Problem Set 1

Differential Geometry WS 2019/20

Problem 1

(a) Let $\tilde{\gamma}:[a, b] \rightarrow \mathbb{R}^{n}$ be a regular, differentiable curve and denote by $\gamma:[0, \ell(\gamma)] \rightarrow \mathbb{R}^{n}$ its arclength reparametrization. Show that γ is differentiable and $\|\dot{\gamma}(t)\|=1$ for all $t \in[0, \ell(\gamma)]$.
(b) What can be said if $\tilde{\gamma}$ is not necessarily regular but nowhere constant?

Problem 2

(a) Let $\tilde{\gamma}:[a, b] \rightarrow \mathbb{R}^{2}$ be a regular, twice differentiable curve. Compute the curvature $\kappa:[a, b] \rightarrow \mathbb{R}$ in terms of its first and second derivative.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be a C^{2}-function; let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ be given by $\gamma(t)=(t, f(t))$. Derive formulas for the length of γ and its curvature. Show that the curvature is negative, positive, zero exactly where f is concave, convex or has an inflection point, respectively.
(c) Compute the turning number of γ in (b).

Problem 3

(a) Compute the length and the curvature of the following curves:
$\alpha:[a, b] \rightarrow \mathbb{R}^{3} ; \alpha(t)=(r \cos t, r \sin t, k t)$ (the helix)
$\beta:(0, \pi) \rightarrow \mathbb{R}^{2} ; \beta(t)=(\sin t, \cos t+\ln \tan (t / 2))$ (tractrix).
$\gamma:(-1,1) \rightarrow \mathbb{R}^{2} ; \gamma(t)=\left(t^{2}, t^{3}\right)$ (semicubic parabola).
$\delta:[0,2 \pi] \rightarrow \mathbb{R}^{2} ; \delta(t)=(\cos t, \sin (2 t))$ (lemniscate of Gerono).
(b) Compute the turning number of δ.

