Analysis I* WiSe 2018/19

Übungsblatt 1

Schriftliche Abgabe: Dienstag 23. Oktober 2018

Schreiben Sie auf jede Lösung bitte ihren Namen, ihre Matrikelnummer und ihre Übungsgruppe (Wochentag + Übungsleiter + ev. Zeit)

Aufgabe 1.1 (2+3 Punkte) Wir betrachten die folgenden Aussagen:

A: Wenn das Wetter schön ist, fährt Luise an den See und geht baden.

B: Das Wetter ist schön. C: Luise fährt an den See. D: Luise geht baden.

- a) Drücken Sie \mathcal{A} durch $\mathcal{B}, \mathcal{C}, \mathcal{D}$ und geeignete logische Verknüpfugen aus. Stellen Sie eine Wahrheitswertetabelle für \mathcal{A} in Abhängigkeit von den verschiedenen Wahrheitswerten für \mathcal{B}, \mathcal{C} und \mathcal{D} auf.
- b) Drücken Sie die Negation $\neg \mathcal{A}$ durch $\mathcal{B}, \mathcal{C}, \mathcal{D}$ und logische Verknüpfungen aus, wobei das Zeichen \neg nur noch unmittelbar vor \mathcal{B}, \mathcal{C} oder \mathcal{D} auftreten soll, nicht jedoch vor zusammengesetzten Aussagen. Formulieren Sie die Negation von \mathcal{A} auch in gutem Deutsch.

Aufgabe 1.2 (1+2+2 Punkte)

Die folgende Wahrheitswertetabelle definiert eine neue logische Verknüpfung *

\mathcal{A}	\mathcal{B}	$A * \mathcal{B}$
w	w	f
w	f	f
f	w	f
f	f	w

- a) Welche einfache logische Operation liefert $\mathcal{C} * \mathcal{C}$?
- b) Zeigen Sie mit einer Wahrheitswertetabelle, dass * eine logische Verknüpfung "Nicht-Oder" ("nor"=not or) ist: $\mathcal{A} * \mathcal{B} \iff \neg (\mathcal{A} \vee \mathcal{B}).$
- c) Folgern Sie, dass sich alle in der Vorlesung eingeführten Verknüpfungen ausschließlich durch * darstellen lassen. Geben Sie konkret die Darstellung von $\mathcal{A} \wedge \mathcal{B}$ an. Bitte formulieren Sie ihre Beweise in klarem Deutsch, damit man zwischen dem Beweis und dem Gegenstand des Beweises unterscheiden kann.

Aufgabe 1.3 (3+3 Punkte)

Seien M, N und X Mengen.

- a) Beweisen Sie, dass die folgenden Aussagen gelten:
 - i) $(M \cap N) \setminus X = (M \setminus X) \cap (N \setminus X)$
- ii) $(M \cup N) \times X = (M \times X) \cup (N \times X)$
- iii) $(M \setminus N) \times X = (M \times X) \setminus (N \times X)$
- b) Untersuchen Sie, ob die folgenden Aussagen gelten und beweisen Sie ihre Resultate (falls die Aussage falsch ist, reicht auch die Angabe eines Gegenbeispiels).
 - i) $(M \setminus X) \cup X = M$ ii) $(M \cup X) \setminus X = M$
 - iii) Wenn $M \cap N \cap X$ leer ist, so ist mindestens eine der Mengen $M \cap N$, $M \cap X$, $N \cap X$ leer.

Die folgenden Aufgaben werden teilweise in den Übungen besprochen.

Aufgabe

Seien $\mathcal{A}, \mathcal{B}, \mathcal{C}$ beliebige Aussagen. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- a) $\neg(\neg A)$ ist äquivalent zu A,
- b) $\neg (A \lor B)$ ist äquivalent zu $(\neg A) \land (\neg B)$,
- c) $\mathcal{A} \wedge (\mathcal{B} \vee \mathcal{C})$ ist äquivalent zu $(\mathcal{A} \wedge \mathcal{B}) \vee (\mathcal{A} \wedge \mathcal{C})$.
- d) $\mathcal{A} \Rightarrow \mathcal{B}$ ist äquivalent zu $\neg (\mathcal{A} \land \neg \mathcal{B})$ (indirekter Beweis)

Zeigen Sie, dass die folgenden Aussagen immer wahr sind

- a) $(A \land (A \Rightarrow B)) \Rightarrow B$ (logische Reduktion)
- b) $\lceil (\mathcal{A} \Rightarrow \mathcal{B}) \land (\mathcal{B} \Rightarrow \mathcal{C}) \rceil \Rightarrow (\mathcal{A} \Rightarrow \mathcal{C})$ (Regel vom Kettenschluss)

Aufgabe

- a) Formalisieren Sie folgende Aussagen mit Hilfe von Quantoren, verneinen Sie die Aussagen und übersetzen Sie die verneinten Aussagen in gutes Deutsch.
 - a) "Auf jedem Übungsblatt gibt es eine Aufgabe, die alle Studenten lösen können."
 - b) "In jedem Jahr gibt es einen Monat, sodass an allen Tagen dieses Monats mindestens eine Stunde lang die Sonne scheint".
- b) Wann ist es erlaubt in quatisierten Aussagen die Reihenfolge zu ändern? Betrachten Sie dazu folgende Beispiele: Seien $A, B \subset \mathbb{N}$ und

$$\mathcal{S} := (\forall a \in A \exists b \in B : a < b), \qquad \mathcal{T} := (\exists b \in B \forall a \in A : a < b).$$

Gilt $S \Rightarrow T$? Gilt $T \Rightarrow S$? Beweis oder Gegenbeispiel!

Aufgabe

Seien \mathcal{A} und \mathcal{B} Aussagen. Formulieren Sie mit Hilfe der Verknüpfungen \neg, \land und \lor eine Aussage, die genau dann wahr ist, wenn **entweder** \mathcal{A} **oder** \mathcal{B} wahr ist.