

Übungsblatt 11

Schriftliche Abgabe: Dienstag 15. Januar 2019, bis 13:15 vor der Vorlesung!
Schreiben Sie bitte jede Lösung auf ein extra Blatt!
Schreiben Sie auf jede Lösung ihren Namen, ihre Matrikelnummer und ihre Übungsgruppe
(Übungsleiter + ev. Zeit)

Aufgabe 11.1(1+2+2+1*)

Für eine reelle Zahl a betrachten wir die $Binomialreihe\ B_a(z) := \sum_{n=0}^{+\infty} \binom{a}{n} z^n$.

- a) Zeigen Sie: Für alle $m \in \mathbb{N}$ und $z \in \mathbb{C}$ gilt $B_m(z) = (z+1)^m$.
- b) Bestimmen Sie für $a \notin \mathbb{N}$ den Konvergenzradius von $B_a(z)$.
- c) Zeigen Sie: $B_a(z) \cdot B_b(z) = B_{a+b}(z)$ für alle $a, b \in \mathbb{R}, z \in \mathbb{C}$ mit |z| < 1. Hinweis*: Zum Beweis benötigen Sie die folgende Formel, die Sie (als Bestandteil dieser Aufgabe) per Induktion beweisen können:

$$\sum_{k=0}^{n} \binom{a}{k} \binom{b}{n-k} = \binom{a+b}{n}.$$

Aufgabe 11.2 (2+2+2 Punkte)

Bestimmen Sie die Konvergenzradien folgender komplexer Potenzreihen:

a)
$$P_1(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$$
. b) $P_2(z) = \sum_{n=1}^{\infty} {2n \choose n} (z+2)^n$. c) $P_3(z) = \sum_{n=1}^{\infty} n^n z^{n^2}$.

Aufgabe 11.3 (2+2 Punkte)

Sei (a_k) eine Folge in \mathbb{R}^+ und bezeichne für jede natürliche Zahl k > 1: $L_k := -\frac{\log a_k}{\log k}$. Zeigen Sie:

- a) Gilt $\liminf_{k\to +\infty} L_k > 1$ so konvergiert die Reihe $\sum_{k=1}^{+\infty} a_k$.
- b) Existiert ein k_0 so dass $L_k \leq 1$ für alle $k \geq k_0$, so divergiert die Reihe $\sum_{k=1}^{+\infty} a_k$.

Aufgabe 11.4 (1+1+1+1 Punkte) Es sei α eine positive reelle Zahl. Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz:

a)
$$\sum_{k=1}^{+\infty} \alpha^{\log k}$$
, b)
$$\sum_{k=2}^{+\infty} \alpha^{\log(\log k)}$$
, c)
$$\sum_{k=2}^{+\infty} \frac{1}{k \cdot (\log k)^{\alpha}}$$
, d)
$$\sum_{k=1}^{+\infty} (-1)^k \frac{\log(k+1) - \log(k)}{k}$$
.

Schriftliche Zusatzaufgabe 11.Z (3 Punkte) Sei $(\ell^2, \|\cdot\|)$ wie in Aufgabe 11.E. Zeigen Sie, dass die abgeschlossene Kugel

$$Z := \{(x_k) \in \ell^2 \mid \|(x_k)\| \le 1\}$$

nicht kompakt ist.

Die folgenden Aufgaben werden teilweise in den Übungen besprochen.

Aufgabe 11.A Bestimmen Sie den Konvergenzradius der folgenden komplexen Potenzreihen:

a)
$$\sum_{n=1}^{\infty} n! \cdot z^n$$
, b) $\sum_{n=1}^{\infty} (2n)^2 (z-3)^n$, c) $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$.

Aufgabe 11.B Das Cauchy-Produkt zweier absolut konvergenter Reihen ist wieder absolut konvergent.

Aufgabe 11.C

Zeigen Sie: Ist (x_n) eine Folge reeller Zahlen mit $x_n \longrightarrow +\infty$, so gilt $\lim_{n \to \infty} \frac{\log x_n}{x_n} = 0$.

Aufgabe 11.D Bestimmen Sie alle reellen Zahlen $x \in \mathbb{R}$, die die folgenden Gleichungen lösen:

- a) $2^{3^x} = 3^{4^x}$.
- b) $2(\log_5 x)^2 + \log_5 x^3 = 2$.

Aufgabe 11.E Sei ${\mathcal F}$ der Vektorraum der reellen Folgen und ℓ^2 die Teilmenge

$$\ell^2 := \left\{ (x_k) \in \mathcal{F} \, \big| \, \sum_{k=1}^{\infty} |x_k|^2 < +\infty \right\}.$$

- a) Zeigen Sie, dass ℓ^2 ein Untervektorraum des Vektorraumes $\mathcal F$ ist.
- b) Für $(x_k), (y_k) \in \ell^2$ sei

$$\langle (x_k), (y_k) \rangle := \sum_{k=1}^{\infty} x_k \cdot y_k$$

Zeigen Sie, dass $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf ℓ^2 ist.

c) Sei $\|\cdot\|$ die durch $\langle\cdot,\cdot\rangle$ definierte Norm. Zeigen Sie, dass $(\ell^2,\|\cdot\|)$ ein Banachraum ist.

Hinweis: Benutzen Sie die Dreiecksungleichung für die Norm $||x||_2 = \sqrt{\sum_{k=1}^n (x_k)^2}$ auf \mathbb{R}^n .