — aullao) + 0 *0e0/051 32,

1/2
2 - 2
LR T = ) IV Ol

Proof. Letw :=u — a € H}(£2). We obtain with Galerkin orthogonality
(2.5), Cauchy’s inequality, the properties@f and an elementwise inverse
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estimate after insertindiv AV U, for arbitraryq, € S(T,g),

/VT(U—U)-AdeJ:

9]

:/(Vu—qh)-AV(w—jw)dx—i—/(qh—VTU)-AV(w—jw)dx
9] 2

. . 1/2
S (X r2min 17 +div Ay = £13.0.) " + 1970 ~ aull

Vw2

+m (9 — Ay mllary )

< (X m2minllf — LlB.o. + VU — anl3
ze

1/2
+ng <g—Aqh-n>u3,pN)Hun2.
It follows from an edgewise interpolation estimate (see, e.g., [BS]) that

1/2
(g — Agn - n)llory S (Y hhl0g/0s13.2)"
Eecén

= |12 0eg/ 05| r - 0

Lemma 4.2 There exists arlhr, he)-independent positive constaats
such that

/ Vr(u—U) - Curl fdx
2

. -1 2
< cig (Uhe‘rgr%g%) 1 (v = U) 720

1/2
IR 0up /0% 3a ) ) Il Curl Bl 2.
Proof. As in (3.6) we have fop, € H'(2)

/VT u—U)-Curl fdx
IV (u = v, = v)ll2]| Curl 3|2

inf
v€H1 (92)

+IV7 (on = U)l2]| Curl 5.

Eachv, € S(T,up)interpolates: p innodes o p (so that we can estimate

the infimum as in the proof of Lemma 3.4). An elementwise inverse estimate
0

proves the lemma.
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Proof of Theorem 4.1Using Lemma 4.1 and 4.2 and (3.4) for

? i 2 3/2 5
= min [|V3U — + [|hY “0cqg/0s
n an€S(T,9) IV anllz + [|hg "Oeg/ Hz,FN

12 i 2
+) Smin |1 = Ll

zel
. — 3/2
np = min A7 (U = on)3 + |0 *0Run /073 r,y
UhGS(T7uD)
we proceed as in the proof of Theorem 3.1. O

We now show that the second term in the right-hand side of the inequality
in Theorem 4.1 dominates the first on&if7, ¢) is modified appropriately,
fE[U] ds = 0 is satisfied for allE’ € £, U £p, and some conditions oA,

up, andg are satisfied.

Assume thay|r € H'(E) for all E € &y and that, for each node €

N N Ty where the outer unit normal is continuousy is continuous. We
also suppose thatp € HY(I'p) N C(I'p), dup|r/ds € H(E) for all

E € &p and that for each node € N N I'p where the outer unit normal

n is continuous)up /s is continuous. Moreover, we assume that for each
z € N'N I the system of linear equations

(4.1) VE € En with z € E there holdsAz - n = g|g(2),
' VE € Ep with z € E there holdsy;, (x) = Oup|g/0s(z),

admits at least one solutian Then, the space

S(Tvga UD) = {Qh € C(ﬁ)d VT € Tv Qh|T € Pl(T)d
andvz e NNIT'y,VE € En,z € E, Aqp, - n|p(2) = g|r(2),
andVz e NN Ip,VE € Ep,z € E, v, (qn)|p(2) = Oup|p/0s(z)}

is well-defined and non-void.

Remark 4.4The above assumption is fulfilled if for eache A/'N 1" at most
d distinct conditions are imposed in (4.1). Note thaindup might have
to satisfy certain compatibility conditions in nodes I'p N Iy to ensure
that (4.1) is well posed [CB]. This is necessary when, e.g., far all R¢

we haveAz - ng, = Vi, (x) for two edgesE; € &y andEs € &p that
share a node.

Theorem 4.3 Letu € H'(2) andU € H?(T) satisfy(1.1)«1.3) and
(2.3), respectively, and suppo$g C Iy, [;[U]ds =0for E € EoU&D,
anddiv 7AV7U = 0. Then, there exists afhr, he)-independent positive
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constanicy such that
V7 (u = U220

s¢ ( min VrU — anl7 + h2 min || f — f.|)?
<e _gin VU = anlliao) ZK 2min | ~ f-lFa(o.)

12 0Run /052 a1y + I8 2069 /051321y )

Remark 4.5Note that any choice @f; € S(7, g, up) yields areliable error
estimate. An operatod : VS — S(T, g, up) specified ford = 2 in [CB]
yielded an error estimateVrU — AV7U | 2y which performed well in
numerical experiments reported therein.

Remark 4.6As in the previous estimates, the term includjng H'(2) is
of higher order.

Two efficiency estimates with complementary properties are presented in
the next theorem on the analogy of Theorem 4.2.

Theorem4.4Letu € HY(2) andU € H?(T) satisfy(1.1)+1.3) and
(2.3), respectively. Then, there holds

min VU — <||IV7r(u—-U
aneS(Togun) VT %HL?(Q) < [|Vr( )”L2(Q)

+ min Vu—qp|lr2(0)-
an€S(T.g:up) | I («2)

Moreover, there exists a constant) > 0 such that

i VU — < Vu — VrU
Lodmin VU = aullgae) < e (Ve — V70l iz

SO R it = frlag) P 4 16 202up 05
(T;T TfTelgl(T)Hf fTHLQ(T)) [he " Ogup/0s” || L2(rp)

1K 2029/05 ) 1201y ) 0

Proof of Theorem 4.3or each® € £ letSg := S(T,g,up)|., and define

(VU|r, = VU|p,)|pif E=T1NT; € &g,
VrU]lE := < 1 (V7U)] if £ e€ép,
[AVTUTLE] ifEGgN.

Note that{V/;U] = 0if VsU|,, € Sg so that a compactness and a scaling
argument show, for each € &,

1/2 .
W VU or S min VU - gglowp-
qe€SE
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ForE ¢ &y andE C 0T N1 y we insert the nodal interpolapt of g, note

that for eachyp € Sg we haveyg - n = g, on E, and obtain by equivalence

of semi-norms on a finite dimensional space, a scaling argument, and an
interpolation estimate

2 1/2
WU o < bl (|AVU | -1 = gullos + llgn — gll2.p)
S min [|V7U — gpllow, + by *[109/0s
qEE€ESE

|2.E.

For £ € &p andE C 9T N I'p we denote by, 1, the nodal interpolant

of Qup|g/ds. For eachyr € Sg, we havey,(¢qr) = u}, , on E. By
equivalence of semi-norms on a finite dimensional space, a scaling argument,
and an interpolation estimate we obtain

1/2 1/2
W2 (V7 U)o, < bl (s (VU 7) =t p)|

2,5+ ||u} p—0up/092,E)

S min [VrU = apllzwy + 0y 10%un/05 0,6
qEE€SE
Local averaging is bounded by global averaging, i.e.,

min |V7U —ggll2,,. <  min VU — q413
E%,QEESE || T QEHQ,WE ~ thS(T,g7uD) || T qh||27

and for each® € &, we have by orthogonality of the decomposition into
tangential and normal components

1lyes (VrON3 6 + IAVFU - ng]l3 2 S s (VOB 6
+IIVrU - nglll3 g = VU3 -

A combination of the above estimates yields

Y. AU ngll3s+ Y helbus(VrO)IE e
EcEqUEN EcEqUED
< min VrU — qnll3 + h32|19g/8s|2
e 1970 =0l 3 1 00/ost

3/2
+ 3 B2)0%up /0523 k.
E€e&p

Using this to bound the right-hand side of the inequality in Theorem 3.1
proves the assertion. O
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5 A reliable L2-a posteriori error estimate

For theL?-estimates we assuni&?-regularity of problem (1.1)—(1.3) with
up = 0andg = 0, i.e., we assume the existence of a constant- 0 such
that, for all f € L?(£2) and corresponding solutian € H},(§2), we have
u € H%(£2) and

(5.1) ull 720y < 20l fll22(0)-
Sufficient for this is, e.g.[v = 0, A is Lipschitz, and? is convex [G].

Theorem 5.1 Letu € H'(2) andU € H?(T) satisfy(1.1)1.3) and
(2.3), respectively. Suppogé.1)«(1.3) with up = 0 andg = 0 is H?-
regular, [,[U]ds = Oforall E € £ U&p, andA € Whe(2;Réxd).

Then, there exists afhr, he)-independent positive constant such that

|u—=Ullp2() < e (Z hrll f + div FAV U (2

TeT
+ Y WEIAVTU - nglllie g
EecEpUEN
3 9 1/2
+ > Bl (VO s)
EeEpUED

Proof. Letn € H?(2) N H} (1) satisfydiv AV = —(u — U) in 2 and
(AVn)-n =0onIy.Letn, € Sp be the nodal interpolant gf We deduce
from integration by parts, Galerkin orthogonality (2.5), and the assumption
on[U], forcg € RYandE € £, U Ep,

/Q(U—U)Qd:z:—/ﬂ(u—U)div AVrndx

—/QVT(U—U)'AVHCZQC— Z /E[U]AVn-nEds

EcEnUED

= [ Vrw=0)- AV -myds— 3 [ [014Vy-ngds

EcEpUED
=D [ (f+div FAVTU) (g — ) d
TeT /T
+ Y /[AVTU‘WE](W_Uh)dx
EecEQUEN E

- Z /E[U](AVn—cE)‘nEds.

EcEnUED
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For eachF € £, U Ep takeTy € T with E C 9T and verify with a trace
inequality [BS, CF]

1(AV) — cp) - npll3 g = AV — cel3
S W' lAV) = cg|3 1, + hel D(AV)|3 1,

Choosingcg as the integral mean oV over Ty we have||AVn —
CEHQ,TE g hEHD(AVn)HZTE and thus

[E UJ(AVY — ep) - npds < WY\ U)l2.ll DAV |l2.1,

< nf?o])

2,E<||V77HQ,TE + ”D27]H27TE>‘

With Cauchy’s and trace inequalities as well as interpolation and the above
estimates,

= U3 S eao llu = Ull2 (D WIS + div 7AV7 U7
TeT

1/2
62+ Y hRIAVIU ngll3p+ Y helUNBE)
EecEqUEN EecEnUED

An edgewise Poincarinequality shows, for each € £, U £p,

(5.3) U2, < helllyes (VrU)ll2.e. 0
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