Warm Up

Differential Geometry WS 2019/20

Problem 1 Differentiable maps and implicit function theorem

Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ be a function defined on an open set U.

- a) Explain what it means that f is of class C^1 , i.e. continuously differentiable.
- b) Describe the "first derivative" and explaion its meaning.
- c) Let $g: \mathbb{R}^n \to \mathbb{R}^p$ be another C^1 -function. Formulate the chain rule for $g \circ f$.
- d) Formulate the inverse function theorem and the implicit function theorem.
- e) For f as above and $x \in U$ assume that the differential of f at x is surjective. Describe $f^{-1}(f(x))$ near x as a graph of a differentiable function.
- f) Study the different situations for $f : \mathbb{R}^n \to \mathbb{R}$, $f(x_1, ..., x_n) = x_1^2 + ... + x_n^2$ for n = 2 and n = 3.

Problem 2 Curves, length of a curve, first and second derivative

Let $\gamma: I \to \mathbb{R}^n$ be a C^1 -map, $I \subset \mathbb{R}$ is an interval.

- a) Interpret first and second derivative of γ in physical terms (classical mechanics). Formulate Newton's laws using differential calculus.
- b) Define the length of γ . Explain why it does not depend on its parametrization.
- c) Assume that the value of the velocity of a pointlike mass moving according to Newton's laws is constant. What can you conclude about the force acting on it?
- d) Let $f: U \subset \mathbb{R}^m \to \mathbb{R}$ be a real C^1 -function ($U \subset \mathbb{R}^m$ again open). Let $\gamma: I \to U$ be C^1 such that $f \circ \gamma$ is constant. Show that $\dot{\gamma}$ is perpendicular to the gradient ∇f of f.